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Abstract

This paper mainly deals with switched linear systems defined by a
pair of Hurwitz matrices that share a common but not strict quadratic
Lyapunov function. Its aim is to give sufficient conditions for such a
system to be GUAS.

We show that this property of being GUAS is equivalent to the
uniform observability on [0,4+00) of a bilinear system defined on a
subspace whose dimension is in most cases much smaller than the di-
mension of the switched system.

Some sufficient conditions of uniform asymptotic stability are then
deduced from the equivalence theorem, and illustrated by examples.

The results are partially extended to nonlinear analytic systems.

Keywords: Switched systems; Asymptotic stability; Quadratic Lya-
punov functions; Observability; Bilinear systems.

AMS Subject Classification: 93B07, 93C99, 93D20.

1 Introduction.

One of the most important issues in the field of switched systems is that of
uniform asymptotic stability (see [9]), and the Lyapunov functions theory is
known to be a very powerful tool in this connection. Indeed the existence
of a common strict Lyapunov function ensures that the system is GUAS
(Globally Uniformly Asymptotically Stable). Moreover it has been proved
in [5] that a GUAS linear switched system always has a common strict
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Lyapunov function (this result was extended to nonlinear switched systems
in [10]). In [12] Mason, Boscain, and Chitour showed that such a common
strict Lyapunov function can always be chosen to be polynomial. Despite
this fact a quadratic one does not always exist ([5], [12]).

Among other approaches of the GUAS property, let us quote the worst
trajectory method (see [3] and references therein), its characterization via
optimal control techniques ([11]), and the commutations relations method
(see for instance [1]).

In the present paper we deal first, and mainly, with pairs of matrices that
share a common but not strict in general quadratic Lyapunov function, in
other words we are interested in the asymptotic properties of systems whose
trajectories are known to be bounded (by a quadratic function in the linear
case). Properties of switched systems in this framework have already been
studied in [13], [14], [4] (similar properties of nonlinear sytems are stated in
[2] and [8]). In particular our paper follows [4] and makes one of its results
much more precise.

To this end we propose a new method that consists in showing that
the property of being GUAS is equivalent to the uniform observability on
[0,4+00) of a bilinear system defined in a natural way on a subspace whose
dimension is in most cases much smaller than the dimension of the state
space of the switched system.

Sufficient conditions of uniform asymptotic stability are then deduced
from this observability property. To our knowledge, these conditions are
new. They are moreover checkable as shown by the examples of Section 3.6.

Our results are stated only for pairs of matrices, but can be rather easily
extended to finite families of matrices that share a weak quadratic Lyapunov
function. However the statement of the result is in that case quite compli-
cated (see Conclusion for more details) and does not introduce new ideas.
For these reasons our discussion is restricted to pairs of matrices.

Some relationships between observability and asymptotic stability of lin-
ear or nonlinear switched systems have already been established (see for
instance [7] where the output depends on a family of weak Lyapunov func-
tions, and for the linear case [6] which makes use of the fact that a symmetric
negative matrix @ can be written as Q = —CTC, with ker(Q) = ker(C)),
but to our knowledge, they did not lead to a reduction of the dimension of
the state space, which is the main interest of our method.

Let us now state our results. We deal with a pair {Bg, B1} of d x d
Hurwitz matrices that share a common, but not strict in general, quadratic
Lyapunov function.

We can assume without loss of generality that the Lyapunov matrix is
the identity, so that the matrices B; verify BiT + B; <0fori=0,1.

In this setting the linear subspace

K =Ko ﬂlCl, where K; =ker(Bl + B;) i=0,1,



turns out to be a fundamental object (see [4], [14], and [8] for the nonlinear
case).

In the previous paper [4] it was proved that the system is GUAS as soon
as K = {0}. However this condition is not necessary, and it is possible to
build GUAS systems for which dim L = d — 1 regardless of d (see Example
3.6.4).

Firstly we show that a necessary and sufficient condition for the switched
system to be GUAS is that a certain bilinear system in K is observable on
[0,4+00). More accurately the convexified matrix By = (1 — A\)By + ABy is
given, according to the decomposition R? = I @ K1, by:

B)\ = A)\ _C)j\—‘ s
Cx D
with AT + Ay =0 for A € [0,1], and DI + Dy <0 for A € (0,1).
Consider the bilinear system in K with output in Kt

(2):{“’; :féf;” Ael0,1], zek, yekt
= U

Our main result is then:

Theorem 2

The switched system is GUAS if and only if (X) is observable for all
inputs A: [0, +00) — [0, 1].

The interest of this equivalence is twofold: on the one hand the bilinear
observed system is in K, whose dimension is most often (but not always)
much smaller than d. On the other hand the observability of (X) is rather
easier to deal with than the asymptotic properties of the switched system.

Thanks to Theorem 2 we obtain the following sufficient conditions of
uniform asymptotic stability (the definition of the set G is rather technical
and the reader is referred to Section 3.1):

Theorem 3
The switched system is GUAS as soon as the pair (Cy, Ay) is observable
for every X € [0,1], and one of the following conditions holds:

1. the set G 1is discrete;
2. dim K < 2.

In particular the switched system is GUAS if ker C = {0} for X € [0,1].

As we know of no system which is not GUAS and such that the pair
(Cy, Ay) is observable for every A € [0, 1] we make the following conjecture:

Conjecture



The switched system is GUAS if and only if the pair (Cy, Ay) is observ-
able for every X\ € [0, 1].

This conjecture, which is equivalent to saying that the matrix B) is
Hurwitz for every A € [0, 1], is discussed in Section 3.5.

