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ABSTRACT

In this paper, we introduce two new families of proba-
bility density functions (PDFs) for the polarimetric target
vector and covariance matrix. These families complete
the diagram spanned by the second and third-order ma-
trix log-cumulants of the data, and contribute to a holis-
tic theory for statistical modeling of Polarimetric Syn-
thetic Aperture Radar (PolSAR) data based on the Spher-
ically Invariant Random Vector (SIRV) model. The new
PDFs result from using a Beta and an Inverse Beta dis-
tributed texture variable, and are referred to as the W and
M distributions. They are able to model data with low
variance but extreme skewness, which proves particularly
relevant for speckle filtered data with textural variability.
The usefulness of the models is demonstrated with multi-
frequency real data.

Key words: Polarimetric SAR, Matrix log-cumulant dia-
gram, Texture modeling.

1. INTRODUCTION

For low resolution Polarimetric SAR (PolSAR) images,
it is generally sufficient to model the variability of dis-
tributed targets as fully developed speckle. This assump-
tion leads to the complex multivariate Gaussian distribu-
tion for single-look data and the complex Wishart dis-
tribution for multilook data, that have been widely used
in many application such as filtering, classification (1)
and change detection. With the new high resolution Pol-
SAR sensors, the number of scatterers present in each
resolution cell decreases considerably, which renders the
former assumption invalid. To account for this, alterna-
tive clutter models have been proposed in the literature
founded on the product model. In this model, the spa-
tial heterogeneity of the mean radar reflectivity is incor-
porated by introducing a scalar random variable τ repre-

senting the natural variability of the target, referred to as
texture. For single-look data, the observed target vector
k is decomposed as the product between the square root
of τ and an independent, zero mean, complex, circular
Gaussian random vector z, representing fully developed
speckle. For multilook data, the observed covariance ma-
trix [T ] is expressed as the product of τ [M ], where the
covariance matrix [M ] follows a complex Wishart distri-
bution.

For the texture modeling of PolSAR data, distributions
from the Pearson system are commonly used. This sys-
tem consists of a set of distributions families, including
the Gaussian, Gamma and Beta ones. In this paper, the
authors derive the analytical expressions of the target vec-
tor (for single-look data) and covariance matrix (for mul-
tilook data) PDFs for Gamma, Inverse Gamma, Fisher,
Beta and Inverse Beta distributed texture. They are re-
spectively the K (2), G0 (3), KummerU (4), W and M
distributions. The benefit of these multivariate distribu-
tions will be shown by plotting the texture log-cumulant
diagram (5) for different frequency bands (C-, L- and P-
bands) over the Nezer forest.

This paper is organized as follows. In Section 2, the
context of PolSAR clutter modeling and the matrix log-
cumulant diagram are first introduced. Then, in Sec-
tion 3, an overview of the multivariate PolSAR models
for both single-look and multi-look is drawn. The util-
ity of those models is demonstrated with multi-frequency
real data in Section 4. Finally, some conclusion and per-
spectives of this work are discussed in Section 5.

2. POLSAR CLUTTER MODELING

2.1. SIRV model

In the PolSAR context, the target vector k is a complex
vector of length p (p = 3 if the reciprocity assumption
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holds), and could be written under the SIRV model hy-
pothesis as the product of a square root of a positive ran-
dom variable τ (representing the texture) with an inde-
pendent circular complex Gaussian vector z with zero
mean and covariance matrix [M ] = E{zzH} (represent-
ing the speckle):

k =
√
τ z, (1)

where the superscript H denotes the complex conjugate
transposition and E{·} the mathematical expectation.

The SIRV representation is not unique, so a normalization
condition is necessary. Classically, the normalization is
imposed on the trace of the covariance matrix, chosen
here to p the dimension of target scattering vector. For
a given covariance matrix [M ], the ML estimator of the
texture for the pixel i (τi) is given by:

τ̂i =
k

H
i [M ]−1

ki

p
. (2)

The ML estimator of the normalized covariance matrix
under the deterministic texture case is the solution of the
following recursive equation :

[M̂ ]FP = f([M̂ ]FP ) =
p

N

N
∑

i=1

kik
H
i

kH
i [M̂ ]−1

FP ki

, (3)

with tr([M̂ ]FP ) = p.

