
HAL Id: hal-00661656
https://hal.science/hal-00661656

Submitted on 13 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bedforms in a turbulent stream: ripples, chevrons and
antidunes

Bruno Andreotti, Philippe Claudin, Olivier Devauchelle, Orencio Durán,
Antoine Fourrière

To cite this version:
Bruno Andreotti, Philippe Claudin, Olivier Devauchelle, Orencio Durán, Antoine Fourrière. Bedforms
in a turbulent stream: ripples, chevrons and antidunes. Journal of Fluid Mechanics, 2011, 690, pp.94
- 128. �10.1017/jfm.2011.386�. �hal-00661656�

https://hal.science/hal-00661656
https://hal.archives-ouvertes.fr


Under consideration for publication in J. Fluid Mech. 1

Bedforms in a turbulent stream:
ripples, chevrons and antidunes

By BRUNO ANDREOTTI , PHIL IPPE CLAUDIN,

OL IV IER DEVAUCHELLE†, ORENCIO DURÁN
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The interaction between a turbulent flow and a granular bed via sediment transport
produces various bedforms associated to distinct hydrodynamical regimes. In this pa-
per, we compare ripples (downstream propagating transverse bedforms), chevrons and
bars (bedforms inclined with respect to the flow direction) and anti-dunes (upstream
propagating bedforms), focusing on the mechanisms involved in the early stages of their
formation. Performing the linear stability analysis of a flat bed, we study the asymp-
totic behaviours of the dispersion relation with respect to the physical parameters of the
problem. In the subcritical regime (Froude number F smaller than unity), we show that
the same instability produces ripples or chevrons depending on the influence of the free
surface. The transition from transverse to inclined bedforms is controled by the ratio of
the saturation length Lsat, which encodes the stabilising effect of sediment transport, to
the flow depth H , which determines the hydrodynamical regime. These results suggest
that alternate bars form in rivers during flooding events, when suspended load domi-
nates over bed load. In the supercritical regime F > 1, the transition from ripples to
anti-dunes is also controlled by the ratio Lsat/H . Anti-dunes appear around resonant
conditions for free surface waves, a situation for which the sediment transport saturation
becomes destabilising. This resonance turns out to be fundamentally different from the
inviscid prediction. Their wavelength selected by linear instability mostly scales on the
flow depth H , which is in agreement with existing experimental data. Our results also
predict the emergence, at large Froude numbers, of ‘anti-chevrons’ or ‘anti-bars’, i.e.
bedforms inclined with respect to the flow and propagating upstream.

1. Introduction

Alluvial rivers often develop bedforms, which result from the unstable interaction
between bed, sediment transport and water flow. The velocity field is perturbed by
the presence of bedforms. In turn, the fluid motion induces sediment transport which,
through erosion and deposition, deforms the bed (Julien 1998). Depending on the
flow depth and velocity, as well as on the sediment properties, various patterns can
be observed (Ashley 1990). Ripples and dunes migrate downstream, and their crest
is orthogonal to the flow direction (Fig. 1a). The wavelength λ of ripples is much
smaller than the water depth H , so that the flow around these bedforms is not in-
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Figure 1. (a) Subaqueous ripples (Zion National Park, USA, 37◦16’N 112◦57’W); photo credit:
B. Andreotti. The crests are transverse to the flow (from top to bottom). (b) Chevrons
formed by backswash on the beach (Honokai Hale, Hawaii, 21◦21’N 158◦08’W); photo credit: L.
Langevin. (c) Antidunes (California, USA, 35◦41’N 121◦17’W); photo credit: B. Andreotti. The
sea lion gives the typical scale. (d) Alternate bars in the Loire river (France, 47◦24’N 0◦22’W);
photo credit: Digital Globe.

fluenced by the water surface. By contrast, dunes have a typical length compara-
ble to, or larger than H , and thus interact with the free surface. Although dunes
and ripples were previously seen as two distinct modes of the same linear instability
(Richards 1980, Sumer & Bakioglu 1984, McLean 1990), it is now proposed that dunes
result from the coarsening of ripples, through the non-linear increase of their wavelength
(Raudkivi & Witte 1990, Raudkivi 2006, Fourrière et al. 2010). Such a coarsening has
been reported in numerous experimental studies (Mantz 1978, Gyr & Schmid 1989, Baas 1994,
Coleman & Melville 1994a, Baas 1999, Robert & Uhlman 2001, Coleman et al. 2003, Venditti et al. 2005b,
Langlois & Valance 2007, Rauen et al. 2008).
Unlike dunes and ripples, the crest of what is called ‘chevrons’ or ‘rhomboid pattern’

(Fig. 1b) forms an angle αwith the flow direction (Woodford 1935, Chang & Simons 1970,
Morton 1978, Karcz & Kersey 1980, Ikeda 1983, Daerr et al. 2003, Devauchelle et al. 2010a).
Chevrons migrate downstream and interact with the free surface. Alternate bars in rivers
and channels can be thought of as the superimposition of two rhomboid patterns with
opposite angles (Fig. 1d). The boundary conditions at the bank select their transverse
wavenumber, the channel acting as a wave guide for the chevrons instability. Several sta-
bility analyses have been devoted to these bedforms, related to meandering and braiding
in rivers (e.g., Callander 1969, Parker 1976, Fredsøe 1978, Tubino et al. 1999). Flume
experiments have also been performed to reproduce alternate bars at the laboratory scale
(e.g. Chang et al. 1971, Schumm & Khan 1972, Ikeda 1983, Fujita & Muramoto 1985,
Lisle et al. 1991, Lisle et al. 1997, Lanzoni 2000a, Lanzoni 2000b). Interestingly, these
bars are observed when the submergence, i.e. the ratio between the water depth H and
the grain size d, is moderate and the Froude number F is below unity (the Froude number
compares inertia with gravity). Some figures of Fujita & Muramoto 1985 suggest that
alternate bars result from a linear instability, but Lanzoni 2000a reports the emergence
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of ripples first. Unfortunately, few contributions describe the early stages of the bed
evolution.
Antidunes form in supercritical flows, that is for a Froude number larger than unity, and

migrate upstream (Fig. 1c). They have received much experimental and theoretical atten-
tion (e.g. Raudkivi 1966, Ikeda 1983, Alexander et al. 2001, Carling & Shvidchenko 2002),
either on their own (Parker 1975, Kubo & Yokokawa 2001, Colombini & Stocchino 2005)
or in association with other bedforms (Kennedy 1963, Reynolds 1965, Engelund 1970,
Hayashi 1970, Huang & Chiang 2001, Colombini 2004, Colombini & Stocchino 2008). Step-
pool sequences (Chin 1999, Curran 2007, Lenzi 2001, Weichert, et al., 2008, Whittaker and Jaeggi, 1982)
and cyclic steps (Parker & Izumi 2000, Kostic et al. 2010) are extreme forms of an-
tidunes, the growth of which has caused the flow to cross periodically the transition
from subcritical to supercritical regimes.
The primary linear instability causing ripples and chevrons results from the phase lag

between sediment flux q and bed topography Z (Kennedy 1963, Hayashi 1970, Parker 1975,
Richards 1980, Engelund & Fredsøe 1982, McLean 1990). This phase lag has two main
contributions (Andreotti et al. 2002). First, there is a hydrodynamical effect. For a
wavelength λ sufficiently small with respect to the water depth H (ripples), fluid iner-
tia causes a phase advance of the basal shear stress τ , which is destabilising. However,
when λ compares with H , the confinement of the flow can cause a phase delay of τ with
respect to Z. The second contribution to the phase lag between Z and q is related to
the relaxation of the sediment flux towards equilibrium. This stabilizing effect involves
a length scale Lsat, the so-called saturation length. Its value depends on the mode of
sediment transport. For bedload it is about ten times the grain diameter d in a turbulent
flow (Fourrière et al. 2010). For suspended transport, the saturation length scales with
the water depth (Claudin et al. 2011). It corresponds to the distance a grain travels
horizontally before settling down.
In sections 2 and 3, we generalize the stability analysis of Fourrière et al. (2010)

to non-transverse patterns, in order to investigate the emergence of chevrons and bars,
and we determine the growth rate σ associated to a bedform of wavenumber k = 2π/λ
and of angle α. Section 4 is devoted to the analysis of the problem in the limit of a
vanishing Froude number (F → 0). We show that the ratio between the flow depth H
and the saturation length Lsat controls the transition from transverse patterns (ripples)
to inclined patterns (chevrons and bars). Finally, section 5 is devoted to finite Froude
numbers effects and in particular to the transition from ripples to antidunes.

2. Sediment transport

In order to predict the emergence of bedforms from a flat sedimentary bed, one needs
to model erosion and deposition of particles. The aim of this section is to show that the
different modes of sediment transport can be described within the very same theoretical
framework. This has already been discussed in a series of papers investigating the re-
laxation of sediment transport towards equilibrium (Parker 1975, Sauermann et al. 2001,
Andreotti et al. 2002, Charru 2006, Andreotti & Claudin 2007, Andreotti et al. 2010, Fourrière et al. 2010,
Claudin et al. 2011). We propose here a summary of these results.

