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Abstract

A decision support system designed to enhance human-machine interaction in trans-
portation scheduling is proposed. We aim to integrate human factors and ergonomics from
the beginning of the design phase and to propose a system fitted with enough flexibility to be
able to deal with the characteristics of a dynamic context such as transportation scheduling.
In this interdisciplinary approach, a link is done between problem solving methods (opera-
tions research techniques and data classification algorithms) and human-machine interaction
(solving control modes). A set of scheduler-oriented algorithms favouring human-machine
cooperation for problem solving is proposed. Some of these algorithms have been efficiently
tested on instances of the literature. Finally, an original framework aiming to assist scheduler
in constraint relaxation when the problem becomes infeasible is proposed and evaluated.

Keywords: Decision support system, vehicle routing problem, work domain analysis, control modes, user-oriented
algorithms, model inversion.

1 Introduction
Nowadays, many firms emphasize the need to support routing performance because of an in-
creasingly competitive environment. For this reason, routing problems have been a predominant
application area for decision support systems ever since they were first introduced, as evidenced
by bibliometric analyses (Eom and Lee, 1990; Eom et al., 1998; Eom and Kim, 2006). The
starting point for these support systems is usually to tackle the hard combinatorial problem
arising from the numerous constraints that have to be taken into account, then to allocate any
remaining components to the human planner. Sanderson noted back in 1989 that these support
tools are not especially dominant in practice, and very little has changed since then. Vehicle
routing is often performed by a single experienced individual or, more rarely, by a small group
of individuals (see Cegarra (2008)). In field studies, humans appear to be crucial for taking the
large set of constraints into account and adapting to changes in the domain (Sanderson, 1989;
Jackson et al., 2004). At the same time, the integration of transportation technologies (GPS,
EDI, GIS) is gradually changing the nature of these decision-making processes, in that vehicle
routing systems now combine human planners and technologies.

In this paper, we begin by discussing constraint processing and the importance of modelling
the work domain in order to assess planners’ constraint processing. After that, the work domain
analysis of the vehicle routing problem and the decision support system architecture is introduced
at the end of Section 2.

1



Typical support systems focus on supporting the “mechanical” process of generating the
schedule. Algorithms therefore function like a black box: the human has to provide the necessary
information and has to adapt the outcome if the route contains errors, but during the actual
generation process, s/he plays no role whatsoever. In Section 3 we present how to take into
account the cooperative aspects between human and computer, which are both participating in
the decision-making process.

Support needs above all to consider how human perform tasks and their performance. In the
last section a model inversion framework allowing to support the human in relaxing constraints
is presented.

2 Background
There have been a number of attempts to define the vehicle routing task structure on the basis
of hierarchical task analysis (Rahimi and Dessouky, 2001) and cognitive task analysis (Wong
and Blandford, 2002). However, when Cegarra and van Wezel (2010) compared the amount of
information produced by these two methods, as well as by work domain analysis, they found
that the latter was far more exhaustive in identifying constraints, not least because it provides
a generic view of constraints and does not focus on usual or known tasks.

Work domain analysis (WDA) was developed by Rasmussen and colleagues (Rasmussen et al.,
1994; Vicente, 1999). Instead of focusing directly on the tasks being considered by the decision-
maker, it looks at the constraints imposed on behaviour by the environment. For an interface
designer, this sometimes requires a change of point of view, as Vicente (2000) (p.63) pointed
out: “A task can be defined as the set of actions that can or should be performed by one
or more actors to achieve a particular goal. In contrast a work domain is the system being
controlled, independent of any particular worker, automation, event, task, goal, or interface”. As
previously stressed, for the purposes of assessing and supporting decision-making, completeness
in identifying domain constraints is highly desirable in a vehicle routing system.

WDA is usually performed using an abstraction hierarchy which depicts the constraint space.
The higher levels of the abstraction hierarchy describe functional information about the domain,
whereas the lower levels describe physical information. Moreover, WDA usually looks at five
levels of abstraction (Naikar et al., 2005): functional purposes, abstract functions, generalized
functions, physical functions, and physical forms. In addition to this breakdown into physical
and functional aspects, a part-whole distinction can also be made, taking several levels of details
into account: system, subsystem and components. However, this part-whole distinction is not
always made, as we will see below.

Initially, WDA was applied to “causal” systems guided by physical laws, as in nuclear power
stations (Itoh et al., 1995), conventional power stations (Burns, 2000) and cement milling plants
(van Paassen, 1995). In “causal” systems, the objective reality is imposed on the human opera-
tor (Vicente, 1999), as opposed to “intentional” systems, where the operator is the main agent
of the domain and there are fewer references to an external environment. This is the case of
routing problems, in which it is difficult to enumerate the domain constraints because they result
from conventions, organizational objectives, formal or informal rules and operators’ goal. Vicente
(1999) stressed that WDA should be performed independently of usual or known tasks, the aim
being to provide an exhaustive breakdown that is resistant to changes in the situation. To this
end, we sought to enhance the identification of domain constraints by extending the scope of the
domain. More specifically, instead of focusing on currently known or usual cases in one particular
situation (which inevitably leads to the inclusion of more details about the current situation),
we set out to identify constraints from different situations documented in the literature. Each
variant of the VRP would allow us to increase the completeness of the constraint space by con-
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sidering constraints that might potentially help to identify planners’ degrees of freedom. Our
search for VRPs in scientific databases yielded more than ten thousand articles. However, only
a few of them suggested genuinely new variants of the generic VRP (see Toth and Vigo (2001)).
Instead, researchers tended to develop algorithms to solve known variants or design algorithms
for multiple variants (e.g., Pisinger and Ropke (2007)).

