N

N

Design of a Processor Optimized for Syntax Parsing in
Video Decoders

Nicolas Siret, Jean Frangois Nezan, Aimad Rhatay

» To cite this version:

Nicolas Siret, Jean Francgois Nezan, Aimad Rhatay. Design of a Processor Optimized for Syntax
Parsing in Video Decoders. Conference on Design and Architectures for Signal and Image Processing
(DASIP), Nov 2011, Tampere, Finland. pp.CD. hal-00661330

HAL Id: hal-00661330
https://hal.science/hal-00661330

Submitted on 19 Jan 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00661330
https://hal.archives-ouvertes.fr

DESIGN OF A PROCESSOR OPTIMIZED FOR SYNTAX PARSING IN VIDEO DECODERS

Nicolas Siret* and Jean-Francois Nezan' and Aimad Rhatay*

! European university of Brittany, France
INSA, IETR, UMR 6164, F-35708 RENNES
2 Lead Tech Design
F-35700 Rennes, France

ABSTRACT

Heterogeneous platforms aim to offer both performance
and flexibility by providing designers processors and pro-
grammable logical units on a single platform. Processors im-
plemented on these platforms are usually soft-cores (e.g. Al-
tera NIOS) or ASIC (e.g. ARM Cortex-A8). However, these
processors still face limitations in terms of performance com-
pared to full hardware designs in particular for real-time video
decoding applications. We present in this paper an innova-
tive approach to improve performance using both a proces-
sor optimized for the syntax parsing (an Application-Specific
Instruction-set Processor) and a FPGA. The case study has
been synthesized on a Xilinx FPGA at a frequency of 100
MHz and we estimate the performance that could be obtained
with an ASIC.

Index Terms— Application-Specific Instruction-set Pro-
cessor (ASIP), embedded processor, processor architecture,
Instruction Set Architecture (ISA), bit manipulation opera-
tions, video decoding, circuit design, multimedia.

1. INTRODUCTION

Ongoing research in the field of video decoding has shown
how to implement efficiently video decoders on recent archi-
tectures. Usually these architectures are based on DSPs [1],
ASICs [2], or high performance processors. However, DSPs
and embedded-processors still face limitations in terms of
computing power for applications that require high perfor-
mance. On the other hand, full hardware solutions on ASICs
offer the highest performance and a minimal electrical power
consumption but are not flexible. In this paper, we present an
advanced hardware-software codesign architecture composed
of an Application-Specific Instruction-set Processor (ASIP)
and a programmable logical unit (FPGA). Such an architec-
ture is particularly attractive to improve performance while
keeping flexibility because it allows the execution of an ap-
plication to be split into hardware processing for parts that
require performance (e.g. IDCT) and software processing for
those that require flexibility (e.g. syntax parsing).

Using ASIPs on heterogeneous platforms is an innova-
tive method to improve performance compared to usual em-
bedded processors. Designers can use dedicated instructions
that reduce the number of cycles required to execute a pro-
gram. These dedicated instructions are added to the proces-
sor core and to the Instruction Set Architecture (ISA). This
offers a good trade-off between flexibility, computing power,
and power consumption. This is also a way to decrease the
power consumption of a design.

The flexibility offered by embedded-processors on hetero-
geneous platforms is particularly attractive in the field of mul-
timedia video decoding because it allows the implementation
of the application to be updated when new video standards
are published. This is also true for the syntax parsing compo-
nents which extract video data from a compressed bitstream.
In fact, it allows complex algorithms (e.g. CABAC) to be
added, if necessary, in a second step of development. The
syntax parsing is the part of the decoding process which is
the least studied in the literature because it is almost sequen-
tial and non-optimizable. In a previous paper, we presented a
method and results to implement a video decoder on a code-
sign architecture made up of a general purpose soft-core and
FPGA. Performance was restricted by the hardware soft-core
generalist architecture and the software syntax parser which
was not optimized to be processed on a soft-core [3]. This pa-
per presents our work on the codesign architecture, especially
on the processor architecture so as to improve performance
while keeping flexibility. It makes the following contribu-
tions:

e We show the MPEG-4 video decoder implementation
on the heterogeneous platform in particular the flexi-
ble parser (section 3). The parser takes advantage of
a dedicated function called ShowNbits. This function
efficiently extracts an arbitrary number of bits from a
bitstream no matter the processor architecture.

e We show how to modify the source code of a syntax
parser to take advantage of a specific instruction called
showbits (section 4). This specific instruction extracts
an arbitrary number of bits from a word in a single cy-
cle.



e We present the ASIP hardware architecture and de-
scribe how the specific showbits instruction is imple-
mented into the hardware core of the soft-core (section
5).

