
HAL Id: hal-00661382
https://hal.science/hal-00661382

Submitted on 30 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tailorable Groupware Design based on the 3C Model
Nader Cheaib, Samir Otmane, Malik Mallem

To cite this version:
Nader Cheaib, Samir Otmane, Malik Mallem. Tailorable Groupware Design based on the 3C
Model. International Journal of Cooperative Information Systems, 2011, 20 (4), pp.405–439.
�10.1142/S0218843011002286�. �hal-00661382�

https://hal.science/hal-00661382
https://hal.archives-ouvertes.fr


January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

International Journal of Cooperative Information Systems
c© World Scientific Publishing Company

TAILORABLE GROUPWARE DESIGN BASED ON THE 3C

MODEL

NADER CHEAIB∗

University of Evry Val d’Essonne, IBISC Laboratory

40 Pelvoux Street, 91020, Evry, France

SAMIR OTMANE

University of Evry Val d’Essonne, IBISC Laboratory
40 Pelvoux Street, 91020, Evry, France

MALIK MALLEM

University of Evry Val d’Essonne, IBISC Laboratory
40 Pelvoux Street, 91020, Evry, France

Received (20 03 2011)

Accepted (23 11 2011)

In this paper, we propose a software architecture based on Web services and Software
agents for groupware tailorability. Through our literature study, we realize that the

property of tailorability has a significant impact on designing collaborative applications.

Although online applications in the recent years have been growing exponentially, on-
line collaborative work between users is often supported by software applications that

provide static basic functionalities, mostly centered on communication tools (text, au-

dio and video). Hence, adding more sophisticated tools for enriching the collaborative
experience, as for example, an integrated environment for task coordination and pro-

duction requires manually coding them into the application, which requires a significant

effort in order to adapt the system to the real needs of users. In a collaborative con-
text, the application designers are not able to predict all users’ needs at design time. To

remedy this problem, we propose a tailorable groupware architecture that enables the
dynamic integration/composition of services into the collaborative application, gaining

both in time and performance. Our work is based on the 3C functional model by El-

lis that decomposes collaboration between users into communication, coordination and
cooperation spaces. Through our research, we realized that Web services are powerful

distributed components offering the desired tools to adapt a groupware to the real needs
of users. In this paper, we propose a collaboration protocol based on Web services be-
tween machines over the network in order to exchange common services. Based on this

protocol, we propose our groupware architecture, U3D, that introduces tailorability in

collaboration applications.

Keywords: CSCW; Groupware Design; Tailorability

∗nader.cheaib@ibisc.fr

1



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

2 Nader Cheaib, Samir Otmane, Malik Mallem

1. Introduction

The aim of Computer Supported Cooperative Work (CSCW) is to find ways in which

applications should improve collaborative work between individuals 19. Hence, there

is a great need to address constraints related to the lack of flexibility and rigidity

of current collaborative systems, through the adoption of adequate solutions to

implement a better collaboration, depending on users’ needs and the task that is

being done 32,21,22. The emergence of collaborative work over the Internet was a

solution to the high complexity of systems and the technical difficulties that could

arise from their use, as users, geographically distributed want more and more to

work together on a single task, but using rigid and often incompatible applications

that may lead to interoperability problems 47. For the authors in 17, groupware in-

vention is a challenge, as the nature of collaborative work continually changes as a

consequence of changing work needs, but also as a consequence of how the systems

themselves tend to change work relationships and processes. As a consequence, the

author argues that systems must themselves adapt to reflect the unpredictable dif-

ferences between the requirements of support for collaborative work during analysis

and the actual requirements. Hence research about tailorability in groupware de-

sign originated from the gap between design and use of collaborative systems 23.

Making the system and the services offered within tailorable by users is an essential

and ongoing research field that needs much attention to yet be concrete. For this

reason, tailorability has shown to be an essential property that should be taken in

consideration, as it offers the possibility to adapt the application based on users’

needs and not the other way around 9.

1.1. Motivation and Objectives

With the apparition and advancement of Internet technologies and the Web 2.0 46,

universal interoperability between collaborative applications is becoming a reality,

while geographically distributed people are highlighting the flexibility of coopera-

tion by exchanging universally accessible services. On one hand, web services have

become one of the most important architectures for the cooperation of heteroge-

neous systems and have ushered in a new era of software design 46. While computer

networks have been able to pass data between different hosts, it was the emergence

of web services that allowed these remote hosts to offer services in a more flexible

and dynamic way. On the other hand, the autonomy and intelligence of multi-agent

systems (MAS) have considerably increased software automation of some opera-

tional areas 5,39. An important benefit of software agents is their ability to help,

through collaboration, human beings and software logistics, while their concept is

even older than web services and has been used successfully for the implementation

of distributed applications 53,41.

In this paper, we present an innovative approach for a tailorable groupware

architecture integrating web services with software agents. The idea is to exploit



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 3

agents’ proactive interaction capabilities in order to improve the behavior of web

services, hence creating a cohesive entity that reinforces the individual advantages of

these two technologies in the context of tailorable groupware design. Furthermore,

we aim to propose a solution to some constraints in groupware design such as:

• Openess, where services/components are dynamically integrated into the

collaborative system without stopping the collaboration process, neither

manually coding, compiling and rexecuting the application.

• Adaptability, in order to be able to generate new behaviors relying on ser-

vices/components that already exist in the system (composition).

• Interoperability, especially when users are using incompatible or heteroge-

neous applications.

The groupware architecture proposed in this paper enables the integra-

tion/composition of services in a collaborative context, hence creating new func-

tionalities in order to enhance the collaboration between users. Furthermore, the

groupware architecture proposed will insure interoperability between system’s com-

ponents.

1.2. Collaboration and the 3C model

In order to further understand the concept of collaboration, we base our work

on the 3C functional model proposed by Ellis4, shown in Figure 1. According to

this functional model, a groupware system covers three domain specific functions,

production/cooperation, communication and coordination:

Fig. 1. The 3C Model by Ellis

The production space designates the objects resulting from the activity of the

group (ex: word document, paint etc.). For Ellis, this production space is concerned

with the result of common tasks to be achieved, and it is the space where the

production takes place. The coordination space defines the actors and their social

structure, as well as different tasks to be accomplished in order to produce objects

in the production space. Ellis eventually completed the model with the commu-



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

4 Nader Cheaib, Samir Otmane, Malik Mallem

nication space that offers to actors in the coordination space means to exchange

information in which the semantics concern exclusively the actor, and where the

system only acts as a messenger. In this article, we will use this decomposition of

groupware’s functionalities in order to introduce a collaborative architecture sup-

porting the functional decomposition of services that can be present in a groupware

system.

In fact, there exist some work in the literature that make use of the 3C model in

order to construst collaborative applications 48,6,49,50. The authors in 48 affirm that

the way people connect and communicate with each other has changed through the

change of the society over the years. According to the authors, the understanding of

communication has transformed from being vertical, where orders are passed from

above and reports are sent up the line, to a peer-to-peer paradigm where commu-

nication, coordination and cooperation predominate. This is due to the fact that

command and control paradigm is losing effectiveness in the society. People are

increasingly using tools and applications with no specific or centralized source that

issues orders, but where people are collaboratively coordinating and dividing tasks

between them, and eventually taking group decisions.

According to the authors in 49, the 3C model can also help evaluators focus their

attention on the communication, coordination and cooperation aspects of the appli-

cation in order to detect usability problems. Also, the relationship among the 3Cs of

the model can be used as a guidance to analyze a groupware application domain. For

example, a chat tool can be seen as a communication tool that requires coordination

(access policies) and cooperation (registration and sharing). In our work, we use the

3C model in order to define the three main aspects of a collaborative application.

We affirm that users need to pass through a communication phase, then a coordi-

nation phase and eventually a cooperation or production phase. Of course, users

can communicate without coordinating when they share informal discussions, not

specifically related to the task at hand. However, coordination cannot be realized

without communication, and cooperation cannot be realized without coordination.

Hence, an optimal collaboration pattern is achieved when the collaborative process

is initiated by communicating, and ends by a concrete realization of the task at

hand.

2. Groupware Tailorability- related work

As mentioned earlier, geographically distributed users are gradually leaning to col-

laborate with each other (through online games, shopping, project management,

etc.), while the use of rigid and incompatible applications lead to interoperability

problems 34,45. In fact, the need for flexible software is treated well in the areas

of software engineering 32. Motivated by the need to be more effective in software

development, work has been conducted for better reuse of code and increased ex-



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 5

ploitation of software architecture (Object-oriented, Component-oriented, and more

recently Service-oriented programming). In the area of CSCW, the motivation for

flexibility is different: the software must be flexible enough to adapt to new work

situations in the context of its use 30, 21. Thus, users should be able to adapt their

applications according to their pace and work methods. However, some methods

that have been developed for the evolution of software engineering, does not con-

sider the role of the end user in software design. As a result, research on groupware

tailorability is created as a result of the gap between the design and use of collabo-

rative systems. Tailorability offers to users the possibility to adapt the application

according to their needs, and not the contrary. Several authors have studied the

concept of groupware tailorability (19,20,21,22,23,24,25,20,17,26). However, an exact

definition of the term is still a subject of growing research. Given that several ap-

proaches can be adopted to achieve tailorability, the definition and concepts vary

from one approach to another.