In the main, the variants extend the domain by providing constraints related to a temporal
perspective, including customers’ time windows (VRPTW) and vehicles with limited capacity
(CVRP), and more complex variants, such as trucks and trailers (TTRP), pick-up and delivery
(VRPPD), or ones related to multiple depots (MDVRP), which are summarized in Table 1. As
previously indicated, the WDA abstraction hierarchy organizes the planners’ problem space in
terms of different concepts that planners can then use for reasoning within a work system. We
also consider that the classic five levels of the abstraction hierarchy are needed to describe the
constraint space. Figure 1 summarizes the VRP domain according to these different levels.
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Figure 1: Work domain analysis of the generic vehicle routing problem

Details of the entities corresponding at each abstraction level are presented in Gacias (2010).
The decomposition remains very generic according to studies and problem descriptions found
in the literature. Nevertheless, most of the vehicle routing problems are covered and only some
particular variants may required other components not considered on our analysis (see Gacias
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(2010) for a scope analysis).
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Figure 2: Decision support system architecture

A support system architecture aiming to cover some of the major issues concerning human-
machine cooperation is proposed. An important clue often pointed by researchers is the advisabil-
ity of sharing a unique reference system between the human and the machine. To this purpose,
the work domain analysis has been considered crucial in order to identify the information needed
to solve the problem. In our support system, as shown in Figure 2, the human and the solv-
ing mechanism manipulate both the same entities (physical objects and technical constraints)
identified in the analysis. The system is composed by a set of human-machine interfaces seeking
to efficiently assist the scheduler to solve problem tasks (see Gacias et al. (2010b) and Cegarra
et al. (2011) for a detailed description of these interfaces). The information displayed has been
identified in the work domain analysis. The idea is to connect these interfaces and the human-
system interaction tools to the user-oriented algorithms presented in the next sections in order
to favour human-machine cooperation for problem solving.
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Variant Name Description Objectives, constraints under
consideration

Real-life exam-
ple

VRP Vehicle
routing
problem

A set of vehicles is to be
routed from a single depot to
multiple customers.

The objective is to minimize the
number of vehicles and total travel
distance. Workload balancing some-
times appears as a secondary objec-
tive of the problem.

See more specific
cases below.

Customers-related variants
DVRP Dynamic

VRP
A VRP where a subset of
parameters of the problem
(new customers, etc.) evolve
in real time.

The objective is to minimize devia-
tions from the original schedule (sta-
bility criterion) and minimize total
travel distance and the number of ve-
hicles.

Travelling repair-
man, emergency
services, taxi-
cab services.
(e.g., Rahimi and
Dessouky (2001))

VRPTW VRP with
time win-
dows

A time window is associated
with each customer (the in-
terval at the depot is named
the scheduling horizon).

The objective is to minimize the size
of the vehicle fleet and of the to-
tal travel distance and waiting time
needed to supply all customers at the
required times.

Waste collection
(e.g., Kim et al.
(2006)).

VRPPD VRP with
pick-up
and deliv-
ery

The demands of the cus-
tomers are indifferently pick-
ups or deliveries. Some vari-
ants of the problem are:

• Simultaneous PD:
pick-up and delivery
for each customer
must be carried out
simultaneously.

• Mixed PD: customers
either have a pick-up
or a delivery demand.

The objective is to minimize the size
of the vehicle fleet and total travel
distance, with the restriction that
the vehicle must have sufficient ca-
pacity for transporting the commodi-
ties to be delivered and those picked
up from customers and taken back to
the depot. One of the most widely
used strategies for solving the prob-
lem is delivery first and pick-up sec-
ond.

Beverage in-
dustry (where
filled bottles are
delivered while
the empty ones
are collected),
on-demand trans-
portation (in
reality, customer
time windows are
also considered).

ARP Arc routing
problem

The customers’ demands are
on arcs.

The objective is to minimize the
number of vehicles and total travel
distance.

Trash collection
(e.g., Santos et al.
(2008))

Vehicle-related variants
CVRP Capacitated

VRP
The vehicles are identical
and based at a single depot,
and only the capacity restric-
tions for the vehicles are im-
posed.

The objective is to minimize the
number of vehicles and total travel
distance, with the restriction that ve-
hicle capacity must be respected.

Milk collection
from supplier
farms (e.g., Bas-
net et al. (1996)).

DVRP Distance-
constrained
VRP

The length (or duration or
cost or number of customers)
of each vehicle’s route is
bounded by a prescribed
amount.

The objective is to minimize the size
of the vehicle fleet and total travel
distance.

The travelling au-
ditor (e.g., Men-
doza et al. (2009))

HVRP Hetero-
geneous
fleet VRP

There exist a number of het-
erogeneous vehicle types (ca-
pacity, fixed cost, variable
travel cost).

The objective is to minimize the to-
tal cost of the routes. The best vehi-
cle fleet composition has to be deter-
mined.

Feed com-
pound delivery
(e.g., Ruiz et al.
(2004)).

TTRP Truck and
trailer RP

The fleet is made up of
trucks and trailers. Some
customers can only be served
by a single truck but oth-
ers can be served either by
a single truck or by a truck
pulling a trailer.

The objective is to minimize the total
distance travelled, or the total cost
incurred by the fleet. The truck’s un-
coupling and re-coupling of its trailer
is authorized in some locations.

Depot-related variants
MDVRP Multiple

depot VRP
If the customers are clus-
tered around depots, then
the distribution problem
should be modelled as a set
of independent VRPs. How-
ever, if the customers and
the depots are intermingled,
then a multi-depot VRP
should be solved.

The objective is to minimize the size
of the vehicle fleet and total travel
time, and the total demand of com-
modities must be met from several
depots.

Gas and oil sta-
tion delivery,
ready-mixed con-
crete distribution
(e.g., Matsatsinis
(2004)).

Table 1: Variants of the vehicle routing problem
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3 Decision support system algorithms
The algorithms integrated in the solving mechanism are presented in this section. The section
starts with a formal description of the vehicle routing problem and of the problem constraints.
The control modes for problem solving are then presented. Finally, we describe the proposed
algorithms.

3.1 Formal problem statement
The vehicle routing problem has already been formally defined (see for example Toth and Vigo
(2001) for a collection of linear programs proposed in the literature for different variants of
the problem). Our problem is the vehicle routing problem taking into account the constraints
identified during the work domain analysis (see Section 2).

A set {Ci}i=1..nc of customers has to be served by a set {Vj}j=1..nv of vehicles. A vehicle
starts its route from a depot in {Det}t=1..nde and ends at the same depot. To each vehicle is
assigned a driver in {Dl}l=1..ndr. Each customer demands an amount dki for each product in
{Pk}k=1..np and a time service tsi.

We describe here some characteristics of problem constraints. First, the customer demands
can be indifferently deliveries (dki > 0) or pick-ups (dki < 0). Second, each vehicle j is capacity
constrained: a maximal weight capacity (Cw

j ), a maximal volume capacity (Cv
j ) and a maximal

authorized length (Cl
j). As the same way, each product k is defined by a weight (Pw

k ), a volume
(P v

k ) and a length (P l
k).

