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Abstract

The aim of this paper is to give sufficient conditions for a switched
linear system defined by a pair of Hurwitz matrices that share a com-
mon but not strict quadratic Lyapunov function to be GUAS.

We show that this property is equivalent to the uniform observ-
ability on [0,+∞) of a bilinear system defined on a subspace whose
dimension is in most cases much smaller than the dimension of the
switched system.

Some sufficient conditions of uniform asymptotic stability are then
deduced from the equivalence theorem, and illustrated by examples.
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1 Introduction.

The aim of this paper is to give sufficient conditions for a switched linear
system to be asymptotically stable for all measurable inputs, that is to be
GUAS, in the case where the system is defined by a pair {B0, B1} of d × d

Hurwitz matrices that share a common, but not strict in general, quadratic
Lyapunov function.

We can assume without loss of generality that the Lyapunov matrix is
the identity, so that the matrices Bi verify B

T
i +Bi ≤ 0 for i = 0, 1.

In this setting the linear subspace

K = K0

⋂

K1, where Ki = ker(BT
i +Bi) i = 0, 1,

turns out to be a fundamental object (see [3] and [7]).
In the previous paper [3] it was proved that the system is GUAS as soon

as K = {0}. However this condition is not necessary, and it is possible to
build GUAS systems for which dimK = d − 1 regardless of d (see Example
7.4).

Firstly we show that a necessary and sufficient condition for the switched
system to be GUAS is that a certain bilinear system in K is observable on
[0,+∞). More accurately the convexified matrix Bλ = (1−λ)B0+λB1 writes
according to the decomposition R

d = K ⊕K⊥:

Bλ =

(

Aλ −CT
λ

Cλ Dλ

)

,

with AT
λ + Aλ = 0 for λ ∈ [0, 1], and DT

λ +Dλ < 0 for λ ∈ (0, 1).
Consider the bilinear system in K with output in K⊥:

(Σ) =

{

ẋ = Aλx

y = Cλx
λ ∈ [0, 1], x ∈ K, y ∈ K⊥.

Our main result is then:

Theorem 2

The switched system is GUAS if and only if (Σ) is observable for all inputs
defined on [0,+∞).

The interest of this equivalence is twofold: on the one hand the bilinear
observed system is in K, whose dimension is most often (but not always)
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much smaller than d. On the other hand the observability of (Σ) is rather
easier to deal with than the asymptotic properties of the switched system.

Thanks to Theorem 2 we obtain the following sufficient conditions of
uniform asymptotic stability (the definition of the set G is rather technical
and the reader is referred to Section 5):

Theorem 3

The switched system is GUAS as soon as the pair (Cλ, Aλ) is observable
for every λ ∈ [0, 1], and one of the following conditions holds:

1. the set G is discrete;

2. dimK ≤ 2.

In particular the switched system is GUAS if kerCλ = {0} for λ ∈ [0, 1].

As we know of no system which is not GUAS and such that the pair
(Cλ, Aλ) is observable for every λ ∈ [0, 1] we make the following conjecture:

Conjecture

The switched system is GUAS if and only if the pair (Cλ, Aλ) is observable
for every λ ∈ [0, 1].

From [4] we known that a GUAS switched system has always a common
strict Lyapunov function. One might think that under the assumption of
the existence of a common non strict quadratic Lyapunov function, a GUAS
system has a common strict quadratic Lyapunov function. This conjecture
is wrong, as shown by Example 7.5, due to Paolo Mason.

The paper is organized as follows: basic definitions and notations are
stated in Section 2. Section 3 is devoted to a necessary and sufficient con-
dition for a matrix B that verifies BT + B to be Hurwitz. This condition is
expressed in terms of observability of a linear system, and in our opinion en-
lights the proof of the main theorem 2 which is stated and proved in Section
4. The observability of (Σ) is studied in the next one, that is Section 5, and
the summarizing theorem 3 is stated in Section 6. The results are illustrated
by some examples in Section 7.
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2 Preliminaries

We will use the symbol X to denote the elements of Rd. When R
d will be

decomposed as Rd = K ⊕K⊥ we will write

X = x+ y ≈
(

x

y

)

where x ∈ K, y ∈ K⊥.

