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MODERATE DEVIATIONS FOR THE DURBIN-WATSON STATISTIC
RELATED TO THE FIRST-ORDER AUTOREGRESSIVE PROCESS

S.VALÈRE BITSEKI PENDA, HACÈNE DJELLOUT, AND FRÉDÉRIC PROÏA

Abstract. The purpose of this paper is to investigate moderate deviations for the Durbin-
Watson statistic associated with the stable first-order autoregressive process where the
driven noise is also given by a first-order autoregressive process. We first establish a
moderate deviation principle for both the least squares estimator of the unknown parameter
of the autoregressive process as well as for the serial correlation estimator associated with
the driven noise. It enables us to provide a moderate deviation principle for the Durbin-
Watson statistic in the easy case where the driven noise is normally distributed and in
the more general case where the driven noise satisfies a less restrictive Chen-Ledoux type
condition.

AMS 2000 subject classifications: 60F10, 60G42, 62M10, 62G05.

1. Introduction

This paper is focused on the stable first-order autoregressive process where the driven
noise is also given by a first-order autoregressive process. The purpose is to investigate
moderate deviations for both the least squares estimator of the unknown parameter of the
autoregressive process as well as for the serial correlation estimator associated with the
driven noise. Our goal is to establish moderate deviations for the Durbin-Watson statistic
[10], [11], [12], in a lagged dependent random variables framework. First of all, we shall
assume that the driven noise is normally distributed. Then, we will extend our investigation
to the more general framework where the driven noise satisfies a less restrictive Chen-Ledoux
type condition [4], [16]. We are inspired by the recent paper of Bercu and Pröıa [2], where
the almost sure convergence and the central limit theorem are established for both the least
squares estimators and the Durbin-Watson statistic. Our results are proved via an extensive
use of the results of Dembo [5], Dembo and Zeitouni [6] and Worms [22], [23], [24] on the
one hand, and of the paper of Puhalskii [19] and Djellout [7] on the other hand, about
moderate deviations for martingales. In order to introduce the Durbin-Watson statistic, we
shall focus our attention on the first-order autoregressive process given, for all n ≥ 1, by{

Xn = θXn−1 + εn

εn = ρεn−1 + Vn

(1.1)

where we shall assume that the unknown parameters |θ| < 1 and |ρ| < 1 to ensure the
stability of the model. In all the sequel, we also assume that (Vn) is a sequence of indepen-
dent and identically distributed random variables with zero mean, positive variance σ2 and
satisfying some suitable assumptions. The square-integrable initial values X0 and ε0 may

Key words and phrases. Durbin-Watson statistic, Moderate deviation principle, First-order autoregres-
sive process, Serial correlation.
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be arbitrarily chosen. We have decided to estimate θ by the least squares estimator

θ̂n =

∑n
k=1XkXk−1∑n
k=1 X

2
k−1

. (1.2)

Then, we also define a set of least squares residuals given, for all 1 ≤ k ≤ n, by

ε̂k = Xk − θ̂nXk−1, (1.3)

which leads to the estimator of ρ,

ρ̂n =

∑n
k=1 ε̂kε̂k−1∑n
k=1 ε̂

2
k−1

. (1.4)

Finally, the Durbin-Watson statistic is defined, for n ≥ 1, as

D̂n =

∑n
k=1(ε̂k − ε̂k−1)

2∑n
k=0 ε̂

2
k

. (1.5)

This well-known statistic was introduced by the pioneer work of Durbin and Watson [10],
[11], [12], in the middle of last century, to test the presence of a significative first order serial
correlation in the residuals of a regression analysis. A wide range of litterature is available
on the asymptotic behavior of the Durbin-Watson statistic, frequently used in Econometry.
While it appeared to work pretty well in the classical independent framework, Malinvaud
[17] and Nerlove and Wallis [18] observed that, for linear regression models containing
lagged dependent random variables, the Durbin-Watson statistic may be asymptotically
biased, potentially leading to inadequate conclusions. Durbin [9] proposed alternative tests
to prevent this misuse, such as the h-test and the t-test, then substantial contributions were
brought by Inder [14], King and Wu [15] and more recently Stocker [20]. Lately, a set of
results have been established by Bercu and Pröıa in [2], in particular a test procedure as
powerful as the h-test, and they will be summarized thereafter as a basis for this paper.

The paper is organized as follows. First of all, we recall the results recently established
by Bercu and Pröıa [2]. In Section 2, we propose moderate deviation principles for the
estimators of θ and ρ and for the Durbin-Watson statistic, given by (1.2), (1.4) and (1.5),
under the normality assumption on the driven noise. Section 3 deals with the generalization
of the latter results under a less restrictive Chen-Ledoux type condition on (Vn). Finally,
all technical proofs are postponed to Section 4.

Lemma 1.1. We have the almost sure convergence of the autoregressive estimator,

lim
n→∞

θ̂n = θ∗ a.s.

where the limiting value

θ∗ =
θ + ρ

1 + θρ
. (1.6)

In addition, as soon as E[V 4
1 ] < ∞, we also have the asymptotic normality,

√
n
(
θ̂n − θ∗

) L−→ N
(
0, σ2

θ

)
where the asymptotic variance

σ2
θ =

(1− θ2)(1− θρ)(1− ρ2)

(1 + θρ)3
. (1.7)
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Lemma 1.2. We have the almost sure convergence of the serial correlation estimator,

lim
n→∞

ρ̂n = ρ∗ a.s.

where the limiting value

ρ∗ = θρθ∗. (1.8)

Moreover, as soon as E[V 4
1 ] < ∞, we have the asymptotic normality,

√
n
(
ρ̂n − ρ∗

) L−→ N
(
0, σ2

ρ

)
with the asymptotic variance

σ2
ρ =

(1− θρ)

(1 + θρ)3
(
(θ + ρ)2(1 + θρ)2 + (θρ)2(1− θ2)(1− ρ2)

)
. (1.9)

On top of that, we have the joint asymptotic normality,

√
n

(
θ̂n − θ∗

ρ̂n − ρ∗

)
L−→ N

(
0,Γ
)

where the covariance matrix

Γ =

(
σ2
θ θρσ2

θ

θρσ2
θ σ2

ρ

)
. (1.10)

Lemma 1.3. We have the almost sure convergence of the Durbin-Watson statistic,

lim
n→∞

D̂n = D∗ a.s.

where the limiting value

D∗ = 2(1− ρ∗). (1.11)

In addition, as soon as E[V 4
1 ] < ∞, we have the asymptotic normality,

√
n
(
D̂n −D∗

) L−→ N
(
0, σ2

D

)
where the asymptotic variance

σ2
D = 4σ2

ρ. (1.12)

Proof. The proofs of Lemma 1.1, Lemma 1.2 and Lemma 1.3 may be found in [2]. �

Our objective is to establish a set of moderate deviation principles on these estimates
in order to get a better asymptotic precision than the central limit theorem. In all the
sequel, (bn) will denote a sequence of increasing positive numbers satisfying 1 = o(b2n) and
b2n = o(n), that is

bn −→ ∞,
bn√
n
−→ 0. (1.13)

Remarks and Notations. In the whole paper, for any matrix M , M ′ and ∥M∥ stand for
the transpose and the euclidean norm of M , respectively. For any square matrix M , det(M)
and ρ(M) are the determinant and the spectral radius of M , respectively. Moreover, we will
shorten large deviation principle by LDP. In addition, for a sequence of random variables
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(Zn)n on Rd×p, we say that (Zn)n converges (b2n)−superexponentially fast in probability to
some random variable Z if, for all δ > 0,

lim sup
n→∞

1

b2n
logP

(
∥Zn − Z∥ > δ

)
= −∞.