The paper introduces results obtained with our method for
an MPEG-4 video decoder synthesized on a Xilinx Virtex-4
platform at a frequency of 100 MHz. The benefit is about 30%
more FPS compared to general purpose soft-core processors.

2. BACKGROUND

This section presents related work on video decoder imple-
mentations, on advanced bit manipulation operations and our
approach compared to others.

2.1. Application-Specific Instruction-set Processors

ASIPs are general purpose processors with specific instruc-
tions added to their Instruction Set Architectures (ISA) that
aim to improve performance and to simplify the development
of applications. ASIPs offer a good tradeoff between gen-
eral purpose processors (RISC or CISC architecture) and full
hardware solutions (on ASICs) by providing software scal-
ability and better performance than general purpose proces-
sors. This results in a reduced time to market for IPs providers
and a lower software complexity than fully optimized soft-
ware solutions.

The hardware implementation of an ASIP consists of a
general processor with the addition of specific instructions
within the ALU, or functional units within the core [4,5]. In
short, the software implementation consists in updating the
cross compilation tools, usually GCC/GDB. Thus, the devel-
opment of an ASIP is carried out in four main steps:

1. updating the core of the processor by adding the hard-
ware code required to process a specific instruction,

2. updating the ISA and the software compiler (e.g.
GCO),

3. adding the specific instruction to the debugger (e.g.
GDB) to allow designers to debug their applications,

4. testing and validating the operation of the added in-
struction on the processor.

In our field of research (i.e. video decoding), adding bit
manipulation operations to the core of an ASIP offers signif-
icant profits [6]. In fact, these bit manipulation operations
are always required to process the syntax parsing while they
are not well supported by common general-purpose processor
architectures. Indeed, general-purpose processors efficiently
process 8, 16, 32-bits size arithmetic operations (e.g. addi-
tion, subtraction, multiplication, etc.) but not bit-size opera-
tions which are required to extract an element arbitrary. On-
going research presents various methods [4, 7] to implement

these bit manipulation operations. The hardware implemen-
tation is usually realized using functional units (i.e. hardware
components which process a specific algorithm in parallel
with the ALU) added to the core of the processor We chose
to add the dedicated instruction within the ALU rather than
in independent functional units to avoid modifying the core
architecture and processing.

2.2. Related Work

Real-time video decoding is difficult to achieve on embedded
processors because it requires an efficient implementation and
a high-performance processor or DSP [5, 8]. Usually, one or
more coprocessors are implemented in addition with the pro-
cessors to process algorithms that required high performance,
like the Inverse Discrete Cosine Transform or the bitstream
parsing (i.e. CABAC and CAVLC) [9]. However using a co-
processor requires modification of the software code, restrict-
ing the code flexibility and portability. On the contrary, ASIPs
can be used to keep the software code portability.

In the field of video and audio decoding, syntax parsing
extracts bits from a bitstream and transfers these bits to the
other video or audio decoding entities [9]. To read an arbi-
trary number of bits from a bitstream, the usual methodology
(which is described in the standard) consists of coding and
using a ShowNbits function based on bit manipulation oper-
ations [5]. However, these operations are not well supported
by common general-purpose processor architectures.

Researchers have presented methods to efficiently manage
bit manipulation operations with results obtained on general
purpose processor architectures [8], DSPs [1, 5] or applica-
tions without real-time constraints [4]. This leads to a lack of
exploration of real-time applications implemented on code-
sign architectures even though they are more and more used.
In fact, they offer more performance with a lower power con-
sumption compared to common processor architectures. We
complete ongoing research by presenting a complete imple-
mentation of a real-time MPEG-4 video decoder on an archi-
tecture made up of an ASIP and hardware IPs implemented
on a FPGA.