Let us define the variable xji to indicate if a customer i is served by the vehicle j.

xji =

{
1 if customer i is served by vehicle j
0 otherwise

Two different sets of constraints can be then defined, one for the deliveries the other one for
the pick-ups (depending on the sign of the demand), as follows:

nc∑
i

np∑
k

xji × |d
k
i | × Pw

k ≤ Cw
j ∀ j = 1..nv

nc∑
i

np∑
k

xji × |d
k
i | × P v

k ≤ Cv
j ∀ j = 1..nv (1)

max
i

(xji × P
l
k) ≤ Cl

j ∀ j = 1..nv

For each vehicle/route a limit for travelled distance (V D
j ), time (V T

j ), and for the number
of customers (V C

j ) may also be defined. Let us define Rj as the route of vehicle j, D(Rj) and
T (Rj) are the travelled distance and the duration of Rj , respectively. The following new set of
constraints is then defined:

D(Rj) ≤ V D
j ∀ j = 1..nv

T (Rj) ≤ V T
j ∀ j = 1..nv (2)

nc∑
i

xji ≤ V
C
j ∀ j = 1..nv

Then, time windows (TWCi = [ri, di]) are considered for each customer. Each customer has
to be served inside the interval of its time windows. Besides, depot time windows (TWDet =
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(a) User interface for objects information (b) User interface for physical objects constraints

Figure 3: User interfaces for problem modelling. The scheduler specifies the problem com-
ponents identified by the work domain analysis: physical objects (vehicles, drivers, goods, depot,
and customers), their appearance characteristics (capacity availability and capacity required),
their location characteristics (routing network), the temporal constraints (driver and customer
time windows and customer service times), and the problem constraints between the objects (al-
location and precedence constraints).

[rt, dt]) and driver (TWDrl = [rl, dl]) time windows are also considered. The vehicle departures
and arrivals have to take place inside depot time windows. Drivers cannot work outside their
time windows. Precedence and immediate precedence constraints between customers can be also
defined. If customer i precedes customer i′ (i ≺ i′), customer i has to be served before customer
i′, and if customer i immediately precedes customer i′, customer i′ has to be served immediately
after customer i by the same vehicle. Finally, allocation constraints between physical objects
(depot-vehicle, customer vehicle, product-vehicle, etc.) are also considered.

Two different interfaces are proposed for problem modelling (see Figure 3). These interfaces
are designed from the physical levels (purpose-related functions, physical functions, and physical
objects) of the abstraction hierarchy.

3.2 User-oriented algorithms: control modes
The role of the human in problem solving has traditionally been a conflict issue between op-
erations research and human factors researchers. Indeed, the latest claimed the advisability of
give scheduler a more important role on problem solving process. Function allocation to humans
and algorithms in planning and scheduling has been recently raised in van Wezel et al. (2010).
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The authors propose principles for function allocation based on the analysis of problem subtasks,
human capabilities, and the characteristics of the available algorithms to solve the problem.

In that context, a solving mechanism with different control modes to perform the problem
tasks is proposed. Problem solving has been divided into three subtasks: vehicle selection, cus-
tomer allocation, and route selection. This task division is justified in Gacias (2010) after the
interview of two different companies transportation planners. In van Wezel et al. (2010), the
authors propose five control modes: manual, advisory, interactive, supervisory, and automatic.
The control mode specifies the degree of user participation in problem solving process. In the
manual control mode, all decisions are made by the human (none algorithmic assistance is pro-
vided). In the advisory control mode, human makes the decisions and an algorithm checks the
decisions feasibility. In the interacting control mode, the decision-making process is shared be-
tween the human and the algorithms. In the supervisory control, the algorithm is first executed,
then necessarily informs the user, deciding to accept or reject the algorithm decisions. Finally,
in the automatic control mode, the decisions are completely made by the algorithm (the user is
then completely out of the decision-making process).

For problem solving, we think that problem tasks require both scheduler and algorithms
participation. Indeed, the complex nature of problem constraints, some of them cannot even
be considered on problem modelling phase, demands scheduler participation in order to ensure
their satisfaction. On the other hand, problem complexity and the huge amount of computing
requirements demands the articulation of transportation technologies (GPS, EDI, GIS) with ef-
ficient algorithms in order to obtain satisfactory solutions in a reasonable time. In a real-life
context, the full-manual control mode is unreasonable in front of too many items to manage.
Indeed, it involves exceeding the cognitive capacities of humans, especially for decision-making
under stress. Moreover, a dynamic environment implies painful re-computing. On the other
hand, the consideration of the automatic control mode falls out of the scope of our paper focus-
ing on user-oriented algorithms. In that context, we propose a three-phase solving mechanism
with different control modes (advisory, interactive, and supervisory) facilitating scheduler partic-
ipation in decision-making process and integrating efficient algorithms for problem solving and
constraint satisfaction.

3.2.1 Vehicle selection algorithms

The goal of vehicle selection algorithms is to assist scheduler to select the vehicles serving cus-
tomers. Let us define yj as the variable to define if a vehicle j is used to serve customers.

yj =

{
1 if vehicle j is used to serve customers
0 otherwise

Advisory control mode: user solution checking
The advisory control mode consists in a user solution checking. It verifies whether a solution
proposed by the user is a feasible solution. To this purpose, global capacity constraints (weight,
volume, and length) are first verified (Equations 3, 4, and 5). Then, allocation constraints
involving vehicles such as vehicle-customer or vehicle-product are checked in order to ensure the
presence of a given class of vehicle necessary to satisfy customer demands. Finally, the number

of vehicles proposed by the user to serve customers (
nv∑
1
yj) is compared with a lower bound of

minimal number of vehicles required to solve the problem (LBnv). The lower bound is computed
from different problem information. Customer and depot time windows and route constraints
such as maximal route time, distance or number of customers are therefore considered to compute
LBnv. Further details about lower bound computation are described in Gacias (2010).
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nc∑
i=1

np∑
k=1

dki × P
p
k ≤

nv∑
j=1

yj × Cp
j (3)

nc∑
i=1

np∑
k=1

dki × P v
k ≤

nv∑
j=1

yj × Cv
j (4)

max
i,dk

i
6= 0

(P l
k) ≤ max

yj>0
(Cl

j) (5)

If capacity and allocation constraints are satisfied and the number of vehicles proposed by
the user is greater than LBnv, the solution is then accepted. If it is not the case, a constraint
relaxation assistance based on model inversion techniques is proposed to the scheduler (see Sec-
tion 4).