2.1. Definition

The study of the impact of the humanities’ field on CSCW shows that tailorabil-

ity is a fundamental property that should be taken into account when creating

collaborative systems 30,7. The authors in 26 define a tailorable application as a

system that can be properly adapted to the changes and diversity of needs. The

authors in 27 argue that tailorability is the capacity of an information system to

enable a user to adjust the application to his/her personal needs, or the task that

is being done. The authors in 29 emphasizes that a tailorable application is both

usable and modifiable by its users, and the activity of its redefinition is itself an

aspect of its use. Obviously, tailorability is a crucial property in groupware, but

the lingering question is how to implement tailorability, particularly for end users

who are not necessarily computer experts. In fact, the unpredictability of needs

that will emerge during collaborative work makes it necessary for software systems

to support a work that is expressed, for example, by the collaborative situation

that arises, the specificity of the task at hand and the parameters within which the

collaboration takes place (geographical distribution, software and hardware infras-

tructure, network connections). The authors in 7,30 break tailorability into three

levels:

• Customization: achievable by a selection process through a set of predefined

configuration options. For example, changing the appearance of an object,

or editing the values of its attributes by choosing from a list of possible val-

ues. One of the problems here is that all tuning options should be provided

at the time of the application’s design, which limits its potential.

• Integration: involves linking predefined components within an application,

or between disjoint applications. The integration goes beyond customiza-

tion, allowing users to add functionalities to existing application code with-



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

6 Nader Cheaib, Samir Otmane, Malik Mallem

out having access to the underlying implementation.

• Extension: corresponds to a change at the implementation level of the ap-

plication, for example, by adding code to the existing one. In fact, this poses

strong constraints on the APIs (Application Programming Interface), as the

application should be flexible enough and easily manageable to be operated

by end users, without compromising its effectiveness.

For the authors in 28, tailorability does not necessarily mean the possibility of

redefining the application in its own execution. However, it has often been identified

as real time tailorability is better situated to support cooperative activities, where

users can adapt the groupware without interrupting their activities.

2.2. Approaches for groupware tailorability

There exist several approaches that introduce tailorability in CSCW systems that

received much attention in the literature. However, most of these approaches only

deal with specific areas such as support for synchronous groupware, work processes

(”workflow”) and collaborative tasks. The author in 28 justifies that tailorability

has a theoretical basis for understanding the fundamental properties of the human

activity. The author offers a set of properties in the construction of groupware, one

of which is a fundemental property called reflexivity of the activity theory. Indeed,

the activity theory shows that a CSCW system must be sufficiently flexible to be

completely redefined during its own execution, where the only constants are the ba-

sic structure of the activity, as well as the basic mechanisms that make it survive.

The lessons learned are put in practice in the CooLDA platform 59 that aims at

understanding the concept of co-evolution, which is a more comprehensive approach

for tailorability. The authors in 20 focused on defining the different behavior of sys-

tems in specific fields of validity. Hence, they developped an approach based on a

concept called declarative tailorability, which shows how inconsistencies resulting

from contradictory declarations can be processed either automatically or by involv-

ing the affected users. The authors in 61 introduce the concept of ”tailorability to

the extreme”, which results from the extension of the sets of functions present in a

system with new modules. An example is to allow a user to download modules from

the Internet and plug them directly into their system (plugins, widgets etc.). Thus,

interoperability standards between modules produced from different vendors are

now essential and must describe the modules’ type, their communication means as

well as the services they provide. The authors in 60 propose the concept of message

enriching within the components of a system, which gives every user the means to

attach information (metadata) to all messages circulating in the system. To the au-

thors in 25, a groupware must take in consideration a multitude of concerns, which

are defined by the interests that relate to the system’s development. They argue

that the separation of concerns, which is the process of separating an application

into distinct features that do not overlap in functionality, promotes tailorability in



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 7

a collaborative system.

2.3. Objectives and challenges of tailorable systems

Tailorable systems are different than systems that we call adaptive 31. While tai-

lorable systems allow users to have control over the modification process of the

application, adaptive systems build what we call a user-model, where they auto-

matically change the behavior of the system by initiating, proposing and executing

possible changes. However, such system can not necessarily anticipate the needs

of users in order to generate the appropriate changes. For this reason, research on

tailorable systems must necessarily increase the control over the modification of

the system by end users. Tailorability becomes the extension or modification of an

application by creating persistent artifacts, or having to choose between several an-

ticipated behaviors, or even creating a new behavior from the system’s components.

For the authors in 31, tailorability is a human and technical art in order to change

the functionalities of the technology while being executed. One of the reasons that

software should be tailorable is the complexity of predicting users’ needs before

using the application or having a task at hand. The authors in 22 provide three

essential reasons for a software to be tailorable:

• multidimensional diversities that tailorability must take into consideration

in order to implement a software able to support different uses.

• The dynamism of individual and organizational work that matches the

changing nature of work, forces the software itself to change over time.

• The uncertainty and ambiguity due to work practices require the use of

alternative methods to accomplish tasks.

Empirical research has identified two major challenges in building tailorable sys-

tems 32. The first is to support the re-design of the application while it is being

used, and the second challenge is to allow users to take a major role in restructuring

the application’s infrastructure. In particular, for the second challenge, significant

improvements have been described as, for example, supporting tailorability to ad-

dress the problem of users’ divergent skills. In this case, users with little experience

can delegate some complex activities to developers.

In fact, software design following the traditional ”Waterfall”33 model is con-

cerned about the capture, production and testing of a set of requirements. This

reflects a partial view of an application domain with specific requirements in terms

of functionalities and its interface design. This type of model assumes that the sys-

tem requirements are clear at the beginning of the design phase and are stable for

a long time. For this reason, recent approaches in software engineering try to find

solutions to the dynamic change of users’ requirements. In these approaches, users



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

8 Nader Cheaib, Samir Otmane, Malik Mallem

are actively involved in the design process. They have the opportunity to articulate

their needs according to the application domain, as we can see in Figure 2 extracted

from 19.

Fig. 2. An illustration of a tailorable application

Some authors 19 that are concerned with the design of tailorable systems suggest

that for a good design of this type of application, some issues have to be taken in

consideration:

• How can an application designer express the eventual needs and require-

ments of potential users, and how to introduce the necessary flexibility in

these requirements?

• How flexibility can be technically implemented, resulting in the issue of

software architecture?

• How can a flexibility offered in a software architecture can be accessible to

end users?

In this work, we propose the use of web services and software agents in order to

provide a remedy to the issue of the system’s flexibility, which remains a concern

for designers of tailorable groupware. In the following, we present the tools used in

our work to build our groupware architecture.

2.4. Tools for tailorable groupware design

2.4.1. Web Services: Definition

W3Ca defines a web service as a software system that acts as an interoperable sup-

port in a machine-machine interaction. The system has an interface described in a

form understood by the machine (Specifically WSDL), while other systems inter-

act with the web service using SOAP messages transported through HTTP with

ahttp://www.w3.org/



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 9

an XML serialization in conjunction with other web standards. In fact, service ori-

ented architecture (SOA) has emerged due to its simplicity, clarity and normalized

foundations. The concept of web services currently revolves around three acronyms
34, as we can see in Figure 3:

Fig. 3. Service Oriented Architecture (SOA)

• SOAP (Simple Object Access Protocol) is a protocol for inter-application

exchange that is independent from any platform and based on XML. A

SOAP service call is an ASCII flow embedded in XML tags and trans-

ported to the HTTP protocol.

• WSDL (Web Services Description Language) gives the XL description of

web services by specifying the methods that can be invoked, their signa-

tures and access point (URL, port, etc.). It is therefore equivalent to the

IDL language for CORBA distributed programming.

• UDDI (Universal Description, Discovery and Integration) is a standard dis-

tributed directory, allowing both publishing and exploration of web services.

UDDI acts as a web service itself, whose methods are called using the SOAP

protocol.

Our choice of using web services is driven by the fact that they are: Language and

platform independent (separation of specification from implementation), deployed

over the internet (no centralized control, use of established protocols), loosely cou-

pled (using synchronous and asynchronous interactions.) and interoperable (using

standards already deployed and functional to support systems interoperability).

On the other hand, a shared limitation of description standards based on XML is

their inefficiency to express semantic information. In fact, to use a web service, a

software agent has to have an interpretable description and means to access that



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

10 Nader Cheaib, Samir Otmane, Malik Mallem

service. Hence, a matching mechanism is important for an effective discovery, which

needs rich and flexible metadata that is not currently supported by the UDDI. An

important objective is to establish a framework in which semantic descriptions are

created and shared. For this reason, current web applications have to be built in

way to support an ontology in order to declare and describe the services offered.

This philosophy is known as the ”Service-Oriented Computing (SOC)”11.

Ontology: Ontologies provide a remedy to the constraints of traditional web.

To the authors in 41, an ontology is defined as ”the science or study of being”,

which is a set of terms that includes vocabulary, semantic interconnections and

inference rules and logic for some popular domains. Ontologies are used by people,

databases and applications that need to share domain information (medicine, fight

against terrorism, imaging, automotive repair, etc.). An important achievement

is the development of a new generation of web languages, allowing the creation

of ontologies for any domain, as well as their instantiations in the description of

specific websites. Ontologies are explicitly mentioned in a formal language, where

several have been proposed in the literature, but the most common ones revolve

around RDFb and OWL-Sc.