The existence and the uniqueness, up to a scalar factor,
of the Fixed Point estimator of the normalized covari-
ance matrix, as well as the convergence of the recur-
sive algorithm whatever the initialization have been es-
tablished (6).

Practically, the covariance matrix is first estimated ac-
cording to (3), then the N texture random variables
(τ1, . . . , τN ) are derived by (2). When the texture is as-
sumed to be deterministic, the ML estimator of the nor-
malized covariance matrix is given by M̂FP in (3). But,

when the texture is a random variable, M̂FP is not the
ML estimator, it is an ”approximate” ML estimator. The
ML estimator of the normalized covariance matrix de-
pends on the texture PDF pτ (τ), its expression is linked
with the density generator function hp (x) by:

[M̂ML] =
1

N

N
∑

i=1

hp+1

(

k
H
i [M̂ML]

−1
ki

)

hp

(

kH
i [M̂ML]

−1
ki

) kik
H
i , (4)

where the expression of density generator function is
given by:

hp (x) =

+∞
∫

0

1

τp
exp

(

−x
τ

)

pτ (τ) dτ. (5)

2.2. Matrix log-cumulant diagram

The quantities β1 (squared skewness) and β2 (kurtosis)
have commonly been used to characterize the distribu-

(a)

(b)

Figure 1. (a) β1/β2-diagram, (b) κ2/κ3-plane.

tions in the Pearson system. An alternative to the tra-
ditional β1/β2 parameters has been proposed by Nico-
las (7): the κ2/κ3-plane where κi is the log-cumulant of
order i. Fig. 1 shows a comparison between the β1/β2-
diagram and the κ2/κ3-plane. Those plans are covered
by a set of five distribution families issued from the Pear-
son system of distribution, namely Gamma (Pearson type
III, in red), Inverse Gamma (Pearson type V, in blue),
Fisher (Pearson type VI, in yellow), Beta (Pearson type
I, in cyan) and Inverse Beta PDFs (in magenta). Note that
the coordinates (0, 3) in the β1/β2-diagram and (0, 0) in
the κ2/κ3-plane corresponds to a degenerate distribution
with zero variance, equivalent to a constant value. It is
represented by an orange circle. In the β1/β2-diagram,
Beta and Inverse Beta distributions cover the same do-
main, whereas they are well separated in the κ2/κ3-
plane. Moreover, for the β1/β2-diagram, the moments of
order 4 should be computed, and for the Fisher distribu-
tion it exists only for the some specific shape parameters
(M > 4, see (20) for the meaning of M). As the Fisher
distribution has all its log-cumulant defined, the κ2/κ3-
plane permits a whole representation of this family and
has the advantage of separating between ”standard” light-
tailed distributions and heavy-tailed distributions.

Recently, Anfinsen et Eltoft have proposed an extension
of the κ2/κ3-plane based on the matrix-variate Mellin
transform: the matrix log-cumulant diagram (8).

From the polarimetric product model, one can write



[T ] = τ [M ] where τ is the scalar texture random variable
and [M ] is the covariance matrix of the Gaussian process,
it yields that [M ] follows a complex Wishart distribution.
Next, using matrix-variate Mellin kind statistics, they de-
rive the expression of the ν-th order Mellin kind cumulant
of |[T ]| = τp|[M ]|, denoted κν{[T ]} as:

κν{[T ]} = pνκν{τ} + κν{[M ]}, (6)

where:

κ1{[C]} = E
{

ln |[C]|
}

=

∫

Ω+

ln |[C]| p[C]([C]) d[C]

κν{[C]} = E
{(

ln |[C]| − κ1{[C]}
)ν}

; ν > 1, (7)

where Ω+ is the cone of positive definite matrices. (6) al-
lows separating the contribution of the texture part from
the Gaussian part. After some mathematical derivation,
the expression of the matrix log-cumulant is given by (8):

κ1{[T ]} = ψ(0)
p (L) + ln |[M ]| − p

(

lnL− κ1{τ}
)

(8)

κν{[T ]} = ψ(ν−1)
p (L) + pνκν{τ}; ν > 1, (9)

where L is the number of looks and ψ
(ν)
p (L) is the ν-th

order multivariate polygamma function defined by:

ψ(ν)
p (L) =

p−1
∑

i=0

ψ(ν)(L− i), (10)

and ψ(ν−1)(L) = dν ln Γ(L)
dLν is the ordinary polygamma

function.