As explained in the introduction we deal with a pair {B0, B1} of d×d Hurwitz
matrices, assumed to share a common, but not strict in general, quadratic
Lyapunov function. More accurately there exists a symmetric positive defi-
nite matrix P such that the symmetric matrices BT

i P +PBi are nonpositive
(BT stands for the transpose of B). Since the Lyapunov matrix P is common
to the Bi’s we can assume without loss of generality that P is the identity
matrix, in other words that BT

i +Bi is non positive for i = 0, 1 :

∀X ∈ R
d, XT (BT

i +Bi)X ≤ 0 for i = 0, 1. (1)

Norms. The natural scalar product of Rd in this context is the canonical
one, defined by < X, Y >= XTY (it would be XTPY if the Lyapunov matrix
were P ). The norm of Rd is consequently chosen to be ‖X‖ =

√
XTX .

The switched system. We consider the switched system in R
d

Ẋ = Bu(t)X (2)

where the input, or switching law, t 7−→ u(t) is a measurable function from
[0,+∞) into the discrete set {0, 1}.

Such a switching signal being given, the solution of (2) for the initial
condition X writes

t 7−→ Φu(t)X,

where t 7−→ Φu(t) is the solution of the matrix equation Ṁ = Bu(t)M ,
Φu(0) = Id, or in integral form:

Φu(t) = Id +

∫ t

0

Bu(s)Φu(s) ds. (3)

The ω-limit sets. For X ∈ R
d we denote by Ωu(X) the set of ω-limit points

of {Φu(t)X ; t ≥ 0}, that is the set of limits of sequences (Φu(tj)X)j≥0, where
(tj)j≥0 is strictly increasing to +∞.

Thanks to Condition (1), the norm ‖Φu(t)X‖ is nonincreasing, and Ωu(X)
is a compact and connected subset of a sphere S(r) = {x ∈ R

d; ‖x‖ = r}
for some r ≥ 0 (see Proposition 1 of [3]).
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Definition 1 The switched system is said to be Globally Uniformly Asymp-
totically Stable, or GUAS in short, if for every switching law u the system
(2) is globally asymptotically stable, that is

∀X ∈ R
d Φu(t)X −→t→+∞ 0.

3 Hurwitz Property and Observability of lin-

ear systems

Theorem 1 Let B be a d × d-matrix that satisfies BT + B ≤ 0 and let
K = ker(BT +B). Up to an orthogonal transformation and according to the
orthogonal decomposition R

d = K ⊕K⊥, B can be written as

B =

(

A −CT

C D

)

with AT + A = 0 and DT +D < 0.
Then B is Hurwitz if and only if the pair (C,A) is observable.

Proof. Let (b1, . . . , bd) be an orthonormal basis of Rd such that (b1, . . . , bk)
span K. In that basis B writes

B =

(

A C1

C D

)

according to the decomposition R
d = K ⊕ K⊥. The condition BT + B ≤

0 being invariant under orthogonal transformations, and K being equal to
ker(BT +B), we obtain at once AT + A = 0, C1 = −CT and DT +D < 0.

Let us now consider the observed linear system in K with output in K⊥:

(Σ) =

{

ẋ = Ax

y = Cx

If (Σ) is not observable, then there exists x ∈ K, x 6= 0, such that
CetAx = 0 for all t ∈ R. Therefore

d

dt

(

etAx

0

)

= B

(

etAx

0

)

, hence etB
(

x

0

)

=

(

etAx

0

)
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does not tend to 0 as t goes to +∞, since etA is a rotation matrix. This
shows that B is not Hurwitz.

Conversely let us assume that B is not Hurwitz: there exists X ∈ R
d such

that etBX does not tend to 0 as t goes to +∞. According to the assumption
BT + B ≤ 0 the function t 7−→

∥

∥etBX
∥

∥ is non increasing, and tends to a
limit r > 0.

Let l be an ω-limit point of this trajectory, that is l = lim
j 7→+∞

etjBX for

some sequence (tj)j>0 increasing to +∞. For all t ∈ R the point etBl =
limj 7→+∞ e(tj+t)BX is also an ω-limit point. Consequently

∀t ∈ R,
∥

∥etB l
∥

∥ = ‖l‖ = r and 0 =
d

dt

∥

∥etB l
∥

∥

2
= (etBl)T (BT +B)etBl

which shows that the trajectory etBl, t ∈ R, is contained in K.
Finally let us write l = (x, 0)T in R

d = K ⊕K⊥. Then

etBl =

(

etAx

0

)

with CetAx = 0

showing that the output of (Σ) does not distinguish the states 0 and x.
�

4 Main result

Let B0 and B1 be two d × d-matrices that satisfy BT
i + Bi ≤ 0, and let

Ki = ker(BT
i +Bi) for i = 0, 1. Here and subsequently K stands for

K = K0

⋂

K1 = ker(BT
0 +B0)

⋂

ker(BT
1 +B1).