2.4.2. Software Agents

There exist several definitions of software agents in the literature. The authors in
5 have identified the agent as a computing object (in the sense of object-oriented

languages) whose behavior can be described by a script with its own means of

calculation, and can move from a place to another in order to communicate with

other agents. The authors explain that some researchers have given the definition

of agent through a good description of its functioning. For example, an agent must

necessarily have the necessary motivation to achieve a certain goal for its existence

to be worthwhile in its environment. An agent can communicate with other agents

in the environment and must have means which enable it to achieve its goals. Ac-

cording to 39, an agent is a piece of software that acts on an autonomous basis to

initiate charges on behalf of users. The authors say that the design of many software

agents is based on the approach that users only need to indicate a high level goal

instead of issuing explicit instructions, leaving the decisions to the agent. The agent

shows a number of features that makes it different from other traditional compo-

nents, including self-direction, collaboration, continuity, character, communication,

adaptation, mobility and temporal continuity.

bhttp://www.w3.org/RDF/
chttp://www.w3.org/Submission/OWL-S/



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 11

3. Machine-Machine collaboration

In this work, our aim is to integrate the notion of tailorability for the design of

collaboration applications (groupware) by the integration and composition of ser-

vices in order to generate new functionalities. The integration mechanism is put

into practice by a collaboration protocol used by the machines over the internet. In

the literature, this type of collaboration is implemented using simple client/server

architecture. In our research, we realized that this type of architecture is not suffi-

cient enough in a collaborative context, as many users may demand many services

at the same time. Therefore, special mechanisms should be put in practice other

than a standard request/response protocol to support the heavy interactions be-

tween systems, which should be able to handle any breakdowns or inconsistencies

in the network (by decomposing it into three independent spaces). In our work, this

new collaboration protocol between machines (or machine-machine collaboration)

begins with a communication phase, where machines exchange information about

the services demanded or proposed, then a coordination phase where these machines

put in practice a workflow to exchange services, and finally the production phase

where the exchanged services are registered in the groupware and offered to users.

As we can see in Figure 4, we define two types of collaboration: an ”internal

collaboration”, which we call machine-machine, and an ”external collaboration”

that represents the actual collaboration between users in order to achieve a com-

mon task. The internal collaboration intervenes between components of the system

(composition) or between two or more machines connected to a network (integra-

tion). In fact, for the users in collaboration, they don’t actually ’see’ this internal

collaboration, that is made in an autonomous and invisible manner in order to

achieve the desired tailorability. The users interacting with a groupware are essen-

tially interested to functionalities that they can simply use while interacting with

others. However, these two types of collaboration (internal and external) are heav-

ily dependent on each other, as the internal collaboration will dynamically generate

new services, and in consequence, will enhance the external collaboration. In this

paper, we are interested in setting up a frame or a collaboration protocol for the

internal collaboration. We argue that this type of collaboration protocol is an initial

approach to put in practice the needed tailorability in software systems in general,

and in CSCW systems in particular (human-human or external collaboration).

For the authors in 5, the collaboration is a work between multiple users in order

to produce a common task (final product). In our system, this definition corresponds

to the external (human-human) collaboration. In fact, the communication between

different members of a team is primordial for the success of collaborative work. We

suppose that the collaboration is based on communication, in other words we can-

not have a coordination phase without communication, neither production without

coordination. However, we can communicate without coordinating, and coordinate

without producing. As mentioned previously, our objective is to insure a tailorable



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

12 Nader Cheaib, Samir Otmane, Malik Mallem

Fig. 4. Human-Human and Machine-Machine collaboration in the 3C model

external collaboration between users, by integrating/composing new services that

can enhance the collaboration process in terms of communication, by (for example)

chat and video conferences services, coordination by new workflow tools, and finally

production that corresponds to using the generated services as a consequence of the

integration/composition mechanism’s. Hence, a tailorable (external) collaboration

is triggered by a user demand for a new service, and terminates by an internal

(machine-machine collaboration) (Figure 4) in order to satisfy the user’s request.

This process is put in practice by a temporary link between the local machine

that demands the service and others machines or public repositories containing the

needed services. We proceed by proposing a machine-machine collaboration formal-

ism for this purpose.

3.1. The basics of machine-machine collaboration

As mentioned earlier, our aim is to implement tailorability in groupware systems.

In fact, we focus on a particular type of tailorability that has two specific charac-

teristics:

• It gives means to end-users to directly and dynamically change the behav-

iors of the collaborative system through the interface, without manually

hard-coding nor stopping/restarting the system.

• It is based on service composition and integration in order to generate new

behaviors on the fly.

Hence, we define composition and integration as follows:

• Composition: Process that allows composing two or more services, in order

to create a new service with a new behavior.



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 13

• Integration: Process that allows adding one or more services to the appli-

cation.

• Service: Software component that presents one or more functionalities. It

can be: internal, which means implemented locally and integrated in the

application during the design phase, or external, where it is seen as a web

service that acts as an interoperable manner in the machine-machine col-

laboration.

Based on the 3C functional model for groupware, we introduce these two mech-

anisms (integration and composition) as a basis for generating new functionalities

in a collaborative context. Therefore, to build a tailorable groupware based on the

3C functional model, the system should implement these two mechanisms in every

space of the collaboration process (Communication, Coordination and Coopera-

tion/production). We can see the new 3C model supporting groupware tailorability

in Figure 5:

Fig. 5. The new 3C model supporting tailorability

3.1.1. Specifications and formalism

We present a collaboration formalism based on Web services for groupware tai-

lorability. Our aim is to propose a generic formalism that can be applied on various

applications using different technologies and interfaced with Web services. Indeed,

one of the biggest advantages of Web services is to insure enough interoperability to

connect various applications produced by different vendors and using different pro-

gramming languages or frameworks. In fact, service-oriented architectures (SOA)

are based on the engineering of traditional systems, but take in consideration spe-

cific characteristics and especially collaboration, where consumers and providers

of services collaborate in order to invoke, search, and register services. Moreover,

these systems can be composed during run-time by using existing services. Hence,

it would be interesting to have design techniques that are independent from the



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

14 Nader Cheaib, Samir Otmane, Malik Mallem

used platform.

We extend the definition of a web service in 12. In our work, a web service in

our system is constituted of:

WS =< IOPE,QoS,Loc, Coll > (1)

Where

IOPE =< input, output, precondition, effect > (2)

IOPE are the semantic information of the Web service, and are defined using the

OWL-Sd language to build web services ontologies. Hence, this information defines

the Input, Output, Precondition and Effect of using a specific web service. IOPE is

indeed an abstract characterization of what a service can do. These properties are

based on the types of contents in the UDDI, by describing the necessary properties

for a Web service to be dynamically discovered and/or composed.

QoS =< q1, q2, ..., qk > (3)

qk is a quality of service (QoS) property, as the effectiveness, availability, re-

sponse time etc.

In our work, we suppose that the Web services are localized in public reposi-

tories (UDDI), which can be accessed using SOAP messages and description files

(WSDL).

Loc =< UDDI1, UDDI2..UDDIk > (4)

Finally, we suppose that the services are grouped in terms of communication,

coordination and production services.

Coll =< Comm,Coor, Prod > (5)

We can see a collaboration between two entities i et j in Figure 6. In this exam-

ple, these two entities are represented by a functional core (application kernel) and

a service environment decomposed according to the 3C model. In fact, a collabora-

tion requires at least two systems interacting together in order to execute a common

task. Let’s suppose that a system i demands to another system j to collaborate.

This collaboration is designed by a communication, coordination and production of

these two systems, as we can see in the equation 6.

Collij =< Commi
j , Coorij , P rodi, P rodj > (6)

In fact, a collaboration between two systems can be triggered by:

dhttp://www.w3.org/Submission/OWL-S/



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 15

Fig. 6. Machine-machine collaboration based on Web services

• Demand of a user or group of users to use a specific service that is not

present in the system.

• Demand of an internal service in order to be updated by new resources or

information.

Hence, we define a set of protocols that decomposes the collaboration between

entities into three main spaces ({Infij}, {Actionsi}, {Resultatsi}:

{Infij} are exchanged information between two entities i et j, and are:

• Information (semantic or none semantic) concerning internal services, or

services that are susceptible to be used/integrated in the system. This in-

formation can be the IOPE of the service, as well as non-functional Quality

of Service (QoS) attributes such as performance, availability, security and

localization in case the service is external.

• Information relative to the mission/task of the users. Hence, the system can

adapt the services offered according to the task that users are participating

in.

The {Actionsi} is the subset containing all the triggered actions by the users of

the collaborative system. These actions are:

• Search for a service using its syntactical (WSDL) or semantic (IOPE) de-



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

16 Nader Cheaib, Samir Otmane, Malik Mallem

scription.

• Resigter/bind/delete a service in the system.

• Compose two or more internal services.

• Adapt the structure of the application based on QoS description, the per-

formance of the machines and the underlying network used by each user

(if geographically distributed). Hence, the application will offer a set of

services that corresponds to the task, and hide the other services.

The {Resultatsi} is a subset containing the results produced after executing the

actions, and can be trigerred following:

• A new integrated service, dynamically or statically (in case users intervene

in integrating the service by manually coding or pointing to the WSDL

description of the web service needed).

• A composed service of several atomic services.

The communication (Commi
j) phase starts when the entity i sends a demand

Infij to another entity j (equation (7)). The system j, in any case, sends a response

Infji back to i. Hence, the communication is based on an exchange of information

(Infij , Infji).