2.1. Transport regimes

Figure 2 shows that the two modes of underwater sediment transport, namely bedload
and suspended load, can be distinguished by the profile of the grain concentration φ in
the mobile phase. Neglecting inertia, the particle velocity equals that of the fluid. In
turbulent flows, the water velocity fluctuations tend to homogenise the sediment concen-
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Figure 2. Sediment concentration profile φ(z) for different sedimentation velocities Vfall. (a)
At small sedimentation velocity, the particles are suspended by turbulent fluctuations and oc-
cupy the entire flow. (b) Transitional case. (c) Conversely, at high sedimentation velocity, the
sediment flux is concentrated near the bed, in a transport layer whose thickness is proportional
to d.

tration φ. This effect is balanced by gravity, which tends to settle the particles down
at a velocity Vfall. In the low concentration limit, the sedimentation flux is therefore
ϕ↓ = Vfallφ. The simplest model taking these two effects into account is:

∂tφ+ ~u · ~∇φ = ~∇ · (D~∇φ) + Vfall∂zφ (2.1)

whereD is an effective turbulent diffusion coefficient and ~u the velocity field. For the sake
of simplicity, we consider here D as a constant proportional to the mean flow velocity
U (or equivalently, to the shear velocity u∗) and to the flow thickness H , which controls
the typical turbulent mixing length: D = βHU . In the homogeneous steady state –
called the saturated state in this context – the upward diffusive flux is balanced by the
downward sedimentation flux:

D∂zφ = −Vfallφ . (2.2)

Introducing the basal concentration φb, this equation integrates into

φ = φb exp

(

−Vfall

βU

z

H

)

(2.3)

This expression provides a good approximation to experimental data (Rouse, 1936;
Vanoni, 1946; van Rijn, 1984b). The dimensionless parameter Vfall/U controls the tran-
sition between suspended transport and bed load. At small sedimentation velocity, tur-
bulent fluctuations are more efficient than gravity so that the concentration profile is
homogeneous (Fig. 2a). Sediment transport takes place over the entire flow thickness H .
Conversely, at large sedimentation velocity, gravity concentrates the moving particles at
the surface of the bed (Fig. 2c). In this limit, the sediment transport layer is limited by
the grain diameter d.

2.2. Turbulent suspension

We now consider more specifically the asymptotic regime Vfall/U ≪ 1, which corresponds
to turbulent suspension. The basal concentration and thus the overall transport are
governed by the rate of entrainment ϕ↑ of grains from the static sand bed (or ‘pick-up
function’). As this entrainment results from the hydrodynamical drag on the grains, ϕ↑

is controlled by the basal shear stress τxz or equivalently by the shear velocity u∗ ≡
√

τxz/ρf . Empirical measurements show that ϕ↑ is a growing function of u∗ above a
threshold uth ∝ Vfall (van Rijn, 1984a), typically proportional to (u2

∗−u2
th) (Partheniades,
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1965). The deposition rate ϕ↓ is due to gravity, which tends to trap the moving grains.
The conservation of sediment mass then gives the time evolution of the bed profile Z::

∂tZ = ϕ↓ − ϕ↑ (2.4)

Neglecting the volume of particles in suspension, this equation can be formulated in

terms of the sediment volume flux q =
∫ H

0 φudz as:

∂tZ + ∂xq = 0 (2.5)

The value of q in the steady homogeneous state is called the saturated flux.
In the saturated regime, the concentration φ is almost homogeneous and equal to φb,

which is selected by the mass conservation across the interface between static and mobile
grains: ϕ↓ = Vfall φb = ϕ↑(u∗). One gets the scaling

φ ≃ φb ∝
u2
∗ − u2

th

Vfall
(2.6)

The saturated flux thus reads

qsat ≃ φbUH =
ϕ↑(u∗)UH

Vfall
∝ Hu∗(u

2
∗ − u2

th)

Vfall
(2.7)

By assumption, the suspended load takes place far from the threshold, so that qsat scales
as u3

∗.
We now consider the transient of saturation of suspended transport in a heterogeneous

situation, following the analysis proposed by Claudin et al. 2011. We consider a sinu-
soidal perturbation of the basal shear stress along x at a small wavenumber (kH ≪ 1),
which leads to a perturbation ϕ1

↑ of the sediment flux. Bedforms with short wavelength
(kH ≫ 1) are ignored here as they are quickly erased in the suspended regime. Then,
horizontal diffusion of particles can be neglected. In the steady state, the diffusion equa-
tion (2.1) reduces to:

U∂xφ = ∂z (βUH∂zφ+ Vfallφ) (2.8)

The perturbation φ1 to the concentration field at saturation reads

φ1 = [F+ exp (K+z/H) + F− exp (K−z/H)] eikx (2.9)

where, at leading order in Vfall/U and kH , the dimensionless parameters K+ and K−

are given by

K± ∼ − Vfall

2βU
± (1 + i)

√

kH

2β
(2.10)

The constant F+ and F− are fixed by the two boundary conditions: (i) the particle flux
must vanish at the free surface (z = H); (ii) the diffusive flux is equal to the erosion flux
ϕ1
↑ at the bed surface (z = 0).
Using equations (2.4) and (2.5), the variations of the flux can be related to erosion and

deposition rates: ∂xq = ϕ↑ − ϕ↓. This leads to a relation between the flux perturbation
q1 and the entrainment rate perturbation ϕ1

↑. After a short calculation, one obtains, in
the limit of small Vfall/U and kH , the expression

ϕ1
↑ ∼

(

ik +
Vfall

UH

)

q1 , (2.11)

which does not depend anymore on β. Using equation (2.7), one can compute the sat-
urated flux perturbation q1sat = ϕ1

↑UH/Vfall, associated to the modulation of the basal
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shear stress. One observes that the actual sediment flux is not equal to the saturated
flux:

q1 =
q1sat

1 + i U
Vfall

kH
(2.12)

This equation corresponds to a first order space relaxation of the form

Lsat ∂xq = qsat − q , (2.13)

where the relaxation length, called the saturation length in this context, reads

Lsat ≃
U

Vfall
H. (2.14)

The physical interpretation of this relation is as follows. The sediment flux adapts to
variations of the basal shear stress with a space lag Lsat. In other words, there is a
space delay between erosion, controlled by the basal shear stress, and sediment flux,
which is due to the length needed to mix particles. The time needed for a particle to
settle down over the flow thickness H is H/Vfall. Multiplying by the horizontal velocity
U , one obtains the distance a particle travels before settling. Typically, the saturation
length for suspended transport Lsat ranges from 10H to 100H (Claudin et al. 2011).
This calculation can be easily adapted to the two-dimensional situation. The relaxation
equation keeps the same form (2.13) except that the flux is now a vector (see Eq. (2.20)
below). Even in this case, the relaxation only takes place along the flow direction x.
The most important conclusion of this section is that erosion and deposition are con-

trolled the basal shear stress. Turbulent mixing in the bulk only causes a space lag which
can be abstracted into a single length-scale: the saturation length Lsat.

2.3. Bedload

We now consider the opposite asymptotic regime which corresponds to bed load trans-
port. In this case, turbulent fluctuations are too weak to homogenize the particle concen-
tration. Charru 2006 and Lajeunesse et al. 2010 have proposed that turbulent bedload
obey the same physics as turbulent suspension, except that the particles are transported
in a layer of characteristic thickness the grain diameter d, instead of H . According to
this point of view, the saturated sediment flux reads

qsat ≃ φbUd =
ϕ↑(u∗)Ud

Vfall
∝ du∗(u

2
∗ − u2

th)

Vfall
(2.15)

The transient towards saturation in the case of bedload transport can be described by
the same relaxation equation (2.13) as suspended load except that the saturation length
now scales as:

Lsat ∝
U

Vfall
d (2.16)

As for the suspended regime, this is the length needed for a grain to settle down across
a layer of thickness d.
A different line of thought originates from Bagnold’s description of sediment transport,

which is based on momentum conservation (Bagnold 1956). Contrarily to the previous
picture, grains are transported with a dominant horizontal velocity. Then, the difference
between the total shear stress ρfu

2
∗ applied to the transport layer, and the residual shear

stress ρfu
2
th at the surface of the static layer is supported by the deeper layers of the

bed. The difference ρf (u
2
∗ − u2

th), called the sand-borne shear stress, is the number n of
grains transported per unit surface times the friction force exerted by the static bed on
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the mobile grains. One thus deduces the scaling law followed by n,

n ∝ 1

d2

(

u2
∗

u2
th

− 1

)

(2.17)

This scaling law was confirmed experimentally by Lajeunesse et al. 2010. Multiplying
n by the grain velocity, which increases linearly with u∗, one recovers a saturated flux scal-
ing as u3

∗ for large u∗ (Meyer-Peter & Müller 1948, Einstein 1950, Fernandez Luque & van Beek 1976,
Lajeunesse et al. 2010). In this picture, the length needed for transport to adjust to a
change of basal shear stress results from inertia. It is simply the length needed by a grain
to reach its equilibrium horizontal velocity. As the fluid drag force is proportional to the
fluid density ρf while the mass of the grains is proportional to the grain density ρp, one
obtains a saturation length scaling as:

Lsat ∝
ρp
ρf

d (2.18)

It has been shown by Fourrière et al. 2010 that Lsat can be determined experimentally
from initial ripple wavelength. Further work is needed to discriminate between the two
dynamical mechanisms (deposition length vs inertial length) that can control the satu-
ration length. The key test would be to investigate systematically the influence of the
density ratio ρp/ρf on the initial ripples wavelength. In both cases, the saturation length
is on the order of few grain diameters and is, by contrast, much smaller in the bedload
than in the suspended load regime.