3. VIDEO DECODING AND SYNTAX PARSING

This section describes the MPEG-4 video decoder architec-
ture and the parsing algorithm that uses the ShowNbits func-
tion.

3.1. Architecture of a video decoder

The video decoder presented in this paper is one of the appli-
cations provided by the Reconfigurable Video Coding [10,11]
(RVC) framework. It is composed of three main parts: the
Parser that extracts compressed video data from the bitstream,



the AC/DC prediction (sometimes referred as the “(intra, in-
ter) Prediction™) that predicts video data from blocks in the
same image and the Inverse Discrete Cosine Transform. The
MPEG-4 video decoder architecture is introduced in Fig.1.

idct2d (12 FU) @

[01101...] . v
Bitstream | | Dcce i
L 1

d

Fig. 1. MPEG-4 video decoder architecture.

Parsing acdc (7 FU)

The video decoder is a dataflow program described as a
network composed of the three subnetworks Parser, AC/DC
and IDCT2D. Unidirectional optimized FIFOs are imple-
mented between each actor of the networks to ensure the cor-
rect transmission of data. The AC/DC and IDCT2D subnet-
works are suitable to hardware processing because they are
made up of blocks, also called Functional units (FUs), which
process almost parallel algorithms (thus data are pipelined).
On the other hand, the Parser performs almost sequential al-
gorithms (e.g. reading input bit, storing input bit, looking for
start code ...) and thus, is suitable to software processing. The
AC/DC and IDCT2D FUs compute video data (4:2:0 config-
uration) using the decoded data: QP, last, run, value, pro-
vided by the Parser.

3.2. Syntax parsing algorithm

The scalability of processors is valuable to developing and up-
dating parsing algorithms when new standards are published.
All the more so, independently of multimedia applications,
these algorithms may be updated and are almost sequential.
We implemented the parser on an embedded processor and
updated its ISA to evaluate the performance. The MPEG-
4 video parser provided by RVC is still limited on embed-
ded processors because it has not been optimized for software
processing [3]. Thus, we replaced it with a hand-coded parser
which has been developed according to the MPEG-4 standard.
This parser has been optimized to supply real time video on
DSPs [12]. Moreover, this method is compliant with the RVC
framework which encourages the replacement of critical per-
formance FUs by software or hardware IPs.

A detailed description of the MPEG-4 parser is beyond
the scope of this paper (but presented in the MPEG standard
[13]). However, an overview of the hand-coded parser is pre-
sented in Fig. 2. Ten steps are necessary to extract video data
from the compressed video bitstream. In steps (1), (2), (3),
(4) (within VideoObject Layer), the Parser waits for a start
code. Depending on the “Video Object” information provided
by the start code, it updates the “Video Object Layer”’(VOL)
or creates a new one. The VOL contains the video object
definition and the layer parameters (e.g. image resolution,
scalability, etc.) extracted from the bitstream. Then, in steps

Initialization

@<
@< Read start-code |

New videoObject
Read parameters

Video
Object

Current videoObject
Layer
% —< Update VOL. (VoL)

Read VOL
Read VOP elements X):liz(c)t
6 < Update Coding type (I:’lgx}f)
| Compliant Coding type
Decode syntax syntax
e < Decode macroblocks ‘ decoding

_Update bitstream position ‘

Fig. 2. The parsing processes in ten steps.

(5), (6) (within VideoObject Plane), the parser extracts the
frame or plane parameters (e.g. quantification, macroblock
type, etc.) and builds the “Video Object Plane” (VOP). Fi-
nally, in step (7), (8) (within DecodeSyntax), the parser
computes the video elements (QP, last, run, value) using
the VOL and VOP data. In step (9), it updates the pointer of
the bitstream position. The video elements are sent to the 10s
of the processor using an aRDAC specific instruction.

3.3. Software implementation of the syntax parsing

The syntax parser component reads bits from the bitstream,
realizes tests and sends compressed video data to the other
components of the video decoder. To read an arbitrary num-
ber of bits from a bitstream, an efficient method consists of
coding an optimized ShowNbits function that will be called
when necessary. The locations and numbers of bits (which
is set for each feature to extract) is defined in the standard.
Within the MPEG-4 video parsing software, the ShowNbits
function is called more than a thousand times [14] per se-
quence. Thus, performance of the parsing process depends
on the speed of this bit-extraction operation.