Commi
j(Infij) = {(Infij , Infji)} (7)

According to the agreements of the two entities i and j, the coordination phase

begins (equation (8)), while continuing to exchange information about the services

offered (Infij , Infji). Both systems will put action plans (Actionsi, Actionsj) where

each one will execute. These action plans are considered as a type of workflow based

on web services in order to coordinate tasks.

Coorij ({Infij , Infji}) = {Actionsi, Actionsj} (8)

After the coordination phase, the production phase begins (equation (9)). Each

of the two systems execute its proper actions (Actionsi and Actionsj), and produce

partial results (Resultatsi and Resultatsj).

Prodi ({Actionsi}) = {Resultatsi} (9)

Once the partial results are obtained, they are combined (using a combination

operator) in order to have the global result of collaboration between these two sys-

tems (a final product).

We consider the global collaboration COLL (equation 10 between N services,

as a triplet < COMM,COOR,PROD >, where COMM is the global communi-

cation, COOR is the global coordination and PROD is the global production of all

the systems that are collaborating together for the purpose of exchanging services.

COLL= 〈COMM,COOR,PROD〉 (10)



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 17

The global communication COMM (equation 3.14) is represented by all the

information tuples between a system i and another system j.

COMM = (Infij , Infji) (11)

The global coordination COOR (equation 12) is represented by the set of actions

Actionsi of all the systems collaborating.

COOR = {Actionsi /i = 1 · · ·N } (12)

The global production PROD (equation 13) is the combination of all the partial

results Resultatsi of all the systems collaborating. This combination produces either

a new composed service, or an integrated service. In case of a composition of services,

two or more local services will collaborate together in order to produce the desired

composed service in a system. Hence, we will be talking about two services i and j

that are communicating, coordinating and producing.

PROD =
∏

i=1···N
(Resultatsi) (13)

4. Human-Machine collaboration based on software agents - The

C4 model

Software development requires a considerable progress in order to exploit new meth-

ods and techniques supporting the reuse of software components. In other words,

software development need to move to compositional approaches 36. Software en-

gineering methods give way to new development paradigms, including component-

based and agent-based approaches. These approaches are gaining a lot of attention,

where passive software components are remedied by the dynamics and social char-

acter of software agents. Indeed, agent-based technologies provide new mechanisms

for components in order to engage in tasks as well as cooperate and process the re-

quirements of dynamic and heterogeneous environments. From a multi-agent system

(MAS) perspective, agents have access to an ontology with a semantic description

of behaviors, which allows them to coordinate better in order to address specific

tasks.

The C4 model is a formalism proposed by 5, which later was developed into a

groupware dedicated to the collaborative teleoperation via Internet. This model is

based on the PAC* 42 model that proposed three agents, each dedicated to three

spaces of the 3C model to ensure the modularity of the system. In addition to

these three spaces, the C4 model proposes a fourth agent: Collaboration agent. The

combination of these four agents constitutes the ”Collaborator Agent”, as we can

see in Figure 7.



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

18 Nader Cheaib, Samir Otmane, Malik Mallem

Fig. 7. Internal interaction in a collaborator agent

4.1. Collaboration Agent

The collaboration agent provides two main functions. On one hand, it enables com-

munication between the three agents dedicated to the collaborator agent, and on the

other hand, it establishes a direct interaction between each agent inside a Collabo-

rator agent with the agent of another Collaborator agent. Thus, these two functions

allow every agent of a Collaborator agent to communicate without the intervention

of the collaboration agent, which increases the efficiency of the system. Moreover, it

avoids the effect of bottleneck due to centralization. Indeed, when the communica-

tion agent finishes its work, it communicates its results to the collaboration agent.

The latter is responsible for informing the coordination agent of the beginning of

its work. The same process repeats with the coordination agent and the production

agent.

A major drawback of the collaboration agent is the fact that it is a passive agent,

pre-programmed to manage internal and external agents of each Collaborator agent

in the system. The collaboration agent lacks the capacity to seek new resources, and

hence to create new behaviors. In this paper, we remedy this constraint by proposing

a groupware architecture that implements a proactive and a hybrid agent, capable

of generating new behaviors in the system, by consuming web services as online

resources. We discuss in details the groupware architecture proposed in the next

section.



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 19

4.2. Communication Agent

The communication agent decides whether a mission can be accomplished or not

and whether collaboration can take place. Accordingly, the communication agent

is the cornerstone of the collaborator agent. The communication agent determines

the state of the agent according to the perceptions it receives and its previous state.

This agent manages all information provided to it, which represents the different

perceptions that may be received the collaboration agent.

4.3. Coordination Agent

The agent coordination defines all the actions that the agent can perform according

to the choice of the mission by the communication agent. The coordination agent

receives a set of information sent to it by other coordination agents or the collab-

oration agent. This set includes the different perceptions received by the agent as

well as the information sent to it by the collaboration agent.

4.4. Production Agent

The production agent is responsible for implementing actions due to the collabo-

ration between different agents in the system, which are sent by the collaboration

agent. Similarly to the other agents, the set of inputs and outputs of the production

agent are the stimuli that the agent can produce, as well as the overall results due

to the execution of procedures associated with the actions.

4.5. Terminologies

We propose a continuation of the work presented in 35, where the C4 model (Collab-

orator agent) is proposed. A collaboration model is introduced, which is specific for

the agents of the system and where the internal interactions are distinguished (Fig-

ure 7) from the external interactions (interactions between Collaborator agents).

This model takes in consideration specific properties for multi-agent systems (MAS)

and the characteristics of collaboration. The drawback of the model has led us to

improve it by making it proactive and more dynamic. Thus, in the new groupware

architecture proposed in this work, the collaboration agent is considered as a hybrid

agent, which is able to seek new resources on the Internet as web services, and to

exploit them internally as new behaviors. This process improves the collaboration

process by making it ”tailorable”. We base our formalism for the software agents in

the system on the work presented in 5:

Agent =< i,w >

i =< Pi, P ercepti, Fi, Infli >

w =< E,Γ,Σ, R > (14)



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

20 Nader Cheaib, Samir Otmane, Malik Mallem

In this formalism, an agent i that interacts with the environment is considered

as a tuple of a dynamic system < i,w >, where the agent has only one global state

in relation to the collaboration task. A world w of an agent is dynamic and changing

at every action or reaction of the Collaborator agent. This world is modeled by:

• an environment E, which is the space in which it operates,

• a set of impact Γ induced by the agent in question following the transforma-

tion of its environment, and that represents the three subsets of information,

actions and results (communication, coordination and production),

• a set of states Σ in which the agent passes through,

• and finally a law of evolution R of the world that the agent must comply

in order to interact and cooperate with its counterparts.

An agent i is modeled by four parameters: Its perception function Pi, the set of

perception that the agent receives Percepti which is the set of stimuli, a behavior

function depending on its data Fi, and finally its production function of the influ-

ences depending on the agent’s behavior Infli. We argue in our work that in order

to arrive to a tailorable collaboration, the three spaces of collaboration (communi-

cation, coordination and production) of both worlds (web services and agents) have

to interact.

5. Collaboration based on Web services (Machine-Machine) and

Software agents (Human-Machine)

Services-oriented architecture (SOA) and multi-agent systems (MAS) are two in-

creasingly important technologies for the construction of software systems. The

objectives of these two architectures share some similarities such as, for example,

creating flexible and distributed systems composed of loosely-coupled entities. How-

ever, there are major differences in their underlying technology: web services (which

are the basic components of SOA) have standards for the description of interfaces

and the protocols used. These standards are totally different from the communica-

tion protocol used by agents. Thus, these two technologies cannot interact directly

with each other. Some research work in the literature studied this problem, and

showed that the integration of agents and web services produced many interest-

ing advantages. On one hand, web services have a well-defined and interoperable

infrastructure, where on the other hand, software agents can provide social skills

and intelligence for the applications (trust, reputation, commitment, etc.). Conse-

quently, the integration of agents and web services can improve the adaptability,

interoperability and openness of a software system in general, and a CSCW system

in particular.

5.1. Web services and Software Agents’ Integration

Many researchers argue that Web services are only regarded as passive, while agents

can provide alerts and updates when new information becomes available. Unfortu-



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 21

nately, these technologies were originally developed separately using different stan-

dards and specifications. As a result, their integration becomes important in this

context. Our idea is to exploit the proactive capabilities of agents in order to im-

prove the behavior of web services in a collaborative and service-oriented architec-

ture. With this paradigm, software components each representing a web service and

a software agents will interact in order to provide unified services in a collaborative

context. This corresponds well with the prediction of 57 ”agents will become an

essential part of most web applications, serving as a glue that allows a system as

large as the web to be manageable and viable ”.

5.1.1. Approaches for integration

Various approaches exist in the literature that aim at integrating web services and

software agents in many application fields. In this section, we present few of these

approaches:

The authors in 51 offer a platform that provides a fast execution time of an

agents’ environment located inside a web container, which adds agents’ functional-

ities to existing web servers. The components of the platform are deployed as web

services, with SOAP (Simple Object Access Protocol) over HTTP acting as a com-

munication channel through standard XML messages. Hence, a support for mobile

agent can be added to the existing web infrastructure without the need to replace

components or install any client software.