Supervisory and interactive control mode: vehicle number minimization
Both control modes focus on vehicle number minimization. In that context, several solutions
satisfying capacity and allocation constraints and minimizing the number of vehicles are proposed
to the scheduler. Besides, the lower bound LBnv has to be also respected by these solutions.

The problem can be defined as a linear program as follows:

min

nv∑
j=1

yj (6)

subject to
nc∑
i=1

np∑
k=1

dki × Pw
k ≤

nv∑
j=1

yj × Cw
j (7)

nc∑
i=1

np∑
k=1

dki × P v
k ≤

nv∑
j=1

yj × Cv
j (8)

nv∑
j

yj ≥ LBnv (9)

yj ∈ {0, 1} (10)

An exact and polynomial algorithm to solve the problem when either one of the capacity
constraints (weight or volume) are relaxed is proposed. Algorithm 1 illustrates volume constraint
relaxation. First, a solution satisfying the weight constraint and minimizing the number of
vehicles is proposed. Then, the satisfaction of the lower bound is checked. The algorithm starts
selecting the vehicle with the biggest capacity among the available vehicles except for the last
vehicle (when the sum of vehicle capacities is enough to satisfy the constraint) where the vehicle
with the smallest capacity satisfying the constraint is selected.

No polynomial algorithm exists when all constraints (weight and volume constraints) have to
be considered. Actually, the problem is known to be NP-hard (Garey and Johnson, 1979). In
that case, the idea is to solve both relaxations separately in order to find a solution satisfying all
capacity constraints. Note that when no feasible solution is found after solving both relaxations
(on volume and weight constraints) using Algorithm 1, the integer linear problem (6–10) has
then to be solved.

Finally, a list of interesting solutions with a minimal number of vehicles is proposed to the
scheduler. This set of feasible solutions are found by trying to replace in the solution each
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Algorithm 1: Number of vehicles minimization

Step 1: Compute the weight to transport, weight←
nc∑
i

np∑
k

dki × Pw
k

if capacity weight is bigger than weight to transport,
nv∑
j

Cw
j ≥ weight, then

while (weight > 0) do
Step 2: Select the vehicle Vs with a maximal weight capacity
if Cw

Vs
< weight then

Step 3: Add vehicle Vs to the solution
else

Step 4: Select vehicle Vs with a minimal weight capacity but greater than
weight
Step 5: Add vehicle Vs to the solution

Step 6: Update the weight, weight← weight− Cw
Vs

else
Not feasible problem

if number of vehicles of the solution is less than BInv then
Step 7: Select a vehicle Vs
Step 8: Add vehicle Vs to the solution

vehicle of the original solution by a new vehicle with smaller capacity. Of course, the solution
after replacing vehicles has to satisfy the capacity constraints of the problem. The list of solutions
proposed is not a complete enumeration; still, a list of interesting solutions is provided to the
planner.

The interactive control mode follows the same principle. The vehicle number minimization
begins instead from a partial solution proposed by the scheduler. The algorithms propose a set
of solutions taking into account the decisions already made by the scheduler.

Again, in case of infeasibility because not enough vehicles are available to satisfy the problem
constraints, a constraint relaxation assistance is then proposed (see Section 4).

3.2.2 Customer allocation algorithms

The goal here is to determine for each customer of the problem an allocation on a vehicle. The
system offers the possibility to manually allocate the customers to vehicles (advisory control
mode); in this case the feasibility of each decision is checked by an algorithm. An algorithm
for customer allocation is also integrated in solving mechanism. The goal of the algorithm is
to propose a complete solution for supervisory control mode and to complete a partial solution
proposed by the scheduler for interactive control mode.

Advisory control mode: scheduler decision checking
An algorithm checking allocation feasibility is proposed. The idea is to verify after each allocation
decision that it exists a feasible solution. The algorithm is divided in two parts: a constraint
satisfaction checking and a feasible solution searching. A feasibility test using energetic rea-
soning (Lopez and Esquirol, 1996) principles is proposed for the first part. In a scheduling
context, Gacias et al. (2010a) have proposed an algorithm integrating setup times in the feasi-
bility test. Indeed, travel times between customers in vehicle routing problem can be seen as
sequence-dependent setup times. A limited discrepancy search (LDS) algorithm (Harvey and
Ginsberg, 1995) is used to find a feasible solution. If no solution is found, the scheduler has to
backtrack to her/his previous choices or has to modify her/his last decision. Further details of
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the algorithm are described in Gacias (2010).

Supervisory and interactive control mode: customer allocation algorithm
In the supervisory control mode, a complete solution is proposed by the system. The scheduler
can however modify the decisions of the algorithm. The sweep algorithm (Gillet and Miller,
1974) principle is used for customer allocation. First, customers that have to be allocated to a
specific vehicle because of allocation constraints are allocated. Then, each customer (selected
from the sweep algorithm order) is allocated on the non-empty vehicle with the smallest mean
distance between the customer and the already allocated customers. If there is not a not-empty
available vehicle to allocate a customer, then the customer is allocated to a new vehicle.

The interactive control mode uses the same algorithm to complete a solution partially pro-
posed by the scheduler. The scheduler specifies here the allocation for some of the customers
and the algorithm ends the customer allocation from the partial solution.

3.2.3 Route selection algorithms

The goal of route selection is to determine for each route a sequence of customers. Besides the
control modes proposed here to solve the problem, the system also integrates several algorithms
for solution optimization.

Figure 4 shows the proposed user interfaces for route selection.

Figure 4: User interfaces for route selection. One of the interfaces is a geographical repre-
sentation allowing the scheduler to visualize routes on a map and displaying relevant information
about the problem constraints. User interaction tools are also available facilitating the scheduler
participation on problem solving.
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Advisory control mode: scheduler decision checking
The scheduler can manually propose a sequence for each vehicle through the human-machine
interaction tools. Once again, an algorithm tests the feasibility of the scheduler decisions. First,
different dominance rules are tested to verify that the proposed sequence is not inconsistent.
After that, if the sequence is correct, a tree search algorithm based on limited discrepancy search
is launched to find a feasible sequence with all the customers allocated to the vehicle respecting
the subsequence proposed by the scheduler. If no solution is found, the scheduler has to backtrack
to her/his previous choices or has to modify her/his last decision.