This exponential convergence with speed b2n will be shortened as

Zn
superexp−→

b2n

Z.

The exponential equivalence with speed b2n between two sequences of random variables (Yn)n
and (Zn)n, whose precise definition is given in Definition 4.2.10 of [6], will be shortened as

Yn
superexp∼

b2n

Zn.

2. On moderate deviations under the Gaussian condition

In this first part, we focus our attention on moderate deviations for the Durbin-Watson
statistic in the easy case where the driven noise (Vn) is normally distributed. This restrictive
assumption allows us to reduce the set of hypothesis to the existence of t > 0 such that

(G.1)

E
[
exp(tε20)

]
< ∞,

(G.2)

E
[
exp(tX2

0 )
]
< ∞.

Theorem 2.1. Assume that there exists t > 0 such that (G.1) and (G.2) are satisfied.
Then, the sequence (√

n

bn

(
θ̂n − θ∗

))
n≥1

satisfies an LDP on R with speed b2n and good rate function

Iθ(x) =
x2

2σ2
θ

(2.1)

where σ2
θ is given by (1.7).

Theorem 2.2. Assume that there exists t > 0 such that (G.1) and (G.2) are satisfied.
Then, as soon as θ ̸= −ρ, the sequence(√

n

bn

(
θ̂n − θ∗

ρ̂n − ρ∗

))
n≥1

satisfies an LDP on R2 with speed b2n and good rate function

K(x) =
1

2
x′Γ−1x (2.2)

where Γ is given by (1.10). In particular, the sequence(√
n

bn

(
ρ̂n − ρ∗

))
n≥1
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satisfies an LDP on R with speed b2n and good rate function

Iρ(x) =
x2

2σ2
ρ

(2.3)

where σ2
ρ is given by (1.9).

Remark 2.1. The covariance matrix Γ is invertible if and only if θ ̸= −ρ since one can
see by a straightforward calculation that

det(Γ) =
σ2
θ(θ + ρ)2(1− θρ)

(1 + ρ2)
.

Moreover, in the particular case where θ = −ρ, the sequences(√
n

bn

(
θ̂n − θ∗

))
n≥1

and

(√
n

bn

(
ρ̂n − ρ∗

))
n≥1

satisfy LDP on R with speed b2n and good rate functions respectively given by

Iθ(x) =
x2(1− θ2)

2(1 + θ2)
and Iρ(x) =

x2(1− θ2)

2θ4(1 + θ2)
.

Theorem 2.3. Assume that there exists t > 0 such that (G.1) and (G.2) are satisfied.
Then, the sequence (√

n

bn

(
D̂n −D∗

))
n≥1

satisfies an LDP on R with speed b2n and good rate function

ID(x) =
x2

2σ2
D

(2.4)

where σ2
D is given by (1.12).

Proof. Theorem 2.1, Theorem 2.2 and Theorem 2.3 are proved in Section 4. �

3. On moderate deviations under the Chen-Ledoux type condition

Via an extensive use of Puhalskii’s result, we will now focus our attention on the more
general framework where the driven noise (Vn) is assumed to satisfy the Chen-Ledoux type
condition. Accordingly, one shall introduce the following hypothesis, for a = 2 and a = 4.

(CL.1) Chen-Ledoux.

lim sup
n→∞

1

b2n
log nP

(
|V1|a > bn

√
n
)
= −∞.

(CL.2)
|ε0|a

bn
√
n

superexp−→
b2n

0.

(CL.3)
|X0|a

bn
√
n

superexp−→
b2n

0.
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Remark 3.1. If the random variable V1 satisfies (CL.1) with a = 2, then

lim sup
n→∞

1

b2n
log nP

( ∣∣V 2
1 − E[V 2

1 ]
∣∣ > bn

√
n
)
= −∞, (3.1)

which implies in particular that Var(V 4
1 ) < ∞. Moreover, if the random variable V1 has

exponential moments, i.e. if there exists t > 0 such that

E
[
exp (tV 2

1 )
]
< ∞,

then (CL.1) is satisfied for every increasing sequence (bn). From [1], [13], condition (3.1)
is equivalent to say that the sequence(

1

bn
√
n

n∑
k=1

(
V 2
k − E[V 2

k ]
))

n≥1

satisfies an LDP on R with speed b2n and good rate function

I(x) =
x2

2Var(V 2
1 )

.

Remark 3.2. If we choose bn = nα with 0 < α < 1/2, (CL.1) is immediately satisfied if
there exists t > 0 and 0 < β < 1 such that

E
[
exp (tV 2β

1 )
]
< ∞,

which is clearly a weaker assumption than the existence of t > 0 such that

E
[
exp (tV 2

1 )
]
< ∞,

imposed in the previous section.

Remark 3.3. If (CL.1) is satisfied for a = 4, then it is also satisfied for all 0 < b < a.

Remark 3.4. In the technical proofs that will follow, rather than (CL.1) with a = 4, the
weakest assumption really needed could be summarized by the existence of a large constant
C such that

lim sup
n→∞

1

b2n
logP

(
1

n

n∑
k=1

V 4
k > C

)
= −∞.

Theorem 3.1. Assume that (CL.1), (CL.2) and (CL.3) are satisfied. Then, the sequence(√
n

bn

(
θ̂n − θ∗

))
n≥1

satisfies the LDP on R given in Theorem 2.1.

Theorem 3.2. Assume that (CL.1), (CL.2) and (CL.3) are satisfied. Then, as soon as
θ ̸= −ρ, the sequence (√

n

bn

(
θ̂n − θ∗

ρ̂n − ρ∗

))
n≥1

satisfies the LDP on R2 given in Theorem 2.2. In particular, the sequence(√
n

bn

(
ρ̂n − ρ∗

))
n≥1
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satisfies the LDP on R also given in Theorem 2.2.