The authors in 52 offer a solution for the selection and composition of web

services with software agents applied to the Marketplace. The use of agents intro-

duces proactivity and autonomy in the composition process through autonomous

operations and negotiations. The proposed software architecture enables sufficient

flexibility and scalability, while providing an integrated set of tools as well as a

support for communication and coordination.

The authors in 53 propose an agent, ”Do - I - Care”, which is designed to help

users discover the relevant changes on the web, by automating periodic visits to

selected pages on the behalf of users. This agent uses machine learning in order to

identify these changes and how often they occur. Once it detects a change, it will be

attached to the webpage associated with the agent, which is also used for feedback

as well as collaboration activities.

The authors in 54 propose a 3-tier approach (intrinsic, functional and behav-

ioral) in order to integrate web services and agents. The authors argue that to

search for services, to integrate them into a composite service and to trigger and

monitor their performances are among the operations that users are normally in

charge of. However, most of these operations are complex and repetitive, with a big



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

22 Nader Cheaib, Samir Otmane, Malik Mallem

part adapted to the computer tool. Thus, software agents are suitable candidates

to assist users in their operations.

The authors in 55 present a balanced integration of web services and agents that

is comply with the FIPA standardse in order to create a software architecture in

the context of the Agentcities project. The authors argue that web services have

been developed without the concept of agents and can exist without agents. Thus, a

”proxy” approach allows both platforms to evolve in parallel without imposing any

restriction on one another. This approach accepts an equality between the roles of

agents and web services, which is different from the traditional view that agents are

to be considered on a higher level, and take only the roles of web services’ suppliers

and consumers.

The authors in 56 propose an improved solution, WS2JADE for web services in-

tegration with multi-agent system. This approach has an interconnection layer that

contains special agents called ”Web Service Agent” or WSAG. These WSAGs glue

agents and web services together, where the agents would offer web services as their

own services. The second layer is the management layer, which is capable of active

service discovery and to the automatic deployment of WSAGs in execution time.

The combination of both static and dynamic layers is a distinct tool of WS2JADE,

which is designed to actively discover web services and save them in multi-agent

systems.

In fact, web services are increasingly used to provide active behavior on the

internet, and give to end users features that were associated with multi-agent sys-

tems. It is therefore natural to consider what types of relationships exist or should

exist between the agents and web services. We argue that they are separate com-

ponents, although they may share common goals. In the next section, we present

our tailorable groupware architecture U3D.

5.2. Groupware architecture: U3D

We recall that our objective is to integrate software agents and web services into a

coherent entity that attempts to overcome the weaknesses of each technology, while

enhancing their individual strength in the context of tailorable groupware design. In

our work 37, 18, we proposed the use of service-oriented architecture for the design

of tailorable groupware architecture, which offers the necessary interoperability and

re-configurability to system’s components. We also discussed the importance of

using software agents to improve the proactive discovery of services. In this section,

we propose a tailorable groupware architecture that we call U3D, based on the

integration of Web services (Machine-Machine) collaboration and Software agents

ehttp://www.fipa.org/



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 23

(Human-Machine).

Fig. 8. U3D groupware architecture based on web services and software agents

We can see the overall architecture in Figure 8. This new architecture is based

on the integration of the C4 model based on software agents 5, and the UDDI4C

architecture based on web services proposed in our previous work 44 that is based

on the machine-machine collaboration formalism presented in the previous section.

Thus, we get a groupware architecture composed of two parallel environments but

working together in order to create a collaborative and tailorable software architec-

ture, taking advantage from the properties of both technologies.

We rely on the Arch model 2 that aims to separate the physical interface (Layer

0 in Figure 8) from the functional core (FC) of a system (Layers N-1 and N). How-

ever, in contrast to the Arch model where the functional core (FC) is a dead-end

component (implements static domain functionalities), our FC is connected to the

internet in order to put in practice the collaboration protocol discussed in the pre-

vious section, with other machines over the network. In this paper, we will solely

concentrate on the FC which is the main component of the system, while we make

no assumption about the structure or specifications of the other components of



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

24 Nader Cheaib, Samir Otmane, Malik Mallem

the groupware architecture. Furthermore, we rely on Dewan’s model 3, that is a

generalization of the Arch model, and that structures a groupware system into a

variable number of replicated and shared layers. Thus, it defines a collaboration

degree between the system’s components and users, where the highest layer is the

most semantic one corresponding to the FC (coincides with the one of the Arch

model), and the lowest layer representing the material level (Arch’s Physical Inter-

action component).

Our groupware architecture is constituted of a root representing shared layers,

meaning that it is shared among all the users in the system, and several replicated

layers for every user. The layers communicate vertically using interaction events,

and use collaboration events (formalism presented) for interacting with machines

over the network. However, in contrast to the clover model 6 where the functional

core is also split into two layers (one private and shared, while the other is replicated

and public), the functional core (FC) in our model is represented by two layers that

are both shared and constitute the root of the system. This mechanism allows all

users to manipulate domain objects and have access to various centralized services

during the interaction with the system. The layers underneath the FC are replicated,

and manage resources for each user. It should be noted that Figure 8 shows only

the FC and the physical interaction layer. In the last section, we put in practice the

physical layer as a web interface that will serve as a case study of our model.

5.2.1. Functional Core (FC) Decomposition

The shared layers of the architecture constituting the system’s FC enable users

to manipulate domain objects and have access to various services in the system,

while the replicated layers handles the set of services and the state of the system

that is private for every user in collaboration. We extend this layer abstraction

as in 6 by decomposing each layer of the architecture into sub-components, each

dedicated to one facet of Ellis’ 3C model, while providing and managing specific

services for communication, coordination and production. However, we assume that

only the layers on the level N-1 and on the lowest level (Layer 0) satisfy these three

main classifications, while we have made no assumption till now about the decom-

position of the highest semantic layer in the architecture, which is for us mainly

composed of one single component for enabling collaboration with other machines.

The sub-components on the level N-1 are enclosed in a software interface exposing

its functionalities to the clients as in 6, by dividing the services in the system into

three main services: communication, coordination and production services. These

services can be considered as orchestrations of atomic services in the system 8 based

on the functionalities they offer.

Indeed, this environment focuses on three main aspects: (a) a framework for

organizing the software components through the network, (b) a mechanism for the



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 25

publication and registration of Web services so they can be dynamically discovered,

(c) a set of standards that allows components to exchange data in the system as

well as with distributed components on the internet. In our system, the software

agents of the system behave as a set of basic components that interacts with online

resources that are Web services. The aim as discussed is to be able to implement

tailorability in a collaborative context that is being achieved through the integration

of external Web services or the composition of internal ones in order to generate

new communication, coordination and production services. In order to create a link

between the software agents and the web services of the system, we have integrated

into the FC a special component of the JADEf platform called Web Service Integra-

tion Gateway (WSIG). This component is deployed on the highest level of the FC,

and acts in our system as a hybrid software agent that creates SOAP invocations in

order to integrate external Web services, as well as compose internal Web services

using their semantic description specified in an internal ontology.

5.2.2. SOA environement

As we can see in Figure 8, the first component on the level N-1 is based on an SOA

environment. This component contains all the web services in the system grouped

into 3 main services: communication services, coordination services and production

services. By classifying services in the system into these three main categories, the

main spaces of the software collaboration process defined by the 3C model 4, as

we have mentioned, are satisfied. Note that we use the term ’Production’ to mean

’Cooperation’ of activities (used in the 3C model: Communication, Coordination

and Cooperation):

• ComService: contains all services offering means of communication between

users in collaboration (videoconference service, voice recorder service etc.).

• CoorService: contains services implementing rules of coordination by codi-

fying their interaction (i.e. workflow).

• ProService: contains services that are the collaborative product of using the

architecture. (Ex: Paint application, Word document etc.).

These services can be considered as orchestrations of various other services in

the system 8, and include services based on the functionalities they offer. Compared

to the architecture proposed in 37 , the UDDI is viewed as a dynamic registry for

web services description enhanced with software agent’s capabilities, and containing

definitions of services running in the system that are susceptible of undergoing

tailorability activities. The definitions of these web services are provided using the

standardized language for web services description (WSDL) and are connected to

adaptable aspects that are the services themselves, residing in the SOA environment.

fhttp://jade.tilab.com/



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

26 Nader Cheaib, Samir Otmane, Malik Mallem

5.2.3. Agents’ Environment

In parallel to the SOA environment, a JADE environment constitutes the other part

of the FC on the level N-1. This layer is populated with software agents that are

deployed on a JADE environment using its libraries for implementing agents’ behav-

iors. The adopted paradigm of communication between layers is an asynchronous

message passing with a format specified by the ACL (Agent Communication Lan-

guage) defined by FIPA. This format includes a number of fields, more specifically

the sender of the message, the list of recipients, the communication intention that

indicates the purpose of sending the message, the message content and its language

i.e. the used syntax to explain the content that could be understood by the sender

and the recipient, and finally the ontology i.e. The vocabulary of symbols used in

the contents and their meanings that also should be understood both by the sender

and the recipient of the message.

As in the SOA environment, all agents are grouped into three main classes:

communication, coordination and production agents. The use of agents, as we have

mentioned before, is to make the discovery of new services in the system dynamic,

meaning that new web services will be actively integrated into the FC without

stopping the execution of the system. These services are normally used by users

on the physical layer, which is the lowest layer in the architecture. The functional

decomposition of the layer into three main sub-components corresponding to the 3C

model will enhance the interaction between web services in the system with software

agents. Hence, every agent in one particular sub-component would know exactly

where to search for a particular web service in the SOA environment that best

suits the functionalities it can offer. Each sub-component in this layer manipulates

semantic objects dedicated to one of the 3C model functionalities, and performs

specific processing functions on its services.

