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Figure 1. Principles of a NTC. a) : with a spatially extended dynamical 

network. b) : with a multiple delay feedback dynamics. 
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Abstract— This work reports on the first experimental photonic 

demonstration of a neuromorphic computational unit, on the 

basis of a recently proposed brain-inspired paradigm typically 

referred as Echo State Network, Liquid State Machine, or also 

Reservoir Computing in the neuronal computing literature. This 

paradigm makes use of the computational power offered by high 

dimensional transient motions developed by complex nonlinear 

dynamical systems, when the latter are excited by the 

information to be processed. The originality of the proposed 

photonic implementation is to exploit the dynamical complexity 

of delay dynamics, instead of that provided by spatially extended 

networks of dynamical nodes (as typically proposed in the 

existing literature). Complex delay dynamics are indeed well 

known in photonics with many different practical 

implementations. Our results have been obtained via a hybrid 

optoelectronic architecture, which has been successfully used in 

the past in the framework of optical chaos communications. We 

will report on two practical implementations involving whether 

wavelength or intensity dynamics subject to a single nonlinear 

delayed feedback, or even a multiple delayed one with randomly 

defined weights for each delay. The computational performance 

is successfully tested on a benchmark test, a spoken digit 

recognition task, with which state of the art performances are 

achieved. 
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I.  INTRODUCTION 

The brain research and neural network computing 
communities proposed independently in the early 2000 novel 
computational principles [1], which are suspected to mimic 
actual calculation and processing tasks that have been observed 
and studied in the brain. This computational principles referred 
as Echo State Network (ESN [2]), or Liquid State Machine 
(LSM, [3]), and also with the generic term Reservoir 
Computing (RC), is definitely different with respect to the 
standard Turing Machine principles widely implemented in 
electronic digital processor. Instead of processing the 
calculation tasks step by step with static states stored in 
memories, this new principle is based on computational power 
developed by complex nonlinear transient motions. These 
motions are typically developed in the high dimensional phase  

space of nonlinear dynamical systems, when the latter is 
excited by an input signal representing the information to be 
processed. The complex dynamics is usually materialized by a 
network of neurons (as in the brain), or by any spatially 
extended network of coupled nonlinear dynamical nodes. The 
corresponding generic architecture is depicted in Fig.1(a),  

where strong similarities can be seen compared to standard 
recurrent neural network (RNN): an input layer is dedicated to 
the injection of the input information (input connectivity matrix 
WI

) into a complex interconnected network of dynamical nodes 
(internal network connectivity matrix W

D
); an output layer 

(Read Out matrix W
R
) is dedicated to the extraction of the 

result, computed from the nonlinear transient developed by the 
network dynamics consequently to the injected input signal. 
The internal network connectivity matrix W

D 
allows to perform 

the multiple delay dynamics, whereas the single delay ones are 
obtained for a connectivity matrix W

D 
filled in with the same 

values of weights coefficients. Since one of our aim is to 
transpose these concepts into Physics and into a real world 
experimental demonstrator, our system will be referred in the 
remaining part of the paper, as NTC (Nonlinear Transient 
Computing [4]). NTC is suggested with the intention to reflect 
more clearly the actual physical origin of the approach, in a 
way which is expected to be more meaningful for physicists 
and for the nonlinear dynamics community, although 
historically the computer or brain science communities are 
referring to ESN, LSM or RC. 

a) b)
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One strong difference in NTC compared to RNN is the 
following: the internal network structure W

D
 is assumed to be 

fixed (and not tunable according to a learning procedure as it is 
for RNN), and the learning procedure in NTC is aimed at 
determining the linear Read-Out W

R
 only (which coefficients 

are typically optimized via a regression technique applied to a 
so-called learning set, consisting of known input-output 
couples for a given problem). 

A significant innovation in NTC was recently proposed [5] 
by the nonlinear dynamics community, as a simple and 
efficient solution intended for real-world physical 
implementation, instead of the classical view of a network of 
nonlinear nodes [6, 7]. This novel approach can be justified by 
a known analogy between a delay dynamics and a spatio-
temporal one (as a RNN). Both are infinite dimensional, and 
the space-time representation of a delay dynamics was already 
proposed 20 years ago [8], introducing on one hand a discrete 
time variable corresponding to one delay step forward, and on 
the other hand a virtual continuous space variable 
corresponding to the short time scale fluctuations within a time 
delay interval. As illustrated in Fig.1(b) virtual network nodes 
in a delay dynamics can be defined as positions within a time 
delay interval τD separated by a “node distance” [5]. The 
connectivity of the resulting virtual spatio-temporal network is 
achieved via two dynamical mechanisms. The neighboring 
nodes are linearly coupled via the characteristic time (τ ≈ 5δτ 
for an optimal adjacent node spacing, [5]) of the oscillator 
impulse response h(t). Each node is also nonlinearly coupled 
(nonlinear function f[x]) to its delayed feedback echo (total 
delay τD), and also to any additional delay eventually involved 
in the feedback. This is typically what is implemented in our 
demonstrator, where the kth node is fed back to the input of the 
nonlinear function, with a delay kδτ (k = 1 . . . N), and with a 
weight w