Remark 3.5. We have already seen in Remark 2.1 that the covariance matrix Γ is invertible
if and only if θ ̸= −ρ. In the particular case where θ = −ρ, the sequences(√

n

bn

(
θ̂n − θ∗

))
n≥1

and

(√
n

bn

(
ρ̂n − ρ∗

))
n≥1

satisfy the LDP on R given in Remark 2.1.

Theorem 3.3. Assume that (CL.1), (CL.2) and (CL.3) are satisfied. Then, the sequence(√
n

bn

(
D̂n −D∗

))
n≥1

satisfies the LDP on R given in Theorem 2.3.

Proof. Theorem 3.1, Theorem 3.2 and Theorem 3.3 are proved in Section 4. �

4. Proof of the main results

For a matter of readability, some notations commonly used in the following proofs have
to be introduced. First, for all n ≥ 1, let

Ln =
n∑

k=1

V 2
k . (4.1)

Then, let us define Mn, for all n ≥ 1, as

Mn =
n∑

k=1

Xk−1Vk (4.2)

where M0 = 0. For all n ≥ 1, denote by Fn the σ-algebra of the events occurring up to
time n, Fn = σ(X0, ε0, V1, · · · , Vn). We infer from (4.2) that (Mn)n≥0 is a locally square-
integrable real martingale with respect to the filtration F = (Fn)n≥0 with predictable qua-
dratic variation given by ⟨M⟩0 = 0 and for all n ≥ 1, ⟨M⟩n = σ2Sn−1, where

Sn =
n∑

k=0

X2
k . (4.3)

Moreover, (Nn)n≥0 is defined, for all n ≥ 2, as

Nn =
n∑

k=2

Xk−2Vk (4.4)

and N0 = N1 = 0. It is not hard to see that (Nn)n≥0 is also a locally square-integrable
real martingale sharing the same properties than (Mn)n≥0. More precisely, its predictable
quadratic variation is given by ⟨N⟩n = σ2Sn−2. To conclude, let P0 = 0 and, for all n ≥ 1,

Pn =
n∑

k=1

Xk−1Xk. (4.5)
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4.1. Proof of Theorem 2.1.

Before starting the proof of Theorem 2.1, we need to introduce some technical tools. Denote
by ℓ the almost sure limit of Sn/n [2], given by

ℓ =
σ2(1 + θρ)

(1− θ2)(1− θρ)(1− ρ2)
. (4.6)

Lemma 4.1. Under the assumptions of Theorem 2.1, we have the exponential convergence

Sn

n

superexp−→
b2n

ℓ (4.7)

where ℓ is given by (4.6).

Proof. After straightforward calculations, we get that for all n ≥ 2,

Sn

n
− ℓ =

ℓ

σ2

[(
Ln

n
− σ2

)
+ 2θ∗

Mn

n
− 2θρ

Nn

n
+

Rn

n

]
(4.8)

where Ln, Mn, Sn and Nn are respectively given by (4.1), (4.2), (4.3) and (4.4),

Rn = [2(θ + ρ)ρ∗ − (θ + ρ)2 − (θρ)2]X2
n − (θρ)2X2

n−1 + 2ρ∗XnXn−1 + ξ1,

and where the remainder term

ξ1 = (1− 2θρ− ρ2)X2
0 + ρ2ε20 + 2θρX0ε0 − 2ρρ∗(ε0 −X0)X0 + 2ρ(ε0 −X0)V1.

First of all, (Vn) is a sequence of independent and identically distributed gaussian ran-
dom variables with zero mean and variance σ2 > 0. It immediately follows from Cramér-
Chernoff’s Theorem, expounded e.g. in [6], that for all δ > 0,

lim sup
n→∞

1

n
logP

(∣∣∣∣Ln

n
− σ2

∣∣∣∣ > δ

)
< 0. (4.9)

Since b2n = o(n), the latter convergence leads to

Ln

n

superexp−→
b2n

σ2, (4.10)

ensuring the exponential convergence of Ln/n to σ2 with speed b2n. Moreover, for all δ > 0
and a suitable t > 0, we clearly obtain from Markov’s inequality that

P
(
X2

0

n
> δ

)
≤ exp (−tnδ)E

[
exp(tX2

0 )
]
,

which immediately implies via (G.2),

X2
0

n

superexp−→
b2n

0, (4.11)

and we get the exponential convergence of X2
0/n to 0 with speed b2n. The same is true

for V 2
1 /n, ε

2
0/n and more generally for any isolated term of order 2 in relation (4.8) whose

numerator do not depend on n. Let us now focus our attention on X2
n/n. The model (1.1)

can be rewritten in the vectorial form,

Φn = AΦn−1 +Wn (4.12)
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where Φn =
(
Xn Xn−1

)′
stands for the lag vector of order 2, Wn =

(
Vn 0

)′
and

A =

(
θ + ρ −θρ
1 0

)
. (4.13)

It is easy to show that ρ(A) = max(|θ|, |ρ|) < 1 under the stability conditions. According
to Proposition 4.1 of [22],

∥Φn∥2

n

superexp−→
n

0,

which is clearly sufficient to deduce that

X2
n

n

superexp−→
b2n

0. (4.14)

The exponential convergence of Rn/n to 0 with speed b2n is achieved following exactly the
same lines. To conclude the proof of Lemma 4.1, it remains to study the exponential
asymptotic behavior of Mn/n. For all δ > 0 and a suitable y > 0,

P
(
Mn

n
> δ

)
= P

(
Mn

n
> δ, ⟨M⟩n ≤ y

)
+ P

(
Mn

n
> δ, ⟨M⟩n > y

)
,

≤ exp

(
−n2δ2

2y

)
+ P

(
⟨M⟩n > y

)
, (4.15)

by application of Theorem 4.1 of [3] in the case of a gaussian martingale. Then, noting that
we have the following inequality,

Sn ≤ αX2
0 + βε20 + βLn a.s. (4.16)

with α = 1 + (1− |θ|)−2 and β = (1− |ρ|)−2 (1− |θ|)−2, we get for a suitable t > 0,

P
(
⟨M⟩n > y

)
≤ P

(
X2

0 >
y

3ασ2

)
+ P

(
ε20 >

y

3βσ2

)
+ P

(
Ln−1 >

y

3βσ2

)
,

≤ exp

(
−yt

3ασ2

)
E
[
exp(tX2

0 )
]
+ exp

(
−yt

3βσ2

)
E
[
exp(tε20)

]
+ P

(
Ln−1 >

y

3βσ2

)
,

≤ 3max

(
exp

(
−yt

3ασ2

)
E
[
exp(tX2

0 )
]
, exp

(
−yt

3βσ2

)
E
[
exp(tε20)

]
,

P
(
Ln−1 >

y

3βσ2

))
.

Let us choose y = nx, assuming x > 3βσ4. It follows that

1

b2n
logP

(
⟨M⟩n > nx

)
≤ log 3

b2n
+

1

b2n
max

(
−nxt

3ασ2
+ logE

[
exp(tX2

0 )
]
,

−nxt

3βσ2
+ logE

[
exp(tε20)

]
, logP

(
Ln−1 >

nx

3βσ2

))
.