A representation of the matrix log-cumulant diagram (for
p = 3 and L = 4) is given in Fig. 2. According to (9),
for a fixed number of looks, this plan corresponds to a
shifted version of the “univariate” κ2/κ3-plane. In the
matrix log-cumulant diagram, the Wishart distribution is
located by a point represented here by an orange circle.
For Gamma and Inverse Gamma distributed texture, the
corresponding SIRV PDFs are the classical K (2) and
G0 (3) PDFs. In this plan, they are respectively repre-
sented by the red and blue curves as they are character-
ized by only one shape parameter. The KummerU (4), W
and M PDFs are the SIRV PDFs for Fisher, Beta and In-
verse Beta distributed texture. As they involve two shape
parameters, those distributions are represented by a sur-
face in the matrix log-cumulant diagram as observed in
Fig. 2 (respectively in yellow, cyan and magenta).

In the next section, an overview of those multivariate Pol-
SAR models is given for both single-look and multilook
data.

3. MULTIVARIATE POLSAR MODELS

3.1. For single-look data

By using the Bayes theorem, the distribution of the target
scattering vector k =

√
τz, denoted pk(k), is obtained

Figure 2. Matrix log-cumulant diagram.

by computing the following integral:

pk(k) =

∫ ∞

0

pz(k|τ [M ]) pτ (τ) dτ

=
1

πp|[M ]|

∫ +∞

0

1

τp
exp

(

− k
H [M ]−1

k

τ

)

pτ (τ) dτ.

(11)

To model the texture random variable, we focus here on
the five distributions necessary to fully cover the matrix
log-cumulant diagram, namely Gamma, Inverse Gamma,
Fisher, Beta and Inverse Beta PDFs. In the following, m
will refer to a scale parameter, whereas L and M will
refer to shape parameters.

For each model, the texture PDF, its log-cumulant and
some particular cases are first exhibit. Then, the cor-
responding multivariate distributions under the SIRV
model are given.

Gamma distributed texture Let τ be a Gamma dis-
tributed random variable. Its PDF pτ (τ) is given by:

pτ (τ) = G(τ |m,L) =
1

Γ(L)

L
m

(Lτ
m

)L−1

e−
Lτ
m ,

(12)

where L ≥ 0, m > 0 and τ ∈
[

0,+∞
[

. A particular

case of this distribution is the homothetic distribution H
obtained when L tends toward infinity:

lim
L→∞

G(τ |m,L) = H(τ |m). (13)

Its log-cumulants are given by:

κν (τ) = ψ(ν−1)(L), ∀ν > 1. (14)

For a Gamma distributed texture, the PDF of the target
scattering vector k is the K distribution given by (2):

pk(k|[M ],m,L) =
2

πpΓ(L)|[M ]|

( L
m

)(L+p

2 )

×
[

k
H [M ]

−1
k

](L−p

2 )
BesselKp−L



2

√

L k
H [M ]

−1
k

m



 ,

(15)



where BesselK(·) is the modified Bessel function of the
second kind.

Inverse Gamma distributed texture Let τ be an In-
verse Gamma distributed random variable. Its PDF pτ (τ)
is given by:

pτ (τ) = IG(τ |m,M) =
1

Γ(M)

1

Mm

(Mm

τ

)M+1

e−
Mm

τ ,

(16)

where M ≥ 0, m > 0 and τ ∈
[

0,+∞
[

. The Inverse

Gamma PDF tends toward the homothetic distribution for
a large shape parameter:

lim
M→∞

IG(τ |m,M) = H(τ |m). (17)

Its log-cumulants are given by:

κν (τ) = (−1)νψ(ν−1)(M), ∀ν > 1. (18)

For an Inverse Gamma distributed texture, the target scat-
tering vector k follows the G0 distribution given by (3):

pk(k|[M ],m,M) =
1

πp|[M ]|
(Mm)M

Γ(M)
Γ (p+ M)

×
(

k
H [M ]

−1
k + Mm

)−(M+p)

.

