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ABSTRACT

This paper presents a new wavelet based retrieval approach

based on Spherically Invariant Random Vector (SIRV) mod-

eling of wavelet subbands. Under this multivariate model,

wavelet coefficients are considered as a realization of a ran-

dom vector which is a product of the square root of a scalar

random variable (called multiplier) with an independent

Gaussian vector. We propose to work on the joint distri-

bution of the scalar multiplier and the multivariate Gaussian

process. For measuring similarity between two texture im-

ages, the geodesic distance is provided for various multiplier

priors. A comparative study between the proposed method

and conventional models on the VisTex image database is

conducted and indicates that SIRV modeling combined with

geodesic distance achieves higher recognition rates than clas-

sical approaches.

Index Terms— Texture, Multiscale analysis, Kullback-

Leibler divergence, Geodesic distance, Spherically Invariant

Random Vector.

1. INTRODUCTION

Several works in textured image indexing have shown that

the wavelet representation is a well adapted domain to char-

acterize the texture [1] [2] [3] [4]. This leads to a multiscale

analysis scheme which consists in modeling each wavelet

subband by a given probability density function (PDF). The

distribution parameters are then estimated and compose the

signature of the texture while a probabilistic metric is used to

measure similarity. Previous works [1] [2] show that the sym-

metrized Kullback-Leibler divergence (SKLD, called also

Jeffrey divergence), increases significantly the retrieval rate

in the framework of stochastic models. Although the SKLD

is a popular similarity measure, it is not a distance. The

geodesic distance (GD) [5] which relies on the information

metric should increase the retrieval rate [3].

Many univariate models such as the Generalized Gaussian

(GG) [1] and the Weibull (Wbl) [2] distributions have been

introduced to successfully characterize the wavelet subbands.

Those univariate approaches are quite simple but they do not

exploit the spatial dependency inside wavelet subbands. Mul-

tivariate models have consequently been studied. The multi-

variate Gaussian mixture (MGmix) was introduced for texture

classification and segmentation [4] and the SKLD on MGmix

models can be approximated using the works of [6]. In [7], a

SIRV based modeling has been proposed and a closed form of

SKLD has been derived. Recently, the GD based on the multi-

variate Generalized Gaussian (MGG) model [3] has been pro-

posed. It leads to higher performance recognition rates com-

pared to the SKLD, but a GD closed form is given only for

fixed MGG shape parameters.

In this paper, SIRV modeling is proposed to represent

wavelet subbands and a closed form of GD is derived. Re-

trieval performances are compared to those of SKLD. The re-

mainder of this paper is as follows. We introduce in section 2

the SIRV based multivariate modeling. In section 3, expres-

sions of SKLD and GD on joint probability resulting from

SIRV representation are developed. Experimental results are

given in section 4 to evaluate retrieval performance. Finally,

section 5 concludes the paper and suggests an outlook on fu-

ture works.

2. SIRV MODELING

SIRV modeling has been successfully used for characteriz-

ing non-Gaussian stochastic processes such as radar clutter

returns, radio fading analysis, or sonar interferences. Re-

cently, in image processing field, SIRV representation has

been employed for SAR image segmentation [8] and texture

retrieval [7].

Let xs,o(n, m) be the wavelet coefficient at scale s, ori-

entation o and centered at spatial location (2sn, 2sm). In the

multivariate modeling context, a wavelet subband is consid-

ered as a realization of a field characterized by a spatial de-

pendency following a given neighborhood around the current

spatial location and clustered in a random vector ~x.

In this paper, the vector ~x is modeled as a SIRV which is



Fig. 1. Example of the SIRV decomposition on a wavelet

subband.

defined as:

~x =
√

τ~g (1)

where τ is a scalar random variable called the multiplier (τ ∈
R

+) and ~g a real Gaussian vector with zero mean and covari-
ance matrix [M] = E{~g~gT }. The superscript T denotes the
transpose operator and E{·} the expectation. The processes τ
and ~g are supposed independant. We denote d = p × q the
size of the considered neighborhood, and pτ (τ |Θ) the PDF
of the scalar multiplier. The PDF of the multivariate vector
~x =

√
τ~g is obtained using Bayes’ theorem:
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where hd(·) is the density generator.