The hand-coded parser also uses a ShowNbits function to
extract N bits from an M-bit size word. The ShowNbits func-
tion requires three arguments: the bitstream, the location of
the first bit to read and the number of bits to read. Depending
on the processor design, two different algorithms are usually
processed. In big-endian architectures, see in Fig.3, the al-
gorithm first loads part of the bitstream into a register, next
left shift the word in register to remove unnecessary left bits,
then right shift the word to replace the word in the register
(and remove unnecessary right bits) and finally return the re-
sult. In little endian architectures, bit mask operations are also
necessary.

Our algorithm, presented in Fig.4, ensures the portability
of both architectures. It has the following behavior:



tab[x] tab[x+1] tab[x+2]
[o] 62 | 16 []

0. Store the bitstream in
data Memory

[Jo[t[1]x]x[x[x]x]o[o[o[o]1]o[o]o]o].]

1. Call of

‘1‘1|1|1 ‘1|1|1|0H0|0|0‘1|O|0‘0|0| ShowNbits(&bitstr loc, size)

[ < [1[]o][o]o[ - | 2 shiftleft and right

3. Return the result

pROnnoD

Fig. 3. Execution of the ShowNbits function on a big-endian
architecture.

1. the position of the bit (pos_bit) and the position in the
word (pos_char) are computed,

2. the data to extract are stored in a register so as to keep
only the required bits. The four-steps loading ensure
the portability between big-endian and little-endian ar-
chitecture,

3. unnecessary bits are masked (using binary and opera-
tions),

4. the N bits word is right shifted (depending on the loca-
tion and the size of the bits to extract),

5. the N bits word is returned.

static ulong showNbits (const unsigned char +const
RESTRICT tab,
const long position,
const int n) {
const int pos_bit position & 0x7 ;
const long pos_char = position >> 3;
unsigned long d;

d < (tab pos_char) 24 ;
d d | +(tab + pos_char 1) - 16;
d =d | +(tab + pos_char + 2) - 8;
d = d | *(tab + pos_char 3);
d d & Oxffffffff pos_bit;
d d (

)

32 pos_bit n) ;
(d) ;

Fig. 4. Algorithm of the ShowNbits function using 32-bit big-
endian architecture.

Although, the ShowNbits function is quite simple, it re-
quires several cycles to build the M bits size word, to shift
and to mask (if necessary) the bits. Hence, a specific instruc-
tion which processes these operations allows the performance
to be improved [4, 7].

4. SOFTWARE IMPLEMENTATION OF THE
SHOWBITS INSTRUCTION

To improve the performance, we added a showbits instruc-
tion into the core of the processor. This instruction loads the
data from the bitstream and processes the shifts operations in
a single cycle. We present in this section the modifications
realized on the ISA to add this specific instruction and the
optimizations realized on the software code of the ShowNbits
function. These optimizations aim to reduce the number of
cycles required to process the ShowNbits function.

4.1. Updating the aRDAC Instruction Set Architecture

We updated the the cross compilation tools (GCC and GDB)
to add the showbits instruction into the ISA. In this way, first
we patched the GCC-GDB definition files and then we rebuilt
the cross compilation tools. The ISA architecture requires the
use of two data registers and an operation code. The oper-
ation code defines the instruction for both the processor and
the compiler. It is composed of a code operation (i.e. a binary
label which identifies an instruction) and two arguments (i.e.
two input registers). We define the code operation as show-
bits, the first argument is the register, which contains the bit-
stream, and the second argument is the register that contains
the location and the size of the N bits word to extract.

4.2. Using the showbits instruction within the ShowNbits
function

The ShowNbits function can be used, either directly in the C
program, or in an assembler part of the program. We chose
to hand-write it in assembler to avoid the creation of useless
register initialization operations by GCC. As shown on Fig.5,
the updated ShowNbits function has the following behavior:

1. the required variables and registers are initialized (not
presented in the figure),

2. the default value of the fixed variables is loaded within
registers (e.g. $7, 8, etc.) (not presented in the figure),

3. the current location in the bitstream is computed (not
presented in the figure),

4. the location and the size are concatenated in a single
word which is stored in the first input register (the lo-
cation is 4-bits left shifted) (lines 13 to 24 and 29),

5. the required part of the stream is loaded from the data
memory and stored in the second input register (line
25),

6. the showbits dedicated instruction is called (line 36),

7. finally, the result of the showbits instruction is return
(line 40).