For λ ∈ [0, 1] we write Bλ = (1 − λ)B0 + λB1. Let us firstly state the
following easy but useful lemma.

Lemma 1 For all λ ∈ (0, 1), ker(BT
λ +Bλ) = K.

Moreover, up to an orthogonal transformation and according to the or-
thogonal decomposition R

d = K ⊕K⊥, Bλ writes

Bλ =

(

Aλ −CT
λ

Cλ Dλ

)

,

with AT
λ + Aλ = 0 for λ ∈ [0, 1], and DT

λ +Dλ < 0 for λ ∈ (0, 1).
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Proof.
We have only to prove that ker(BT

λ +Bλ) = K for λ ∈ (0, 1), the proof of
the second assertion being similar to the beginning of the one of Theorem 1.
If XT (BT

λ +Bλ)X = 0 for some X ∈ R
d, then

0 = (1− λ)XT (BT
0 +B0)X + λXT (BT

1 +B1)X.

But XT (BT
i +Bi)X ≤ 0 for i = 0, 1, and since λ 6= 0, 1 we obtain XT (BT

0 +
B0)X = XT (BT

1 +B1)X = 0, that is X ∈ K0 ∩ K1.
The converse is straightforward.

�

Remark. The strict inequality DT
λ + Dλ < 0 does not hold for λ = 0, 1

whenever K0 or K1 is strictly larger than K. However the non strict inequality
DT

λ +Dλ ≤ 0 holds for λ ∈ [0, 1].

In the same way as in Section 3 we will consider the bilinear controlled
and observed system:

(Σ) =

{

ẋ = Aλx

y = Cλx

where λ ∈ [0, 1], x ∈ K, and y ∈ K⊥.

Definition 2 The system (Σ) is said to be uniformly observable on [0,+∞)
if for any measurable input t 7−→ λ(t) from [0,+∞) into [0, 1], the output
distinguish any two different initial states, that is

∀x1 6= x2 ∈ K m{t ≥ 0; Cλ(t)x1(t) 6= Cλ(t)x2(t)} > 0,

where m stands for the Lebesgue measure on R, and xi(t) for the solution of
ẋ = Aλ(t)x starting from xi, for i = 1, 2.

Remarks

1. As the ouput depends explicitly on the input, it is measurable but
not necessarily continuous. It is the reason for which our definition of
observability involves the Lebesgue measure.

2. The observability on [0,+∞) is not equivalent to the observability on
bounded time intervals (See Section 5.3 and Examples 7.3, 7.4).
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3. The system being linear with respect to the state, it is clearly observable
for a given input if and only if the output does not vanish for almost
every t ∈ [0,+∞) as soon as the initial state is different from 0.

We are now in a position to state our main result:

Theorem 2 The switched system is GUAS if and only if (Σ) is uniformly
observable on [0,+∞).

Proof.
Let us first assume that the switched system is not GUAS. There exist

a measurable input t 7−→ u(t) from [0,+∞) into {0, 1} and an initial state
X ∈ R

d for which the switched system does not converge to 0.
Let l, with ‖l‖ = r > 0, be a limit point for X , and (tj)j≥0 a strictly

increasing sequence such that

l = lim
j→+∞

Φu(tj)X.

Let τ be an arbitrary positive number and let us define the sequence (φj)j≥0

by φj(t) = Φu(tj + t)X for t ∈ [0, τ ]. Each function φj verifies

φj(t) = φj(0) +

∫ t

0

Bu(tj+s)φj(s) ds.

On the other hand the sequence (Bj)j≥0 of functions from [0, τ ] to M(d;R),
defined by Bj(s) = Bu(tj+s), is bounded, and consequently converges weakly
in L∞([0, τ ],M(d;R)), up to a subsequence that we continue to denote by
(Bj)j≥0.

