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ABSTRACT

This paper presents a new texture retrieval algorithm based

on elliptical distributions for the modeling of wavelet sub-

bands. For measuring similarity between two texture images,

the geodesic distance (GD) is considered. A closed form for

fixed shape parameters and an approximation when assuming

the geodesic coordinate functions as straight lines are given.

Taken into various elliptical choices, the multivariate Laplace

and G0 distributions are introduced for modeling respectively

the color cue and spatial dependencies of the wavelet coef-

ficients. A multi-model classification approach is then pro-

posed to combine the similarity measures.

A comparative study between some multivariate models

on the VisTex image database is conducted and reveals that

the combination of the multivariate Laplace modeling for the

color dependency and the multivariate G0 modeling for spatial

one achieves higher recognition rates than other approaches.

Index Terms— Texture, Geodesic distance, Multivariate

elliptical distribution.

1. INTRODUCTION

In the context of texture image recognition, the wavelet rep-

resentation domain has been widely considered to character-

ize the texture. The multiscale recognition algorithm is com-

posed by two main steps. One is the feature extraction which

consists in modeling each wavelet subband by a given prob-

ability density function (pdf). Its estimated parameters com-

pose the signature of the texture. Then, a similarity measure

based on a probabilistic metric is computed between the query

image and all the other images of the database.

Many univariate models such as the Generalized Gaus-

sian [1] and the Weibull [2] distributions have been proposed

to characterize the wavelet subbands. Those approaches are

quite simple but they do not fully exploit the texture informa-

tion. Multivariate distributions have recently been introduced

to model the spatial and/or color dependencies of the wavelet

coefficients such as the Gaussian [3] and Student-t [4] copu-

las, and the multivariate elliptical distributions.

In this paper, two elliptical distributions are considered to

model the color and spatial dependencies of the wavelet co-

efficients: the multivariate Laplace [5] and G0 distributions.

For the G0 distribution, a closed form of the geodesic dis-

tance (GD) [6] is established for fixed shape parameters and

an approximation of the GD is given for the general case by

assuming the geodesic coordinate functions as straight lines.

A multi-model approach is then proposed for the classifica-

tion of texture images. Next, some experimental results on

the VisTex database are shown in section 3 to evaluate the re-

trieval performance. Finally, some conclusions of this work

are given.

2. MULTIVARIATE TEXTURE MODELING

To model the spatial or color dependencies of the wavelet co-

efficient, various multivariate models can be considered such

as copulas [3] [4]. Here, two elliptical distributions are con-

sidered: the multivariate Laplace and multivariate G0 distri-

butions.

2.1. The multivariate Laplace distribution

The Multivariate Generalized Gaussian Distribution (MGGD)

has been introduced in [5] to model the wavelet coefficients

of color images. The Multivariate Laplace, a particular case

of the MGGD, is generally considered as a reference model

for color texture indexing. Its pdf is given by:
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where the superscript T denotes the transpose operator and

|[M ]| is the determinant of the covariance matrix [M ]. p is the

dimension of the vector k. In the following, the covariance

matrix [M ] is estimated using the method of moments [5].



2.2. The multivariate G0 distribution

To model the wavelet coefficients, other multivariate models

can be considered such as the Spherically Invariant Random

Vectors (SIRV). This class of models has been introduced to

take into account the non-Gaussianity of the signal. In such a

case, the observed vector k is decomposed as:

k =
√

τz, (2)

where τ is a scalar random variable called the multiplier (τ ∈
R

+) and z a real Gaussian vector with zero mean and co-

variance matrix [M ] = E{zzT }. The processes τ and z are

assumed independent.

In the literature, various models issued from the Pearson

system have been introduced to represent the multiplier τ . For

Gamma, Inverse Gamma, Fisher, Beta and Inverse Beta dis-

tributed multiplier, the SIRV vector k follows respectively a

K, G0, KummerU, W and M distributions. An overview of

those multivariate models is given in [7].

Let τ be an Inverse Gamma distributed random variable.