2.4. Framework for the general description of sediment transport

In the two previous paragraphs, we have seen that the different modes of sediment trans-
port lead to different saturated fluxes and saturation lengths, but can be described
in the same formalism. We have detailled above the case of bed-load and suspended
load in the turbulent regime but aeolian transport in saltation (Andreotti et al. 2002,
Andreotti et al. 2010) or bed-load in the viscous regime (Charru 2006) are also consis-
tent with the saturation length framework. We thus emphasise that the type of sediment
transport does not change the physics of bedform dynamics.
Let us generalise the elements of this descriptive framework at three dimensions. We

define the volumic flux ~q, which is a two components vector (qx, qy), from the conservation
of sediment mass:

∂tZ + ~∇ · ~q = 0 (2.19)

The saturated flux ~qsat is by definition the flux in the homogeneous steady state. It is
a function of the basal shear stress ~τ = τ~t, which is also a two components vector. The
sediment flux relaxes towards its saturated value ~qsat = qsat~t over a typical distance Lsat

along the direction of the flow:

Lsat

(

~t · ~∇
)

~q = ~qsat − ~q (2.20)

The relaxation equation (2.20) presents two interesting limits. When Lsat tends to 0, the
flux is always saturated and is thus a function of the shear stress. When Lsat tends to
infinity, it is the erosion rate ∂tZ which is controlled by the shear stress.
For the sake of generality, we write the saturated flux on a flat sand bed as

~qsat = Ω
(

u2
∗ − u2

th

)γ ~t, (2.21)

where Ω is a dimensionfull constant of proportionality and γ is an exponent (as previously
seen, γ ≃ 3/2 for bed-load and suspension). For simplicity, we first neglect the influence
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Figure 3. Schematic of bedforms at an angle α with respect to the flow. (a) Plane wave. (b)
Alternate bars (guided waves in a channel of width W ). The x-axis is in the direction of the
flow (black arrows), and y is transverse to it. z is the third coordinate, perpendicular to the
bed mean plane. We note Z(x, y) the bed profile.

of the bed slope on both the threshold shear velocity uth and the direction of the saturated
flux, postponing the discussion of this effect to section 4.5. We have checked that the
results presented in this article are robust in the sense that they are not qualitatively
affected by the precise choice of such a transport law.

3. Hydrodynamics

3.1. Dispersion relation

To predict the emergence of bedforms, the purpose of hydrodynamics is to determine the
shear stress exerted by the fluid on the bed, since the later controls sediment transport.
The periodic disturbance of the bed profile Z is treated as a perturbation of a base state
that is homogeneous. We can then seek for modes of the form

Z = ζeik(cosαx+sinαy−ct)+σt (3.1)

where α is the angle between the wavevector ~k = (k cosα, k sinα) and the flow direction
(Fig. 3), σ is the growth rate and c is the propagation velocity of the pattern. For a
linear stability analysis, one needs to perform the linear expansion of the flow equations
with respect to the small parameter kζ. Denoting by a superscript ∧ the space Fourier
transform, the basal stress τij can be related to the elevation profile Z by

τ̂xz = −u2
∗ (Ax + iBx)kẐ, and τ̂yz = −u2

∗ (Ay + iBy)kẐ (3.2)

Ax, Bx, Ay and By are respectively the components of the shear stress in phase (Ax

and Ay) and in quadrature with the bed deformation (Bx and By). Due to the scale
separation between the typical evolution time of the bedforms and that of the flow,
the hydrodynamical velocity field can be considered in a steady state at each time.
As a consequence, these coefficients are independent of σ and c (Fourrière et al. 2010).
The aim of a particular hydrodynamical description is to relate these four dimensionless
coefficients to the wavenumber k and the angle α. We will propose such a technical
derivation in section 3.3 and focus first on the qualitative aspects of hydrodynamics
above bedforms.
For given Ax, Bx, Ay and By, one can compute the dispersion relation for bedforms,

using the saturation length formalism. The flux relaxation towards its saturated value
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Figure 4. Diagram of the hydrodynamic regimes as a function of the Froude number F and the
wavelength normalized by the flow thickness, kH . Black thick line: resonance curve predicted
by the inviscid theory. Grey schematics: qualitative shape of the free surface with respect to
the undulations of the bottom. Roman text: hydrodynamical regimes. Italic text: relevant
mechanism dominating hydrodynamics.

takes the form:

ik cosαLsat q̂x = q̂xsat − q̂x and ik cosαLsat q̂y = q̂ysat − q̂y. (3.3)

Defining the reference flux Q = γΩ
(

u2
∗ − u2

th

)γ−1
u2
∗, the saturated flux can be related

to the shear stresses τxz and τyz induced by the wavy bed as:

q̂xsat
Q

= − τ̂xz
u2
∗

and
q̂ysat
Q

= − 1

γ

(

1− u2
th

u2
∗

)

τ̂yz
u2
∗

. (3.4)

Finally the conservation equation leads to:

σ − ikc = −ik cosα
q̂x

Ẑ
− ik sinα

q̂y

Ẑ
. (3.5)

One then obtains the following dispersion relation:

σ − ikc = − ik2Q

1 + ik cosαLsat
(cosα (ax + ibx) + sinα (ay + iby)) , (3.6)

where ax = Ax, bx = Bx, ay =
(

1− u2

th

u2
∗

)

Ay/γ and by =
(

1− u2

th

u2
∗

)

By/γ are the

components of the saturated flux in and out of phase with the topography. There are
two interesting limits that will be considered below in details. When the shear stress is
much larger that the threshold value (i.e. for infinite u∗/uth) one gets ax = Ax, bx = Bx,
ay = Ay/γ and by = By/γ. Conversely, just above the threshold, one gets instead
ax = Ax, bx = Bx, ay = 0 and by = 0. As a consequence, the transverse component of
the flux is negligible in this limit.

3.2. Hydrodynamical regimes

One can identify four hydrodynamical regimes (Fig. 4), in which these functions A and
B have different behaviours. In the limit of short wavelength (kH ≫ 1, semi-infinite
regime), the turbulent flow over a wavy bed can be decomposed into three regions:
• Outer layer – In the outer layer, away from the bottom, the pressure gradient is

mostly balanced by inertia; turbulent stresses are sub-dominant. The streamlines follow
the topography so that the velocity at the bottom of the outer layer is in phase with the
bottom.
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• Inner layer – In the inner layer, the inertial terms of the Navier-Stokes equation are
sub-dominant, and the longitudinal pressure gradient is thus balanced by the Reynolds
shear stress transverse gradient, i.e. by the mixing of momentum due to turbulent fluctu-
ations (Fourrière et al. 2010). The phase lag between basal shear stress and topography
results from the matching of the inner and outer layers in the region where inertial terms
become comparable to stress gradients (Jackson & Hunt 1975, Hunt et al. 1988). This
balance relates the thickness ℓ of the inner layer to wavelength through λ ∼ ℓ ln2(ℓ/z0),
where z0 is the roughness length. At the transition between inner and outer layers, the
fluid velocity is slowed down by the shear stress. In the limit of a small aspect ratio kζ,
the velocity, which is inherited from the outer layer, is always phase delayed with respect
to the shear stress, due to inertia. As a consequence, the shear stress is phase advanced
with respect to the topography (positive B coefficients), which means that the shear
stress reaches its maximum upstream of the bedform crest. The phase lags of the shear
stress Bx/Ax and By/Ay vanish for asymptotically small kz0 and increase as ln(kz0) for
a larger wavenumber.
• Surface layer – The surface layer, of thickness h0, is responsible for the hydrody-

namical roughness z0 seen from the inner layer. The dominant physical mechanism at
work in this layer can be of different nature. For instance, z0 can result from the mixing
due to roughness elements, the predominance of viscous dissipation, or the presence of
bed-load transport. The shear stress profile is insensitive to the mechanisms at work in
the surface layer, provided that its thickness h0 is smaller than the inner layer thickness
ℓ: the hydrodynamical roughness z0 is then the sole quantity inherited from the surface
layer.

When the inner layer invades the whole system, the basal shear stress becomes sen-
sitive to the free surface waves induced by the bedforms. This occurs when ℓ ≃ H ,
or equivalently when the wavelength λ is of the order of, or larger than H ln2(H/z0).
When the standing waves resonate with the bedforms – when the upstream propaga-
tion speed of surface waves at this wavelength is exactly balanced by the downstream
convective velocity – the free surface is strongly deformed and the shear stress is phase
delayed with respect to the bedforms (negative B coefficients). For a wavelength larger
than the resonant one, the confinement of the flow by the free surface becomes domi-
nant. Three dynamical mechanisms balance: inertia, bed friction – which results from
turbulent stress – and gravity-induced pressure. Contrary to the case of a deep flow,
these three mechanisms are important over the entire flow depth. Their relative impor-
tance determines the regimes of figure 4. We refer the interested reader to the OSM
for a detailed hydrodynamical analysis of these various cases. When the gravity-induced
pressure dominates the dynamics, the free surface is almost flat. By contrast, when the
turbulent stress is dominant, the free surface follows the bed topography.