From [5] we known that a GUAS switched system has always a common
strict Lyapunov function. One might think that under the assumption of
the existence of a common non strict quadratic Lyapunov function, a GUAS
system has a common strict quadratic Lyapunov function. This conjecture
is wrong, as shown by Example 3.6.5, due to Paolo Mason.

The same method is then applied to nonlinear switched systems. For
several reasons the linear statements are only partially extended to the non-
linear case, though the systems are required to be analytic. On the first
hand the set IC is no longer a vector subspace, not even a submanifold, nei-
ther connected, in general. On the second one no inner product is naturally
related to general Lyapunov functions, so that it is not possible to get a
decomposition of the vector fields as nice as the previous one. To finish the
bilinear observed system we deal with in the linear case is observable if and
only if the origin is distinguishable from the other points. Of course this
property does not hold for general observed systems.

The paper is organized as follows: Section 2 is devoted to the main
linear result, the equivalence between asymptotic stability and observability
of the bilinear observed system. In Section 3 the behaviour of the observed
system is analyzed, stability statements are deduced, and linear examples
are provided. Section 4 deals with the nonlinear case.

2 Asymptotic stability of linear systems

2.1 Preliminaries

We will use the symbol X to denote the elements of R%. When R? will be
decomposed as R? = K & K- we will write

X=x+4+y or Xz(i) where z €K, ye Kt

As explained in the introduction we deal with a pair {By, B1} of d x d
Hurwitz matrices, assumed to share a common, but not strict in general,
quadratic Lyapunov function. More accurately there exists a symmetric
positive definite matrix P such that the symmetric matrices BZT P+ PB; are
nonpositive (BT stands for the transpose of B). Since the Lyapunov matrix
P is common to the B;’s we can assume without loss of generality that P is
the identity matrix, in other words that BZ-T + B; is nonpositive definite for



1=20,1:
VX eRY  XT(BI+B)X<0 for i=0,1. (1)

Norms. The natural scalar product of R? in this context is the canonical
one, defined by (X,Y) = XTY (it would be X7 PY if the Lyapunov matrix
were P). The norm of R? is consequently chosen to be || X[ = VXTX.

The switched system. We consider the switched system in R?

. d
X = aX = B, X (2)
where the input, or switching law, ¢t — u(t) is a measurable function from
[0,4+00) into the discrete set {0,1}.
Such a switching law being given, the solution of (2) for the initial con-
dition X is known to be

t— O, (1) X,

where t — ®,(t) is the solution of the matrix equation M = BywyM,
®,,(0) = I4, or in integral form:

D,(t) =14 +/0 Bu(s)q)u(s) ds. (3)

The w-limit sets. For X € R? we denote by ,,(X) the set of w-limit points
of {®,(t)X; t > 0}, that is the set of limits of sequences (P, (t;)X);>0, where
(tj);j>0 is strictly increasing to +oo.

Thanks to Condition (1), the norm |®,(¢)X]| is nonincreasing, and
Q.(X) is a compact and connected subset of a sphere S(r) = {z € R?; ||z =
r} for some r > 0 (see Proposition 1 of [4]).

Definition 1 The switched system is said to be Globally Uniformly Asymp-
totically Stable, or GUAS in short, if for every switching law u the system
(2) is globally asymptotically stable, that is

VX e R @y ()X —io0 0.

2.2 Hurwitz Property and Observability of linear systems

Theorem 1 Let B be a d x d-matriz that satisfies BT + B < 0 and let
K = ker(BT 4+ B). Up to an orthogonal transformation and according to the
orthogonal decomposition R% = IC @ K+, one has

A —CT
o=(e )

with AT + A=0 and DT + D < 0.
Then B is Hurwitz if and only if the pair (C, A) is observable.



Proof.

This theorem can be proved in a classical way by applying Theorem 3.8
of [16] to the pair (B, BT + B). However our proof is closer to the one of
the forthcoming main result, and in our opinion enlights this last.

Let (by,...,bq) be an orthonormal basis of R? such that (by, ..., bs) span

IC. In that basis
(A Gy
=(o %)

according to the decomposition R? = I @ K. The condition BT + B < 0
being invariant under orthogonal transformations, and I being equal to
ker(BT + B), we obtain at once AT + A =0, C; = —CT and DT + D < 0.

Let us now consider the observed linear system in X with output in Kt

== {, o

If (¥) is not observable, then there exists x € K, x # 0, such that
Cetz =0 for all t € R. Therefore

d [z etx x etAg
- =B that e’ = :
dt ( 0 0o ) EE o 0
The matrix e!4 being a rotation one, this vector does not tend to 0 as t goes
to +00. This shows that B is not Hurwitz.
Conversely let us assume that B is not Hurwitz: the real parts of its
eigenvalues being nonpositive there exists a periodic, or constant, non zero

trajectory e X. Since the function t — HetBXH is non increasing, it is
constant, so that:

VtER, 0= % leBX||* = ("B X)T (BT + B)e'BX,

which shows that the whole trajectory et X, ¢t € R, is contained in K.
Finally let us write X = (z,0)” in R? = K @ K*. Then

tA
eBX = (6 0x> with  Cez =0,

in other words the output of (X) does not distinguish between the initial
states x and 0.
O

2.3 Main result

Let By and By be two d X d-matrices that satisfy BiT 4+ B; < 0, and let
K; = ker(BI + B;) for i = 0,1. Notice that K; is also the set of X € R?



d
such that EI HetBiX H2 = 0. Here and subsequently K stands for
t=0

K = Ko[)K1 =ker(BJ + Bo)( \ker(Bf + By).