Since b2n = o(n) and by virtue of (4.10) with δ = x/(3βσ2)− σ2 > 0, we obtain that

lim sup
n→∞

1

b2n
logP

(
⟨M⟩n > nx

)
= −∞. (4.17)
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It enables us by (4.15) to deduce that for all δ > 0,

lim sup
n→∞

1

b2n
logP

(
Mn

n
> δ

)
= −∞. (4.18)

The same result is also true replacing Mn by −Mn in (4.18) since Mn and −Mn share the
same distribution. Therefore, we find that

Mn

n

superexp−→
b2n

0. (4.19)

A similar reasoning leads to the exponential convergence of Nn/n to 0, with speed b2n.
Finally, we obtain (4.7) from (4.8) together with (4.10), (4.11), (4.14) and (4.19) which
achieves the proof of Lemma 4.1. �
Corollary 4.2. By virtue of Lemma 4.1 and under the same assumptions, we have the
exponential convergence

Pn

n

superexp−→
b2n

ℓ1 (4.20)

where ℓ1 = θ∗ℓ.

Proof. The proof of Corollary 4.2 is immediately derived from the following inequality,∣∣∣∣Pn

n
− θ∗

Sn

n

∣∣∣∣ =

∣∣∣∣ 1

1 + θρ

Mn

n
+

1

1 + θρ

Rn(θ)

n
− θ∗

X2
n

n

∣∣∣∣ ,
≤ 1

1 + θρ

|Mn|
n

+
1

1 + θρ

|Rn(θ)|
n

+ |θ∗|X
2
n

n
(4.21)

with Rn(θ) = θρXnXn−1 + ρX0(ε0 −X0). �
We are now in the position to prove Theorem 2.1. We shall make use of the following

deviation principle for martingales established by Worms [21].

Theorem 4.3 (Worms). Let (Yn) be an adapted sequence with values in Rp, and (Vn) a
gaussian noise with variance σ2 > 0. We suppose that (Yn) satisfies, for some invertible
square matrix C of order p and a speed sequence (b2n) such that b2n = o(n), the exponential
convergence for any δ > 0,

lim
n→∞

1

b2n
logP

(∥∥∥∥∥ 1n
n−1∑
k=0

YkY
′
k − C

∥∥∥∥∥ > δ

)
= −∞. (4.22)

Then, the sequence (
Mn

bn
√
n

)
n≥1

satisfies an LDP on Rp of speed b2n and good rate function

I(x) =
1

2σ2
x′C−1x (4.23)

where (Mn) is the martingale given by

Mn =
n∑

k=1

Yk−1Vk.

Proof. The proof of Theorem 4.3 is contained in the one of Theorem 5 of [21] with d = 1. �
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Proof of Theorem 2.1. Let us consider the decomposition
√
n

bn

(
θ̂n − θ∗

)
=

√
n

bn

(
σ2

1 + θρ

)
Mn

⟨M⟩n
+

√
n

bn

(
1

1 + θρ

)
Rn(θ)

Sn−1

, (4.24)

that can be obtained by a straighforward calculation, where the remainder term Rn(θ) is
defined in (4.21). First, by using the same methodology as in convergence (4.11), we obtain
that for all δ > 0 and for a suitable t > 0,

lim sup
n→∞

1

b2n
logP

(
X2

0

bn
√
n
> δ

)
≤ lim

n→∞

(
−tδ

√
n

bn

)
+ lim

n→∞

1

b2n
logE

[
exp(tX2

0 )
]
,

= −∞, (4.25)

since bn = o(
√
n), and the same goes for any isolated term in (4.24) of order 2 whose

numerator do not depend on n. Moreover, under the gaussian assumption on the driven
noise (Vn), it is not hard to see that

1

bn
√
n

max
1≤k≤n

V 2
k

superexp−→
b2n

0. (4.26)

As a matter of fact, for all δ > 0 and for all t > 0,

P
(
max
1≤k≤n

V 2
k ≥ δbn

√
n

)
= P

(
n∪

k=1

{
V 2
k ≥ δbn

√
n
})

≤
n∑

k=1

P
(
V 2
k ≥ δbn

√
n
)
,

≤ n exp
(
−tδbn

√
n
)
E
[
exp

(
tV 2

1

) ]
.

In addition, as soon as 0 < t < 1/(2σ2), E
[
exp(tV 2

1 )
]
< ∞. Consequently,

1

b2n
logP

(
max
1≤k≤n

V 2
k ≥ δbn

√
n

)
≤ log n

b2n
− tδ

√
n

bn
+

logE
[
exp (tV 2

1 )
]

b2n
,

≤
√
n

bn

 log n

bn
√
n
− tδ +

logE
[
exp (tV 2

1 )
]

bn
√
n


which clearly leads to (4.26). Furthermore, it follows from (1.1) that

max
1≤k≤n

X2
k ≤ 1

1− |θ|
X2

0 +

(
1

1− |θ|

)2

max
1≤k≤n

ε2k, (4.27)

as well as

max
1≤k≤n

ε2k ≤
1

1− |ρ|
ε20 +

(
1

1− |ρ|

)2

max
1≤k≤n

V 2
k . (4.28)

Then, we deduce from (4.25), (4.26), (4.27) and (4.28) that

1

bn
√
n

max
1≤k≤n

ε2k
superexp−→

b2n

0 and
1

bn
√
n

max
1≤k≤n

X2
k

superexp−→
b2n

0,

which of course imply the exponential convergence of X2
n/(bn

√
n) to 0, with speed b2n.

Therefore, we obtain that
Rn(θ)

bn
√
n

superexp−→
b2n

0. (4.29)
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We infer from Lemma 4.1 together with Lemma 4.1 of [22] that the following convergence
is satisfied,

n

Sn

superexp−→
b2n

1

ℓ
(4.30)

where ℓ > 0 is given by (4.6). According to (4.29), the latter convergence and again Lemma
4.1 of [22], we deduce that

√
n

bn

(
1

1 + θρ

)
Rn(θ)

Sn−1

superexp−→
b2n

0. (4.31)

Hence, we obtain from (4.30) that the same is true for

σ2

1 + θρ

Mn

bn
√
n

(
n

⟨M⟩n
− 1

σ2ℓ

)
superexp−→

b2n

0, (4.32)

since Lemma 4.1 together with Theorem 4.3 with p = 1 directly show that (Mn/(bn
√
n))

satisfies an LDP with speed b2n and good rate function given, for all x ∈ R, by

J(x) =
x2

2ℓσ2
. (4.33)

As a consequence, √
n

bn

(
θ̂n − θ∗

)
superexp∼

b2n

1

ℓ(1 + θρ)

Mn

bn
√
n
, (4.34)

and this implies that both of them share the same LDP, see e.g. [6]. One shall now take

advantage of the contraction principle [6] to establish that (
√
n(θ̂n − θ∗)/bn) satisfies an

LDP with speed b2n and good rate function Iθ(x) given by (2.1). The contraction principle
enables us to conclude that the good rate function of the LDP with speed b2n associated
with equivalence (4.34) is given by Iθ(x) = J(ℓ(1 + θρ)x), that is

Iθ(x) =
x2

2σ2
θ

,

which achieves the proof of Theorem 2.1.