(19)

Fisher distributed texture Let τ be a Fisher dis-
tributed random variable. Its PDF pτ (τ) is given by:

pτ (τ) = F(τ |m,L,M) =
Γ(L + M)

Γ(L)Γ(M)

L
Mm

(

Lτ
Mm

)L−1

(

1 + Lτ
Mm

)L+M
,

(20)

where L ≥ 0, M ≥ 0, m > 0 and τ ∈
[

0,+∞
[

. The

Fisher PDF is generalization of both Gamma and Inverse
Gamma PDFs as:

lim
L→∞

F(τ |m,L,M) = IG(τ |m,M). (21)

lim
M→∞

F(τ |m,L,M) = G(τ |m,L). (22)

Its log-cumulants are given by:

κν (τ) = ψ(ν−1)(L) + (−1)νψ(ν−1)(M), ∀ν > 1.
(23)

For a Fisher distributed texture, the target scattering vec-
tor k follows the KummerU PDF given by (9):

pk(k|[M ],L,M,m) =
1

πp|[M ]|
Γ(L + M)

Γ(L)Γ(M)

( L
Mm

)p

× Γ(p+ M)U

(

p+ M; 1 + p− L;
L

Mm
k

H [M ]
−1

k

)

,

(24)

where U is the confluent hypergeometric function of the
second kind.

Beta distributed texture Let τ be a Beta distributed
random variable. Its PDF pτ (τ) is given by:

pτ (τ) = B(τ |m,L,M) =
L

Mm

Γ(M)

Γ(L)Γ(M−L)

×
(

Lτ
Mm

)L−1 (

1 − Lτ
Mm

)M−L−1

, (25)

with M > L, m > 0 and τ ∈
[

0, Mm
L

]

. This PDF has

two particular cases:

lim
L→∞

B(τ |m,L,M) = H(τ |m). (26)

lim
M→∞

B(τ |m,L,M) = G(τ |m,L). (27)

Its log-cumulants are given by:

κν (τ) = ψ(ν−1)(L) − ψ(ν−1)(M), ∀ν > 1. (28)

By using the following relation (10, Eq.13.2.6):

Γ(a) U(a, b, z) = ez

∫ +∞

1

e−zt(t− 1)a−1tb−a−1dt,

(29)
with ℜe(a) > 0 and ℜe(z) > 0, one can proves that the
expression of the target vector PDF for a Beta distributed
texture is given by:

pk(k|[M ],m,L,M) =
1

πp|[M ]|

(

L
Mm

)p

Γ(M)

Γ(L)

× exp
(

− k
H [M ]−1

kL
Mm

)

× U

(

M−L,−L + p+ 1,
k

H [M ]−1
kL

Mm

)

. (30)

Abramowitz and Stegun have shown in (10, Eq.13.1.33)
that the Kummer U function can be replaced by the Whit-
taker W function according to the following relation:

Wκ,µ(z) = zµ+ 1
2 e−

z
2 U

(

µ−κ+
1

2
, 2µ+ 1, z

)

. (31)

Let, κ = p+L+1−2M
2 , µ = p−L

2 and z = k
H [M ]−1

kL
Mm

, it
yields to the W PDF (5) defined by:

pk(k|[M ],m,L,M) =
1

πp|[M ]|

(

L
Mm

)
L+p−1

2

×
(

k
H [M ]−1

k

)
L−p−1

2
Γ(M)

Γ(L)
exp

(

− k
H [M ]−1

kL
2Mm

)

× W p+L+1−2M
2 ,

p−L
2

(

k
H [M ]−1

kL
Mm

)

. (32)