1

static __inline ulong showNbits (const unsigned

char xconst RESTRICT tab,
const long position,
const int n ) {

unsigned long

unsigned long

pos_char;
pos_size;

volatile ( "and, %0, 51"
: "=r" (pos_size)
: "r" (position), "O"

)i

(pos_size)

volatile( "add_%0, %1"
: "=r" (pos_char)
:o"p" (tab), "O" (pos_char)
)i
volatile ( "lsli_%0,#0x8"
: "=r" (pos_size)
2 "on (pos_size)
)i
volatile( "1d,_%0, (s1)"
: "=r" (pos_char)
: "p" (pos_char)
)i
volatile( "add_%0, %1"
: "=r" (pos_size)
: "p" (n), "O"(pos_size)
)i
volatile( "showbits %0, %1"
: "=r" (pos_char)
: """ (pos_size) , "O0" (pos_char)

)i
(pos_char);

Fig. 5. Part of the optimized ShowNbits function which use
the showbits instruction.

In addition to these optimizations, the code of the ShowN-
bits function is inlined by the compiler so as to avoid the loss
of cycles due to the function call overhead. This allows the
generated assembler code of the parser to be smaller and more
efficient.

5. HARDWARE IMPLEMENTATION OF THE
SHOWBITS INSTRUCTION

We present in this section two main points, first the hardware
implementation of the showbits instruction within the core of
the processor, then the optimizations realized on the proces-
sor (in particular on the memory architecture) to improve the
performance.

5.1. Overview of the “‘aRDAC” processor

The Parser is compiled to be processed on an embedded pro-
cessor. We chose a processor called “aRDAC” because it is a
soft-core optimized for embedded targets and has a core that
can be modified. It is based on a three stage pipeline Harvard

architecture with a CISC type instruction mode, but which op-
erates as a RISC-type processor. Precisely, we worked with
the 32-bits version of the aRDAC and we used the aRDAC
plug-in (GNU toolchain) for Eclipse IDE which uses GC-
C/GDB. The aRDAC is sold by Lead Tech Design' com-
pany.

The aRDAC processor is composed of eight main com-
ponents shown in Fig. 6. The data and program memories,
the memory controller, the ALU and the various registers are
usual components of processors. The 10 block manages the
inputs and outputs of the aRDAC and the transfer block en-
sures the transmission of the data between the registers and
the data memory.

ALU
Program CONTROL-
Memory LER l
Data REGISTERS
Wk MEMORY
ACCESS
10 TRANSFER
UART GPIO

Fig. 6. The aRDAC processor.

5.2. Hardware implementation of the showbits instruc-
tion

We added the showbits instruction into the core of the aR-
DAC. It is processed in a single cycle to preserve the RISC
architecture and the processing performance of one instruc-
tion per cycle (i.e. IMIPS/MHz). This instruction divides by
six the number of cycles required to execute the ShowNbits
function (see section 6). The showbits hardware processing
is introduced in Fig.7. The behavior of the instruction is pre-

Reg 2: Locatio

111010000ssssssssssss00001000100
/size

Regl: Stream
Registers
n

00000000000000000000000010011100

Load

b ShowBits ALU
$5SSS sssss ss00000000000000000000 register

Rsifth

Reg 3: result

< 00000000000000000000 ssssssssssss > Registers

Fig. 7. Execution of the showbits within the ALU.

sented below:

'Lead Tech Design : http://www.leadtechdesign.com/



1. the showbits instruction is decoded,

2. if necessary the registers used by the showbits instruc-
tion are initialized,

3. the location and the size of the N bits to extract from
the M-bits word are read from the register,

4. Part of the M-bits word is transfered from a global reg-
ister into a showbits register. The transfer is done ac-
cording to the location to keep only the required bits
(others are consequently removed),

5. the required N bits are right shifted,

6. the required N bits are transfered from the showbits
register into a result register.