For A € [0,1] we write By = (1 — A\)By + ABj. Let us firstly state the
following easy but useful lemma.

Lemma 1 For all A € (0,1), ker(B] + B)) = K.
Moreover, up to an orthogonal transformation and according to the or-
thogonal decomposition R¢ = K @ K+, By, is given by

_ (A -CF
B)\ - <C)\ D)\ > )
with AT + Ay =0 for A € [0,1], and DI + D, <0 for X € (0,1).

Proof.

We have only to prove that ker(B] + B)) = K for A € (0,1), the proof
of the second assertion being similar to the beginning of the one of Theorem
L. If XT(BT + B))X = 0 for some X € R%, then

0=(1-NX"(Bf +Bo)X + \XX"(B] + B1)X.

But XT (B! + B;)X < 0fori=0,1, and since A # 0,1 we obtain X7 (BZ +
Bo)X = XT(BY + B1)X =0, that is X € Ko N K.
The converse is straightforward.

O

Remark. The strict inequality D; + Dy < 0 does not hold for A = 0,1
whenever K or K is strictly larger than C. However the non strict inequal-
ity DI + D, <0 holds for A € [0, 1].

In the same way as in Section 2.2 we will consider the bilinear controlled

and observed system:
. T = A)\m'
(E) o { Yy = C AL

where A € [0,1], 2 € K, and y € K+

Definition 2 The system (X) is said to be uniformly observable on [0, +00)
if for any measurable input t — \(t) from [0,400) into [0,1], the output
distinguishes any two different initial states, that is

Vo1 £ x0 €K m{t > 0; C)\(t)xl(t) # C)\(t)ﬁﬂg(t)} > 0,

where m stands for the Lebesque measure on R, and x;(t) for the solution
of & = Ayyyx starting from x;, fori=1,2.
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Remarks

1. As the ouput depends explicitly on the input, it is measurable but not
necessarily continuous. It is the reason why our definition of observ-
ability involves the Lebesgue measure.

2. The observability on [0, +00) is not equivalent to the observability on
bounded time intervals (See Section 3.4 and Examples 3.6.3-3.6.4).

3. The system being linear with respect to the state, it is clearly observ-
able for a given input if and only if the output does not vanish for
almost every ¢ € [0, +00) as soon as the initial state is different from

0.

We are now in a position to state our main result:

Theorem 2 The switched system is GUAS if and only if (X) is uniformly
observable on [0, +00).

Proof.

Let us first assume that the switched system is not GUAS. There exist
a measurable input ¢ — wu(t) from [0,400) into {0,1} and an initial state
X € R? for which the switched system does not converge to 0.

Let [, with [|l]| = 7 > 0, be a limit point for X, and (¢;);>0 a strictly
increasing sequence such that

l= lim &,(t;)X.
jjrfm u(t)

Let 7 be an arbitrary positive number and let us define the sequence (¢;);>0
by ¢;(t) = ®,(t; +t)X for t € [0,7]. Each function ¢; verifies

t
¢j(t) = ¢;(0) +/0 Buyt;+5)9;5(s) ds.

On the other hand the sequence (B7);>¢ of functions from [0, 7] to M(d; R),
defined by B/(s) = B (t;+s), 1s bounded, and consequently converges weakly
(x-weakly to be precise) in L>([0, 7], M(d;R)), up to a subsequence that we
continue to denote by (B);>0.

Moreover the limit takes its values in the convexification of { By, By} (see
[15], Lemma 10.1.3, page 424), and can be written

By = (1 = A(t))Bo + A(t) B,

where ¢t — A(t) is a measurable function from [0, 7] into [0, 1].
Let us denote by 1 the absolutely continuous and R%valued function
defined on [0, 7] by the equation

t
¥(t) :l+/0 Bys)¥(s) ds.

8



According to Theorem 1, page 57, of [15], the sequence (¢;);>1 converges
uniformly on [0, 7] to 1. Moreover this function takes its values in §2,(X),
so that

vee0,7] @I = vO)* = 1> = r* > 0.

Thus we have for almost every ¢ € [0, 7]

DI = (o) By + Bagyoit) =0, @

Lemma 2 For all t € [0,7] the vector ¥ (t) belongs to K = Ko N Ky. In
particular | = 9(0) € K.

Proof. For almost every t € [0, 7] we have

Tb(t)T(B)T(t) + BA(t))¢(t)
= (1= 20)(0)" (B + Bo)u(t) + A0)Y(t)" (BY + B1)(t).

But according to (4) and
() (Bf + Bi)g(t) <0 for i=0,1
we obtain for almost every t € [0, 7]

)\(t) #0 = 1/1(15) e Ky
M) A1 = o(t) € Ko

so that ¥(t) € Ko UK;. Assume that | € Ky \ ;. Then for some T,
0 < T <7, we have

$([0,T)) NK1 =0, hence ()" (BT + By)y(t) <0
for all t € [0,T]. Consequently A(t) = 0 for almost every ¢ € [0,T], and
B(t) = etBoyp(0).

But according to the Hurwitz property of By, the norm |[¢(¢)|| would be
strictly decreasing, in contradiction with its belonging to €,(X). Conse-
quently [ € K, and in the same way ¢(t) € K for ¢ € [0, 7].

O

End of the proof of Theorem 2.
As 9(t) is in K for all ¢ it can be written according to the decomposition

R? = K @ Kt as a column
v = (°)):



Moreover the derivative of ¢(t) is also in K for almost every ¢. This derivative

y ; Ay o(t)
%w(t) = By (t) = <Ci§t;¢(t)>

d
and the belonging of @w(t) to IC turns out to be

Crxpy®(t) =0  for almost every t € [0,7].