Moreover the limit takes its values in the convexification of {B0, B1} (see
[8], Lemme 10.1.3, page 424), and can be written

Bλ(t) = (1− λ(t))B0 + λ(t))B1,

where t 7−→ λ(t) is a measurable function from [0, τ ] into [0, 1].
Let us denote by ψ the absolutely continuous and R

d-valued function
defined on [0, τ ] by the equation

ψ(t) = l +

∫ t

0

Bλ(s)ψ(s) ds.
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According to Theorem 1, page 157, of [8], the sequence (Ψj)j≥1 converges
uniformly on [0, τ ] to ψ. Moreover this function takes its values in Ωu(X),
so that

∀t ∈ [0, τ ] ‖ψ(t)‖2 = ‖ψ(0)‖2 = ‖l‖2 = r2 > 0.

Thus we have for almost every t ∈ [0, τ ]

d

dt
‖ψ(t)‖2 = ψ(t)T (BT

λ(t) +Bλ(t))ψ(t) = 0. (4)

Lemma 2 For all t ∈ [0, τ ] the vector ψ(t) belongs to K = K0 ∩ K1. In
particular l = ψ(0) ∈ K.

Proof. For almost every t ∈ [0, τ ] we have

ψ(t)T (BT
λ(t) +Bλ(t))ψ(t)

= (1− λ(t))ψ(t)T (BT
0 +B0)ψ(t) + λ(t)ψ(t)T (BT

1 +B1)ψ(t).

But according to (4) and

ψ(t)T (BT
i +Bi)ψ(t) ≤ 0 for i = 0, 1

we obtain for almost every t ∈ [0, τ ]

λ(t) 6= 0 =⇒ ψ(t) ∈ K1

λ(t) 6= 1 =⇒ ψ(t) ∈ K0

so that ψ(t) ∈ K0 ∪ K1. Assume that l ∈ K0 \ K1. Then for some T ,
0 < T ≤ τ , we have

ψ([0, T ]) ∩ K1 = ∅, hence ψ(t)T (BT
1 +B1)ψ(t) < 0

for all t ∈ [0, T ]. Consequently λ(t) = 0 for almost every t ∈ [0, T ], and

ψ(t) = etB0ψ(0).

But according to the Hurwitz property of B0, the norm ‖ψ(t)‖ would be
strictly decreasing, in contradiction with its belonging to Ωu(X). Conse-
quently l ∈ K, and in the same way ψ(t) ∈ K for t ∈ [0, τ ].

�

End of the proof of Theorem 2.
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As ψ(t) is in K for all t it can be written according to the decomposition
R

d = K ⊕K⊥ as a column

ψ(t) =

(

φ(t)
0

)

.

Moreover the derivative of ψ(t) is also in K for almost every t. This derivative
is

d

dt
ψ(t) = B(t)ψ(t) =

(

Aλ(t)φ(t)
Cλ(t)φ(t)

)

and the belonging of
d

dt
ψ(t) to K turns out to be

Cλ(t)φ(t) = 0 for almost every t ∈ [0, τ ].

The conclusion is that φ is a trajectory of

(Σ) =

{

ẋ = Aλx

y = Cλx

for which the output vanishes almost surely. Notice that φ does not vanish
since ‖φ(t)‖2 = ‖φ(0)‖2 = ‖l‖2 = r2 > 0 for all t ∈ [0, τ ].

To conclude this part of the proof it remains to notice that φ can be
extended to [0,+∞) with the same properties: starting from the final point
ψ(τ) we can obtain a similar limit trajectory on [τ, τ1] for any τ1 > τ .

This proves that (Σ) is not uniformly observable on [0,+∞).

Conversely assume the switched system to be GUAS. It is a well know
fact that the convexified system is also GUAS (see [5]). If there exists for (Σ)
an input defined on [0,+∞) and with values in [0, 1] such that the trajectory
φ(t) for the initial condition φ(0) 6= 0 satisfies Cλ(t)x(t) = 0 for t ≥ 0 then

ψ(t) =

(

φ(t)
0

)

is, for the same input, a trajectory of the convexified switched system that
does not converge to 0, a contradiction.

�
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5 Observability of the bilinear system

We consider now the controlled and observed bilinear system

(Σ) =

{

ẋ = Aλx

y = Cλx

where x ∈ K, y ∈ K⊥ and λ ∈ [0, 1]. Notice that the matrices A0 and A1 are
skew-symmetric, so that the trajectories of (Σ) are contained in spheres. We
will denote by Sk−1, where k = dimK, the unit sphere of K.