3.3. Linear expansion

Neither the potential flow approximation nor the Saint-Venant equations can satisfacto-
rily describe hydrodynamics above bedforms: the first ignores turbulent shear stress and
the second cannot account for the vertical structure of the flow (the layers we just de-
scribed). We use here the same Reynolds averaged description of turbulence over a wavy
bed as in Fourrière et al. (2010) (see references therein). We have checked that the re-
sults obtained are robust with respect to the details of the turbulent closure (anisotropy,
lag between the shear rate and the resulting turbulent stress, surface layer description).
We note ui the fluid velocity. Introducing the strain rate tensor γ̇ij = ∂iuj +∂jui and its
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squared modulus |γ̇|2 = 1
2 γ̇ij γ̇ij , the Reynolds stress τij is expressed in a tensorial form:

τij = κ2L2|γ̇|
(

1

3
χ2|γ̇| δij − γ̇ij

)

(3.7)

where the density ρ is set to unity. κ ≃ 0.4 is the von Kármán constant. χ is a second
phenomenological constant in the range 2.5–3. Considering a river inclined at an angle
θ with respect to the horizontal plane, the shear stress τxz must balance gravity. It thus
varies linearly as τxz = g(z −H) sin θ and vanishes at the free surface. By definition of
the shear velocity u∗, we also write τxz ≡ u2

∗(z/H − 1). The mixing length is chosen
equal to L = (z + z0)

√

1− z/H, a choice which results in a logarithmic flow profile for
the base state, in accordance with field and experimental observations:

ux =
u∗

κ
ln

(

1 +
z

z0

)

. (3.8)

The average velocity U then reads

U =
u∗

κ

(

1 +
z0
H

)

ln

(

1 +
H

z0

)

− 1. (3.9)

The stress balance equation along the z-axis sets the pressure field:

p+ τzz = p0 + g(H − z) cos θ = p0 +
u2
∗

tan θ

(

1− z

H

)

. (3.10)

We define the surface Froude number F as the ratio of the surface water velocity to the
velocity of gravity surface waves (in the shallow water limit):

F ≡ ux(z = H)√
gH

=
1

κ
ln

(

1 +
H

z0

) √
sin θ. (3.11)

The Froude number can be of order unity in flumes but is generally small for large natural
rivers, due to their small slopes.
We now perform the formal derivation of the hydrodynamical equations. We consider

the wavy bottom defined by Eq. 3.1 and we perform the linear expansion of the equations
with respect to the small parameter kζ. We note η = kz, η0 = kz0 and ηH = kH . We
write the first order corrections to the base flow as

ux = u∗ [µ+ kZU ] , (3.12)

uy = u∗kZV, (3.13)

uz = u∗kZW, (3.14)

τxz = τzx = −u2
∗

[

1− η

ηH
+ kZSxz

]

, (3.15)

τyz = τzy = −u2
∗ [kZSyz] , (3.16)

τxy = τyx = −u2
∗ [kZSxy] , (3.17)

p+ τzz = p0 + u2
∗

[

1

tan θ

(

1− η

ηH

)

+ kZSn

]

, (3.18)

τxx = u2
∗

[

1

3
χ2 + kZSxx

]

, (3.19)

τyy = u2
∗

[

1

3
χ2 + kZSyy

]

, (3.20)
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τzz = u2
∗

[

1

3
χ2 + kZSzz

]

, (3.21)

where the function µ is defined by µ(η) = 1
κ ln

(

η
η0

)

. The capitalized quantities U , V ,

W , Sxz, Syz,and Sn are functions of η. The free surface is also deformed and we denote
by h = H +∆(x, y) the flow depth at the position x, y. The modified expression for the
mixing length then reads

L = (z0 + z − Z)

√

H +∆− z

H +∆− Z
. (3.22)

At first order, the stress equations can be simplified into

µ′Sxz = 2

(

1− η

ηH

)



(U ′ + i cosα W )− κµ′2 +
µ′

2ηH
+

ηδµ′

2η2H

(

1− η
ηH

)



 , (3.23)

µ′Sxy =

(

1− η

ηH

)

(i sinα U + i cosα V ) , (3.24)

µ′Syz =

(

1− η

ηH

)

(V ′ + i sinα W ) , (3.25)

µ′(Sxx − Szz) =

(

1− η

ηH

)

(−2i cosα U + 2W ′) , (3.26)

µ′(Syy − Szz) =

(

1− η

ηH

)

(−2i sinα V + 2W ′) , (3.27)

(3.28)

The Navier-Stokes equations lead to

W ′ = −i cosα U − i sinα V, (3.29)

S′
xz = iµ cosα U + µ′W + i cosα (Sn + Sxx − Szz)− i sinα Sxy (3.30)

S′
yz = iµ cosα V + i sinα (Sn + Syy − Szz)− i cosα Syx (3.31)

S′
n = −iµ cosα W + i cosα Sxz + i sinα Syz. (3.32)

Introducing the vector ~X = (U, V,W, Sxz, Syz, Sn), at first order in kζ, one has to solve
a system of six differential equations which can be written as

d

dη
~X = P ~X + ~S + δ ~Sδ, (3.33)

where

P =

























0 0 −i cosα µ′

2
(

1− η

ηH

) 0 0

0 0 −i sinα 0 µ′

(

1− η

ηH

) 0

−i cosα −i sinα 0 0 0 0
1+3 cos2 α

µ′

(

1− η
ηH

)

+ iµ cosα 3 sinα cosα
µ′

(

1− η
ηH

)

µ′ 0 0 i cosα

3 sinα cosα
µ′

(

1− η
ηH

)

1+3 sin2 α
µ′

(

1− η
ηH

)

+ iµ cosα 0 0 0 i sinα

0 0 −iµ cosα i cosα i sinα 0

























,
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Figure 5. Growth rate σ as a function of the rescaled wavenumber kH
and of the angle α for u∗/uth → ∞ and F → 0. (a) Data com-
puted for Lsat/H = 1/4. The most unstable mode (•) corresponds to ripples
(α = 0). Isocontours for L2

sat σ/Q = −5,−2, 0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0.2.
(b) Data for Lsat/H = 4. The influence of the free surface on the basal shear
stress drives the most unstable mode towards higher α values. Isocontours for
L2

sat σ/Q = −75,−25,−10,−1,−0.1, 0, 0.005, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35. The dotted lines
correspond to the maximum over all possible values of α of growth rate, for a given kH .

~S =

















κµ′2 − µ′

2ηH

0
0
0
0
0

















, and ~Sδ =



















− ηµ′

2η2

H

(

1− η

ηH

)

0
0
0
0
0



















. (3.34)

The bottom boundary conditions U(0) = −1/(κη0), V (0) = 0 and W (0) = 0 are then
automatically satisfied – as the flow above the bedform is assumed to be in a steady state,
the water velocity must vanish at the bed surface. At the free surface, the normal velocity
vanishes W (ηH) = iµ(ηH) cosα δ, as well as the stress Sxz(ηH) = δ/ηH , Syz(ηH) = 0
and Sn(ηH) = δ/(ηH tan θ). These conditions select the coefficients Sxz(0) = Ax + iBx,
Syz(0) = Ay + iBy, Sn(0) and δ. Integrating equation (3.34) yields to the dependence of
these stress coefficients on k and α.

4. Transition from transverse to inclined bedforms

In this section, the dispersion relation derived above is first analysed in its simplest
version, that is for a vanishing Froude number and a sediment transport model indepen-
dent of the bed slope. Then, we will introduce the influence of the bed slope in subsection
4.5 and investigate the influence of the Froude number in section 5.
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Figure 6. Maximum growth rate (a) and corresponding mode angle (b) computed over all
possible α, for each wavenumber kH . Curves obtained in the limit F → 0, u∗/uth → ∞, and
for Lsat/H = 2−4, 2−2, 20, 22, 24, 26, 28. The dashed line corresponds to Lsat/H = 1/4 (Fig. 5a)
and the dotted line to Lsat/H = 4 (Fig. 5b).

4.1. Non-dimensional parameters

To produce a phase diagram of the possible bedform patterns, the different non-dimensional
parameters of the model must be identified. Choosing H as a characteristic length scale
to rescale the wavenumber k, there remain two other lengths in the problem: the hydro-
dynamical roughness z0 and the saturation length Lsat. The relative influence of inertia
and gravity on hydrodynamics is characterized by the Froude number F . The relative
influence of fluid entrainment and gravity on sediment transport is characterized by the
ratio u∗/uth. The linear stability analysis of a flat sand bed in a river thus depends on
four parameters, H/z0, Lsat/H , F and u∗/uth, which can be varied independently in
experiments, at least in principle, by changing the bed material. There are two further
non-dimensional numbers in the transport law: its exponent γ and the effective fric-
tion coefficient µ of the granular material. As the central result of this article, we show
that the most important parameter is the ratio Lsat/H , since it controls the transition
from ripples to chevrons. More precisely, Lsat controls the stabilizing effect associated
to transport and H the hydrodynamical regime. The other parameters do not affect the
nature and the physical origin of this transition even though they have a quantitative
influence on the results, especially in the neighbourhood of this transition.
This central result determines the strategy adopted here to investigate the dependence

of the instability on six parameters. We first consider the low Froude number limit,
that is when inertial effects at the free surface are negligible with respect to gravity. For
illustrative purposes, the ratio H/z0 is set to 100, which is realistic for rivers. Similarly, γ
is fixed to 3/2 and µ−1 to 0. Finally, the results will be systematically plotted for the two
extreme values of u∗/uth, 1 and +∞. So that, we are left with a single non-dimensional
number Lsat/H , which controls the instability.