Inverse Beta distributed texture Let τ be an Inverse
Beta distributed random variable. Its PDF pτ (τ) is given
by:

pτ (τ) = IB(τ |m,L,M) =
Γ(M)

Γ(L)Γ(M−L)

(

M
Lm

)

×
(Mτ

Lm − 1
)M−L−1 (Mτ

Lm
)−M

, (33)

with M ≥ L, m > 0 and τ ∈
[

Lm
M ,+∞

[

. This PDF has

two particular cases:

lim
L→∞

IB(τ |m,L,M) = H(τ |m). (34)

lim
M→∞

IB(τ |m,L,M) = IG(τ |m,L). (35)

Its log-cumulants are given by:

κν (τ) = (−1)ν
(

ψ(ν−1)(L) − ψ(ν−1)(M)
)

, ∀ν > 1.

(36)

By using the following relation (10, Eq.13.2.1):

Γ(b− a)Γ(a)

Γ(b)
M(a, b, z) =

∫ 1

0

eztta−1(1 − t)b−a−1dt,

(37)
with ℜe(b) > ℜe(a) > 0. M(a, b, z) is the confluent hy-
pergeometric function of the first kind (KummerM), also
denoted 1F1(a, b, z), one can proves that the expression
of the target vector PDF for an Inverse Beta distributed
texture is given by:

pk(k|[M ],m,L,M) =
1

πp|[M ]|
Γ(M)Γ(p+ L)

Γ(L)Γ(p+ M)

(

M
Lm

)p

× M

(

p+ L, p+ M,−k
H [M ]−1

kM
Lm

)

. (38)

Abramowitz and Stegun have shown in (10, Eq.13.1.32)
that the Kummer M function can be replaced by the Whit-
taker M function (denoted Mκ,µ) according to the follow-
ing relation:

Mκ,µ(z) = zµ+ 1
2 e−

z
2 M

(

µ−κ+
1

2
, 2µ+1, z

)

. (39)

Let κ = M−p−2L
2 , µ = p+M−1

2 and z = −k
H [M ]−1

kM
Lm

,
it yields to the M distribution (5) defined by:

pk(k|[M ],m,L,M) =
1

πp|[M ]|

(

M
Lm

)
p−M

2
Γ(M)Γ(p+ L)

Γ(L)Γ(p+ M)

×
(

−k
H [M ]−1

k
)

−p−M
2 exp

(

− k
H [M ]−1

kM
2Lm

)

× MM−p−2L
2 ,

p+M−1
2

(

− k
H [M ]−1

kM
Lm

)

. (40)

3.2. For multilook data

As for the single look case, the distributions of the covari-
ance matrix [T ] = τ [M ], denoted p[T ]([T ]), is obtained
by using the Bayes theorem:

p[T ]([T ]) =

∫ ∞

0

p[M ]([T ]|τ [M ]) pτ (τ) dτ

=

∫ ∞

0

LLp|[T ]|L−p exp

{

−L
τ

tr
(

[M ]
−1

[T ]
)

}

π
p(p−1)

2 Γ(L) · · ·Γ(L− p+ 1)τLp|[M ]|L
pτ (τ) dτ.

(41)

For the considered texture models, the distribution of the
covariance matrix are given in Table. 1.

3.3. Texture shape parameter estimators

If single look data are available, the SIRV estimation
scheme introduced in Section 2 can be used to estimate
the covariance matrix (3) and the texture parameter (2).
Then, the texture shape parameters L and/or M can be
estimated by using the maximum likelihood (9) or log-
cumulants (7) methods.

Sometimes data are available only in the multilook for-
mat, i.e. the observed images are the non-singular co-
variance matrices [T ]. In this case, the fixed point covari-
ance matrix estimator cannot be computed and the texture
shape parameters should be directly estimated from those
covariance matrices. To this aim, Anfinsen et Eltoft (11)
have proposed to use the second and third order ma-
trix log-cumulants (κ2{[T ]} and κ3{[T ]}) defined by (9).
Note that those two terms are independent from the scale
texture parameter m and the covariance matrix [M ]. For
KummerU, W and M distributed clutter, they depends
only on the equivalent number of looks L and on the two
shape parameters L and M. L can be directly estimated
from the covariance matrices [T ] according to (12). The

optimal shape parameters L̂ and M̂ are estimated through
a generalised least squares approach, where we minimize
a criterion function representing the weighted quadratic
error in the matrix log-cumulant equations. In practice,
the solution is found with the nonlinear conjugate gradi-
ent method (5).