As shown in Fig. 8, we modified the ALU to add the
showbits register and the showbits instruction operator. The
load from the data memory to the showbits register and the
use of a barrel-shifter allow this instruction to be executed in
a single cycle, while preserving performance of the processor.
The additional hardware cost is nearly null because we used
the existing barrel-shifter to process the shift operation, and
only add a new single internal register.

ALU+
Program CONTROL- Showbits
Memory LER l
Data REGISTERS —
LR MEMORY J
(unaligned) ACCESS
10 (unaligned) TRANSFER
UART GPIO

Fig. 8. The aRDAC-ASIP processor.

5.3. Hardware optimizations on the hardware aRDAC ar-
chitecture

We also updated the memory architecture to optimize the
hardware processing, especially when it is necessary to read
bits which are not aligned in the memory, in others words,
when the M-bits word is split between two consecutive mem-
ory addresses (e.g. address n and address n + 1) in the data
memory. In such a case, most of the processors need at least
two cycles to load a datum and to store it into a register. Dur-
ing the first cycle, the first part of the M-bits word is read
at the address n in the memory and stored into a register A.
Then, during the second cycle, the second part of the M-bits

word is read at the address n + 1 in the memory and stored
into the same A register with the correct location. The mem-
ory architecture of these processors is called “aligned”.

As introduced in Fig. 9, there are two kinds of memory
architectures: aligned and non-aligned. A memory built on

Data

Data
memory memory
0x01 x x x X 0x01 x < x
0x02 s s s 0x02 s s s
0x03 x x x X 0x03 x X X X
0x04 x x s s 0x04 x x s s
0x05/ s s x x 0x05 s s X X

&  Aligned access
&  Unaligned access

2 Aligned access
2 Unaligned access

Fig. 9. The two kind of memory architectures: “aligned” and
“non-aligned”.

an aligned architecture allows the access to be aligned only.
A memory access is aligned provided that data read from the
memory are 8%k bits long (e.g. 8 bits, 16 bits, 32 bits, etc.)
and data addresses are 1-byte aligned. If a non aligned access
is needed on an aligned architecture (e.g. the data starts at the
374 byte instead of the 4*" byte), then the memory manager
may read two 4-bytes word and store the required part of them
in a return register, or it may generate an alignment fault. On
the other hand, a memory built on a non-aligned architecture
allows the access to be aligned and non aligned.

Currently, most designs use aligned memory address for
their simplicity. It is then up to designers to optimize their
software code to avoid non-aligned memory access. On the
other hand, non-aligned memories offer flexibility and per-
formance but require a more complex hardware logic. The
complexity of the memory optimization explains that the use
of non-aligned memory architectures in processors are largely
patented [15,16]. We modified the memory architecture of the
aRDAC to perform non-aligned access. In this way, we up-
dated both the memory manager and the data memory so as
to have the following behavior (for load operations):

1. the address is decoded by the memory access block,

2. if an unaligned access is detected, the address is split
into a MSB and a LSB address,

3. these two addresses are sent to the memory,

4. the MSB and LSB data are read according to the MSB
and LSB address,

5. these data are masked and concatenated depending on
the address,

6. the result word is transfered to the result register.



The store operation has similar behavior except that it pro-
cesses a store operation instead of a load operation.

6. RESULTS

In this paper we focused on an MPEG-4 video decoder case
study but our method is available for other applications. The
video decoder was implemented in two parts: the Parser
compiled to be executed on the optimized processor and the
AC/DC and IDCT2D blocks were synthesized as hardware
IPs. Results presented are obtained using Modelsim simula-
tor and Xilinx synthesizer (on a Virtex4 - ML402 evaluation
platform).

6.1. Results on the ShowNbits function

We have first tested the Parser with two MPEG-4 videos (a
CIF and a QCIF resolution) on both the aRDAC and the ASIP.
The ASIP is the version of the aRDAC with the core mod-
ifications presented in this paper. Measurements which are
introduced in Fig.10 show that the number of cycles to pro-
cess the ShowNbits function is divided by almost six using the
ASIP. In fact, results show that 65 cycles are required for the
pure software solution and only 12 cycles for the optimized
software solution. The first call of the ShowNbits function
imposes the initialization of dedicated locals registers which
consume four additional cycles.