The conclusion is that ¢ is a trajectory of

& = Az
E p—
() { y =Chr
for which the output vanishes almost surely. Notice that ¢ does not vanish
since [|¢(t)[|* = [|¢(0)]|* = [|I]|* = r? > 0 for all £ € [0, 7].
To conclude this part of the proof it remains to notice that ¢ can be
extended to [0,4+00) with the same properties: starting from the final point

(1) we can obtain a similar limit trajectory on [r, 7] for any 71 > 7.
This proves that () is not uniformly observable on [0, 4+00).

Conversely assume the switched system to be GUAS. It is a well known
fact that the convexified system is also GUAS (see [12]). If there exists
for (X) an input defined on [0, +00) and with values in [0, 1] such that the
trajectory ¢(t) for the initial condition ¢(0) # 0 satisfies Cy)p(t) = 0 for

t > 0 then
0(1) = (¢f)t)>

is, for the same input, a trajectory of the convexified switched system that
does not converge to 0, a contradiction.

U
3 Applications of observability

3.1 Observability of the bilinear system

We consider now the controlled and observed bilinear system

_ & = Az
(%) = { y =Chw

where x € K, y € K+ and A € [0,1]. Notice that the matrices Ay and A;
are skew-symmetric, so that the trajectories of (X) are contained in spheres.
We will denote by S¥~1, where k = dim K, the unit sphere of K.

10



A solution t — z(t) of (¥) on I = [0,T] or I = [0,400), which is in
Sk=1 and satisfies

Crxpz(t) =0 for almost every t € I,

will be called a bad trajectory on I.

The purpose is to find conditions for (¥) to be uniformly observable
on [0,400). An obvious necessary condition is that () is observable for
every constant input, that is the pair (C), Ay) is observable for every \ €
[0,1]. Since By and Bj are Hurwitz this property is guaranteed for A = 0,1
(although K is not necessarily the kernel of BiT + B;, i = 0,1, this can be
easily shown using the same kind of arguments as in the proof of Theorem
1).

A sufficient condition is that (X) is uniformly observable on every bounded
interval [0,7], T > 0, that is () is uniformly observable in the usual mean-
ing.

Remark (*). Under the condition that the pair (Cy, Ay) is observable for
every A € [0,1], no bad trajectory can be constant. This remark is used
several times in the forthcoming proofs.

The first task is to characterize the locus where the ouput vanishes (Sec-
tion 3.2). Then we will state some sufficient conditions of uniform observ-
ability (Section 3.3), and of uniform observability on [0, +00) (Section 3.4).

3.2 The bad locus

The condition
IXe]0,1] suchthat Chxz=(1—-\)Cox+ ACiz =0

is equivalent to saying that Cpx and Cix are colinear and in opposite di-
rections, that last condition being due to A € [0,1]. Consequently the set
of points z € K for which there exists A € [0, 1] such that C\z = 0 can be
characterized in the following way:

dr e [0,1] s.t. Chx =0 <= (Cox,Crz) + ||Coz| ||Ciz| =0 (5)

Here the scalar product and the norm are the restrictions to K of the ones
of RY.

Another helpful characterization of this set makes use of the exterior
KK —1)

product Cox A Cyx, which can be considered as the vector of all

the 2 x 2 minors of the &' x 2 matrix (Coz Ciz) (here k' stands for the
dimension of K+). We obtain

e 0,1] st. Chx =0 <= Coz ACiz =0 and (Coz,Ciz) <0. (6)

11



The interest of this last characterization lies in the fact that the exterior
product being bilinear, the condition Cox A Cix = 0 can be differentiated.
The set of points that satisfy (5) or (6) will be denoted by F. Since
Formula (6) is clearly invariant under multiplication by a constant, this set
is a cone.
We also write N = ker Cp(\kerC; and Fy = F'\ N. For z € Fj it is
clear that Cox # Cix so that the unique A such that Chx = 0 is given by:

<Co$ — Clx,00x>
|Cox — Chz|?

Az) = : (7)

that is z — A(z) is the restriction to Fy of an analytic function defined on
K \ {Com' = 011'}

Any bad trajectory lies in the intersection of F with S¥~1, and as long
as it does not meet N, that is as long as it remains in Fy, Formula (7) shows
that t — A(t) and ¢ — z(t) are analytic (more accurately ¢ — A(¢) is
almost everywhere equal to an analytic function).

3.3 Uniform observability

Let (A(t),z(t)) be a bad trajectory on [0, T for some T > 0. The trajectory
t — x(t) being absolutely continuous, the point z(¢) belongs to F for all ¢,
so that Cox(t) A Crz(t) = 0, and by differentiation

d
%Cox(t) A Cra(t) = C()A)\(t)x(t) A Crx(t) + Coz(t) A ClA)\(t).%'(t) =0 a.e.
that is Aypz(t) is tangent to F' (in a weak sense because F' need not be
regular at every point).

Let G stand for the set of points € S¥~1 N F that verify:

rze N

or

x € Fy and CQAA(JC)m‘ A Ciz 4+ Cox A ClAA(JC)m‘ =0

It is clear that x(t) € G for almost every ¢. Assume the set G to be discrete,
then the trajectory is reduced to a point, and A(¢) is almost everywhere
equal to a constant. In view of Remark (*), we have proved:

Proposition 1 If the pair (Cy, Ay) is observable for every A\ € [0,1] and

the set G is discrete then (X) is uniformly observable on [0,T] for all T > 0.
This is in particular true if ker Cy = {0} for A € [0,1].