4.2. Growth rate in the low Froude number limit

Figure 5 shows the iso-contours of the growth rate σ as a function of the wavenumber
rescaled by the flow thickness, kH , and of the pattern angle α. Two values of Lsat/H have
been chosen, which are on both sides of the transition between ripples and chevrons. The
growth rate shown in panel (a) of figure 5 is computed for a small value of Lsat/H = 1/4.
Let us first focus on the horizontal axis α = 0, on which the maximum of the growth
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Figure 7. Angle αm and wavenumber km of the most unstable mode as a function of Lsat/H ,
for F → 0. The solid line corresponds to the limit u∗/uth → ∞ (transitions at Lsat/H ≃ 1.0
and at ≃ 2.9 102 marked by ◦) and the dotted line to the limit u∗/uth → 1 (transitions at
Lsat/H ≃ 1.6).

rate is located, and for which one recovers the results of Fourrière et al. (2010). The
region of negative growth rate for kH ≪ 1 (gray zone on the left-hand side) is due to flow
confinement. In this limit, the flow is controlled by the balance between gravity induced
slope effect and turbulent friction on the bottom (Fig. 4). Therefore, the disturbance
to the base state corresponds to a down-slope velocity component (Bx < 0). This
results into a diffusive sediment flux which tends to stabilise the bedform (σ < 0). As
the wavenumber increases, inertia becomes more and more important so that the phase
delay of the shear stress with respect to the topography is progressively reduced. When
the confinement effect becomes negligible, one recovers a phase advance (Bx > 0) and
thus a destabilising hydrodynamical effect.
In the semi-infinite regime, when the wavelength is much larger than the saturation

length (kLsat ≫ 1), the growth rate is a growing function of kH . This results from
mass conservation, as the amount of sediment to be transported is smaller for shorter
wavelengths, while the flow-induced destabilising effect (the coefficient Bx) remains of the
same intensity. The re-stabilisation at larger wavenumbers (gray zone on the right-hand
side) is associated to the saturation length Lsat. The maximum growth rate is determined
by the balance between the stabilising effect of transport and the destabilising effect of
hydrodynamics. It is convenient to define the most unstable wavenumber k∞ in the limit
H ≫ Lsat, for a given ratio Lsat/z0. k∞ is the product of L−1

sat by a dimensionless factor
of hydrodynamical origin corresponding to the phase lag of the shear stress with respect
to the topography.
Let us consider a given granular bed (Lsat is fixed) under different flow conditions.

When H is large enough, the free surface does not influence the flow, and the most
unstable mode corresponds to ripples (α = 0) of wavenumber k∞. When decreasing the
flow depth H to values comparable to, or smaller than Lsat, the influence of the free
surface on the flow increases. The panel (b) of figure 5 corresponds to such a large value
of the saturation length (Lsat/H = 4). One observes that all transverse patterns (α = 0)
are stable (σ < 0). However, some inclined patterns, which correspond to chevrons,
remain unstable.
Why is the confinement by the free surface stabilising for quasi-transverse patterns

(small α) but destabilising for inclined patterns (large α)? Consider first the limit kH ≪
1 for which the balance between slope effect and basal friction dominates. Due to gravity,
for any value of α, the disturbance to the flow is associated to a fluid motion that
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Figure 8. Schematic explanation of the chevrons instability mechanism in the limit of vanishing
kH . Black (resp. grey) arrows show the modulation of the longitudinal (transverse) flow.
(a) Bedforms almost transverse to the flow (α close to 0). Gravity is dominant so that the
longitudinal fluid motion is down-slope. (b) Bedforms almost aligned with the flow (α close to
π/2). The longitudinal slope effect is negligible. Longitudinal fluid motion is controlled by the
modulation of flow thickness, which induces a weakening (resp. an increase) of the basal friction
upstream (resp. downstream) of the crest. Therefore, the modulation of the longitudinal fluid
motion is up-slope.

is globally down slope. For small α, this corresponds to a stabilising down-slope flow
(Bx < 0), as shown in Fig. 8(a). However, at α close to π/2, the slope effect mostly
induces a motion along the direction perpendicular to the main flow. The longitudinal
slope effect is small and can be ignored. As there is no net water discharge from the
crests to the trough, the fluid motion is down-slope along the transverse direction but
must be up-slope along the longitudinal direction (Bx > 0). More precisely, as shown in
Fig. 8(b), the transverse flow induces a modulation of the flow thickness in quadrature
with topography: the flow thickness is larger up-stream of the bedform crest and smaller
down-stream of it. In turn, turbulent friction is modulated and leads to the up-slope
longitudinal flow modulation. Note that these up-slope and down-slope water discharges
take place over the whole flow thickness, due to confinement. Sediment transport is
mostly controlled by the longitudinal modulation of the shear stress. As a consequence,
the very same dynamical mechanism (balance between friction and slope effect) leads to
a stabilising (small α) or a destabilising (large α) effect of the free surface. For any α, this
effect becomes weaker as kH increases, since inertia becomes more and more important.

Computing, for given values of kH and Lsat/H , the maximum over all possible angles α
of the growth rate (dotted lines in Fig. 5, and Fig. 6) allows us to represent the dispersion
relation in a more convenient form than a contour plot. Figure 6a shows this maximum
growth rate for different values of Lsat/H as a function of kH . These curves present
a maximum, which is lower when Lsat/H is increased. This can be understood as the
sediment transport saturation is a stabilising mechanism. In figure 6b, we represent the
corresponding angles. We can see that, for all wavenumbers smaller than kH ≈ 0.1, the
growth rate is larger at a finite angle than at α = 0. At larger values of kH , there is a
range of wavenumbers for which the largest growth rate is at α = 0. However, this range
exists only for a sufficiently small ratio Lsat/H , and is wider for smaller values of this
parameter. We will see in the next section that the most unstable modes (the maximum
of the curves in figure 6a) precisely belong to this range for which α = 0 when Lsat/H is
small (transverse ripples), whereas it corresponds to chevrons (finite α) when Lsat/H is
large.
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Figure 9. Erosive limit: incision instability. (a) Growth rate σ as a function of the rescaled
wavenumber kH and of the angle α for Lsat/H = 107 in the limit F → 0 and u∗/uth → 1.
The isocontours are taken close to 1, for LsatH σ/Q − 1 = −104,−103,−102,−101,−100. (b)
Wavenumber km (solid line) and angle π/2− αm (dashed line) of the most unstable mode as a
function of Lsat/H , for F → 0. The dotted line is a guide for the eyes and is a power law of
exponent −0.3.

4.3. Transition from ripples to chevrons

From the dispersion relations shown in figure 6, one can deduce the wavenumber km and
the angle αm of the most unstable mode for which the growth rate is the largest (also
shown in figure 5 by a black point). They are represented in figure 7 in the two limits
u∗/uth → ∞ and u∗/uth → 1. The two cases behave very similarly. For both, there exist
a threshold in Lsat/H , of order one, below which ripples are more unstable than chevrons.
Below this transition at small Lsat/H , the ripples wavenumber km is proportional to L−1

sat

and thus does not depend on H . The behaviour beyond the transition is more complex,
as it depends on both the flow depth H and the saturation length Lsat.
There are small differences between the limits u∗/uth → 1 and u∗/uth → ∞, related to

the effect (or the absence of effect) of the transverse shear stress. Close to the threshold,
only the longitudinal shear stress matters. Although it is difficult to appreciate from
figure 7, due to the logarithmic scale, the transition from ripples to chevrons is much
sharper far from the transport threshold (solid line) than close to it (dotted line). More-
over, the critical value of Lsat/H changes by a factor ≃ 1.6 between these two limits.
More important is the difference at large ratio Lsat/H . In the limit u∗/uth → ∞, the
entire spectrum of bedforms becomes stable beyond a critical value of the ratio Lsat/H :
a flat bed becomes stable toward any disturbance.
On the contrary, for u∗/uth → 1, the angle αm tends to π/2 in the limit Lsat/H → ∞.

The most unstable mode in this limit thus corresponds to longitudinal structures. This
can be interpreted as an incision instability, similar to that investigated by Izumi &
Parker 1995, 2000. Here however, we find that, far above the threshold, this longitudinal
instability disappears (Fig. 7). Moreover, the incision wavelength is selected without
any inhomogeneity in the base flow (Fig. 9). More precisely, figure 9 shows that the
most unstable wavelength km scales (roughly) as km ∝ H−0.7 L−0.3

sat . Similarly, the
most unstable mode is inclined at an angle π/2 − αm ∝ (H/Lsat)

0.3 with respect to
the longitudinal direction. So, up to the limit of the numerical resolution, reached at
∼ Lsat/H = 109, km still depends both on H and Lsat (in the whole range 0 < F < 1).
On the other hand, one could interpret the system in the limit Lsat/H → ∞ as

a purely erosive material, with no deposition. The erosion rate is then controlled by
the shear stress. Close to the threshold, the dispersion relation is then simply σ −
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Figure 10. Growth rate σ as a function of the rescaled wavenumber kLsat for u∗/uth → 1 and
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gray lines). The solid and gray lines correspond to the maximum over the angle α of the growth
rate. The dashed line is for α = 0 (transverse ripples). (a) Lsat/H = 2−4 (b) Lsat/H = 4.

ikc = − (Ax + iBx) Qk/Lsat. In the limit of large saturation length (Lsat/H → ∞),
the ratio of the water depth to the wavelength of the most unstable mode becomes
small (Fig. 7a). As a consequence, one can use the shallow-water approximation and
Saint-Venant’s equations to describe the corresponding bedforms. Incidentally, Callander
(1969) proposed his stability theory for alternate bars formation in this framework. The
growth rate can then be approximated by (see OSM):

σ ∼ Q

H Lsat

[

1−
(

(

3CF
2kH

)2

+

(

kH

2C

)2

+
3−F2

2

)

(π

2
− α

)2
]

, (4.1)

where C is the Chezy friction coefficient. At any value of the Froude number, the maxi-
mum growth rate is reached for αm = π/2, i.e. for longitudinal bedforms, in accordance
with the results of the three-dimensional theory. At any angle α, the wavelength cor-
responding to the maximum growth rate is kmH =

√
3CF . By comparison with the

results of the three-dimensional model investigated here, the erosive limit is thus singu-
lar and does not lead to the correct prediction at large Lsat/H . Figure 7 provides a clue
to explain this discrepancy. At finite Lsat, the growth rate σ of longitudinal patterns
(α = π/2) is strictly zero. However, for α slightly below π/2, σ is roughly constant
(within few percents) and equal to Q

H Lsat
over roughly 4 decades in kH : a wide range of

wavenumbers – not only km – are expected to grow at almost the same rate. In conclu-
sion, regarding the incision instability in the erosive limit, the linear growth can hardly
be selective.