Supervisory and interactive control mode: customer allocation algorithm
The idea here is to propose a feasible complete solution for the problem. To this purpose,
different algorithms are proposed: the first algorithm is based on classical customer insertion
techniques traditionally used in the literature and the other two algorithms are proposed for
solution optimization. The goal is to propose first a feasible solution with the first algorithm
(a solution with a structure respecting schedulers’ criteria). The scheduler may then use the
optimization algorithms to try to improve the quality of the solution. The use of metaheuristics
and constraint programming has already been proposed efficiently to solve the vehicle routing
problem (Pesant and Gendreau, 1999; Caseau et al., 1999; Backer et al., 2000).

Once customer allocation is performed, the algorithm uses the principle of savings and regrets
algorithms proposed by Clarke and Wright (1964) and Liu and Shen (1999), respectively. Each
customer is inserted in the position of the sequence that minimizes route length. If a customer
cannot be inserted in a sequence, a tree search based on LDS is launched in order to find a
feasible sequence. The drawback of the savings algorithm is to find a feasible solution when the
problem is over-constrained (Kilby et al., 2000). It is worth remarking the importance of having
an efficient insertion algorithm, thus each time a customer cannot be inserted, a feasible sequence
has to be found and the tree search may be time consuming. We then propose to integrate in
the algorithm the regrets criterion favouring first the sequence of the most conflicting customers.
The proposed algorithm then sequences the customer following the savings criterion except when
it exists a customer with only two or less feasible positions into the sequence; in that case the
conflicting customer is sequenced first.

Two solutions optimization algorithms are also proposed. The goal of one of them is to inde-
pendently optimize the routes of the solution. The second algorithm is a local search algorithm
for complete solution optimization. The execution time for each algorithm is specified by the
scheduler.

The first algorithm is a Climbing Discrepancy Search (local search method using a limited
discrepancy search for neighbourhood exploration)(Milano and Roli, 2002). The goal of the
algorithm is to optimize the customer sequence for one route. Customer allocation cannot be
therefore modified during the optimization process. The main advantage of the approach is that
problem solution may be improved by optimizing only some routes and keeping the same structure
for the remaining part. Indeed, in the process of solving problem the scheduler may define a
solution structure according to her/his criteria; it is then advisable to propose optimization
algorithms disturbing as less as possible the solution structure.

The second algorithm for problem solution optimization is described in Algorithm 2. The
idea is to integrate the algorithm for route optimization in a classical local search scheme. For
each iteration, a customer reallocation based on geographical criteria is first proposed and then
the modified routes are optimized using the CDS algorithm. We define now the reallocation
operators used in the algorithm. We find some interesting operators in the literature such as the
Relocation and the Exchange proposed by Savelsbergh (1992) or the CROSS-exchange defined
by Taillard et al. (1997). Our goal is to find as soon as possible the best customer allocations.
The idea is to focus on geographical criteria to define our neighbourhoods. The first operator
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uses the distance between the customers and the gravity centre of the routes to define the new
allocations. The distance between a customer and the gravity centre of its route is compared
with the distance between the customer and the centroid of the rest of routes. The idea is to
determine the customers (Ci) nearer of the centroid of another route (GRj

) than its own route
centroid (GRq

). If it is the case, the customer Ci is then selected to be allocated to route Rj . The
second operator compares for each customer the distance between the customer and the other
customers of the problem with the distance between the customer and its own route centroid. If
it exists a customer Ci of route Rq nearest of the customer Ci′ of route Rj than its own route
centroid GRq

, the customer Ci is then selected to be allocated to route Rj . Each new allocation
can be defined as {Ci, Rq, Rj}, where Ci specifies the customer that will be reallocated from
route Rq to route Rj . We propose then to explore the next neighbourhoods:

• (1) Each new reallocation. The neighbourhood consists in allocating customer Ci on the
vehicle of the route Rj .

• (2) Each allocation exchange between two customers. If it exists an allocation defined as
{Ci, Rq, Rj} and another allocation with this form {Ci′ , Rj , Rq}, then allocations of both
customers are modified at the same time. The customer Ci is allocated to the vehicle of
route Rj and the customer Ci′ is allocated to the vehicle of route Rq.

It is worth to note our neighbourhoods are sub-neighbourhoods of Relocation and Exchange
operators proposed by (Savelsbergh, 1992).

Algorithm 2: Solution optimization algorithm
Step 1: An initial solution Sol is proposed by scheduler or solving mechanism algorithms
foreach route of Sol do

Step 2: Optimize routes independently using the CDS algorithm (authorised
discrepancies are limited)
if a better solution BetterSol is found then

Step 3: Update the solution, Sol← BetterSol

while execution time defined by the scheduler is not achieved do
Step 4: Determine all reallocations {Ci, Rq, Rj} defined for each operator
foreach new reallocation defined by neighbourhood (1) and(2) do

Step 5: Optimize route Rq using the CDS algorithm
Step 6: Optimize route Rj using the CDS algorithm
if a better solution BetterSol is found then

Step 7: Update solution and go back to Step 4,
Sol← BetterSol

3.3 Computational results
The efficiency of the solution optimization algorithm (Algorithm 2) is evaluated here. The
algorithm was coded in C++ and run on a 2.8 GHz personal computer with 3.8 Go of RAM
under the Linux Debian operating system (Version 5.0.7). The algorithm was tested for the
well-known instances of the literature (25, 50, and 100 customers) proposed by Solomon (1983)
for the VRPTW.

Table 2 shows the results of the comparison between our algorithm (called LS+CDS) and
the best-known solutions for distance minimization. The best-known solutions are the optimal
solutions for most of the small instances (25 and 50 customers). Computation time is limited
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to 120 seconds for small instances (25 and 50 customers) and it is increased to 300 seconds
for the instances with 100 customers. The first column NV specifies the average number of
vehicles, DIST defines the average travelled distance, MeanDev is the mean deviation to the
best-known solutions, NBest is the number of instances where our algorithm reaches the best-
known solution and finally TimeBest indicates the average time to find the best solution.