Its pdf pτ (τ) is given by:
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where M ≥ 0, m > 0 and τ ∈
[

0,+∞
[

. M is a shape pa-

rameter while m is a scale parameter. For an Inverse Gamma

distributed multiplier, the vector k follows the G0 distribution

(or Student-t), its pdf is given by [8]:
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Let (k1, . . . ,kN ), be N realizations of the vector k. The

Approximated Maximum Likelihood (AML) estimator of the

normalized covariance matrix is the solution of the following

recursive equation:

[M̂ ]FP = f([M̂ ]FP) =
p

N

N
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ziz
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The existence and the uniqueness, up to a scalar factor, of

the Fixed Point estimator of the normalized covariance ma-

trix have been established, as well as the convergence of the

recursive algorithm, irrespective of the initialization [9]. In

this paper, the trace of the covariance matrix is normalized

to p.

For a given covariance matrix [M ], the ML estimator of

the multiplier for the pixel i is given by:

τ̂i =
k

T
i [M ]−1

ki

p
. (6)

Once the N multipliers τi are computed, the scale and shape

parameters of the Inverse Gamma distribution (m and M) are

estimated by using the ML method [10].

2.3. Rao geodesic distance

The Kullback-Leibler Divergence (KLD) has been widely

used in the past to compute a similarity measure between two

populations. Unfortunately, up to our knowledge, for ellipti-

cally distributed random variables, no analytical expression

of the KLD exists except for the degenerate Gaussian case.

But, the Rao Geodesic Distance (GD) can be used instead.

To this aim, two cases should be considered: when the shape

parameters are fixed and when they aren’t.

2.3.1. Geodesic distance for fixed shape parameters

For fixed shape parameters, the GD in the context of elliptical

distributions is given by [6]:
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where ri (i = 1, . . . , p) are the eigenvalues of ln
(

[M ]−1
1 [M ]2

)

.

Moreover, bh = −E{u2w2}/(p(p+2)) and w = (∂ lnhp)/(∂u).
The pdf of U = k

T [M ]−1
k is given by [6]:
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where hp(·) is the density generator:
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For the multivariate Laplace distribution, it has been

shown in [5] that bh = 1
4

p+1
p+2 . An analytical expression of

the GD between two multivariate Laplace distributions is

obtained as they do not involve shape parameters.

For the multivariate G0 distribution, one can prove that

bh = 1
4

M+ p

2

M+ p

2
+1 . Consequently, for fixed shape parameters,

the GD between G0 distributions can be computed according

to (7). Note that when M tends toward infinity, the G0 pdf

converges toward the Gaussian pdf and the coefficient bh =
1/4 is retrieved [6]. Note also that it does not depend on the

scale parameter m.

2.3.2. Geodesic distance for variable m and M

The GD between two multivariate G0 distributions with pa-

rameters (m1,M1, [M ]1) and (m2,M2, [M ]2) may be com-



puted as follows:

GD (m1,M1, [M ]1||m2,M2, [M ]2) =
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where θ =
(
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are the hyper-parameters of

the G0 distribution and gµν the elements of the (p+2)×(p+2)
Fisher information matrix defined by:
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After some cumbersome computations, one can express the

Fisher information matrix only as a function of the two shape

and scale parameters:

gmm =
M
m2

p
2

p
2 + M + 1

(12)

gmM = − 1

m
+

(

2M + p
2

)

m
(

p
2 + M

) − (M + 1)

m
(

p
2 + M + 1

) (13)

gMM = − 1

M + Ψ(1,M) − Ψ
(

1,
p

2
+ M

)

+
2

(

p
2 + M

) − (M + 1)

M
(

p
2 + M + 1

) (14)

gmi = − (M + 2) (M + 1)M2

4p (Mm)
3 (

p
2 + M + 1

) (

p
2 − 1

) (15)

gMi = −1

2

1
(

M + p
2

) +
(M + 2) (M + 1)

4p (Mm)
2 (

p
2 + M + 1

) (

p
2 − 1

)

(16)

gii =
1

4

(

3
M + p

2

M + p
2 + 1

− 1

)

(17)

gij =
1

4

( M + p
2

M + p
2 + 1

− 1

)

= −1

4

1

M + p
2 + 1

, i 6= j

(18)

where Ψ(1, ·) is the trigamma function. The GD is finally

computed by using (10) and by assuming the geodesic coor-

dinate functions as straight lines, i.e.






m(t) = m1(1 − t) + m2t.
M(t) = M1(1 − t) + M2t.
ri(t) = rit.

(19)

This is only an approximation since the geodesic itself lives

on the curved manifold.

2.4. A multi-model approach

When various models are available to represent the texture

images, a multi-model approach can be considered for the

classification. An image xt is assigned to the label ω̂ which

maximizes the probability p(xt|ω):

ω̂ = Argmax
ω∈Ωm

p(xt|ω), (20)

where Ωm = (1, . . . ,m), m is the number of texture classes.