4.4. The role of the free surface

We have shown that ripples and chevrons result from the same linear instability in
different hydrodynamical regimes. Depending on the wavenumber k∞H , the free surface
has an influence or not on the most unstable bedforms. One can address the questions
of the sign and mechanism of this effect by comparing the dispersion relations with
and without a free surface (Figure 10). For the sake of convenience, both the growth
rate and the wavenumber are now rescaled by the saturation length Lsat, and the other
parameters remain fixed. Below the transition between ripples and chevrons, the three
curves coincide around the maximum, indicating that the influence of the free surface is
negligible for ripples. On the contrary, above the transition, the growth rate is larger in
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the presence of a free surface, thus showing its destabilizing effect on inclined patterns.
This result must be contrasted by the stabilising role of the free surface on transverse
dunes shown by Fourrière et al. 2010: these dunes are non-linear transverse pattern of
rescaled wavenumber kH of order one, but in the regime Lsat/H ≪ 1, i.e. below the
transition. For both ripples and chevrons, the destabilising mechanism originates from
pure hydrodynamics. At large kH , it results from the simultaneous influence of inertia
and turbulent shear stress. At small kH , it results from the simultaneous influence
of gravity induced pressure and turbulent shear stress (see OSM), even when inertia
dominates.

4.5. Effect of a slope dependent transport threshold

At the linear order, the effect of the bed slope on the sediment transport can be rep-
resented by an apparent threshold that depends on the longitudinal slope by a factor
1+∂xZ/µ, where µ is the avalanche slope. On the contrary, the apparent threshold does
not depend on the transverse slope at this order. The direction of the particles motion ~t
reacts to an inclined bed in the exact opposite way: it depends on the transverse slope
but not on the longitudinal slope. Taking these effects into account, the saturated flux
previously expressed as (2.21) now reads

~qsat = qsat~t = Ω
(

u2
∗ − u2

th

)γ
(

~e‖ −
uth

u∗

∂yZ

µ
~e⊥

)

, (4.2)

where ~e‖ and ~e⊥ are the unit vectors parallel and perpendicular to the bedform crest
respectively. Keeping the same definition of the reference flux Q as before, the relation
between the saturated flux and the shear stresses τxz and τyz then becomes

q̂xsat
Q

=
τ̂xz
u2
∗

− iµ−1 u2
th

u2
∗

cosα kẐ (4.3)

q̂ysat
Q

=
1

γ

(

1− u2
th

u2
∗

) (

τ̂yz
u2
∗

− iµ−1 uth

u∗
sinαkẐ

)

(4.4)

The dispersion relation remains in the same form, but the expressions for the components
of the saturated flux in, and out of phase with the topography are modified as:

ax = Ax , bx = Bx − µ−1 cosα
u2
th

u2
∗

, (4.5)

ay =
1

γ

(

1− u2
th

u2
∗

)

Ay , by =
1

γ

(

1− u2
th

u2
∗

) (

By − µ−1 sinα
uth

u∗

)

. (4.6)

As mentioned earlier, the details of the bifurcation diagram depend on five secondary
parameters: H/z0, F , u∗/uth, µ and γ. Figure 11 allows us to see more precisely what
we mean by ‘secondary’. The introduction of the slope effect, through a finite value of µ,
tends to sharpen the transition (solid vs dotted line in Fig. 11). However, this influence
is weakened when u∗/uth is increased (that is, further away from the sediment transport
threshold), as the curve relating αm to Lsat/H becomes smoother. The influence of µ
completely disappears for asymptotically large u∗/uth.
In any case however, if the saturation length is much smaller than water depth, the

most unstable bedforms are ripples regardless of the value of these secondary parameters.
Similarly, if Lsat is much larger than H , only chevrons can appear. In other words, for
any set of secondary parameters, the linear instability presents a transition controlled by
the dominant parameter Lsat/H . Nevertheless, when Lsat/H is of order one, varying the
secondary parameters can also trigger the transition from ripples to chevrons.
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Figure 11. Pattern angle αm of the most unstable mode as a function of Lsat/H in the limit
F → 0. The grey solid line corresponds to the limit u∗/uth → ∞ (for any value of µ−1). The
thin black solid line corresponds to the limit µ−1 = 0 and u∗/uth = 1. The three other curves
are computed with a finite avalanche slope µ = tan(32◦), for u∗/uth = 1 (dotted line), for
u∗/uth = 2 (dotted-dashed line) and for u∗/uth = 4 (dashed line).

4.6. Comparison with experiments

How does this picture compares with experimental data? As the ratio Lsat/H has never
been considered as a control parameter before, it has not been systematically varied
in experiments. In practice, small values of Lsat/H are obtained in deep flumes, when
bedload is the dominant mode of transport. On the contrary, values of Lsat/H large
enough to be in the chevron regime can be achieved in two ways. H must be small if
bedload is dominant, and this is typically the situation of experiments on alternate bars.
Note that the flume then plays the role of a wave-guide: for a finite fixed width W a
relation between wavenumber k and angle α is selected. In table 1, we have gathered some
of the experimental and field data from the literature, which show that the transitional
value of Lsat/H , above which chevrons rather than ripples are observed, is around 0.1.
The second possibility to get large values of Lsat/H is to use fine particles transported in
suspension by the flow. Less dense, or smaller, bed particles should then produce larger
chevrons. Coming back to the aerial picture of the Loire river shown in figure 1, one can
propose the following interpretation: the alternate bars form and move during flooding
events, when sand grains get suspended, while the ripples and the dunes covering the
sand bed form during low water, when sand grains are transported in bedload.

5. Transition to anti-dunes

We have previously analysed the limit of a vanishing Froude number, for which the
free surface is almost flat, but still plays an important role through the pressure field. We
now consider the effect of Froude number on the linear instability. We will first consider
the effect of a finite Froude number in the subcritical regime (F < 1). Then, we will
show than, in the supercritical regime (F > 1), the ratio Lsat/H triggers the transition
from ripples to anti-dunes.

5.1. Subcritical regime

Figure 12a shows the amplitude ∆ of deformation of the free surface, rescaled by the
amplitude of the bedform, for F = 0.8, in the subcritical regime. One observes that the
surface is almost flat in the right part of the diagram, for kH > 1. A transition can be
observed at small wavenumbers (kH ≪ 1), which leads to a free surface parallel to the
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References H d U U/
√
gH R Lsat/H transport

(m) (mm) (m/s) (×103) and bedforms
comments

Ikeda (1983) bedload
run 80 0.104 6 1 1 100 0.6 chevrons
run 102 0.012 0.8 0.3 1 4 0.7 diagonal bars
run 142 0.016 0.8 0.4 1 6 0.5 diagonal bars

Ikeda (1984) 0.012–0.035 1.3 0.4–0.5 0.8–1.2 5–16 0.4–1 bedload/bars

Fujita & 0.01–0.04 1 0.3–0.5 0.8–1.2 5–20 0.25–1 bedload
Muramoto (1985) alternate bars

Schumm & 0.02–0.03 0.7 0.3–0.4 0.6–0.8 8–9 0.23–0.35 bedload
Khan (1972) alternate bars

Chang et al.
(1971) alternate bars

runs 40–62 0.02–0.08 0.2 0.1–0.3 0.1–0.5 5–14 10–30 suspension(a)

runs 10–33 0.02–0.04 0.8 0.3–0.5 0.6–1.1 9–16 0.2–0.4 bedload(b)

Lisle et al. bedload
(1991) 0.008 1.4 0.25 0.9 2 1.8 alternate bars
(1997) 0.02 0.57 0.4 0.9 8 0.3 alternate bars

Lanzoni bedload

(2000a) 0.03–0.08 0.48 0.3–0.5 0.3–0.7 12–21 0.06–0.16 ripples and bars(c)

(2000b) 0.04–0.07 0.2 and 2(d) 0.3–0.6 0.4–0.8 20 0.03 and 0.3–0.5 ripples and bars

Venditti & bedload
Church (2005) 0.15 0.5 0.4–0.5 0.3–0.4 55–75 0.03 cross-hatch pattern

Coleman &
Melville (1996) bedload
runs F2–F16 0.07–0.17 0.21 0.4–0.7 0.3–0.6 13–42 0.01–0.03 ripples
runs C1–C20 0.08–0.17 0.83 0.5–1 0.4–0.9 25–50 0.05–0.1 ripples

Baas (1999) 0.33 0.24 0.3–0.6 0.2–0.3 100–200 0.007 bedload/ripples

Fourrière et al. bedload
(2010) 0.5 0.33 0.6 0.3 300 0.007 ripples

Loire river(e) 4 0.7 1 0.15 4000 40 suspension(f)/bars

Table 1. Some of the experimental and field data from the literature. H is the flow depth. d
is the typical sediment size (e.g. d50). U is the mean velocity. R = UH/ν is the flow Reynolds
number. The saturation length has been computed with Lsat = 10d for bedload (Fourrière et al.
2010) and with as Lsat = HU/Vfall for transport in suspension, where Vfall is the particle settling
velocity (Claudin et al. 2011). Notes: (a,b) Transport mode is not specified in the experiment
description of Chang et al. (1971). Suspension is expected in case (a) as the sediments are
plastic pellets with specific gravity of 1.05. Bedload is expected for the sand grains (case b).
(c) Both pattern are observed together. (d) In Lanzoni (2000b), a bimodal sediment mixture
is used. Only ripples are observed when partial transport occurs, i.e. below the threshold of
motion for the largest particles; Bars are observed above it. (e) These data correspond to the
portion of the river displayed in figure 1c. (f) Suspension is observed during flood events.