Best-Known LS+CDS
Instances NV DIST NV DIST MeanDev NBest TimeBest
C1-25 3 190.59 3 190.59 0.00 % 9 (9) 0.56
R1-25 4.92 463.37 5 474.58 3.70 % 4 (12) 0.58
RC1-25 3.25 350.24 3.25 354.99 9.24 % 7 (8) 0.15
C1-50 5 361.69 5 361.69 0.00 % 9 (9) 15.38
R1-50 7.75 766.13 8.5 805.2 5.24 % 0 (12) 15.03
RC1-50 6.5 730.31 6.87 768.86 7.19 % 3 (8) 2.21
C1-100 10 826.7 10 873.98 7.36 % 4 (9) 49.56
R1-100 13.25 1173.61 14.50 1305.32 11.87 % 0 (12) 184.10
RC1-100 11.12 1341.33 13.37 1410.14 5.39 % 0 (8) 42.67

Table 2: Comparison of solution optimization algorithm with the best-known results

These results show that the algorithm is very efficient for small-size instances. Indeed, in
most cases good or even optimal solutions are reached very quickly for the instances with 25
and 50 customers. Besides, the mean deviation with the best-known solutions is also accept-
able for all instances. It is clear that the performance of the algorithm decreases with instances
size. However, the goal of the algorithm is to propose a good performance to optimize a given
solution (sometimes defined by the scheduler). Our algorithm is then hardly dependent of the
initial solution contrarily to the most efficient metaheuristics of the literature. Anyway, it is
always interesting for robustness to keep as much as possible the structure of the initial solution,
specially if the scheduler participates in the design of the solution.

4 Model inversion: A new approach for constraint relax-
ation

One of the weak aspects of decision support systems is the lack of mechanisms proposed to deal
with infeasible problems. Obviously, an infeasible problem is unsolvable, that means it does
not exist a solution satisfying all the problem constraints. It is then necessary to relax some
constraints in order to find a solution. It is important to stress the advisability of involving
the scheduler in constraints relaxation process. Indeed, in planning and scheduling context, the
scheduler has a wide knowledge of problem constraints and, more importantly, s/he also has the
ability to negotiate constraints relaxation with other problem actors (customers, drivers, etc.).
In the literature few approaches have been proposed to deal with infeasible problems. On the one
hand, human-machine interaction experts propose to focus the research on the way the problem
constraints are presented in order to facilitate constraint relaxation process to the scheduler (Hig-
gins, 1996, 2001). On the other hand, Jussien (2001) proposes, in a fully automated context,
algorithmic mechanisms based on the concept of “explanation” to determine the constraints to
relax to get a feasible problem.

In the next section, an original framework is proposed aiming to support scheduler by offering
a list of interesting possibilities for constraint relaxation making the problem feasible.
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4.1 Model inversion principles
The study is focused on how to manage constraint relaxation when the problem is not satisfiable.
The idea is to propose model inversion mechanisms in order to identify the constraints to relax
and how these constraints have to be modified. The model inversion consists in the exchange
of roles between the decision variables and the problem fixed parameters. In model inversion,
decision variables become parameters restricting decision space and parameters become decision
variables that can be used to deduce inferences. The main idea is then to determine how problem
parameters have to be relaxed in order to get a feasible problem.

Figure 5 shows the proposed user interface for vehicle selection implementing model inversion
mechanisms.

Figure 5: Model inversion user interface for vehicle selection. The scheduler selects
the family of parameters authorised to be modified for constraint relaxation when the problem is
infeasible (in that case, the weight-capacity constraint is violated).

The first step for model inversion development is the identification of the parameters integrat-
ing the constraints. Once the parameters have been identified, it is then necessary to propose
a model inversion mechanism adapted to each parameter for each problem constraint. These
mechanisms are launched after a constraint is violated (see Figure 5). First, it is necessary
to determine the parameters susceptible to be relaxed. Indeed, there always exist parameters
having a more important influence on the violated constraint. In a second phase, an algorithm
computes how the parameters have to be relaxed in order to satisfy the violated constraint.

We stress that the complicated part of model inversion framework are the design of efficient
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algorithms to deal with a set of parameters. For instance, it is sometimes difficult to select
between a set of customers which one has to be postponed for another day or to decide the
customer which its forecasted service time has to be modified in order to get a feasible solution.
In that context, model inversion techniques based on data classification methods in order to
determine the most suitable constraints to relax in priority are proposed. However, these generic
algorithms need to be adapted to each problem constraint to increase their efficiency.

4.2 Data classification based algorithms
In this section, the generic data classification methods with different constraint adapted criteria
used to propose to the scheduler a list of options for constraint relaxation are described.

Data analysis offers a set of methods designed to structure data information in order to iden-
tify connections between individuals. The goal of data classification methods is to propose sets
of homogeneous individuals. A similarity measure is often used to group individuals. The goal
of the measure is to quantify the similarity between two individuals. The groups of individuals
are then proposed trying to maximize the similarity between the individuals.

Two data classification methods to group the customers following a geographical and a tem-
poral criterion are considered. When a constraint is violated, an analysis of the groups of clients
in order to determine the most suitable constraints to relax is proposed. However, we remark
that these methods can be easily extended to other relevant properties of individuals, in our case
the customers, in order to adapt the algorithms to each problem constraint.

4.2.1 Geographical criterion

We propose the k-means algorithm (Forgy, 1965; Lloyd, 1982) to group customers following a
geographical criterion. The k-means algorithm is used to group the nc customers into K clusters
(P = P1 ∪ P2 ∪ . . .∪ PK) as homogeneous as possible in relation to a similarity measure defined
for each couple of customers. In the context of a geographical criterion, the customer location is
selected as similarity criterion. The properties defining customers are then their location (xi, yi).
The number of clusters is the number of vehicles of the solution. Thus each cluster may be seen
as a route.

The similarity measure is then the distance between the customers:

dij =
√

(xi − xj)2 + (yi − yj)2 (11)

The k-means algorithm is an iterative algorithm (see Algorithm 3). First, the K means are
created. The initial means are uniformly spread along the longest axis of the problem taking the
centroid of the customers as the centre point. Then, at each iteration the distance between the
customers and the means is computed. Each customer is allocated to the cluster with the nearest
mean. Finally, the K means are updated as the centroid of the new clusters. The algorithm
stops when no more changes between the clusters of two successive iterations are observed.

Algorithm 3: k-means algorithm for geographical customer classification
Step 1: Select a set of K means
repeat

Step 2: Compute distances between each customer and the means (Equation 11)
Step 3: Allocate each customer to the cluster with the nearest mean
Step 4: Update the means of each cluster Pk

until no changes are observed between the clusters of two successive iterations;

Once the sets of customers are performed, an analysis of the clusters in order to determine the
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best constraints to relax is performed. This analysis has however to be adapted to the constraint
being violated.