5.3. Collaborative Hybrid Agent - Orchestration of services

In this section, we present an essential component of our groupware architecture,

which is the main agent that handles the integration/composition of services. In

section 3, we have defined a machine-machine collaboration formalism for the online

exchange of services. Indeed, an essential component of our groupware architecture

is a hybrid agent that acts as a mediator between the physical agents that implement

the core of our system, with the internal/external services. Recall that our system

insures the integration of external web services, as well as the composition of internal

ones for the creation of new functionalities on runtime. As we can see in the Figure 9,

our hybrid agent acts as the interface between users in collaboration and the services

present in the system. In fact, the hybrid agent provides a replicated interface for the

users in order to tailor the services in the system. Hence, every user in collaboration

will be represented by an instance of the hybrid agent in the system, which will

customize the services offered based on the needs of each user in collaboration.



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 27

Fig. 9. An example of the use of hybrid agent involving two or more users in collaboration

In our work, we did not want to implement web services as intelligent agents

themselves, which may break compatibility with existing web services. Hence, web

services are considered external/internal resources to be exploited by software

agents. Thus, we keep the autonomy of both worlds while taking advantage of

their integration’s synergy in order to create a tailorable collaborative architecture.

As these two technologies use different protocols and standards, their integration

is managed, in our system, by the hybrid agent that we discuss in this section. In

Figure 10, services are divided into three main spaces: communication, coordination

and production. Every space is considered as a set of basic services offering function-

alities relative to the space they belong to. At the conceptual level, our hybrid agent

that we call WAG (”Web Agent”) manages the interaction between web services

and agents in the system. In fact, the WAG agent is analogous to the collaboration

agent of the C4 model introduced in section 4, however, the main difference is that

our agent is a hybrid agent (where the collaboration agent is a passive one) that has

special features such as proactivity, which enable it to interact autonomously with

other components in the system as well as the outside world. Hence, the aim is to

ensure the ”orchestration” of services using workflow processes in order to integrate

them based on their functional and non-functional descriptions, as well as compose

them with existing services in the system, if applicable.



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

28 Nader Cheaib, Samir Otmane, Malik Mallem

Fig. 10. WAG - Hybrid Agent

5.3.1. Agents and communication services

As mentioned previously, the purpose of applying the 3C model is to ensure the

modularity of the system, which eventually reduces the complexity of implementa-

tion. For example, it will be easier to add a communication service (video, chat, etc.)

without affecting other services. Communication services are managed by the com-

munication agents. In the internal (machine-machine) collaboration, the information

handled in this phase represents the different perceptions that the communication

agents can receive (Perceptj), such as the information issued by WAG (Infi) or

other agents in the system. The set of inputs and outputs of the communication

agents are:

- {Infij} : The set of information sent by a communication agent i to another

communication agent j.

- {Percepti} : The set of stimuli and sensations a communication agent can

produce.

5.3.2. Agent and coordination services

Coordination is a fundamental step before actually producing. Thus, the coordi-

nation agent defines a set of actions with the WAG before producing, either by

composing or integrating a new service. This agent accomplishes these actions after

the mission has been selected by the communication agent. The coordinating agent

receives a set of information that includes the different perceptions (Perceptj), as

well as the information sent by WAG (Infi).

The set of inputs and outputs of the coordination agent coordination:



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 29

- {Actionsi} : The set of executed actions by the agent i. In our system, the

most important coordination tasks are those defined by the communication

agent: the integration of new services and the composition of two or more

internal services.

- {Percepti} : These stimuli are the functional (IOPE) and non-functional

(QoS) parameters that the web services produce.

5.3.3. Agent and production services

The production phase is the result of the collaboration between machines. Thus,

the production agent is responsible for implementing the actions issued in the co-

ordination phase and sent by WAG. The set of inputs and outputs in this phase is:

- {Percepti}: The set of stimuli and sensations that a production agent can

produce.

- {Resultatsi}: The set of results as a consequence of executing the actions

from the coordination phase. These results contain the newly produced ser-

vice and all information concerning this particular service (physical address,

semantic information and QoS).

In Figure 11 below, we can see a conceptual architecture of the communica-

tion, coordination and productions agents that represent the three spaces of the 3C

model, respectively.



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

30 Nader Cheaib, Samir Otmane, Malik Mallem

Fig. 11. A conceptual design of the communication, coordination and productions agents

5.4. Tailorability algorithmes

In this section, we present tailorability algorithms that take into account the roles

of the communication, coordination and production agents in the process of service

integration and composition. Most importantly, this algorithms take in considera-

tion the role of the WAG that, as mentioned, acts as a mediator between the users

in collaboration with services provided in the system. We should mention that the

algorithms presented deal implement the collaboration between our system and

other machines connected to the network. Thus, they are an implementation of the

machine-machine collaboration formalism that we presented in section 3.

The algorithms presented are shown in Figures 12, 13 and 14 respectively, and

are applied on the groupware architecture discussed in the previous section. We

also present the algorithm that deals with translating messages between services

and agents in order to interact with an external web service (Figure 15). These al-

gorithms put in practice the role of WAG in order to orchestrate tasks between the

agents of the system for defining tailorability mechanisms. In these algorithms, the

WAG introduced in the previous section is physically implemented as a special com-

ponent in the JADE platform called Web Service Integration Gateway (WSIG)g.

This component acts as a mediator between the web services and software agents,

by creating SOAP requests from agents’ descriptions, as well as allocating different

ghttp://jade.tilab.com



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 31

tasks to the agents’ in order to integrate/compose a service.

In the communication phase (Figure 12), and in the case of a composition mech-

anism (Line 3), WSIG is notified of the mission and thus extracts the non-functional

information of both services i and j to be composed (Line 4 and 5). The WSIG

sends this information to the coordination agents (Line 7). In case of service inte-

gration, the WSIG is notified about the service to be integrated, as well as its QoS

(Line 8, 9 and 10). The actions to be performed are sent to the WSIG (Line 12 and

13).

1. Communication (Commi):
2. While (MessageQueue NON empty && Service NULL) do
3. If (Missioni = COMPOSE) Then
4. WSIG ←− missionCOMPOSE(i,j);
5. WSIG ←− QoS(i,j) ;
6. If (QoS = TRUE) Then
7. send CooAgent ←− (ComServicei,AgentCommi,WSIGi, TRUE);
8. If (Missioni = INTEGRATE) Then
9. WSIG ←− missionINTEGRATE(i);
10. WSIG ←− QoS(i);
11. send (Actionsi, WSIGi);
12. If (QoS & Loc = TRUE) Then
13. send (ComServicei,AgentCommi,WSIGi, TRUE);

Fig. 12. Communication algorithm of an agent Commi with a service

In the coordination phase (Figure 13), and after the communication phase (Line

2), coordination agents receive the message containing the description of the service

(Line 3, 4 and 5). In case of a composition (Line 6), coordination agents extract

and test the IOPEs of the two services to compose in order to ensure that the prod-

uct generates a service with a new behavior (Line 8 and 9). Then, they send the

results to the WSIG (Line 10). In the case of an integration (line 11), coordination

agents receive the non-functional information of the service to be integrated, and

test its QoS and its location (Line 13 to 16). If the QoS is satisfactory, the service

is extracted and sent to WSIG (Line 17 to 19).

After the communication and coordination phase, the production phase (14)

begins, which contains the results of the collaboration. At Line 2 and 3, production

agents receive the message. Whether the service is composed or integrated, the

production agent saves the service in the system by creating a new entry in the

UDDI. The results are sent to WSIG, and the production phase is completed (Line

4-8).



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

32 Nader Cheaib, Samir Otmane, Malik Mallem

1. Coordination (Coori):
2. If (Communication = TRUE) Then
3. AgentCoo ←− receiveMessage(WSIG);
4. AgentCoorj ←− message.getContent(1);
5. Missioni ←− message.getContent(2);
6. If (Missioni = COMPOSE) Then
7. Get(Sourcei, Sourcej) ←− (ServiceIOPEi.ServiceIOPEj);
8. If((Inf(IOPE,Loc)Sourcei) * (Inf(IOPE,Loc)Sourcej)) == TRUE);
9. Actionsi ←− ChoiceActionsWith(AgentCoorj , Missioni);
10. send (Actionsi, WSIGi);
11. If (Missioni = INTEGRATE) Then
12. AgentCoo ←− receiveMessage(WSIG);
13. AgentCoorj ←− message.getContent(1);
14. Missioni ←− message.getContent(2);
15. AgentCoo ←− testQoS();
16. AgentCooo ←− testLoc();
17. If (QoS & Loc = TRUE) alors
18. Service ←− message.getContent(WSIG);
19. send (Servicei,AgentCooi,WSIGi, TRUE);

Fig. 13. Coordination algorithm of an agent Coori with a service Commj

1. Production (Prodi):
2. If (Coordination = TRUE) Then
3. AgentPro ←− receiveMessage();
4. If (message.compose = TRUE OR message.integrate=TRUE) Then
5. Register NewServicePro ←− AgentPro();
6. Resultsi ←− ExecuteActions(Actionsi);
7. send (Resultsi, WSIGi);
8. Terminate (Prodi, WSIGi);

Fig. 14. Production algorithm of an agent Prodi and a service Commj

In the algorithm below, we present the messages sent by the system in order

to interact with an external service in case of an integration. Thus, communication

agents receive information about these services and send them to WSIG (Line 4-

7). The WSIG creates an invocation SOAP that contains the information relative

to the service, particularly its WSDL description (Line 8). The WSIG receives the

incoming SOAP message containing the information of the service to be integrated,

and sends this information to the local UDDI (Line 10 and 11). Also, it notifies the

agent that initiated the request about the completion of the task (Line 13, 14 and

15).