4.2. Proof of Theorem 2.2.

We need to introduce some more notations. For all n ≥ 2, let

Qn =
n∑

k=2

Xk−2Vk. (4.35)

In addition, for all n ≥ 1, denote

Tn = 1 + θ∗ρ∗ −
(
1 + ρ∗(θ̂n + θ∗)

) Sn

Sn−1

+
(
2ρ∗ + θ̂n + θ∗

) Pn

Sn−1

− Qn

Sn−1

, (4.36)

where Sn and Pn are respectively given by (4.3) and (4.5). Finally, for all n ≥ 0, let

Jn =
n∑

k=0

ε̂ 2
k (4.37)

where the residual set (ε̂n) is given in (1.3). A set of additional technical tools has to be
expounded to make the proof of Theorem 2.2 more tractable.
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Corollary 4.4. By virtue of Lemma 4.1 and under the same assumptions, we have the
exponential convergence

Qn

n

superexp−→
b2n

ℓ2

where ℓ2 = ((θ + ρ)θ∗ − θρ)ℓ.

Proof. The proof of Corollary 4.4 immediately follows from the inequality,∣∣∣∣Qn

n
− ((θ + ρ)θ∗ − θρ)

Sn

n

∣∣∣∣ =

∣∣∣∣θ∗Mn

n
+

Nn

n
+

ξQn
n

∣∣∣∣ ,
≤ |θ∗| |Mn|

n
+

|Nn|
n

+
|ξQn |
n

(4.38)

where ξQn is a residual made of isolated terms such that

ξQn
n

superexp−→
b2n

0,

see e.g. the proof of Theorem 3.2 in [2] where more details are given on ξQn . �
Lemma 4.5. Under the assumptions of Theorem 2.2, we have the exponential convergence

An
superexp−→

b2n

A

where

An =
n

1 + θρ


1

Sn−1

0

Tn

Jn−1

−(θ + ρ)

Jn−1

 , (4.39)

and

A =
1

ℓ(1 + θρ)(1− (θ∗)2)

(
1− (θ∗)2 0
θρ+ (θ∗)2 −(θ + ρ)

)
. (4.40)

Proof. Via (4.30), we directly obtain the exponential convergence,

1

(1 + θρ)

n

Sn−1

superexp−→
b2n

1

ℓ(1 + θρ)
. (4.41)

The combination of Lemma 4.1, Corollary 4.2, Corollary 4.4 and Lemma 4.1 of [22] shows,
after a simple calculation, that

Tn
superexp−→

b2n

(θ∗)2 + θρ. (4.42)

Moreover, Jn given by (4.37) can be rewritten as

Jn = Sn − 2θ̂nPn + θ̂ 2
n Sn−1,

which leads, via Lemma 4.1 in [22], to

Jn

n

superexp−→
b2n

ℓ(1− (θ∗)2). (4.43)

Convergences (4.42) and (4.43) imply(
n

1 + θρ

)
Tn

Jn−1

superexp−→
b2n

(θ∗)2 + θρ

ℓ(1 + θρ)(1− (θ∗)2)
, (4.44)
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and finally, (
n

1 + θρ

)
θ + ρ

Jn−1

superexp−→
b2n

θ + ρ

ℓ(1 + θρ)(1− (θ∗)2)
. (4.45)

Finally, (4.41) together with (4.44) and (4.45) achieve the proof of Lemma 4.5. �

Proof of Theorem 2.2. We shall make use of the decomposition
√
n

bn

(
θ̂n − θ∗

ρ̂n − ρ∗

)
=

1

bn
√
n
AnZn +Bn, (4.46)

where An is given by (4.39), (Zn)n≥0 is the 2-dimensional vector martingale given by

Zn =

(
Mn

Nn

)
, (4.47)

and where the remainder term

Bn =
1

(1 + θρ)

√
n

bn


Rn(θ)

Sn−1

Rn(ρ)

Jn−1

 . (4.48)

The first component Rn(θ) is given in (4.21) while Rn(ρ), whose definition may be found in
the proof of Theorem 3.2 in [2], is made of isolated terms. Consequently, (4.25) and (4.29)
are sufficient to ensure that

Rn(θ)

bn
√
n

superexp−→
b2n

0 and
Rn(ρ)

bn
√
n

superexp−→
b2n

0.

Therefore, we obtain that

Bn
superexp−→

b2n

0. (4.49)

In addition, it follows from Lemma 4.5 and Theorem 4.3 with p = 2 that (Zn/(bn
√
n))

satisfies an LDP on R2 with speed b2n and good rate function given, for all x ∈ R2, by

J(x) =
1

2σ2
x′Λ−1x, (4.50)

where

Λ = ℓ

(
1 θ∗

θ∗ 1

)
, (4.51)

since we have the exponential convergence

⟨Z⟩n
n

superexp−→
b2n

σ2Λ (4.52)

by application of Lemma 4.1 and Corollary 4.2. One observes that det(Λ) = ℓ2(1−(θ∗)2) > 0
implying that Λ is invertible. As a consequence,

1

bn
√
n
(An − A)Zn

superexp−→
b2n

0, (4.53)

and we deduce from (4.46) that
√
n

bn

(
θ̂n − θ∗

ρ̂n − ρ∗

)
superexp∼

b2n

1

bn
√
n
AZn. (4.54)
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This of course implies that both of them share the same LDP. The contraction principle [6]
enables us to conclude that the rate function of the LDP on R2 with speed b2n associated
with equivalence (4.54) is given, for all x ∈ R2, by K(x) = J(A−1x), that is

K(x) =
1

2
x′Γ−1x,

where Γ = σ2AΛA′ is given by (1.10), and where we shall suppose that θ ̸= −ρ to ensure
that A is invertible. In particular, the latter result also implies that the good rate function
of the LDP on R with speed b2n associated with (

√
n(ρ̂n − ρ∗)/bn) is given, for all x ∈ R, by

Iρ(x) =
x2

2σ2
ρ

,

where σ2
ρ is the last element of the matrix Γ. This achieves the proof of Theorem 2.2.