If K models are available, let:

p(xt|ω) =

K
∑

i=1

p(xt|Mi, ω)p(Mi|ω), (21)

where Mi refers to the ist model. The second term of (21)

is the prior probability. It characterizes the probability asso-

ciated to the model Mi for the class ω. An approximation

is:

p(Mi|ω) ≡ dMi
(ω)

K
∑

j=1

dMj
(ω)

, (22)

where dMi
(ω) is the median distance between the images of

the ω class and all other images for the Mi criterion, i.e.:

dMi
(ω) = median

xu∈ω,xv /∈ω
dMi

(xu, xv). (23)

dMi
(xu, xv) denotes the distance computed with the Mi cri-

terion between two populations xu and xv .

Similarly, we define the first term of (21) as:

p(xt|Mi, ω) ≡
1

1+dMi
(xt,ω)

∑

j∈Ωm

1
1+dMi
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where dMi
(xt, j) = min

xu∈j
dMi

(xt, xu).

3. RESULTS

Several experiments are conducted to evaluate the perfor-

mances of the proposed algorithms based on the GD between

multivariate random variables. We work with the 40 texture

classes from the MIT Vision Texture database. From each of

these texture images of size 512 × 512 pixels, 16 subimages

(128 × 128) are created. A dataset containing 640 texture

images is finally obtained [1] [2].

In those experiments, three types of dependencies are

considered (spatial, color and spatial/color). For the spa-

tial dependency, the wavelet coefficients located around the

neighborhood of the current spatial position are clustered in

the random vector k
spatial. For color images, the observed

vector k
color contains the realizations of the wavelet coef-

ficients for each channel of the RGB image. When dealing



Gaussian GD

copula Gaussian Gaussian G
0

G
0

Laplace
Gamma SCM FP fixed shape linear

spatial 76.82 71.51 76.99 77.44 79.38 73.56

color 85.02 86.10 86.96 87.78 86.69 87.55

spatial
85.83 86.12 88.23 89.26 89.65 88.09

& color

Table 1. Average retrieval rate (in %) on the VisTex database.

with both spatial and color dependency, the random vector

is k
spatial/color =

[

k
spatial
R ;kspatial

G ;kspatial
B

]T

. In this

study, the orthogonal wavelet decomposition (Nsc = 2) with

Daubechies’ filter db4 is considered, and a 3×3 neighborhood

is used to take into account the spatial dependency.

Table 1 shows the average retrieval rate for the three con-

sidered types of dependencies and for various multivariate

models (copula, Gaussian, G0 and Laplace). For the Gaus-

sian copula with Gamma distributed margins [3], the sym-

metrized version of the Kullback-Leibler divergence has been

considered. For the multivariate Gaussian model, the GD

has been computed with both the sample covariance matrix

(SCM) and fixed point covariance matrix (FP) estimators. Ta-

ble 1 shows that indexing performances are better with the

color models than with those characterizing the spatial de-

pendency. A gain of about 10% is observed. By working

on k
spatial/color, a slight gain (around 1%) is observed com-

pared to the retrieval rates with the color models. To model

the spatial dependency, the G0 distribution with the geodesic

paths approximated as straight lines (GD linear) gives the best

performances (79.38%). For color texture indexing, the best

results are achieved for the GD with the G0 model with fixed

shape parameters and the multivariate Laplace distribution

(≈ 87.7%).

Fig. 1 shows the average classification rate as a function

of the number of training samples. For four learned images,

a gain of 2% is observed by merging the two multivariate

models which characterize the best the spatial (G0) and color

(Laplace) dependencies (in red, 97.97%) compared to the

multivariate Laplace model which represents simultaneously

the color and spatial dependencies (in pink, 95.94%).

4. CONCLUSION

In this paper, a multiscale texture retrieval algorithm using

the GD between elliptically distributed random variables has

been proposed. The multivariate G0 and Laplace distributions

have been introduced to model respectively the spatial and

color dependencies of the wavelet coefficients. An analytical

expression of the GD for fixed shape texture parameters and

an approximation of the GD when assuming the geodesic co-

ordinate functions as straight lines have been given for the G0

distribution. Some experiments on the VisTex database have

shown that the combination of those two criteria leads to the

best performances.

Fig. 1. Average classification rate as a function of the number

of training samples.
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