3.4 Uniform observability on [0, +0c0)

It may happen that G is not discrete, though the pair (Cy, A,) is observable

for every A € [0, 1]. For instance when dim K+ = 1 the condition CoxACiz =

12



0 is void and F' contains an open subset of K. The interior of the set Fj is
not empty either and the ouput of the analytic system

y =C\)z

vanishes as long as the trajectory remains in Fj. Consequently (%)
cannot be uniformly observable on small time intervals. However it may
happen that under the assumption that the pair (C), A)) is observ-
able for every A € [0, 1], no trajectory remains in F. We present below a
proof in the case where dim IC is 1 or 2.

3.41 dimK=1

The sphere S*~1 consists of two points and under the condition that the
pair (Cy, Ay) is observable for every A € [0,1], no bad trajectory can exist
(see Remark (*)).

3.4.2 dimK =2

We can assume without loss of generality that the rank of C' is equal to 1 for
every A € [0,1]. Indeed if it vanishes for some \g, then the pair (C),, Ax,)
is not observable. If the rank of C) is greater than 1 for one A then it is
greater than 1 for all A except for isolated values (because the minors of the
matrix (Cox Cyz) are polynomials of the entries), the bad trajectories are
obtained for these constant inputs, and the conclusion comes from Remark
*).

In this setting we have two cases:

1. ker Cyp = ker C1. Then C; = aCj for some a > 0 (if « < 0 then C)
vanishes for some A € [0,1]). A bad trajectory is contained in the inter-
section of the one-dimensional space ker Cy with the one-dimensional
sphere S and is reduced to a point.

2. ker Cy # ker Cy. The set F is the cone {(Coz)(Ciz) < 0}. On the
other hand the matrices exp(t4;) are rotation ones (i = 0,1). If they
have the same direction of rotation, all trajectories run through the
whole circle and go out of F'. If their directions of rotation are opposite
or if one is zero, then A, vanishes for some A. The pair (Cy, A)) is
not observable for that value (see also Example 3.6.3).

We have proved

Proposition 2 If dim K < 2 then (X) is uniformly observable on [0, +00)
if and only if the pair (Cy, Ay) is observable for every \ € [0, 1].

13



3.5 Concluding Theorem and Conjecture

We keep the notations of the previous sections. In view of Theorem 2 and
Propositions 1 and 2, we can state:

Theorem 3 The switched system is GUAS as soon as the pair (Cy, Ay) is
observable for every A € [0,1], and one of the following conditions holds:

1. the set G is discrete;
2. dim K < 2.

In particular the switched system is GUAS if ker C\ = {0} for every A €
[0,1].

In this theorem, only sufficient conditions are stated. However we know
of no system which is not GUAS and such that the pair (Cy, A)) is observable
for every A € [0,1]. We therefore make the following conjecture:
Conjecture

The switched system is GUAS if and only if the pair (Cy, Ay) is observ-
able for every X\ € [0, 1].

This conjecture is equivalent to saying that the matrix B) is Hurwitz for
every A € [0,1]. It is possible to find systems that satisfy this condition and
that are not GUAS (see [9]), but we do not know such systems that satisfy
the additional condition (1), i.e. that have a common quadratic Lyapunov
function. Notice that according to our results, the dimension of the state
space of such a system should be at least 4 (it should verify dim & > 3).

3.6 Examples

3.6.1 Hurwitz matrices

Consider the matrix
A —CT 0 1
(C D > where A = (_1 O>’

and the first line of C is (1 0). According to Theorem 1 this matrix is
Hurwitz as soon as D satisfies DT + D < 0.

3.6.2 Two general examples

Let us choose a skew-symmetric k x k matrix A, and a k&’ x k matrix C such
that the pair (C, A) is observable. Then for any matrices Dy and D; such
that DI + D; < 0 the system {By, B1} is GUAS, where:

A _CT A T
BO_(C Do> Bl_(c D1>
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Indeed the system is in the canonical form of Lemma 1, and (X) does not
depend on . It is therefore uniformly observable.

In the same way, and as a direct application of Proposition 1, we can
consider the case where the dynamics of (X) is null, that is the system is

defined by

(0 -cf (0 -ct . T
By = (Co Do ) By = <Cl D, with Dz + D; < 0.

It is GUAS if and only if C) is one-to-one for all A € [0, 1].

3.6.3 An example with dim/C =2

Consider the case where

0 a . .
Ay = (—a 0) , the first line of Cj is (1 0) ,

A = (_Ob 8) , the first line of C1 is (0 1) ,
the other lines of Cy and C} are zero, and Dy, Dy are k' x k¥’ matrices, k' > 1,
with DI + D; < 0,i=1,2.

A straightforward computation shows that the pair (C), A)) is observ-
able for every A € [0,1] if and only if @ and b are both positive or both
negative: the determinant of the observability matrix is equal to
(202 =20+ 1)((1 — N)a + Ab).

The cone F is here the set {(z1,22) € R%; x129 < 0}, that is the union
of the two orthants {1 > 0; x5 < 0} and {z1 < 0; x2 > 0}, and Fj is equal
to F minus the origin. For z = (x1,x2) € Fy we can define

ANz) = pra—
This system cannot be uniformly observable on small time intervals since
for the feedback = — A(x) the output vanishes as long as z(t) belongs to
Fy whose interior is not empty.