4.3. Proof of Theorem 2.3.

For all n ≥ 1, denote by fn the explosion coefficient associated with Jn given by (4.37),
that is

fn =
Jn − Jn−1

Jn
=

ε̂ 2
n

Jn
. (4.55)

It follows from decomposition (C.4) in [2] that
√
n

bn

(
D̂n −D∗

)
= −2

√
n

bn

(
1− fn

)(
ρ̂n − ρ∗

)
+

√
n

bn
ζn, (4.56)

where the remainder term ζn is made of isolated terms. As before, we clearly have
√
n

bn
ζn

superexp−→
b2n

0 and fn
superexp−→

b2n

0.

As a consequence, √
n

bn

(
D̂n −D∗

)
superexp∼

b2n

−2

√
n

bn

(
ρ̂n − ρ∗

)
, (4.57)

and this implies that both of them share the same LDP. The contraction principle [6]
enables us to conclude that the rate function of the LDP on R with speed b2n associated
with equivalence (4.57) is given, for all x ∈ R, by ID(x) = Iρ(−x/2), that is

ID(x) =
x2

2σ2
D

,

which achieves the proof of Theorem 2.3.

4.4. Proofs of Theorem 3.1, Theorem 3.2 and Theorem 3.3.

We shall now propose a technical lemma ensuring that all results already proved under
the gaussian assumption still hold under the Chen-Ledoux type condition.

Lemma 4.6. Under (CL.1), (CL.2) and (CL.3), all exponential convergences of Lemma
4.1, Corollary 4.2, Corollary 4.4 and Lemma 4.5 still hold.
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Proof. Under (CL.1), (CL.2) and (CL.3), and following the same methodology as the
one used to establish (4.29), we get

X2
n

bn
√
n

superexp−→
b2n

0, (4.58)

and Cauchy-Schwarz inequality implies that this is also the case for any isolated term of
order 2, such as XnXn−1/(bn

√
n). This allows us to control each remainder term. Note that

(CL.2), (CL.3) and (4.58) are obviously true for ε40/n, X
4
0/n, ε

2
0/n, X

2
0/n and X2

n/n, since
bn
√
n = o(n). Moreover, if follows from Theorem 2.2 of [13] under (CL.1) with a = 2, that

Ln

n

superexp−→
b2n

σ2. (4.59)

Furthermore, since (Mn) is a locally square integrable martingale, we infer from Theorem
2.1 of [3] that for all x, y > 0,

P
(
|Mn| > x, ⟨M⟩n + [M ]n ≤ y

)
≤ 2 exp

(
−x2

2y

)
, (4.60)

where the predictable quadratic variation ⟨M⟩n = σ2Sn−1 is described in (4.3) and the total
quadratic variation is given by [M ]0 = 0 and, for all n ≥ 1, by

[M ]n =
n∑

k=1

X2
k−1V

2
k . (4.61)

According to (4.60), we have for all δ > 0 and a suitable b > 0,

P
(
|Mn|
n

> δ

)
≤ P

(
|Mn| > δn, ⟨M⟩n + [M ]n ≤ nb

)
+ P

(
⟨M⟩n + [M ]n > nb

)
,

≤ 2 exp

(
−nδ2

2b

)
+ P

(
⟨M⟩n + [M ]n > nb

)
,

≤ 2max

(
P
(
⟨M⟩n + [M ]n > nb

)
, 2 exp

(
−nδ2

2b

))
.

Consequently,

lim sup
n→∞

1

b2n
logP

(
|Mn|
n

> δ

)
≤ lim sup

n→∞

1

b2n
logP

(
⟨M⟩n + [M ]n > nb

)
. (4.62)

We have for all b > 0,

P
(
⟨M⟩n + [M ]n > nb

)
≤ P

(
⟨M⟩n >

nb

2

)
+ P

(
[M ]n >

nb

2

)
,

≤ 2max

(
P
(
⟨M⟩n >

nb

2

)
,P
(
[M ]n >

nb

2

))
. (4.63)

Moreover, for all n ≥ 1, let us define

Tn =
n∑

k=0

X4
k and Γn =

n∑
k=1

V 4
k ,

and note that we easily have the following inequality,

Tn ≤ αX4
0 + βε40 + βΓn a.s. (4.64)
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with α = 1 + (1 − |θ|)−4 and β = (1 − |ρ|)−4(1 − |θ|)−4. This implies that, for n large
enough, one can find γ > 0 such that

Tn ≤ γΓn a.s.

choosing for example γ = 3max(α, β), under (CL.2) and (CL.3) for a = 4. According to
Theorem 2.2 of [13] under (CL.1) with a = 4, we also have the exponential convergence,

Γn

n

superexp−→
b2n

τ 4, (4.65)

where τ 4 = E[V 4
1 ], leading, via Cauchy-Schwarz inequality and (4.64), to

lim sup
n→∞

1

b2n
logP

(
[M ]n
n

> δ

)
≤ lim sup

n→∞

1

b2n
logP

(
Γn

n
>

δ
√
γ

)
,

= −∞, (4.66)

where δ > τ 4
√
γ. Exploiting (4.16) and (4.59), the same result can be achieved for ⟨M⟩n/n

under (CL.1) with a = 2 and δ > σ4γ. As a consequence, it follows from (4.63), (4.66)
and the latter remark that

lim sup
n→∞

1

b2n
logP

(
⟨M⟩n + [M ]n

n
> b

)
= −∞, (4.67)

as soon as b > σ4γ + τ 4
√
γ. Therefore, the exponential convergence of Mn/n to 0 with

speed b2n is obtained via (4.62) and (4.67), that is, for all δ > 0 and b > σ4γ + τ 4
√
γ,

lim sup
n→∞

1

b2n
logP

(
|Mn|
n

> δ

)
= −∞. (4.68)

The same obviously holds for Nn/n. Following the same lines as in the proofs of Lemma 4.1,
Corollary 4.2, Corollary 4.4 and Lemma 4.5, hypothesis (CL.2) and (CL.3) with a = 4
together with exponential convergences (4.58), (4.59) and (4.68) are sufficient to achieve
the proof of Lemma 4.6. �

Let us introduce a simplified version of Puhalskii’s result [19] applied to a sequence of
martingale differences, and two technical lemmas that shall help us to prove our results.

Theorem 4.7 (Puhalskii). Let (mn
j )1≤j≤n be a triangular array of martingale differences

with values in Rd, with respect to the filtration (Fn)n≥1. Let (bn) be a sequence of real num-
bers satisfying (1.13). Suppose that there exists a symmetric positive-semidefinite matrix Q
such that

1

n

n∑
k=1

E
[
mn

k(m
n
k)

′∣∣Fk−1

]
superexp−→

b2n

Q. (4.69)

Suppose that there exists a constant c > 0 such that, for each 1 ≤ k ≤ n,

|mn
k | ≤ c

√
n

bn
a.s. (4.70)

Suppose also that, for all a > 0, we have the exponential Lindeberg’s condition

1

n

n∑
k=1

E
[
|mn

k |2I{|mn
k |≥a

√
n

bn

}∣∣Fk−1

]
superexp−→

b2n

0. (4.71)
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Then, the sequence (
1

bn
√
n

n∑
k=1

mn
k

)
n≥1

satisfies an LDP on Rd with speed b2n and good rate function

Λ∗(v) = sup
λ∈Rd

(
λ′v − 1

2
λ′Qλ

)
.