D
k. Compared to a single delay dynamics [5], we 

explore the possibility to lower the number of nodes required 
for a comparable task (from 400 to 150 only), compensating 
this by an improved delay dynamics connectivity via a multiple 
delay topology with random weights (uniform distribution). In 
terms of computational efficiency, we reached with the 
multiple delay dynamics a word error rate (WER) comparable 
to single delay ones, for the same benchmark test consisting of 
a so-called “at any time” classification of spoken digits. 

The operating principles for our NTC implemented with a 
delay feedback nonlinear dynamics can be summarized as 
follow (Fig.1(b)). An input information to be processed is 
exciting each virtual spatial node of the NTC dynamics; this 
addressing is performed by a kind of temporal division 
multiplexing, consisting in spreading each input sample over 
all the nodes within a time delay interval, according to an input 
connectivity matrix WI

. The NTC dynamics experiences, for 
each injected set of input information samples, a transient 
motion in its complex phase space. This motion is ruled by: (i) 
a nonlinear (function f[x]) delay feedback (N delays kδτ with 
weights w

D
k, k = 1 to N, and τD = Nδτ, the coefficients w

D
k are 

equal to 1 for a single delay topology); (ii) a linear impulse 
response h(t) limiting the rate of change of the feedback loop. 
The computed output is obtained by a Read-Out consisting of a 
linear combination of the amplitudes of each virtual node 
during the full transient; the Read-Out coefficients from W

R
 are 

determined after a learning phase which corresponds to solving 
a regression problem from known pairs of input / response. 

The next section will describe the experimental setup and 
the dynamical modeling of the NTC and its operating 
parameters conditions. 

II. NONLINEAR SINGLE OR MULTIPLE DELAY DYNAMICS

The experimental setup is based on an original architecture 
intended to perform an Ikeda-like optoelectronic nonlinear 
delay dynamics [9-11] initially developed for secure chaos 
communications. We propose two practical implementations 
involving whether wavelength or intensity dynamics subject to 
a single nonlinear delayed feedback, or even a multiple delayed 
one with randomly defined weights for each delay. 

The nonlinear function (f[x] = sin²(x)) is provided by 
tunable interference phenomena for both experiments: an 
imbalanced birefringent interferometer for the wavelength 
dynamics and an integrated telecom Mach-Zehnder modulator 
(LiNbO3) for intensity dynamics. The nonlinear device output 
is detected by a photodiode, and an electronic feedback circuit 
performs a low pass or a bandpass filtering ruling the dynamics 
of the oscillator. This filtered signal serves as the Read-Out of 
the NTC. The input information is then added to the filtered 
signal, the resulting sum being multiple delayed (or single 
delayed) by an FPGA (Field Programmable Gate Array) board 
(wavelength dynamics) or by an optical fiber (intensity single 
delay dynamics). The advantage of the FPGA is that it serves 
here as a flexible and programmable delay line, in which 
several elementary FIFO memories (First In First Out) are 
implemented together with the weights w

D
k of each delayed 

feedback, as depicted in Fig.1(b). The weighted sum of the 
multiple delayed signals is amplified, combined with an offset, 
and serves finally as the input drive of the nonlinear device in 
order to close the loop of the oscillator.  

The continuous time dynamics is ruled by a differential, or 
integro-differential, equation [12], thus defining one, or two, 
response time(s) associated to the low, or low and high, cutoff 
frequencies of the Fourier domain corresponding low pass, or 
bandpass, filter. Such a filter in the feedback loop dynamics, is 
driven by the nonlinear delayed term. The operating point of 
the dynamics along the nonlinear sin²- function is set by an 
offset phase added on the delayed feedback signal. The 
amplification feedback loop gain is referred as β. The delayed 
feedback coefficients w

D
k are programmed in the FPGA, they 

are defined randomly from a uniform distribution; compared to 
the single delay case, and they are introduced for an enhanced 
connectivity (in the framework of an equivalent complex 
network of dynamical nodes). In Fig. 1(b), δτ is an elementary 
time delay determining the spacing between two adjacent 
virtual nodes of the equivalent network of nodes approach for 
the complex dynamics. Depending on the chosen relative time 
scales, there are N = 150 different nodes in the wavelength 
setup and N = 400 nodes in intensity setup. With the FPGA 
configuration for the delay, we are able to implement also as 
many as there are nodes.  