4. RESULTS

To evaluate the potential of each SIRV PDFs for the
modeling of PolSAR images, three fully polarimet-
ric C-, L- and P-band SAR images acquired by the
NASA/JPL/AIRSAR sensor in 1989 over the Nezer for-
est, France are analyzed. Fig. 3(a) show the ground truth.
A colored composition in the Pauli basis of the covari-
ance matrices is given in Fig 3(b), 3(d) and 3(f) for the
three multifrequency images. A 7 × 7 refined Lee fil-
ter has first been applied on each data-set to reduce the



Table 1. Covariance matrix distributions.

Texture PDF
SIRV PDF

Name pk(k)

Homothetic Wishart
LLp|[T ]|L−p exp

˘

−L tr
`

[M ]−1[T ]
´¯

π
p(p−1)

2 Γ(L) · · ·Γ(L − p + 1)|[M ]|L

Gamma K
2|[T ]|L−p

π

p(p−1)
2 Γ(L) · · · Γ(L − p + 1)|[M]|L

1

Γ(L)

 

LL

m

!
Lp+L

2 h

tr
“

[M]−1[T ]
”i

L−Lp
2 BesselKL−Lp

0

B

@
2

v

u

u

t

LL tr
“

[M]−1[T ]
”

m

1

C

A

Inverse Gamma G
0 LLp|[T ]|L−p

π

p(p−1)
2 Γ(L) · · · Γ(L − p + 1)|[M]|L

Γ(Lp + M)

Γ(M)
(Mm)M

h

Ltr
“

[M]−1[T ]
”

+ Mm

i−(M+Lp)

Fisher KummerU
LLp|[T ]|L−p

π

p(p−1)
2 Γ(L) · · · Γ(L − p + 1)|[M]|L

Γ(L + M)

Γ(L)Γ(M)

 

L

Mm

!

Lp

Γ (Lp + M) U

0

@Lp + M, 1 + Lp − L,
L tr

“

[M]−1[T ]
”

L

Mm

1

A

Beta W

|[T ]|L−p

π

p(p−1)
2 Γ(L) · · · Γ(L − p + 1)|[M]|L

 

LL

Mm

!
L+Lp−1

2
"

tr
“

[M]−1[T ]
”

#
L−Lp−1

2 Γ(M)
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speckle (13). Four classes of 400 pixels have then been
extracted from each data-set, i.e. bare soil (yellow), 8-11
years (blue), 15-19 years (red) and 33-41 years (green).
In order to visualise the statistical variation of the log-
cumulants, multiple log-cumulant estimates have been
obtained by bootstrap sampling. Here, 200 samples have
been considered to estimate one log-cumulant realization.
Fig. 3(c), 3(e) and 3(g) show the texture log-cumulant di-
agrams for the Nezer forest image at C-, L- and P-band.
The yellow, blue, red and green points correspond to the
estimated log-cumulants for the four considered classes.
Note that here we have removed the speckle part of the
MLCs. Thus, the texture log-cumulant diagrams are cen-
tered in (0,0), which is the case of no texture. Those tex-
ture log-cumulant diagrams motivate the use of the W
and M distributions for the statistical modeling of Pol-
SAR images.

5. CONCLUSION AND PERSPECTIVES

In this paper two new families of Probability Density
Functions (PDFs) for the polarimetric target vector and
the polarimetric covariance matrix have been introduced,
namely the W and M distributions. These families com-
plete the diagram spanned by the second and third-order
matrix log-cumulants, and contribute to a holistic theory
for statistical modeling of PolSAR data based on the dou-
bly stochastic product model with a scalar texture vari-
able.

Further works will deal with the use of those multivariate
models in many applications such as segmentation, clas-
sification and change detection.
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