Case study: Postpone a customer delivery
We study here the case when a customer delivery has to be postponed because the problem
constraints cannot be satisfied. In the geographical criterion context, the customers being part
of the same cluster have a high probability to be served by the same vehicle. In that case,
a parameter allowing to identify the less homogeneous customers for the clusters is proposed.
This parameter (dmi) is calculated using the mean distance between the customer and the other
customers of its cluster and the distance between the customer and the nearest depot in order
to penalize the customers not located close of the depots.

dmi =

min
l∈Depot

dil +
∑

j∈ Pk

dij

|Pk|
(12)

The customer can be then classed according to this parameter. A priority list of customers
to postpone based on geographical information can be proposed to the scheduler .

4.2.2 Temporal criterion

A temporal-based customer classification is also proposed. In that case, the clustering approach
uses the Dynamic Cluster Algorithm (DCA) introduced by Diday (1971). DCA is an extension
of k-means algorithm. The similarities here can no longer be shown as an Euclidean distance; an
allocation function (a dissimilarity measure) and also a new way to represent the clusters (the
centroid does not exist anymore) need to be defined. A dissimilarity measure based on customer
time windows (Levy, 1996) is proposed. The parameter measures the degree of centring between
two time windows. Figure 6 displays the main relations between two time windows and the value
of the dissimilarity measure (δ) for each configuration.

10

enclosed not−enclosedcentered disconnectedadjoined

i

δ(i, j)

−min(dj − ri, di − rj)di − rjdi − rjdi − rj

dj − ridj − ri dj − ri

i i i i

j j j j j

Figure 6: Main configurations between two time windows

The dissimilarity measure is defined as follows:

δ(i, j) =



1− min(dj−ri,di−rj)
max(dj−ri,di−rj)

if min(di, dj) ≥ max(ri, rj),

1− min(dj−ri,di−rj)

1
n

n∑
i=1

(di−ri)
otherwise.
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An allocation and a representation function are also necessary. The core of a cluster Pk

is the customer Ck, which its release date rk is the nearest to the middle of the time interval
[min
j∈Pk

rj ,max
j∈Pk

rj ]. At each iteration, a customer Ci is allocated to the cluster Pk with a core

Ck minimizing δ. The algorithm is very similar to k-means algorithm (Algorithm 3); at each
iteration the distances between the customer and the core of the K clusters (δ(Ck, Ci),∀ k = 1..K)
are computed for each customer, each customer is then allocated to the cluster with a minimal
distance (minimize δ) and finally the core of the new clusters are updated.

To initialize the cores, Algorithm 4 is proposed. The cores are uniformly distributed all along
the release times scale.

Algorithm 4: Core initialisation for temporal-based classification
Step 1: Compute temporal horizon TH, TH ← max

i=1..nc
ri − min

i=1..nc
ri

Step 2: Compute step, step← TH
K

Step 3: Compute rough time for first core, t1 ← min
i=1..nc

ri +
step
2

Step 4: Determine the core of the first cluster C1, C1 ← customer i with ri nearest to t1
Step 5: Initialise cluster counter, k ← 2
for (k ≤ K) do

Step 6: Compute rough time for cluster k, tk ← tk + step
Step 7: Determine the core of cluster k, Ck ← customer i with ri nearest to tk and the
customer is not already a core of a cluster
Step 8: Increase cluster counter, k ← k + 1

Case study: Postpone a customer delivery
The dissimilarity measure groups together customers with time windows interaction. Once the
groups of customers are performed, the clusters are analysed in order to identify the most con-
flicting customers. For each cluster, a parameter called critical index (CIk) is defined. This
parameter is computed as the ratio between the number of customers of the cluster and the
number of vehicles. The critical index gives an idea of how critical the cluster is. Indeed, a
big value for the CIk means that the planner may have some troubles to serve the customers
of the cluster because of customers time windows incompatibilities. The CIk is then used as a
parameter to point the customers to postpone in case of infeasibility.

Algorithm 5: Identification of a customer to postpone the delivery for a temporal-based
criterion
Step 1: Core initialization for temporal-based classification (Algorithm 4)
repeat

Step 2: Compute δ between each customer and the K cores
Step 3: Allocate each customer on a cluster which its core minimizes δ
Step 4: Update cores of each cluster Pk

until no changes are observed between two successive iterations;
Step 5: Identify clusters of conflicting customers (CIk > limit)
for each conflicting cluster do

Step 6: Launch algorithm for geographical classification (Algorithm 3)
Step 7: Save into a list L the customer with the most important dmi

Step 8: Propose the customer of the list L with the biggest dmi as the first customer to
postpone
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We observe that travel time between customers is not considered in temporal-based classi-
fication. To cover this lack, both classification criteria (geographical and temporal) are mixed
in order to increase efficiency. In that case, the idea is first to target a set of critical customers
using the CIk index and then the k-means algorithm is used to select a customer between the
critical customers. Algorithm 5 describes the mechanism to propose a priority list of customers
to be postponed based on temporal information.

4.3 Computational results
The algorithms based on data classification methods proposed to select the best customer to
postpone the delivery are evaluated in this section. These algorithms are first compared on a
set of small-size instances (9 customers) where a complete enumeration of all feasible solutions
can be performed in a reasonable time. The number of feasible solutions is used to evaluate the
flexibility provided by the criteria. Indeed, a larger number of feasible solutions widen planners’
degrees of freedom facilitating the construction of real-world adapted solutions. The instances
of the second set are more realistic instances with 25 customers. Model inversion criteria have
been compared considering a geographical optimization function: travel distance minimization.

The small-size instances (9 customers) of the capacitated vehicle routing problem with cus-
tomer time windows (CVRPTW) are optimally solved. Indeed, each instance is solved nine times
suppressing each time one customer from the set of customers. The results obtained taking out
of the problem the customer for which the criteria give the priority are compared: the GDC
criterion (mean distance between customers of the same cluster after the geographical-based
clustering), the GDD criterion (largest distance with the nearest depot), and the TDC criterion
(mean distance between customers of the same cluster after the temporal-based clustering).

To generate the instances, customers have to be eliminated of the CVRPTW small-size in-
stances of Solomon (1983). Depending on customer locations, Solomon’s instances are classified
in three groups: clustered customers (C), random customers (R), and mixed customers (RC).