22 B. Andreotti, P. Claudin, O. Devauchelle, O. Durán and A. Fourrière

0

10-3 10-2 10-110-4 100 101

π/4

π/2

0

π/4

π/2

10-3 10-2 10-110-4 100 101

 1 

 1 

 0.75 

 0.5 

 0
.1

2
 

 0
.0

4
 

 0
 

 -
2

 

 0
 

 -
1

0
-4

 -
1

0
-3

 1
0

-3

 1
0

-3

 1
0

-1

isocontours of isocontours of 

Figure 12. (a) Ratio ∆ of the free surface amplitude to the pattern amplitude, as a function
of the rescaled wavenumber kH and of the angle α for u∗/uth → ∞ and F = 0.8. Isocontours:
L2

sat σ/Q = −10−4,−10−3,−2, 0, 10−3, 0.04, 0.12, 0.16. (b) Growth rate σ as a function of the
rescaled wavenumber kH and of the angle α for u∗/uth → ∞ and F = 0.8. There are two
local maxima of the growth rate of comparable amplitude, represented by black points (•).
Isocontours: L2

sat σ/Q = 10−3, 10−2, 0.1, 0.5, 0.75, 1, 2.

bottom. Finally, there exists a sharp resonance of free surface standing waves excited by
the bedforms for kH ≈ 1. By definition, a resonance corresponds to a response maximum
of an excitable system (here, the free surface) when submitted to a perturbation (here,
the bedform). Resonance occurs due to the accumulation of energy when the later does
not propagate i.e. when the surface wave velocity with respect to the bed vanishes. This
velocity can be expressed as the difference between the flow velocity component along the
direction normal to the bedform crest and the wave velocity with respect to the fluid. In
the Airy linear wave theory (Phillips 1977), based on an inviscid calculation, this leads
to the criterion:

F2
res ≃

tanh(kH)

kH cos2 α
(5.1)

Along the resonance curve, inertia and gravity-induced pressure are of the same order (see
Fig. 4 for a schematic representation of the hydrodynamical regimes along the resonance
curve). This results in a strong stabilising effect. Accordingly, figure 12b shows that the
growth rate σ becomes negative for the values of kH and α for which the free surface is
strongly distorted.
Figure 13 shows the wavenumber and the angle for which the growth rate is maximum.

At a finite Froude number, the overall picture remains similar to the case F → 0: there
exists a transition between ripples and chevrons controlled by the ratio Lsat/H . Looking
in more details however, one can observe that the transition occurs at a smaller value of
Lsat/H for a finite F (a few 10−1 for F = 0.8). Moreover, around the transition, two
maxima of comparable amplitude can coexist over a certain range of the ratio Lsat/H ,
one located on the α = 0 axis, and the other at a finite α. In this range, one then expects
to see simultaneously ripples and chevrons (grey zone on figure 13). As a matter of fact,
this phenomenon has been reported experimentally by Devauchelle et al. (2010a).
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Figure 14. Schematic view of anti-dunes and scketch of the instability mechanism. The
saturation length Lsat represents the spatial lag between the shear stress and the sediment

flux.

5.2. Origin of anti-dunes

Downstream propagating bedforms (ripples and chevrons) are associated with positive
values of the four components Ax, Ay , Bx and By. Then, the instability is due to the
phase lag between the shear stress and the topography (component Bx) and is limited
by the saturation length. In that case, the flow velocity is maximum on the crests of
bedforms (positive value of Ax). The saturated flux globally increases on the upstream
side of the structure and decreases on its downstream side. As the actual flux is spatially
delayed with respect to the saturated flux, the saturation transient shifts the point at
which the flux is maximum downstream of the crest. This leads to an erosion of the
crests and thus stabilises the pattern.
Now consider anti-dunes. They are upstream propagating bedforms. They are associ-

ated to a negative value of the component Ax, which means that the flow velocity and
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Figure 15. Rescaled amplitude ∆ of deformation of the free surface above a transverse bedform
(α = 0) as a function of the Froude F and of the rescaled wavenumber kH . The dashed line
corresponds to the resonance predicted by the inviscid equations and the dotted line to the
actual resonance curve. The anti-dune region is shown in light gray. The dark gray region
corresponds to strong resonance (∆ > 5).

2

1.5

1

0.5

0
10-3 10-210-5 10-4 10-1 100 101

 1
2
8
0
 

 6
4
0
 

 3
2

0
 

 1
6

0
 

 8
0

 

 4
0

 

 2
0

 

 1
0

 

 5
 

 4
.5

 

 4
.5

  4
 

 3
 

 2
 

 1 

 0 

 -1

 

 -2

 

 -10 
 -5 

isocontours of 

Figure 16. Component Ax of the shear stress in phase with a transverse bedform (α = 0)
as a function of the Froude F and of the rescaled wavenumber kH . Antidunes form in the
region where Ax < 0 (light gray). The dotted line corresponds to the resonance predicted by
the inviscid equations and the dashed line to the actual resonance curve.
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Figure 17. (a) Growth rate σ as a function of the rescaled wavenumber kH and of the
angle α for Lsat/H = 5, F = 1 and H/z0 = 102 in the limit u∗/uth → 1. Isocontours
for L2

sat σ/Q = −150,−100,−50,−25,−10,−4,−1, 0,−0.2, 0.2, 0.4, 0.421, 1.5. Two local max-
ima can be observed (•). (b) Propagation speed c in the same conditions. Isocontours for
Lsat c/Q = −75, 0, 1, 5, 10, 25, 50, 100

thus the saturated flux is minimum on their crests. The saturation transient moves the
point at which the flux is minimum downstream, ensuring the crest of the anti-dune to
be in the deposition zone. This means that, the delay induced by the saturation length
has this time a destabilising effect. Large negative values of the shear stress component
Ax are found in the vicinity of the resonance of free surface standing waves (Figures 15
and 16).
At large Froude number, the free surface dynamics is dominated by inertia, and at low

Froude number by gravity-induced pressure. In the potential flow approximation, the
free surface deformation of transverse modes (α = 0) reads

∆ =
1

cosh(kH)− sinh(kH)
F2 kH

. (5.2)

∆ diverges in the resonant conditions predicted by Eq. 5.1, which is represented by
dotted lines in figures 15 and 16. This formula predicts that, for α = 0, the resonant
Froude number is constant, equal to 1, at small kH and decreases as (kH)−1/2 for kH
larger than 1. The full three-dimensional model derived here, which includes turbulent
stresses, leads to a picture substantially different in the supercritical regime: a resonance
is observed at a Froude number larger than 1 for a rescaled wavenumber kH of order
1 (Fig. 15). The above inviscid prediction is only recovered for F smaller than 1 or
equivalently for kH larger than 1. To the best of our knowledge, this resonance curve
has never been predicted nor determined experimentally, so far. It constitutes one of the
most important – and surprising – results of this article.
The resonance observed in the upper part of the diagram shown in figure 15 results

from different dynamical mechanisms. For a given Froude number, at asymptotically
small kH , the flow is governed by the balance between gravity and turbulent friction:
the free surface follows the bed (∆ = 1). At large kH , the flow disturbance induced
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by the bedform decays exponentially with the distance to the bed over a typical length
k−1. The free surface amplitude is thus very small. In between, there is a small domain
of wavenumber kH for which the flow is governed by the balance between inertia and
turbulent friction. As the influence of gravity-induced pressure is small, the free surface is
then very distorted. This intermediate flow regime is precisely that for which anti-dunes
are observed.
Figure 16 shows the shear stress component Ax as a function F and kH . As expected

from the previous analysis, Ax becomes negative only at Froude number larger than 1.
Between F = 1 and F ≃ 1.25, there is a narrow range of wavenumbers kH , in the vicinity
of the resonant conditions, for which Ax is negative. At larger Froude numbers, this range
extends down to kH = 0. In the next sub-section, we investigate the consequences of
these features for anti-dunes.

5.3. Supercritical regime

Figure 17 shows a dispersion relation obtained at F = 1, in the range of parameters
for which anti-dunes is the most unstable mode. One can actually see two unstable
regions in the plane (kH ,α). The upper part of the diagram corresponds to chevrons and
bars, since these patterns are inclined with respect to the flow (α > 0) and propagate
in the downstream direction (c > 0). In the lower part of the diagram, one observes
a narrow region of wavenumbers close to the resonant conditions for which the growth
rate is very large and the propagation speed negative. These unstable modes lie in the
region of negative Ax and precisely correspond to anti-dunes. For the example chosen
in figure 17, the growth rate is three times larger for the anti-dune mode than for the
chevron mode. As previously stated, the existence of these two competing modes is due to
two fundamentally different dynamical mechanisms. In particular, for ripples, chevrons
and bars, the transport saturation transient is stabilising while it is destabilising for anti-
dunes. In the later case, the range of unstable wavenumbers is controlled by the width
of the free surface resonant peak, i.e. by hydrodynamics only.
From a dispersion relation like that shown in figure 17, one can extract the characteris-

tics of the most unstable mode, which can then be plotted against the control parameters.
As before, the parameter controlling the transition between the various patterns is the
ratio Lsat/H of the saturation length to the flow depth (Figure 18). At small Lsat/H ,
the growth rate of ripples is much larger than any other mode. Therefore, the most
unstable mode is associated to an angle αm = 0 and a wavenumber km which scales as
L−1
sat. The propagation speed cm is positive and scales as Q/Lsat; the growth rate σm

scales as Q/L2
sat.