An example of the SIRV decomposition is given in Fig. 1.

The multiplier τ and the Gaussian vector ~g are extracted from

the wavelet subband.

In literature, various model are used to represent the mul-

tiplier τ . The Gamma distribution is at the basis of the multi-

plier models used in [9]. Other a priori could be used, such as

Inverse Gamma [10], Weibull [7] or Fisher distributions [8].

No closed form exists for the PDF of the multivariate vec-

tor ~x for the case of Weibull a priori but for the three other

models (Gamma, Inverse Gamma and Fisher) the multivariate

distribution can be derived. They are respectively the K [9],

G0 [10] and KummerU [8] PDFs. Their corresponding den-

sity generators are given by:
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where Γ(·) and B(·, ·) are the Gamma and Beta functions.

K(·) and U(·; ·; ·) are the modified Bessel function, resp. the

confluent hypergeometric function of the second kind.

Unfortunately, in the best of our knowledge there is no an-

alytic expression neither for KLD or GD between these mul-

tivariate PDFs. However, characterizing texture content can

be provided considering vector ~y = (τ,~g) resulting from the

SIRV representation. In this case and using the independence

between τ and ~g, the joint PDF of vector ~y is

pY (~y) = pτ (τ |Θ)pG(~g) (3)

Let ~xi, i = 1 . . . N , be the realizations of the vector ~x.

The Approximated Maximum Likelihood (AML) estimator

of the normalized covariance matrix is the solution of the fol-

lowing recursive equation:

[M̂]FP = f([M̂]FP) =
d

N

N
∑

i=1

~xi~x
T
i

~xT
i [M̂]−1

FP ~xi

(4)

The existence and the uniqueness, up to a scalar factor, of

the Fixed Point estimator of the normalized covariance ma-

trix have been established, as well as the convergence of the

recursive algorithm, irrespective of the initialization [11]. In

this paper, the trace of the covariance matrix is normalized to

d, the dimension of vector ~x.

For a given covariance matrix [M], the ML estimator of

the multiplier for the pixel i is given by:

τ̂i =
~xT

i [M]−1~xi

d
. (5)

To complete the hyperparameters estimation, the prior on τ

is used and all the expressions of ML estimators for Weibull,

Gamma, Inverse Gamma and Fisher can be found in [12].

3. SIMILARITY MEASURES

3.1. Kullback-Leibler divergence

By working on the vector ~y = (τ,~g), the Kullback-Leibler
divergence (KLD) is obtained using the chain rule, since the
multiplier parameter τ and the Gaussian process ~g are inde-
pendent in the SIRV model. This yields [7]:
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(6)

The first term in (6) corresponds to the KLD between the mul-

tiplier models, while the second term corresponds to the KLD

for the multivariate Gaussian process:
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The KLDs between two models depend to the multiplier τ
prior and are given for Weibull and Gamma priors respec-
tively in [7] and [13]. For a Fisher distributed random vari-
able, the KLD has an analytical expression:
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Similarly, the KLD for an Inverse Gamma PDF is given by:
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In the following, the Jeffrey divergence will be considered,

i.e. half of the double-sided KLD:

SKLD =
KLD

(

pY (~y)||qY (~y)
)

+ KLD
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qY (~y)||pY (~y)
)

2
(10)

3.2. Rao geodesic distance

The geodesic distance (GD), which is based on the Fisher in-
formation metric, can be used as an alternative of the KLD. As
the multiplier τ and the Gaussian process ~g are independent
in the SIRV model, the GD of the joint distribution pY (~y) is
given by:
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(11)

The second term of (11) corresponds to the GD on the Gaus-

sian part. Its expression is given by [5].
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where λi (i = 1, . . . , d) are the eigenvalues of [M]−1
1 [M]2.