‘ M Software M asip
65
12 Cycles
Instructions Cycles (Soft) Cycles (asip)
Initialization 9 1
Stream loading 4 4
Location_Size word build 10 4
Showbits process 34 1
Data dependencies (10p) 6 2
Total 65 12

Fig. 10. Number of cycles required to process the ShowNbits
function, with and without the showbits specific instruction.

The pure software solution requires several shifting oper-
ations in addition to data processing (e.g. tfr, add, or, etc.)
which is why 65 cycles are needed to process the algorithm.
By contrast, the use of the showbits specific instruction dra-
matically reduces the number of shifting instructions (i.e. two
sift operations to build the pos_size word) and the number of
load instructions (i.e. a single instruction loads the bitstream
into a register).

6.2. Performance of the MPEG-4 codesign decoder

We then tested the MPEG-4 decoder with the parser compiled
for the ASIP and the AC/DC, IDCT2D implemented as IP on
the FPGA. The data transfers between the ASIP and the IPs
were made through FIFOs. Results presented on Fig. 11 show
an increase of 25% of the number of frames per second (FPS).

Design Operating FPS (CIF) FPS (QCIF)
frequency SANO000 Foreman
13 50

aRDAC 100MHz
aRDAC-ASIP 100MHz 17 63
aRDAC-ASIP 50MHz 8 30

Fig. 11. Performance of the codesign MPEG-4 video decoder.

The maximum operating frequency of the ASIP on this
FPGA is about 125MHz which allows about 20 FPS to be dis-
played. Moreover, both synthesis and simulation results point
out that the number of FPS increases linearly with the operat-
ing frequency which means that newest FPGA (e.g. Virtex-6)
allow displaying a real-time CIF video. Nowadays, in the
field on embedded processing, real time full HD videos (i.e.
1080p, 30 FPS) are still rarely supported because only full
hardware designs on ASICs are able to display such resolu-
tions. In fact, in order to display this resolution it is neces-
sary to compute about 62,208,000 pixels per second which is
equivalent to 16 pixels computed every nano-second. On the
other hand, real time HDTV video (i.e. 720p 30 FPS) is more
and more supported thanks to co-design architectures. On the
design presented in this paper and without optimizations, an
operative frequency of nearly 1.6GHz for the ASIP is neces-
sary to process a real-time video decoding (2,2GHz with the
general purpose ISA).

Finally, we use tools of ASIC creation to get the final
performance. Results show that the maximum operative fre-
quency for the aRDAC-ASIP is about 1GHz. This result is
interesting because our previous experiences with co-design
architectures [3] show that several optimizations allow per-
formance of the software to be improved. In this way, we
estimate that an operative frequency of nearly 1.2 GHz is nec-
essary to decode HDTV video with an optimized parsing al-
gorithm allowing quasi real-time video decoding. Moreover,
with a processor optimized for image processing (the aRDAC
is a general purpose processor) it may be possible to decode
HDTYV video at a frequency under 800 MHz.

7. CONCLUSION

This paper has presented a method to implement an MPEG-4
video decoder on a heterogeneous platform composed of an
ASIP and a FPGA. We have shown the interest of using a spe-
cific instruction for the parsing process and how we updated



the core (and the ISA) of the processor. We have also pre-
sented the modifications made on the memory architecture to
improve the performance of the design. Experimental results
show a 25% increase of FPS and a decrease of the logical use
(nearly 10%) for an additional hardware cost of the proces-
sor as almost null. The linear increase of the FPS number
with the clock frequency estimate shows that video can be
decoded in real time with newest FPGAs (up to a CIF resolu-
tion) or ASICs (HD resolution). Therefore, benefits in term of
performance compared to usual processor architectures and in
term of flexibility compared to full hardware architectures are
significant. What is more, processors are almost always used
in designs, if only to configure hardware IPs or to process
algorithms which do not require performance.

An interesting area for future research involves generating
both the hardware and the software code with dedicated in-
structions using the RVC framework. Another possible area is
the development and evaluation of a processor and a software
code fully customized for video processing to evaluate the
pros (area, performance, power efficiency) and cons (lack of
flexibility and portability, programming difficulties) of such a
core.