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 33

1. Translate (Commi, Cooi, Prodi) :
2. While (MessageQueue NON empty) do
3. message ←− receiveMessage();
4. si (message.sender = Commj) alors
5. AdressCommi ←− message.getContent(1);
6. ACLCommi ←− message.getContent(2);
7. send WSIGi(AdressCommj , ACLCommi);
8. SOAPOUTj ←− (AdressCommj ,ACLCommi);
9. si (SOAPOUTj(Commi) = TRUE) alors
8. SOAPINj ←− (SOAPOUTj ,AdressCommSj , QoSi);
10. WSIGj ←− (SOAPINj);
11. send UDDIk (SOAPINj);
13. Translate ACLj ←− (SOAPINj);
14. send DFk (ACLj , Agentj);
15. send (Resultsi, Collj) ←− AgentInterfacej;

Fig. 15. Algorithm for the construction of a web service invocation

5.5. Discussion

The originality of our model is the use of existing technologies’ synergy in order to

create a tailorable and interoperable software architecture for groupware. Moreover,

our model is inspired by the Arch2 and Dewan’s3 models for separating the core

functionality (logic of the application) from its interfaces, and thus carrying with

it many essential properties such as flexibility, which is also crucial in the CSCW

domain. Indeed, the two layers constituting the FC are both shared and handle

exclusively the services and their dynamic integration, which is different from the

Clover model6 that advocates a replicated functional core for every user by man-

aging their private domain-dependent objects. We affirm that a functional core

adaptor situated between the functional core and the physical layer (which was not

discussed in the work presented in this paper) is more suitable to handle this type of

data, while dedicating the core of the application solely to handle tailoring system’s

services. Hence, every newly added service will be shared by all users’ participating

in a particular session. Also, the 3C model is used in our proposed system in order

to define and classify the services proposed in the system. In fact, the functional

breakdown according to the 3C model contains several properties. In fact, from the

implementation perspective, it will result in a greater modularity which reduces the

complexity of groupware’s implementation. For example, it would be easy to add

a new communication service by adding, for example, a video stream mechanism

without affecting existing services in the system. This could reduce the develop-

ment cost and computational time, while enabling the addition of independent and

heterogeneous services in order to improve the distribution of features and increase

the modularity of code, and also by insuring interoperability in every aspect of the

collaboration process. In fact, we have made no assumptions about the decompo-



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

34 Nader Cheaib, Samir Otmane, Malik Mallem

sition of other layers in the system according to the 3C model. This fact enables

the addition of independent and heterogeneous layers to improve the distribution

of features and insuring interoperability on every layer of the architecture (by using

FIPA and W3Ch specifications and standards). As for the branching point discussed

in 38, we have fix it after the FC layers, which induce a lower replication degree than

the Clover model, but convenient in order to ensure state consistency of services,

as well for collaborating users to share discovered services and reusing them when

needed.

Moreover, our model identifies the implementation architecture that is deduced

from the theoretical model in order to achieve tailorability in collaborative ap-

plications, where opposed to other models, it identifies explicitly a component as

a web service and a software agent. In fact, we have put in practice our group-

ware architecture proposed in this paper on an academic project called ARITI-C15

for collaborative online teleoperation. In fact, the initial ARITI-C system that is

based on a multi-agent system had a major constraint: The behaviors that allow

the manipulation of the robot are static and pre-coded into the functional core of

the application. Thus, users are limited to a few operations or behaviors (grab-

bing objects, rotating etc.), and the insertion of new behaviors during the phase

of collaboration is not supported. In the tailorable ARITI-C system, users are able

to collaborate together using a visual interface in order to create a composition of

sub-missions that the robot should do. In fact, we have introduced an ontology in

order to semantically encode the various behaviors of the robot. Using this ontol-

ogy, the mission created by the users in collaboration is composed from the various

sub-missions encoded in the ontology. This mission is then translated to code using

the OntologyBean Generatori plugin of the Protegej framework and dynamically

injected in the system’s core in order to be executed by the robot. In this manner,

our new system enabled tailorability of services by the dynamic composition of new

behaviors without the need to stop the system’s execution to manually code new

behaviors.

6. Conclusion

In this paper, we proposed a new groupware architecture based on web services and

software agent that introduces tailorability to the design of collaborative applica-

tions. In this model, a hybrid agent that we call WAG (or Web Agent) handles

the composition/integration of services based on users’ preferences, bringing tai-

lorability in real time without having to manually code new functionalities in the

collaborative system. Also, we have introduced a machine-machine collaboration

formalism in order to implement services’ tailorability in a collaborative context.

hhttp://www.w3.org/
ihttp://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator
jhttp://protege.stanford.edu/



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 35

In fact, the originality of our model is in the use of existing technologies in or-

der to create a tailorable and interoperable groupware architecture. However, some

services to be integrated would need to store state information, which is still not

possible for SOAP-based Web services. One solution is for the state and session

information to be transmitted as XML parameters and stored in a database that

can be implemented, in the groupware architecture proposed, on a software layer

directly below the functional core of the system.

The work proposed in this paper is the basis of a groupware architecture that

has been implemented in ARITI-C15 for online robot teleoperation. For our future

work, we aim to shift the collaboration formalism discussed in this paper, and that

primarily involves the services offered by the machines over the internet, to the

software layers that are the closest to the users. In other words, we want the user

to be the main entity in the tailorable collaboration formalism presented, and not

the machine. One solution is to conduct research on tailorable interfaces (Layer 0

in our software architecture) in a collaborative setting. We believe that the work

presented in this paper is one of the first steps towards shifting the web services

technologies’ into tailorable CSCW systems.

References

1. C. M. Wang, J. N. Reddy and K. H. Lee, Shear Deformable Beams (Elsevier, Oxford,
2000).

2. L. Bass. A metamodel for the runtime architecture of an interactive system. User
Interface Developers’ Workshop, SIGCHI Bulletin:, 24(1), 1992.

3. P. Dewan. Architectures for collaborative applications. CSCW Journal, Trends in Soft-
ware, John Wiley & Sons, pages 169–194, 1999.

4. C. A. Ellis. Conceptual model of groupware. Proc CSCW, ACM Press NY, pages 79–88,
1994.

5. N. Khezami, S. Otmane, and M. Mallem. A new formal model of collaboration by
multi-agent systems. Proc IEEE KIMAS, Massachusetts, USA, pages 32–37, 2005.

6. Y. Laurillau and L. Nigay. Clover architecture for groupware. Proc CSCW, ACM,
pages 236–245, 2002.

7. A. Morch. Three levels of end-user tailoring: customization, integration, and extension.
Journal in Computers and design in context, MIT Press, pages 51–76, 1997.

8. C. Pletz. Web services orchestration. a review of emerging technologies, tools and
standards. Hewlett Packard White Paper, January 2006.

9. R. Slagter, M. Biemans and H. ter Hofte. Evolution in use of groupware: Facilitating
tailoring to the extreme. Seventh International Workshop on Groupware, pages 68–73,
2001.

10. S.A McIlraith and T.C Son and H. Zeng. Semantic web services. Intelligent Systems
Journal, IEEE, Volume 16, Number 2, Pages 46–53, 2005.

11. M.P Papazoglou and D. Georgakopoulos. Service-oriented computing, Communica-
tions of the ACM, Volume 46, Number 10, Pages 25–28, 2003.

12. E. Lee and B. Lee. An Agent-Based Web Service Composition Using Semantic Infor-
mation and QoS. Journal Agent and Multi-Agent Systems: Technologies and Applica-
tions, pages 928–937, 2007, Springer.



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

36 Nader Cheaib, Samir Otmane, Malik Mallem

13. A. Dinis, N. Fies, N. Cheaib, S. Otmane, M. Mallem, A. Nisan and J.M. Boi. DIGITAL
OCEAN: A National Project for the creation and distribution of Multimedia Content
for Underwater Sites. Proc. of the 14th International Conference on Virtual Systems
and MultiMedia, Dedicated to Digital Heritage, VSMM’08, pp. 389-396, (ISBN 978-
963-8046-99-4), Limassol Cyprus, October 2008.