However (X) is uniformly observable on [0, +00), under the condition a
and b both positive or both negative: indeed a trajectory starting at x # 0
runs through the whole circle with radius ||z||, hence goes out of F'.

Finally the switched system is GUAS if and only if ab > 0.

3.6.4 The dimK =d — 1 case

Let us begin by a very simple example. Let A a be (d — 1) x (d — 1) skew-
symmetric matrix and C' a 1 X (d — 1) matrix such that the pair (C, A)
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is observable, and let dy and d; be two different positive numbers. The

matrices T .
A —-C A —-C
BO_(C —d0>’ Bl_(c —d1>

define a GUAS switched system with dim/C = d — 1.
For a less trivial example consider the skew-symmetric 2¢q x 2¢ matrix A

which has ¢ blocks
0 —(Ij
a; 0

on the diagonal and vanishes elsewhere, and

Co=(1 010 ... 10, Ci=(0101..01).
Assume (aq, ..., aq) to be rationally independant. Then the orbit of & = Ax
for a non zero initial state (29, ... ,xgq) is dense in the torus

x%jfl + m%j = (mgj71)2 + (95(2)]')2 = Tj2 J=1...,q

where at least one T does not vanish.

Therefore this orbit meets the subset of the orthant {x; > 0; i =
1,...2q} where xz9;_1 > 0 and zo; > 0 for at least one j. But in this
subset we have (Cox)(Cix) > 0. This shows that every non zero orbit goes
out of F' and that the bilinear system defined by Ag = A; = A, Cy and Cy
is uniformly observable on [0, +00). Finally the switched system defined by

the matrices
_ T _ T
By = A Cy 7 B, = A Ci
Co —do Cl _dl
is GUAS for any choice of positive numbers dy and dy.

3.6.5 A singular case of the Dayawansa-Martin example

It is a well known fact that a GUAS linear switched system has always a
common strict Lyapunov function, but not always a quadratic one: in [5]
Dayawansa and Martin provide an example to show that even for planar
switched linear systems, GUAS does not imply the existence of a common
strict quadratic Lyapunov function.

We give here an example, due to Paolo Mason, which shows that for a
linear switched system, GUAS and the existence of a common non strict
quadratic Lyapunov function do not either imply the existence of a common
strict quadratic Lyapunov function.

Consider the 2 x 2 switched system defined by the matrices

-1 -1 -1 —3-2V2
B(]—(l _1) and B1—<3_2\/§ 1 >
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The symmetric positive matrix

P= (é 3+02\/§>

defines a weak quadratic Lyapunov function for this system, that is BZT P+
PB; <0fori=0,1.

On the other hand the switched system is GUAS: to see it, just ap-
ply Theorem 1 of [3]. Indeed our system is in the class satisfying the Sy-
GUAS condition of this theorem. It remains to show that it admits no strict
quadratic Lyapunov function.

We are seeking a positive definite symmetric matrix P in the form

(01

M;=BI'P+PB; <0, i=1,2 (8)

such that

Equation (8) is satisfied if the interior of the ellipses in the (g,r) plan given
by det M; = 0 intersect. It is straightforward to check that those ellipses
have the same major axis ¢ = 0 and have respectively the vertices

{(0,3 —2v/2), (0,3 +2v2)} and {(0,3+ 2v2), (0,99 + 70v/2)}.

Consequently their interiors do not intersect.

4 Nonlinear switched sytems

4.1 The nonlinear setting

The first part of the paper dealt with linear systems and quadratic Lya-
punov functions. The aim of this section is to extend the previous results to
nonlinear switched systems admitting a weak common Lyapunov function,
no longer required to be quadratic.

We consider the nonlinear switched system

(S) X=(01-wf(X)+ufi(X), XeRY wue{o1},

where fy and fi are analytic globally asymptotically stable vector fields,
and V : RY — R, is an analytic weak common Lyapunov function, not
necessarily quadratic, for the vector fields fo and f; (V is a positive definite
function and for ¢ = 0,1, the Lie derivative L,V is nonpositive, so that V'
is nonincreasing along the solutions of (5)). This Lyapunov function is also
assumed to be radially unbounded, that is V' (X) goes to +oc as || X|| goes
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to 400, to ensure that the solutions of (S) are defined on [0, +00) for any
input and initial condition.

In the same way as in the linear case we define IC; = {L,V =0}, =0, 1,
and the set K = Ko N X;. The analycity assumption is here crucial because
it allows to state the analog of Lemma 2, that is:

Lemma 3 For any input u and any initial condition X € RY, the w-limit
set Q,(X) of the corresponding solution ®,(X) is included in K.

The proof of this lemma follows the same lines as the one of Lemma 2
(see also [8]). It is worthwhile to notice that is not true in general without
the analycity hypothesis (a counter-example can be found in [8]), but that
the remainder of the paper makes no use of this hypothesis, so that all the
forthcoming results apply to smooth systems provided that they satisfy the
conclusion of Lemma 3.

Our purpose is now to define an observed system on X, parametrized
by A € [0,1], that is to project the convexified system X = (1 — \)fo(X) +
Af1(X), A € [0,1] onto K. We do not require K to be a manifold, in
particular because it is generally not at the origin (it may of course fail to
be at other points). The set K being analytic is locally a finite union of
analytic manifolds and we could define its tangent space at a point as the
tangent space to the only such submanifold to which this point belongs.
However we prefer to define the tangent space at x € K as the linear span
of the derivatives 7/(0) of all absolutely continuous curves ~ contained in K
and such that 7(0) = x. Clearly the tangent spaces at different points need
not have the same dimension.