Finally, in order to ensure a stable fixed point solution for 
an input free operation (autonomous dynamics), the feedback 
gain β has to be set below the Hopf oscillation threshold 
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defined as 1. In the experiment β is set to ca. 0.5. The offset 
phase fixing the operating point of the NTC, is set to two 
characteristic position, π/4 (parabolic non linearity, expected to 
be the optimal point), and π/2 (around the linear operating 
point, which however becomes cubic in the wavelength 
dynamics since the amplitude span is larger than in the 
intensity dynamics). Thus, the amplitude of the input 
information can be set so that, in the wavelength dynamics, it 
induces a large scan of the nonlinear function (more than 2 
extrema); which is a specific advantageous feature in 
comparison to the intensity dynamics. 

When an input information signal has to be processed, it 
needs to be properly formatted relatively to the time scales and 
topology of the delay dynamics: each information sample has 
to maintain a transient state for each individual node of the 
delay dynamics. This is achieved by the introduction of an 
input connectivity matrix WI

, randomly, but uniquely defined 
for each input information signal. The temporal waveform to 
be injected in the setup input data port, is computer processed 
according to W

I
 multiplied by a 2D representation of the input 

information signals (the digit cochleagram in the case of the 
spoken digit recognition task, see below). The corresponding 
1D waveform is injected into the optoelectronic delay 
dynamics via an arbitrary waveform generator (AWG, Lecroy 
ArbStudio 1102). For each input information signal, the full 
transient response is recorded by a digital storage oscilloscope. 
An off-line post-processing is performed for both the training 
and testing stages. The training consists in the solving of a 
regression problem, and results in the definition of Read-Out 
coefficients of W

R
 leading to an optimally correct answer on a 

training subset of input / answer pairs. The efficiency of such 
an optimal Read-Out is finally evaluated on a complementary 
subset of input / answer pairs. In principle, the FPGA could be 
also programmed to implement a direct on-line Read-Out, as 
soon as the coefficients are determined after the training. For 
sake of simplicity, this testing phase was fully processed off-
line, right after the training phase.  

III. SPOKEN DIGIT RECOGNITION TASK

This task is a standard one already used in other RNN or 
NTC reports [5]. Even if not constituting a difficult one, it 
essentially allows for a relative evaluation of the computational 
efficiency and accuracy of our proposed NTC topology, 
moreover by comparison with other existing approaches.. 

The main goal of this standard classification test is to 
recognize a pronounced digit among the ten possible ones from 
0 to 9. The spoken digit data base used in this test corresponds 
to 500 digits extracted from the TI46 speech corpus. The digits 
are pronounced by 10 different female speakers uttering 5 
times the 10 digits. Following a standard pre-processing task 
typically performed in many similar acoustic speech 
recognition task, the 1D acoustic waveform sampled at 12.5 
kHz is transformed into a 2D frequency-time representation, a 
so-called cochleagram (the Lyon cochlear ear model). The 
performance for this task is characterized by the word error rate 
(WER), as well as a margin to the closest competitor digit. By 
tuning the experimental control parameters (β and offset 
phase), state of the art performances have been obtained with a 
WER below 1 %. 

Thus, we have demonstrated experimentally the efficiency 
of a photonic neuromorphic analog processor referred as NTC 
(nonlinear transient computer), which successfully passed a 
spoken digit recognition test with a WER similar to the state of 
the art. The reported results are obtained with an NTC based on 
a wavelength multiple / single or an intensity single delay 
nonlinear dynamics. In the wavelength nonlinear dynamics, the 
number of nodes is 3 times smaller than intensity single delay 
dynamics. NTC with delay dynamics is confirmed as an 
efficient solution for the practical implementation of this brain 
inspired computational paradigm, potentially providing 
experimental efficiency (in terms of speed) and flexibility (in 
terms of dynamics connectivity). 

IV. PERSPECTIVES

Future work will be devoted to the design of ultra-fast 
photonic versions making use of standard optical 
telecommunication devices and principles [11]. Many 
fundamental issues are also remaining, whether in order to 
quantify and to correlate the dynamical features of delay 
systems to the computational power, or to adapt the dynamics 
topology and the system architecture for the implementation of 
more advanced computational features (plasticity and 
integrated learning capability), thus allowing self-adaptation of 
the system to many different classes of complex problems. 
Work is in progress to address experimentally not only 
classification tasks, but also prediction ones on complex 
problems. 
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