14. N. Cheaib, S. Otmane and M. Mallem. Web services and Software Agents for Tai-
lorable Groupware Design. in the book Emergent Web Intelligence: Advanced Semantic
Technologies,Springer Verlag in the series ”AI&KP”, pages 185-208, 2010

15. S. Otmane, N. Cheaib and M. Mallem. Internet-based Collaborative Teleoperation:
Towards tailorable groupware for teleoperation. in the book End-to-End Quality of
Service Engineering in Next Generation Heterogeneous Networks, published by Wi-
ley&ISTE/Hermes, pp 163-193, 2008

16. E.M Maximilien and M.P Singh. A framework and ontology for dynamic web services
selection. Journal of Internet Computing, EEE, Volume 8, Number 5, pp 84-93, 2004

17. O. Stiemerling and A.B Cremers. Tailorable component architectures for CSCW-
systems. Proceedings of the Sixth Euromicro workshop on Parallel and Distributed
Processing, IEEE, pages 302-308, 2002

18. N. Cheaib, S. Otmane and M. Mallem. Combining FIPA agents and web services for
the design of tailorable groupware architecture. Proceedings of the 10th International
Conference on Information Integration and Web-based Applications & Services, ACM,
pages 702-705, 2008

19. O. Stiemerling, and A.Cremers, Tailorable Component Architectures for CSCW-
Systems. Proceedings of the 6th Euromicro Workshop on Parallel and Distributed Pro-
gramming, pages 21–24, 1998

20. V. Wulf, Let’s see your search tool ! collaborative use of tailored artifacts in groupware.
In Proceedings of the international ACM SIGGROUP conference on Supporting group
work, pages 50-59. ACM New York, NY, USA

21. G. Teege, Users as composers : Parts and features as a basis for tailorability in CSCW
systems. Journal of Computer Supported Cooperative Work (CSCW), Springer, 9(1),
2000, pages 101-122

22. H. Kahler, Supporting collaborative tailoring. PhD thesis, Department of Communica-
tion, Journalism and Computer Science. Roskilde University, Denmark., 2001

23. R. Slagter, Dynamic Groupware Services : Modular design of tailorable groupware.
PhD thesis, Telematica Instituut, the Netherlands, 2004

24. A. Fernandez, Groupware for Collaborative Tailoring. PhD thesis, University of Hagen
- Germany, 2005

25. D. Torres, A. Fernandez, G. Rossi, and S. Gordillo, Fostering Groupware Tailorability
Through Separation of Concerns. Lecture Notes in Computer Science 4715 :143.

26. O. Stiemerling, R. Hinken, and AB. Cremers, The EVOLVE tailoring platform: sup-
porting the evolution of component-based groupware Third International Enterprise
Distributed Object Computing Conference, 1999. EDOC’99. Proceedings., pp 106-115,
1999

27. M. Biemans, and GH. Ter Hofte, Tailorability: state-of-the-art Gigaport project deliv-
erable, Telematica Instituut, The Netherlands, 1999

28. G. Bourguin, Un support informatique à l’activité coopérative fondé sur la Théorie de
l’Activité: le projet DARE University of Sciences and Technology of Lille, 2000

29. G. Bourguin, Proposition pour une gestion dynamique de l’inter-activités dans le
TCAO Proceedings of the 16th conference on Association Francophone d’Interaction
Homme-Machine table of contents, pages 191-194, ACM New York USA, 2004

30. A. Morch, O. Stiemerling and V. Wulf, Tailorable groupware: issues, methods, and



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

Groupware Tailorability based on the 3C model: From theory to practice 37

architectures ACM SIGCHI Bulletin, pages 40-42, ACM, 1998
31. V. Wulf and B. Golombek, Direct activation: A concept to encourage tailoring activi-

ties Behaviour & Information Technology Journal, Volume 20, Number 4
32. V. Wulf, V. Pipek, and M. Won, Component-based tailorability: Enabling highly flexible

software applications International Journal of Human-Computer Studies, Volume 66,
Number 1, pages 1-22, 2008

33. Y. Laurillau, Conception et realisation logicielles pour les collecticiels centrees sur
l’activite de groupe: le modele et la platforme Clover PhD Thesis, University of Joseph
Fourier, Grenoble, France, 2002

34. E. Newcomer, Understanding Web Services: XML, Wsdl, Soap, and UDDI Addison-
Wesley Professional, 2002

35. N. Khezami, Vers un collecticiel base sur un formalisme multi-agent destine a la tele-
operation collaborative via Internet PhD Thesis, University of Evry Val d’Essonne,
Evry, France, 2005

36. P. Buhler and J. Vidal, Semantic web services as agent behaviors Agentcities: Chal-
lenges in Open Agent Environments, pages 25-31, 2003

37. N. Cheaib, S. Otmane and M. Mallem, Integrating internet technologies in design-
ing a tailorable groupware architecture 12th International Conference on Computer
Supported Cooperative Work in Design, 2008. CSCWD 2008, pages 141-147, 2008

38. J.F. Patterson, A taxonomy of architectures for synchronous groupware applications
ACM SIGOIS Bulletin, Volume 15, Number 3, pages 27-29, 1995, ACM

39. Z. Maamar, QZ. Sheng and B. Benatallah, Interleaving Web Services Composition
and Execution Using Software Agents and Delegation Proceedings, Workshop on Web
Services and Agent-Based Engineering, 2003

40. S. Otmane, M. Mallem, A. Kheddar and F. Chavand, ARITI: an Augmented Real-
ity Interface for Teleoperation on the Internet in Advanced Simulation Technologies
Conference, High Performance Computing” HPC 2000, pages 254-261, 2000

41. M. Blois, M. Escobar and R. Choren, Using agents and ontologies for application
development on the semantic web Journal of the Brazilian Computer Society, Volume
13, pages 35-44, 2007

42. G. Calvary, J. Coutaz and L. Nigay, From single-user architectural design to PAC*: a
generic software architecture model for CSCW Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 242-249, 1997

43. JADE Board JADE Web Services Integration Gateway (WSIG) Guide JADE Docu-
mentation, 2005

44. N. Cheaib, S. Otmane and M. Mallem, A Machine-Machine Collaboration Formal-
ism based on Web services for Groupware Tailorability Proceedings of the 15th In-
ternational Conference on Computer Supported Cooperative Work in Design (IEEE
CSCWD 2011), Lausanne, Switzerland,pp 238-245, 2011

45. M. Wright A detailed investigation of interoperability for web services. Master Thesis,
Rhodes University, South Africa.

46. G.C Gannod, J.E Burge and S.D Urban, Issues in the Design of Flexible and Dy-
namic Service-Oriented Systems. Proc of SDSOA’07: ICSE, IEEE Computer Society
Washington (2007).

47. S. Dustdar, H.Gall and R. Schmidt, Web services for groupware in distributed and
mobile collaboration. Proc of the 12th Euromicro Conference on Parallel, Distributed
and Network-Based Processing, 2004, pp 241-247, IEEE.

48. H. Fuks, A.B Raposo, M.A Gerosa and C.J.P de Lucena, Applying the 3C model to
groupware engineering International Journal of Cooperative Information Systems, v.
14, n. 2-3, pp 299-328, 2005



January 24, 2012 16:43 WSPC/INSTRUCTION FILE ws-ijcis

38 Nader Cheaib, Samir Otmane, Malik Mallem

49. H. Fuks, A.B Raposo, M.A Gerosa, M. Pimentel and C.J.P de Lucena, The 3C col-
laboration model Journal of the Encyclopedia of E-Collaboration, Ned Kock (org), pp
637-644, 2007

50. F.F Oliveira, J.C.P Antunes and R.S.S Guizzardi, Towards a collaboration ontology
Proc. of the Snd Brazilian Workshop on Ontologies and Metamodels for Software and
Data Engineering,

51. I.E Foukarakis, A.I Kostaridis, C.G Biniaris, D.I Kaklamani and I.S Venieris, Web-
mages: An agent platform based on web services Journal of Computer Communica-
tions, Volume 30, Number 3, pp 538-545, 2007

52. M. Matskin, P. Kungas, J. Rao, J. Sampson and S.A Petersen, Enabling Web services
composition with software agents Proceedings of the Ninth IASTED International Con-
ference on Internet and Multimedia Systems and Applications, IMSA 2005, Honolulu,
Hawaii, USA, pp 93-98, 2005

53. B. Starr, M.S Ackerman and M. Pazzani, Do-I-Care: A collaborative web agent Proc.
Human Factors in Computing Systems (ACM CHI), pp 237-274, 1996

54. Z. Maamar, Q.Z. Sheng and B. Benatallah, Interleaving Web Services Composition
and Execution Using Software Agents and Delegation The 1st International Workshop
on Web Services and Agent-based Engineering, Sydney, Australia, 2003

55. P.A Buhler and J.M Vidal, Toward the synthesis of web services and agent behaviors
Proceedings of the Agentcities: Challenges in Open Agent Environments Workshop,
pp 25-31, 2002

56. T.X Nguyen and R. Kowalczyk, WS2JADE: Integrating Web Service with Jade Agents
Technical Report, SOCAB0, 2005

57. M.N. Huhns and M.P Singh, Service-oriented computing: Key concepts and principles
Journal of IEEE Internet Computing, V 9, Number 1, pp 75-81, 2005

58. I. Dickinson and M. Wooldridge, Agents are not (just) web services: considering
BDI agents and web services Proceedings of the 2005 Workshop on Service-Oriented
Computing and Agent-Based Engineering (SOCABE’2005), Utrecht, The Netherlands,
2005

59. G. Bourguin, Lessons learned from the implementation of a reflexive groupware system
Proceedings of the 15th French-speaking conference on human-computer interaction,
pp 40-47, 2003

60. D. Payet, L’enrichissement de message comme support pour la composition logicielle
PhD Thesis, Unviversity of Montpellier 2, 2003

61. R. Slagter, M. Biemans and H. Ter Hofte, Evolution in use of groupware: facilitating
tailoring to the extreme Proceedings. Seventh International Workshop on Groupware,
pp 68-73, 2001