8. REFERENCES

[1] E. Pescador, M.J. Garrido, C. Sanz, E. Juarez, M.C. Ro-
driguez, and D. Samper, “A real-time H.264 MP de-
coder based on a DM642 DSP,” in Electronics, Cir-
cuits and Systems, 2007. ICECS 2007. 14th IEEE Inter-
national Conference on, 2007.

[2] R.C. Kordasiewicz and S. Shirani, “ASIC and
FPGA implementations of H.264 DCT and quantization
blocks,” in IEEE International Conference on Image
Processing, 20006, pp. III — 1020-3.

[3] Nicolas Siret, Ismail Sabry, Jean-Francois Nezan, and
Mickaél Raulet, “A codesign synthesis from an MPEG-
4 decoder dataflow description,” in Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Sym-
posium on. IEEE, 2010, pp. 1995-1998.

[4] Yedidya Hilewitz and Ruby B. Lee, “Fast bit gather, bit
scatter and bit permutation instructions for commodity
microprocessors,” J. Signal Process. Syst., vol. 53, pp.
145-169, November 2008.

[5] Mladen Berekovic, Hans-Joachim Stolberg, Mark B.
Kulaczewski, Peter Pirsch, Henning Modller, Holger
Runge, Johannes Kneip, and Benno Stabernack, “In-
struction Set Extensions for MPEG-4 Video,” The Jour-
nal of VLSI Signal Processing, vol. 23, pp. 27-49, 1999,
10.1023/A:1008188618930.

(6]

(8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

Hyo-Jin Kim, “Bit stream parsing apparatus for au-
dio decoder using normalizing and denormalizing barrel
shifters,” in Patent US 5986588, 1999.

Y. Hilewitz and R.B. Lee, “A new basis for shifters
in general-purpose processors for existing and advanced
bit manipulations,” Computers, IEEE Transactions on,
vol. 58, no. 8, pp. 1035 —-1048, Aug. 2009.

J. Kneip, S. Bauer, J. Vollmer, B. Schmale, P. Kuhn, and
M. Reissmann, “The MPEG-4 video coding standard-
a VLSI point of view,” in Signal Processing Systems,
1998. SIPS 98. 1998 IEEE Workshop on, 1998, pp. 43
-52.

Yung-Chi Chang, Rlao-Chieh Chang, and Liang-Gee
Chen, “Design and implementation of a bitstream pars-
ing coprocessor for MPEG-4 video system-on-chip so-
lution,” in VLSI Technology, Systems, and Applications,
2001. Proceedings of Technical Papers. 2001 Interna-
tional Symposium on, 2001, pp. 188 —191.

Marco Mattavelli, Ihab Amer, and Mickaél Raulet, “The
Reconfigurable Video Coding Standard [Standards in a
Nutshell],” Signal Processing Magazine, IEEE, vol. 27,
no. 3, pp. 159 —-167, May 2010.

Matthieu Wipliez, Ghislain Roquier, and Jean-Frangois
Nezan, “Software Code Generation for the RVC-CAL
Language,” Springer journal of Signal Processing Sys-
tems, 2009.

Jean-Francois Nezan, Mickaél Raulet, and Olivier
Déforges, “Integration of MPEG-4 Video Tools onto
Multi-DSP Architectures using AVSynDEx fast Proto-
typing Methodology,” in IEEE Workshop on Signal Pro-
cessing Systems. SIPS, 2002, pp. 207-212.

ISO/IEC 14496-2: 2004, “Information technology -
Coding of audio-visual objects - Part 2: Visual,” 2004.

Mladen Berekovic, Gerhard Meyer, Yong Guo, and Pe-
ter Pirsch, “Multimedia RISC core for efficient bit-
stream parsing and VLD,” in Multimedia Hardware Ar-
chitectures 1998, Sethuraman Panchanathan, Frans Si-
jstermans, and Subramania I. Sudharsanan, Eds. 1998,
vol. 3311, pp. 131-141, SPIE.

Timothy D. Anderson, Hoyle David, Donald E. Steiss,
and Steven D. Krueger, “Microprocessor with non-
aligned memory access,” in Patent US 6539467 BI,
2003.

Hoyle David, Joseph R. Zbiciak, and Jeremiah E. Gol-
ston, “Microprocessor with non-aligned scaled and un-
scaled addressing,” in Patent US 6539467 B, 2003.