The next task is to define the projection of fy(z) = (1 — A)fo + Af1 on
T.K.

In the linear case K is a linear subspace and according to the decompo-
sition R¢ = K @ K, the linear vector fields in R? and the controlled and
observed system on K write

— A)\ _Cg T = A)\I'
L= <C>\ Dy and (X) Yy = Cha
In other words the vector field Az is the orthogonal projection of fy(z) on

K and the component Cyz = fy(z) — Az is the one on K+, the Euclidean
structure being induced by the quadratic Lyapunov function.

Since in the general case V is nonquadratic, it does not define an Eu-
clidean structure. However we can endow R¢ with its canonical inner prod-
uct, denoted by (-,-), or actually with any other inner product, it does not
matter as we will see further. Consequently we can define at each point
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x € K the orthogonal complement N,K to T,K, and gy(z), (respectively
hx(z) = fa(xz) — ga(x)), as the orthogonal projection of fy(x) onto T,KC,
(respectively on N,K).

This way we get the desired observed system on C

i = ga(z)
&) { y =h(2)
Of course the vector fields gy are not defined in a usual way, but the solu-
tions to (¥) for a given measurable input A(¢) will merely be the absolutely
continuous curves 7 in K that satisfy v(¢t) = ga(y(¢)) almost everywhere.
On the other hand the sets N,/ being canonically identified with linear
subspaces of R¢ the output can be viewed as taking its values in R
To finish we need a relevant notion of observability. For linear systems,
observability is equivalent to distinguishability of the origin. Of course in the
non linear case distinguishing the origin of R% does not imply observability
but this weak notion will turn out to be the right one here.

Definition 3 The system (X) is said to uniformly distinguish 0 on [0, +00)
if for any measurable input t — A(t) from [0,400) into [0, 1] for which the
solution is well-defined on [0,+00) , the output distinguishes the origin.

A solution z(t) # 0 of (X) defined on [0,+00) for which the output vanishes
1s said to be a bad trajectory.

Remark A solution which is not defined for all positive times reaches the
boundary of K in a transverse way, actually leaves IC (recall that all solutions
of () are defined in positive time). It is consequently not a limit trajectory
of the initial switched system, and is not a ”"bad trajectory” (in the same
sense as in the linear case).

We are now in a position to state the main result of this section.

Theorem 4 The switched system (S) is GUAS if and only if (X) uniformly
distinguishes 0 on [0, 4+00).

Proof. The proof of the theorem follows the same steps as the one of Theo-
rem 2. The tools are a bit different and come in part from [8].
Let us assume that the switched system is not GUAS. Then there exist a
measurable input u : [0, +00) — {0,1} and an initial state X € R? for
which the solution ®,,(¢, X) does not converge to the origin.
Let [ # 0 be an w-limit point of ®,(¢, X'), and (¢;);>0 C R4 be an increasing
sequence such that

lim ‘I)u(tj,X) =l

j—+o0
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Consider the sequence (¢;);>0 defined by
d;(t) = By(t; +1,X),¥t > 0,5 > 0.
Following the same lines as in the linear case (see also [8]) we can prove:

Lemma 4 Up to a subsequence, (¢;);>0 converges uniformly on each com-
pact to an absolutely continuous function ¢ : [0, +00) — Q(X).
Moreover ¢(0) = | and there exists a measurable function X : [0,+00) —
[0,1] such that

¢ = (1= fo(d) + M1(0) a.e.

In other words, ¢ is a solution of the convezified switched system i.e. ¢ =

f(9) a.e.
Thanks to Lemma 3, for all ¢t € [0, +00), ¢(t) € K. It follows that, for
almost all t € [0, 4+00), ¢(t) € Ty K and { gigz; = £A(¢) a.e.

Therefore ¢ # 0 is a solution of the controlled and observed system (X) for
which the output vanishes.
Consequently (X) does not uniformly distinguish 0 on [0, +00).

Conversely, let us assume that the controlled and observed system (X)
does not uniformly distinguish 0.
There exists a measurable input A : [0,4+00) — [0, 1] such that the tra-
jectory ¢ for some initial condition ¢(0) # 0 satisfies hy(¢) = 0 almost
everywhere. Then fy(¢) = gx(¢) almost everywhere and, since ¢(t) € K =
KoN Ky,

iV(QS(t)) = (1 =A0)LpV(o(1) + At) Ly V(1) =0 ae.

dt
This shows that ¢ is contained in a level set of V', and is a trajectory of the
convexified switched system that does not converge to the origin.
In conclusion the convexified switched system is not GUAS and neither is
the switched system (S).
O

Remark. This proof shows clearly that the results do not depend on the
choice of the inner product (or even on a Riemannian structure) on R?.
Indeed, the output h) is solely required to vanish if and only if the vector
field f, is tangent to the analytic set K, and this do not depend on the
chosen inner product.
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4.2 Applications

The nonlinear counterpart of Proposition 2 is no longer true. However for
the same reasons as for linear systems, if the pair (gy, h)) distinguishes 0 for
each A € [0, 1] then no bad trajectory can be constant. Hence, Proposition 2
remains true if dim /C = 0, that is if K is discrete.

Moreover Conditions guaranteeing that (X) uniformly distinguishes 0
on [0,400) can be derived from Theorem 4 in the case when K is a one-
dimensional submanifold, at least outside of the origin. Namely, a necessary
and sufficient condition for (X) to uniformly distinguish 0 on [0, +00) is that
no bad periodic trajectory exists.