In particular, if Q is invertible,

Λ∗(v) =
1

2
v′Q−1v. (4.72)

Proof. The proof of Theorem 4.7 is contained e.g. in the proof of Theorem 3.1 in [19]. �
Lemma 4.8. Under (CL.1), (CL.2) and (CL.3) with a = 2, we have for all δ > 0,

lim sup
R→∞

lim sup
n→∞

1

n
logP

(
1

n

n∑
k=1

X2
kI{|Xk|>R} > δ

)
< 0.

Remark 4.1. Lemma 4.8 implies that the exponential Lindeberg’s condition given by (4.71)
is satisfied.

Proof. We introduce the empirical measure associated with the geometric ergodic Markov
chain (Xn)n≥0,

Λn =
1

n

n∑
k=1

δXk
, (4.73)

with invariant probability measure denoted by µ. It is well-known that the sequence (Λn)
satisfies the upper bound of the moderate deviations, see e.g. [8] for more details. Let us
define, for f(x) = x2, the following truncations,

f (R)(x) = f(x)min
(
1,
(
f(x)− (R− 1)

)
+

)
and f̃ (R)(x) = min

(
f (R)(x), R

)
.

Thus, we have

0 ≤ f(x)I{f(x)≥R} ≤ f (R)(x) ≤ f(x),

and, as a consequence,

0 ≤ Λn

(
f I{f≥R}

)
≤ Λn

(
f (R) − f̃ (R)

)
+ Λn

(
f̃ (R)

)
− µ

(
f̃ (R)

)
+ µ
(
f̃ (R)

)
.

We also have

f (R) − f̃ (R) =
(
f (R) −R

)
I{f (R)≥R} ≤

(
f −R

)
I{f≥R} = f −

(
f ∧R

)
.

For δ > 0, the functions f̃ (R) and f − (f ∧ R) are continuous and bounded by f which is
µ-integrable, and they converge to 0 as R goes to infinity. By Lebesgue’s Theorem, there

exists R > 0 large enough such that µ(f̃ (R)) + µ(f − (f ∧R)) < δ/4. Thus,

P

(
1

n

n∑
k=1

X2
kI{X2

k≥R} > δ

)
≤ P

(
Λn(f)− µ(f) > δ/4

)
+ P

(
Λn(f ∧R)− µ(f ∧R) > δ/4

)
+ P

(
Λn(f̃

(R))− µ(f̃ (R)) > δ/4
)
. (4.74)
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From Lemma 4.6, we have that for all δ > 0,

lim sup
n→∞

1

b2n
logP

(
Λn(f)− µ(f) > δ

)
= −∞.

By the upper bound of the moderate deviation principle for the sequence (Λn) given in [8],
we obtain that

lim sup
R→∞

lim sup
n→∞

1

b2n
logP

(
Λn(f ∧R)− µ(f ∧R) > δ

)
= −∞,

and

lim sup
R→∞

lim sup
n→∞

1

b2n
logP

(
Λn(f̃

(R))− µ(f̃ (R)) > δ
)
= −∞,

which, via inequality (4.74), achieves the proof of Lemma 4.8. Note that Remark 4.1 is
immediately derived from the latter proof, see e.g. [22] for more details. �
Lemma 4.9. Under (CL.1), (CL.2) and (CL.3), the sequence(

Mn

bn
√
n

)
n≥1

satisfies an LDP on R with speed b2n and good rate function

J(x) =
x2

2ℓσ2
(4.75)

where ℓ is given by (4.6).

Proof. From now on, in order to apply Puhalskii’s result for the moderate deviations for
martingales, we introduce the following modification of the martingale (Mn)n≥0, for r > 0
and R > 0,

M (r,R)
n =

n∑
k=1

X
(r)
k−1V

(R)
k (4.76)

where, for all 1 ≤ k ≤ n,

X
(r)
k = XkI{|Xk|≤r

√
n

bn

} and V
(R)
k = VkI{|Vk|≤R

} − E
[
VkI{|Vk|≤R

}]. (4.77)

Then, we have to prove that for all r > 0 the sequence (M
(r,R)
n ) is an exponentially good

approximation of (Mn) as R goes to infinity, see e.g. Definition 4.2.14 in [6]. This approxi-
mation, in the sense of the large deviations, is described by the following convergence, for
all r > 0 and all δ > 0,

lim sup
R→∞

lim sup
n→∞

1

b2n
logP

(
|Mn −M

(r,R)
n |

bn
√
n

> δ

)
= −∞. (4.78)

From Lemma 4.6, and since ⟨M⟩n = σ2Sn−1, we have

⟨M⟩n
n

superexp−→
b2n

σ2ℓ. (4.79)

From Lemma 4.6 and Remark 4.1, we also have for all r > 0,

1

n

n∑
k=0

X2
kI

{
|Xk|>r

√
n

bn

} superexp−→
b2n

0. (4.80)
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We introduce the following notations,

σ2
R = E

[
(V

(R)
1 )2

]
and S(r)

n =
n∑

k=0

(X
(r)
k )2.

Then, we easily transfer properties (4.79) and (4.80) to the truncated martingale (M
(r,R)
n )n≥0.

We have for all R > 0 and all r > 0,

⟨M (r,R)⟩n
n

= σ2
R

S
(r)
n−1

n
= −σ2

R

(
Sn−1

n
−

S
(r)
n−1

n

)
+ σ2

R

Sn−1

n

superexp−→
b2n

σ2
Rℓ

which ensures that (4.69) is satisfied for the martingale (M
(r,R)
n )n≥0. Note also that Lemma

4.6 and Remark 4.1 work for the martinagle (M
(r,R)
n )n≥0. So, for all r > 0, the exponential

Lindeberg’s condition and thus (4.71) are satisfied for (M
(r,R)
n )n≥0. By Theorem 4.7, we

deduce that (M
(r,R)
n /bn

√
n) satisfies an LDP on R with speed b2n and good rate function

JR(x) =
x2

2σ2
Rℓ

. (4.81)

It will be possible to drive the moderate deviations result for the martingale (Mn)n≥0 by
proving relation (4.78). For that matter, let us now introduce the following decomposition,

Mn −M (r,R)
n = L(r)

n + F (r,R)
n

where

L(r)
n =

n∑
k=1

(
Xk−1 −X

(r)
k−1

)
Vk and F (r,R)

n =
n∑

k=1

(
Vk − V

(R)
k

)
X

(r)
k−1.