A solution t 7−→ x(t) of (Σ) on I = [0, T ] or I = [0,+∞), which is in
Sk−1 and satisfies

Cλ(tx(t) = 0 for almost every t ∈ I,

will be called a bad trajectory on I.
The purpose is to find conditions for (Σ) to be uniformly observable

on [0,+∞). An obvious necessary condition is that (Σ) is observable for
every constant input, that is the pair (Cλ, Aλ) is observable for every λ ∈
[0, 1]. Since B0 and B1 are Hurwitz this property is guaranteed for λ = 0, 1
(although K is not necessarily the kernel of BT

i + Bi, i = 0, 1, this can be
easily shown using the same kind of arguments as in the proof of Theorem
1). Notice that under this condition no bad trajectory can be constant. This
remark is used in the forthcoming proofs.

A sufficient condition is that (Σ) is uniformly observable on every bounded
interval [0, T ], T > 0, that is (Σ) is uniformly observable in the usual mean-
ing.

The first task is to characterize the locus where the ouput vanishes (Sec-
tion 5.1). Then we will state some sufficient conditions of uniform observ-
ability (Section 5.2), and of uniform observability on [0,+∞) (Section 5.3).

5.1 The bad locus

The condition

∃ λ ∈ [0, 1] such that Cλx = (1− λ)C0x+ λC1x = 0

is equivalent to saying that C0x and C1x are colinear and in opposite direc-
tions, that last condition being due to λ ∈ [0, 1]. Consequently the set of
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points x ∈ K for which there exists λ ∈ [0, 1] such that Cλx = 0 can be
characterized in the following way:

∃λ ∈ [0, 1] s.t. Cλx = 0 ⇐⇒ 〈C0x, C1x〉+ ‖C0x‖ ‖C1x‖ = 0
⇐⇒ C0x ∧ C1x = 0 and 〈C0x, C1x〉 ≤ 0.

Here the scalar product and the norm are the restrictions to K⊥ of the ones

of Rd. The exterior product C0x ∧ C1x is considered as a
k′(k′ − 1)

2
vector,

where k′ is the dimension of K⊥.
This set is a cone that will be denoted by F .
We also write N = kerC0

⋂

kerC1 and F0 = F \N . For x ∈ F0 it is clear
that C0x 6= C1x so that the unique λ such that Cλx = 0 is given by:

λ(x) =
〈C0x− C1x, C0x〉
‖C0x− C1x‖2

, (5)

that is x 7−→ λ(x) is the restriction to F0 of an analytic function defined on
K \ {C0x = C1x}.

Any bad trajectory lies in the intersection of F with Sk−1, and as long as
it does not meet N , that is as long as it remains in F0, Formula (5) shows
that t 7−→ λ(t) and t 7−→ x(t) are analytic (more accurately t 7−→ λ(t) is
almost everywhere equal to an analytic function).

5.2 Uniform observability

Let (λ(t), x(t)) be a bad trajectory on [0, T ] for some T > 0. The point x(t)
belongs to F for all t, so that C0x(t) ∧ C1x(t) = 0, and by differentiation

d

dt
C0x(t) ∧ C1x(t) = C0Aλ(t)x(t) ∧ C1x(t) + C0x(t) ∧ C1Aλ(t)x(t) = 0 a.e.

that is Aλ(t)x(t) is tangent to F (in a weak sense because F need not be
regular at every point).

Let G stand for the set of points x ∈ Sk−1 ∩ F that verify:






x ∈ N and ∃λ ∈ [0, 1] s.t. C0Aλx ∧ C1x+ C0x ∧ C1Aλx = 0
or
x ∈ F0 and C0Aλ(x)x ∧ C1x+ C0x ∧ C1Aλ(x)x = 0

It is clear that x(t) ∈ G for almost every t. Assume the set G to be discrete,
then the trajectory is reduced to a point, and λ(t) is almost everywhere equal
to a constant. We have proved the proposition:
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Proposition 1 If the pair (Cλ, Aλ) is observable for every λ ∈ [0, 1] and the
set G is discrete then (Σ) is uniformly observable on [0, T ] for all T > 0.

It is in particular true if kerCλ = {0} for λ ∈ [0, 1].