Let us assume that K \ {0} is a one-dimensional manifold and let x(t)
be a bad trajectory. It lies in a level set {V = r} of the Lyapunov function.
Since the set KN {V = r} is compact, it can be covered by a finite number
of coordinate charts (U;,¢;i)1<i<n such that ¢;(X N U;) is an open interval
fore=1,...,n.

All we need to conclude lies in the forthcoming remarks:

Remarks

1. Since the pair (gy, hy) distinguishes 0 for each A € [0, 1] no bad trajec-
tory can be constant. Therefore the trajectory x(¢) cannot converge
to a point.

2. Tt follows from the first item that for each A € [0, 1], the vector field
gx does not vanish on the set N = {z € K : ho(z) = hi(xz) = 0}.
This is equivalent to saying that the vector fields gyo and g; point in
the same direction on N.

3. For z € K and A € [0,1], hx(z) = 0 implies that either A = A(x) is
unique or x € N.

go(z) on N

Ir@)(z) elsewhere

The solution z(t) goes through K in the same direction. In other words

no turn around is allowed.

Up to a reparametrization of time & = {

As a consequence the solution z(t) leaves the coordinate charts in finite time
so it has to come back to one it already has visited. This ensures that there
exists a positive time ¢t such that z(t) = x(0) and proves the existence of a
bad periodic trajectory.

This reasoning still works when dim C = 2 and for each r > 0 the connected
components of CN{V = r} are submanifolds whose dimension is lower than
or equal to 1.
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Proposition 3 Assume that the pair (gx, hy) distinguishes 0 for each \ €
[0,1], and that one of the following conditions hold:

1. dimK =0,

2. K\ {0} is a one-dimensional manifold that contains no periodic tra-
jectory of the convexified system,

3. dim K = 2 and for each r > 0 the connected components of KN{V =r}
are submanifolds whose dimension is 0 or 1, and contain no periodic
trajectory of the convexified system in that last case,

then (X) uniformly distinguishes 0 on [0,400), and the switched system is
GUAS.

As K is an analytic set, there exists a neighborhood of the origin that
encounters only one conected component of I, the one that contains the
origin itself. Consequently we can also state the following local result.

Proposition 4 Assume that the pair (gx, hy) distinguishes 0 for each A €
[0,1], and that there ezists a neighborhood W of the origin such that W () IC\
{0} is a one-dimensional manifold.

Then the switched system is locally asymptotically stable.

Proof. We can assume first that W N K is connected, and second that W to
is of the form {V < r} for some r > 0, so that no trajectory starting in W
can leave W. Due to the connectedness of W N IC no trajectory starting in

W can be periodic, so that we can apply the previous reasonning.
O

4.3 Example

We provide now an example where dim JC = 2 that illustrates Proposition
3. Consider the two analytic vector fields on R? defined by

—To — X3
fo(z) = T
Tr1 — I3
and
—x3 — p(21, T2) 3
fi(z) = 1
p(z1,22)T1 — T3
where ¢ : R?> — R is an analytic function which is non constant on spheres.
Consider the weak Lyapunov function V(z) = 2% + 23 + x3. A straight
computation gives L,V = Ly V = —223, so that K = {z3 = 0}.
For each = = (z1,72) € K = R? |
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—x2 — X9
folx)=| = and fi(z) = 1
2l o(x)z

and the observed system on K is:

g(z) = ( o .
ha(z) = (1 =X+ Xp(x))z1

Its trajectories do not depend on the input and are circles around the origin.
Since ¢ is non constant on spheres, (X) distinguishes 0 on [0, +00) for each
constant A € [0, 1] (it actually distinguishes 0 on [0, 27)).

Let us first assume that ¢ takes its values in R*. The feedback \ =

€ (0,1) is well defined in that case, and as 1 — A + Ap = 0, we get

Px) (x) = 0 for each x € R2. Consequently, the input A does not distinguish
0 on [0, +00) and according to Theorem 4 the switched system is not GUAS.
On the other hand, if the function ¢ is allowed to take positive values
on each sphere, for instance p(z) = %sin x1, then no bad trajectory can
exist. Indeed, all trajectories are periodic and must go through a point x for
which ¢(z) is positive. Hence, hy and hy do not vanish and have the same
sign in a neighborhood of . Consequently the output cannot vanish in this
neighborhood. According to Theorem 4 the switched system is GUAS.

5 Conclusion

In this work we have presented a new method to obtain sufficient conditions
of global asymptotic stability of pairs of Hurwitz matrices that share a weak
quadratic Lyapunov function. We have also shown that these linear results
partially extend to pairs of nonlinear analytic vector fields that share a non
quadratic weak Lyapunov function.

A challenging question is now the observability property on [0, +00) of
the bilinear systems we have encountered, in the case when the dimension
of IC is greater than 2.

On the other hand our results can be easily extended to finite families
of matrices or vector fields, but the result is rather tedious to write down.
In the linear case let {By,...,B,}, with p > 3, be a finite family of Hur-
witz matrices that share a weak quadratic Lyapunov function, that can be
assumed to be the identity. We claim that the switched system they define
is GUAS if and only if:

(P,) For each pair ¢ # j € {1,...,p} the observed system on K;(\K; is
observable on [0, +00);
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Property P holds and for each 3-uple 4, j,k € {1,...,p} the observed
system on /C; () K; () Ky, is observable on [0, +00);

and so on, up to

Properties Py to P,_1 hold and the observed system on (_; K; is
observable on [0, 4+00).

The key point of this statement lies in the proof of Lemma 2.

Acknowledgments. The authors wish to express their thanks to Paolo
Mason for the example of Section 3.6.5.
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