In Table 3, the first column NbOptDist specifies the number of instances the optimal so-
lution for distance minimization is reached when the problem is solved without the customer
proposed by the criterion. The total number of instances is put in brackets. The second column
(AvgDev) specifies the average deviation from the optimal solution for the instances where the
optimal solution is reached when the suppressed customer is not the customer selected by the
criterion. AvgPos indicates the average position of the solution when the solutions are sorted
in a non-decreasing order of the objective function. For example, if the solution reached when
the problem is solved without the customer selected by the criterion is the second best solution,
then its position is 2. Finally, the last column (NbSol) represents the number of instances the
decision of the criterion is the decision providing a bigger number of feasible solutions.

These results show that GDC is the most efficient criterion for small instances: it reaches the
best suitable solution over a half of the instances. The AvgPos is around 3 for the GDC criterion
that means that when the criterion decision is not the best suitable decision, the proposition of
the criterion keeps being a good proposition. The GDC and GDD criteria outperform the TDC
criterion, which is not a surprise because the objective (distance minimization) used to evaluate
the algorithms is a geographical-based function such as GDC and GDD, contrarily to TDC which
is a temporal-based criterion. The last line shows that all criteria together are really efficient.
Indeed, the most suitable choice is selected for 37 over 56 instances by one of the three criteria
when distance minimization is considered. It is interesting to note that following the advices
of the criteria generally (38 over 56 instances) leads to a problem accepting a greater number
of feasible solutions, thus increasing planners’ opportunities for their behaviour in order to find
better real-world suited solutions.

Table 4 displays the results for the instances with 25 customers. A complete enumeration
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56 instances
nc = 9 NbOptDist AvgDev AvgPos NbSol
GDC-C 13 (17) 8.73 % 2.7 6
GDC-R 9 (23) 5.99 % 3.5 17
GDC-RC 9 (16) 5.01 % 3.2 5
TDC-C 5 (17) 14.98 % 4.5 7
TDC-R 3 (23) 11.46 % 5.4 7
TDC-RC 4 (16) 9.30 % 5.3 7
GDD-C 8 (17) 15.76 % 4.3 8
GDD-R 5 (23) 10.97 % 4.7 11
GDD-RC 3 (16) 9.12 % 4.5 4
All criteria 37 5.81 % 38

Table 3: Results for distance optimization and the number of feasible solutions

of solutions in a reasonable time is not possible here, the instances have been therefore solved
using Algorithm 2. The last column of Table 3 calculated from the complete enumeration of
feasible solutions has no longer any sense in Table 4. For this reason, the column NbSol has been
replacing by Nb5Best indicating, in that case, the number of instances the decision proposed by
the criterion is among the five best decisions considering distance optimization.

56 instances
nc = 25 NbOptDist AvgDev AvgPos Nb5Best
GDC-C 6 (17) 2.74 % 6.55 9
GDC-R 4 (23) 4.48 % 6.84 15
GDC-RC 3 (16) 11.35 % 9.85 6
TDC-C 1 (17) 7.88 % 7.69 9
TDC-R 1 (23) 5.70 % 9.05 6
TDC-RC 0 (16) 10.81 % 11.31 3
GDD-C 0 (17) 10.43 % 13.94 0
GDD-R 6 (23) 5.36 % 8.76 13
GDD-RC 5 (16) 8.67 % 7.36 10
All criteria 17 (56) 4.68 % 42

Table 4: Results for distance optimization

The results are very similar than for the instances with only 9 customers. The GDC criterion
proves to be the most efficient criterion, especially for instances with clustered and randomized
customers, type C and type R, respectively. Nevertheless, these results show that GDD criterion
is the best criterion for the RC instances. It can be due to a possible loss of efficiency of the k-
means algorithm for this type of problems (the clusters of customers after the k-means algorithm
do not correspond exactly with the vehicle routes determined by the problem-solving algorithm).
However, it is worth remarking that the efficiency of all criteria considered together is really
good. Indeed, for most of instances (42 over 56) there is a criterion that proposes a decision
reaching one of the five best solutions for distance minimization and the average deviation is less
than 5 % meaning that the criteria complement each other.
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5 Conclusions
In this paper, a decision support system for transportation scheduling has been proposed. An
interdisciplinary approach has been followed for the system design; a link has been done between
problem solving methods (operations research techniques and data classification algorithms)
and cognitive engineering techniques (interfaces design, decision sharing between human and
machine). The paper focuses on the solving mechanism and scheduler-oriented algorithms inte-
grating the decision support system.

First, a work domain analysis using an abstraction hierarchy for the vehicle routing problem
has been described. A new approach is proposed, based on the study of the different variants of
the problem detailed in the literature. This approach facilitates to reach completeness in domain
constraints identification at the same time that the abstraction hierarchy remains event- and
device-independent. The main advantage of the approach is that the problem representation
after the analysis does not restrict strategies for scheduler behaviour. The domain constraints
revealed by the analysis make up the reference system shared by the human and the machine.
In that context, a decision support system architecture has been then defined around the work
domain analysis.

The solving mechanism designed to assist the scheduler to perform each problem subtask has
been presented. To this purpose, different solving control modes seeking to facilitate scheduler
participation in problem solving processes have been proposed. The idea behind control modes,
contrarily to a fully automated approach, is that system, through user-interaction tools, gives
the schedulers the possibility to built solutions according to their preferences, letting to take into
consideration new constraints and/or occasionally violating some of the constraints in order to
find better real-world adapted solutions. In that context, a set of useful user-oriented algorithms
to assist the scheduler to solve the problem have been proposed and efficiently tested on instances
of the literature.

Finally, an original framework aiming at supporting problem constraints relaxation when this
becomes infeasible has been proposed. Constraint relaxation support is a topic barely discussed
in the literature. In this paper, the principles of a methodology for constraint relaxation seek-
ing to support the scheduler by proposing a list of interesting possibilities for action have been
defined. In that context, model inversion mechanisms using data classification algorithms have
been proposed and efficiently tested on instances of the literature. The results show the interest
of such a Human-Machine cooperation in terms of number of feasible solutions obtained and
their quality. Besides, it is worth remarking that the proposed model inversion mechanisms are
generic enough to be used on different kinds of problems others than vehicle routing. Indeed,
spatial and temporal decomposition methods suit and can be easily adapted for planning and
scheduling problems.
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