5.3 Uniform observability on [0,+∞)

It may happen that G is not discrete, though the pair (Cλ, Aλ) is observable
for every λ ∈ [0, 1]. For instance when dimK⊥ = 1 the condition C0x∧C1x =
0 is empty and F contains an open subset of K. The interior of the set F0 is
not empty either and the ouput of the analytic system

{

ẋ = Aλ(x)x

y = Cλ(x)x

vanishes as long as the trajectory remains in F0. Consequently (Σ)
cannot be uniformly observable on small time intervals. However it may
happen that under the assumption that the pair (Cλ, Aλ) is observable for
every λ ∈ [0, 1], no trajectory remains in F . We present below a proof in the
case where dimK is 1 or 2.

5.3.1 dimK = 1

The sphere Sk−1 consists of two points and under the condition that the pair
(Cλ, Aλ) is observable for every λ ∈ [0, 1], no bad trajectory can exist.

5.3.2 dimK = 2

We can assume without loss of generality that the rank of Cλ is equal to 1
for every λ ∈ [0, 1]. Indeed if it vanishes for some λ0, then the pair (Cλ0

, Aλ0
)

is not observable. If it is greater than 1 for one λ then it is greater than 1
for all λ except for isolated values, and the bad trajectories are obtained for
these constant inputs.

In this setting we have two cases:

1. kerC0 = kerC1. Then C1 = αC0 for some α > 0 (if α ≤ 0 then Cλ

vanishes for some λ ∈ [0, 1]). A bad trajectory is contained in the
one-dimensional space kerC0 and is reduced to a point.

2. kerC0 6= kerC1. The set F is the cone {(C0x)(C1x) ≤ 0}. On the other
hand the matrices exp(tAi) are rotation ones (i = 0, 1). If they have
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the same direction of rotation, all trajectories run through the whole
circle and go out of F . If their directions of rotation are opposite or
if one is zero, then Aλ vanishes for some λ. The pair (Cλ, Aλ) is not
observable for that value.

We have proved

Proposition 2 If dimK ≤ 2 then (Σ) is uniformly observable on [0,+∞) if
and only if the pair (Cλ, Aλ) is observable for every λ ∈ [0, 1].

6 Concluding Theorem and Conjecture

We keep the notations of the previous sections. In view of Theorem 2 and
Propositions 1 and 2, we can state:

Theorem 3 The switched system is GUAS as soon as the pair (Cλ, Aλ) is
observable for every λ ∈ [0, 1], and one of the following conditions holds:

1. the set G is discrete;

2. dimK ≤ 2.

In particular the switched system is GUAS if kerCλ = {0} for λ ∈ [0, 1].

In this theorem, only sufficient conditions are stated. However we know
of no system which is not GUAS and such that the pair (Cλ, Aλ) is observable
for every λ ∈ [0, 1]. We therefore make the following conjecture:
Conjecture

The switched system is GUAS if and only if the pair (Cλ, Aλ) is observable
for every λ ∈ [0, 1].

7 Examples

7.1 Hurwitz matrices

Consider the matrix
(

A −CT

C D

)

where A =

(

0 1
−1 0

)

,

and the first line of C is
(

1 0
)

. According to Theorem 1 this matrix is
Hurwitz as soon as D satisfies DT +D < 0.
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7.2 Two general examples

Let us choose a skew-symmetric k× k matrix A, and a k′ × k matrix C such
that the pair (C,A) is observable. Then for any matrices D0 and D1 such
that DT

i +Di < 0 the system {B0, B1} is GUAS, where:

B0 =

(

A −CT

C D0

)

B1 =

(

A −CT

C D1

)

Indeed the system is in the canonical form of Lemma 1, and (Σ) does not
depend on λ. It is therefore uniformly observable.

In the same way, and as a direct application of Proposition 1, we can
consider the case where the dynamics of (Σ) is null, that is the system defined
by

B0 =

(

0 −CT
0

C0 D0

)

B1 =

(

0 −CT
1

C1 D1

)

with DT
i +Di < 0.

It is GUAS if and only if Cλ is one-to-one for all λ ∈ [0, 1].

7.3 An example with dimK = 2

Consider the case where

A0 =

(

0 a

−a 0

)

, the first line of C0 is
(

1 0
)

,

A1 =

(

0 b

−b 0

)

, the first line of C1 is
(

0 1
)

,

and D0, D1, are k
′ × k′ matrices, k′ ≥ 1, with DT

i +Di < 0, i = 1, 2.
A straightforward computation shows that the pair (Cλ, Aλ) is observable

for every λ ∈ [0, 1] if and only if a and b are both positive or both negative:
the determinant of the observability matrix is equal to
(2λ2 − 2λ+ 1)((1− λ)a+ λb).