The first term of (11) corresponds to the GD on the

multiplier variable. For various stochastic models (Gamma,

Weibull, . . .), the GD can be computed numerically. Never-

theless, for distributions that lie infinitesimally close on the

probabilistic manifold, it can be proved that the KLD equals

half of the squared GD between the distributions. It follows

that locally [14]:

GD
(

p(τ)||q(τ)
)

≈
√

2 SKLD
(

p(τ)||q(τ)
)

(13)

4. RESULTS

Several experiments are conducted to evaluate the perfor-

mance of the proposed algorithms based on the SKLD and

the GD between multivariate random variables. We work with

the 40 texture classes from the MIT Vision Texture database.

From each of these texture images of size 512 × 512 pixels,

16 subimages (128 × 128) are created. A dataset containing

640 texture images is finally obtained [1] [2].

Table 1 shows the average retrieval rate for the joint dis-

tribution pY (~y). This analysis is carried out for the SKLD (6)

and the GD (11) with four multiplier models, i.e. Weibull,

Gamma, Fisher and Inverse Gamma. Three wavelet decom-

positions are analyzed: the steerable pyramid with 2 scales

(Nsc) and 4 orientations (Nor), the orthogonal wavelet trans-

form (OWT, Nsc = 2) with Daubechies’ filter db2 and the

dual-tree complex wavelet transform (DT-CWT, Nsc = 2).

SIRV based model

Wavelet Similarity
Weibull Gamma Fisher

Inverse

decomposition measure Gamma

Steerable pyramid SKLD 79.19 79.39 78.69 74.27

Nsc = 2, Nor = 4 GD 82.73 82.97 82.47 78.33

OWT SKLD 80.39 80.41 79.96 76.40

db2, Nsc = 2 GD 83.89 83.90 83.69 79.02

DT-CWT SKLD 82.08 82.20 81.52 71.65

Nsc = 2 GD 86.38 86.34 85.97 82.16

Table 1. Average retrieval rate (in %) by using the joint dis-

tribution pY (~y).

First, the GD outperforms the SKLD in all our experi-

ments (increases average retrieval rate by about 2%). More-

over, the choice of the PDF to model the multiplier does

not seem critical. All multiplier PDFs yield similar perfor-

mance (GD ≈ 82.5% for the steerable pyramid), except the

Inverse Gamma distribution (78.33%) which does not seem

well-adapted for the modeling of the multiplier. The use

of the Dual-tree complex wavelet transform with two scales

outperforms the two other wavelet decompositions. The best

retrieval rates are obtained for the GD with the Weibull and

Gamma models (GD ≈ 86.35%).

Fig. 2 shows the performances of the proposed method

using the joint distribution pY (~y) with the GD for a Gamma

distributed multiplier (SIRV-Gamma+GD). Comparisons are

done with classical approaches based on the SKLD. Fig. 2.(a)

plots the recall/precision curves for the four different models.

It shows that the proposed algorithm based on the joint distri-

bution pY (~y) significantly improves the recognition rate.



(a) Recall-precision curve

(b) Retrieval effectiveness

Fig. 2. Comparison between the proposed method and con-

ventional algorithms.

Moreover, ROC curves provide an additional measure of

the improved retrieval performance using the joint distribu-

tion pY (~y) with the GD. For example, we need to use queries

of size 24 to reach 90% of relevant samples while we must re-

trieve 35, 48 and 49 images to reach the same percentage with

multivariate Gaussian mixture (GMix + SKLD), the univari-

ate Weibull (Wbl + SKLD) and Generalized Gaussian (GG +

SKLD) models respectively.

5. CONCLUSION

In this paper, we have proposed a multiscale texture retrieval

algorithm using the GD between multivariate PDFs. The

SIRV modeling has been used to characterize wavelet coeffi-

cients. The joint distribution of the multiplier and the Gaus-

sian part resulting from SIRV representation is employed,

and the GD has been derived. The proposed method outper-

forms the widely used univariate models and the multivariate

Gaussian mixture model.

Further works will concern the derivation of the GD based

on the SIRV density generators, which should improve the

retrieval performance.
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