In order to understand the different transitions in figure 18, let us focus on the common
behaviours and the differences between the curves obtained for F = 0.9 (dotted line) and
F = 1 (dashed line). Both for F = 0.9 and F = 1.0, a first bifurcation is observed
around Lsat/H = 0.3, which corresponds to the ripples/inclined pattern transitions.
One effectively observes that cm remains positive and αm jumps from 0 to a finite value
when the wavenumber km crosses the resonant conditions. Above this transition, for
F = 0.9, the inclined pattern remains the most unstable mode and αm tends to π/2 at
asymptotically large Lsat/H . On the opposite, for F = 1.0, a new bifurcation takes place
at Lsat/H ≃ 4. This time, the propagation speed cm changes sign and km is selected
by the resonant conditions. This bifurcation is thus associated to the transition from
inclined patterns to (transverse) anti-dunes. Due to the narrow range of wavenumbers
unstable, the selected wavenumber km depends on H only. The growth rate σm scales
asymptotically as Q/LsatH . To summarise, the existence of anti-dunes is controlled by
the Froude number F : below F ≃ 1, Ax is never negative. Whatever the froude number,
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Figure 18. Characteristics of the most unstable mode as a function of Lsat/H for three Froude
numbers: F = 0.9 (dotted lines), F = 1 (solid lines) and F = 1.5 (dashed line). H/z0 is kept
constant and equal to 102. The curves are obtained in the limit u∗/uth → 1. (a) Propagation
speed cm. Antidunes correspond to cm < 0. (b) Angle αm of the wavenumber with respect to
the flow direction. Transverse bedforms correspond to αm = 0. (c) Wavenumber km rescaled
by the flow thickness. (d) Growth rate σm rescaled using the saturation length Lsat and the
reference flux Q.

the type of bedforms that emerge is controlled by the ratio Lsat/H . When this ratio is
increased, for F > 1, one observes a transition from ripples to inclined patterns followed
by a second transition from inclined patterns to anti-dunes.
For Froude numbers above F ≃ 1.25, the picture becomes slightly more complicated.

As shown in figure 16, Ax is negative in a much wider range of wavenumbers going from
kH = 0 up to the resonant peak. To exemplify the consequences of this change, the
characteristics of the most unstable modes are plotted in dashed line in figure 18 for
F = 1.5. One observes the transition from ripples to inclined patterns at Lsat/H ≃ 0.92
followed by the transition from inclined patterns to anti-dunes at Lsat/H ≃ 1.02. A
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Figure 19. Relation between Froude number F and anti-dune wavenumber k, rescaled
by the flow thickness H . The symbols correspond to experimental data collected by
Recking et al. 2009. The gray level of the points encodes the value of H/z0 in a logarithmic
scale. White corresponds toH/z0 = 101 and black to H/z0 = 104. The solid line is the predicted
wavenumber at the smallest value of H/z0 for which there is an instability. The dotted line is
the predicted wavenumber for H/z0 = 102. In both cases, we considered the limit u∗/uth → 1.
The curves obtained in the other limit, u∗/uth → ∞ are almost indistinguishable.

third transition, which is continuous, can be observed at Lsat/H ≃ 2.95 from anti-
dunes transverse to the flow (αm = 0) to anti-dunes inclined with respect to the flow
(αm > 0). These anti-bars or anti-chevrons have a wave-number significantly smaller
than the resonant conditions. At asymptotically large Lsat/H finite values of kmH and
αm are selected.

5.4. Comparison with experiments

We test here the predictions of the present model against the measurements avail-
able in the literature. We have used the very complete database recently gathered by
Recking et al. 2009. For each data point, we have determined the ratio H/z0 from the
slope, the flow thickness and the depth average velocity, assuming that the velocity profile
is logarithmic (Eq. 3.8). Then, we have built the Froude number based on the surface
velocity, using again Eq. 3.8. The result is displayed in figure 19, where all data are
shown in the plane (F ,kH). Although there is some scatter in the data, a rather clear
selection of the rescaled wavenumber kH can be observed.
Some of the data displayed in this figure correspond to experiments where suspen-

sion is the dominant mode of sediment transport. Because we expect for this mode a
saturation length Lsat ∝ (u∗/Vfall)H (Claudin et al. 2011), the ratio Lsat/H is typically
large enough to induce the formation of anti-dunes. For these data, the ratio H/z0 is
also large and they appear in dark points in the lower part of the diagram. Other data
correspond to experiments for which grains are transported by bed-load. In this case, the
saturation length is proportional to the grain diameter d (Fourrière et al. 2010), but the
flow thickness is also reduced to few grain diameters, so that Lsat/H is still sufficiently
large for anti-dunes to emerge. For these data, the ratio H/z0 is then small. Indeed, z0
is a fraction of grain diameter d. These data are displayed with light points.
The most unstable mode predicted by the model derived here mainly scales with the
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flow thickness H , but also depends on different subdominant parameters, most of which
have not been measured experimentally. In figure 19, we focus on the influence of H/z0.
Both the solid and the dotted lines show the predictions of the model for asymptotically
large Lsat/H and for a shear velocity just above the transport threshold (u∗/uth → 1)
using µ−1 = 0 and γ = 3/2. The weak dependence with respect to these parameters
is exemplified in the Online Supplementary. We shall emphasise that no parameter has
been tuned nor fitted: the results remain essentially the same for a different choice of
the subdominant parameters (u∗/uth, µ and γ).
The dotted line corresponds to the prediction obtained when H/z0 is kept constant

and equal to 102. One observes that the dependence of the selected wavenumber kH on
the Froude number is correctly predicted, although it underestimates the data by ap-
proximately 30%. The selected wavenumber increases when the ratio H/z0 is decreased.
However, the anti-dune instability is inhibited when this ratio is too small. The solid
line in figure 19 shows the prediction when H/z0 is kept, for all Froude numbers, at the
instability threshold. The agreement with data obtained at low H/z0 (light symbols in
figure 19) is pretty good.
To conclude this section, we would like to list several difficulties raised when trying to

compare more finely the model with experimental data:
• Most experimental papers report the properties of mature anti-dunes, and not the

wavelength selected at the early stages of the sand bed instability. However, contrarily to
ripples and dunes (Fourrière et al. 2010), the anti-dune instability is limited to a narrow
band of wavenumbers (at least close to F = 1). Therefore, there is no possibility of
significant pattern coarsening that would lead to wavenumbers much smaller than that
predicted by the linear stability analysis.
• Experiments are performed in channels of finite width. As a consequence, the stream

plays the role of a waveguide, with a transverse wavenumber selected by the lateral
boundary conditions. This enforces a relation between the wavenumber k and the angle
α which must be taken into account in the linear stability analysis, but that have not
addressed here.
• The parameters entering the description of sediment transport, namely the satura-

tion length Lsat, the ratio u∗/uth, the effective friction coefficient µ and the exponent
γ are difficult to measure experimentally. In the spirit of the inverse method used in
Fourrière et al. 2010, these parameters could be determined if a coherent series of mea-
surements was performed with the same grains for different H and different slopes.

6. Summary and perspectives

We have shown that ripples and chevrons result from the same instability, although
in different hydrodynamical regimes. Ripples have a wavelength smaller than the flow
depth H so that the flow near the bed does not feel the presence of the free surface.
On the opposite, chevrons are long enough to disturb the flow over its entire depth.
The flow dynamics is then controlled by the free surface. In both cases, the instability
results from a phase advance of the shear stress with respect to the topography, and
is limited by the saturation length Lsat. Consequently, the transition between ripples
and chevrons is mainly controlled by the parameter Lsat/H . This parameter reflects the
ratio of the wavelength at which ripples would appear in a semi-infinite fluid to the flow
thickness. When this ratio is small, the most unstable mode corresponds to transverse
ripples. Conversely, chevrons and bars appear when Lsat/H is large. This suggests that
alternate bars in rivers form during flooding events, when suspended load dominates over
bed load. The Froude number F in the subcritical regime, the shear velocity ratio u∗/uth
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as well as the avalanche slope µ have a quantitative, but less crucial role. Interestingly,
both ripples and chevrons are expected to coexist at the transition for F close to unity.
Also, a pure longitudinal erosive mode (incision) is found in the limiting case u∗/uth → 1
and Lsat/H → ∞.

When the Froude number is larger than 1, anti-dunes appear when H/z0 and Lsat/H
are sufficiently large. This new mode is related to a destabilising mechanism which is
different from that leading to ripples, bars and chevrons. Around resonant conditions for
free surface standing waves, the flow velocity is lower on crests than on throughs. As a
consequence, the sediment transport saturation transient, characterised by the saturation
length Lsat, becomes destabilising. The wavelength selected by the linear instability
mostly scales on the flow thickness H , with subdominant dependies on F , H/z0 and
Lsat/H . The output of the model nicely agrees with existing experimental data. Our
results also predict the emergence, at large enough Froude numbers, of ‘anti-chevrons’
or ‘anti-bars’, i.e. bedforms inclined with respect to the flow and propagating upstream,
whose experimental evidence is an interesting goal.

In conclusion, field measurements and new experiments are required to explore in a
continuous way the role of the parameter Lsat/H regarding the emergence of bedforms,
and the model needs to be extended toward non-linear pattern dynamics to investigate
the eventual wavelength and amplitude selection at long time.
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