The cone F is here the set {(x1, x2) ∈ R
2; x1x2 ≤ 0}, that is the union

of the two orthants {x1 ≥ 0; x2 ≤ 0} and {x1 ≤ 0; x2 ≥ 0}, and F0 is equal
to F minus the origin. For x = (x1, x2) ∈ F0 we can define

λ(x) =
−x2

x1 − x2
.
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This system cannot be uniformly observable on small time intervals since for
the feedback x 7−→ λ(x) the output vanishes as long as x(t) belongs to F0

whose interior is not empty.
However (Σ) is uniformly observable on [0,+∞), under the condition a

and b both positive or both negative: indeed a trajectory starting at x 6= 0
runs through the whole circle with radius ‖x‖, hence goes out of F .

Finally the switched system is GUAS if and only if ab > 0.

7.4 The dimK = d− 1 case

Let us begin by a very simple example. Let A a be (d − 1) × (d − 1) skew-
symmetric matrix and C a 1 × (d − 1) matrix such that the pair (C,A) is
observable, and let d0 and d1 be two different positive numbers. The matrices

B0 =

(

A −CT

C −d0

)

B1 =

(

A −CT

C −d1

)

define a GUAS switched system with dimK = d− 1.
For a less trivial example consider the skew-symmetric 2q × 2q matrix A

which has q blocks
(

0 −aj
aj 0

)

on the diagonal and vanishes elsewhere, and

C0 =
(

1 0 1 0 . . . 1 0
)

, C1 =
(

0 1 0 1 . . . 0 1
)

.

Assume (a1, . . . , aq) to be rationally independant. Then the orbit of ẋ = Ax

for a non zero initial state (x01, . . . , x
0
2q) is dense in the torus

x22j−1 + x22j = (x02j−1)
2 + (x02j)

2 = T 2
j j = 1, . . . , q

where at least one Tj does not vanish.
Therefore this orbit meets the subset of the orthant {xi ≥ 0; i = 1, . . . 2q}

where x2j−1 > 0 and x2j > 0 for at least one j. But in this subset we have
(C0x)(C1x) > 0. This shows that every non zero orbit goes out of F and
that the bilinear system defined by A0 = A1 = A, C0 and C1 is uniformly
observable on [0,+∞). Finally the switched system defined by the matrices

B0 =

(

A −CT
0

C0 −d0

)

B1 =

(

A −CT
1

C1 −d1

)

is GUAS for any choice of positive numbers d0 and d1.
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7.5 A singular case of the Dayawansa-Martin example

It is a well known fact that a GUAS switched system has always a common
strict Lyapunov function, but not always a quadratic one: in [4] Dayawansa
and Martin provide an example to show that even for planar switched linear
systems GUAS does not imply the existence of a common strict quadratic
Lyapunov function.

We give here an example, due to Paolo Mason, which shows that for a
linear switched system, GUAS and the existence of a common non strict
quadratic Lyapunov function do not either imply the existence of a common
strict quadratic Lyapunov function.

Consider the 2× 2 switched system defined by the matrices

B0 =

(

−1 −1
1 −1

)

and B1 =

(

−1 −3 − 2
√
2

3− 2
√
2 −1

)

.

The symmetric positive matrix

P =

(

1 0

0 3 + 2
√
2

)

defines a weak quadratic Lyapunov function for this system, that is BT
i P +

PBi ≤ 0 for i = 0, 1.
On the other hand the switched system is GUAS: to see it, just apply

Theorem 1 of [2]. Indeed our system is in the class satisfying the S4-GUAS
condition of the mentioned theorem. It remains to show that it admits no
strict quadratic Lyapunov function.

We are seeking a positive definite symmetric matrix P in the form
(

1 q

q r

)

such that
Mi = BT

i P + PBi < 0, i = 1, 2 (6)

Equation (6) is satisfied if the interior of the ellipses in the (q, r) plan given
by detMi = 0 intersect. It is straightforward to check that those ellipses
have the same major axis q = 0 and have respectively the vertices

{(0, 3− 2
√
2), (0, 3 + 2

√
2)} and {(0, 3 + 2

√
2), (0, 99 + 70

√
2)}.

Consequently their interiors do not intersect.

Acknowledgments. The authors wish to express their thanks to Paolo
Mason for the example of Section 7.5.
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