One has to show that for all r > 0,

L
(r)
n

bn
√
n

superexp−→
b2n

0, (4.82)

and, for all r > 0 and all δ > 0, that

lim sup
R→∞

lim sup
n→∞

1

b2n
logP

(
|F (r,R)

n |
bn
√
n

> δ

)
= −∞. (4.83)

On the one hand, note that for any η > 0,

n∑
k=0

|Xk|2+η ≤ α|X0|2+η + β|ε0|2+η + β
n∑

k=1

|Vk|2+η a.s.

with α = 1 + (1− |θ|)−(2+η) and β = (1− |ρ|)−(2+η)(1− |θ|)−(2+η). This implies that, for n
large enough, one can find γ > 0 such that

n∑
k=0

|Xk|2+η ≤ γ
n∑

k=1

|Vk|2+η a.s. (4.84)
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taking for example γ = 3max(α, β), under (CL.2) and (CL.3) for a = 2 + η. Thus,

|L(r)
n |

bn
√
n

=
1

bn
√
n

∣∣∣∣∣
n∑

k=1

Xk−1I{|Xk−1|>r
√

n
bn

}Vk

∣∣∣∣∣ ,
≤ 1

bn
√
n

(
r

√
n

bn

)−η
(

n∑
k=1

|Xk−1|2+η

)1/2( n∑
k=1

V 2
k |Xk−1| η

)1/2

,

≤ λ(r, η, γ)

(
bn√
n

)η−1
1

n

n∑
k=1

|Vk|2+η a.s. (4.85)

by virtue of (4.84) and Hölder’s inequality, where λ(r, η, γ) > 0 can be evaluated under
suitable assumptions of moment on (Vn). As a consequence, for all δ > 0,

lim sup
n→∞

1

b2n
logP

(
|L(r)

n |
bn
√
n
> δ

)
≤ lim sup

n→∞

1

b2n
logP

(
1

n

n∑
k=1

|Vk|2+η >
δ

λ(r, η, γ)

(√
n

bn

)η−1
)
,

= −∞, (4.86)

as soon as η > 1, under (CL.1) with a = 2 + η. We deduce that

L
(r)
n

bn
√
n

superexp−→
b2n

0, (4.87)

which achieves the proof of (4.82), under (CL.1), (CL.2) and (CL.3) for a > 3. On

the other hand, (F
(r,R)
n )n≥0 is a locally square-integrable real martingale whose predictable

quadratic variation is given by ⟨F (r,R)⟩0 = 0 and, for all n ≥ 1, by

⟨F (r,R)⟩n = E
[(

V1 − V
(R)
1

)2]
S
(r)
n−1.

To prove (4.83), we will use Theorem 1 of [7]. For R large enough and all k ≥ 1, we have

P

(∣∣∣X(r)
k−1

(
Vk − V

(R)
k

)∣∣∣ > bn
√
n
∣∣∣Fk−1

)
≤ P

(∣∣∣Vk − V
(R)
k

∣∣∣ > b2n
r

)
,

= P
(∣∣∣V1 − V

(R)
1

∣∣∣ > b2n
r

)
= 0.

This implies that

lim sup
n→∞

1

b2n
log

(
n ess sup

k≥1
P

(∣∣∣X(r)
k−1

(
Vk − V

(R)
k

)∣∣∣ > bn
√
n
∣∣∣Fk−1

))
= −∞. (4.88)

For all γ > 0 and all δ > 0, we obtain from Lemma 4.8 and Remark 4.1, that

lim sup
n→∞

1

b2n
logP

(
1

n

n∑
k=1

(
X

(r)
k−1

)2
I{|X(r)

k−1|>γ
√

n
bn

} > δ

)
≤

lim sup
n→∞

1

b2n
logP

(
1

n

n∑
k=1

X2
k−1I

{
|Xk−1|>γ

√
n

bn

} > δ

)
= −∞.
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Finally, from Lemma 4.6, Lemma 4.8 and Remark 4.1, it follows that

⟨F (r,R)⟩n
n

= QR

S
(r)
n−1

n
= −QR

(
Sn−1

n
−

S
(r)
n−1

n

)
+QR

Sn−1

n

superexp−→
b2n

QRℓ

where

QR = E
[(

V1 − V
(R)
1

)2]
,

and ℓ is given by (4.6). Moreover, it is clear that QR converges to 0 as R goes to infinity.

In light of foregoing, we infer from Theorem 1 of [7] that (F
(r,R)
n /(bn

√
n)) satisfies an LDP

on R of speed b2n and good rate function

IR(x) =
x2

2QRℓ
.

In particular, this implies that for all δ > 0,

lim sup
n→∞

1

b2n
logP

(
|F (r,R)

n |
bn
√
n

> δ

)
≤ − δ2

2QRℓ
, (4.89)

and letting R go to infinity clearly leads to the end of the proof of (4.83). We are able to con-

clude now that (M
(r,R)
n /(bn

√
n)) is an exponentially good approximation of (Mn/(bn

√
n)).

By application of Theorem 4.2.16 in [6], we find that (Mn/(bn
√
n)) satisfies an LDP on R

with speed b2n and good rate function

J̃(x) = sup
δ>0

lim inf
R→∞

inf
z∈Bx,δ

JR(z),

where JR is given in (4.81) and Bx,δ denotes the ball {z : |z − x| < δ}. The identification

of the rate function J̃ = J , where J is given in (4.75) is done easily, which concludes the
proof of Lemma 4.9. �
Remark 4.2. If we suppose that (CL.1) holds with a > 2, then the exponential Lindeberg’s
condition in Lemma 4.8 is easier to establish. Indeed, using (4.84), it follows that(

r

√
n

bn

)η n∑
k=1

X2
k−1I

{
|Xk−1|>r

√
n

bn

} ≤
n∑

k=1

|Xk−1|2+η ≤ γ
n∑

k=1

|Vk|2+η,

for n large enough and η > 0, leading to

P

(
1

n

n∑
k=1

X2
k−1I

{
|Xk−1|>r

√
n

bn

} > δ

)
≤ P

(
1

n

n∑
k=1

|Vk|2+η >
δ

γ

(
r

√
n

bn

)η
)
.

Lemma 4.10. Under (CL.1), (CL.2) and (CL.3), the sequence(
1

bn
√
n

(
Mn

Nn

))
n≥1

satisfies an LDP on R2 with speed b2n and good rate function

J(x) =
1

2σ2
x′Λ−1x (4.90)

where Λ is given by (4.51).
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Proof. We follow the same approach as in the proof of Lemma 4.9. We shall consider the
2-dimensional vector martingale (Zn)n≥0 defined in (4.47). In order to apply Theorem 4.7,
we introduce the following truncation of the martingale (Zn)n≥0, for r > 0 and R > 0,

Z(r,R)
n =

(
M

(r,R)
n

N
(r,R)
n

)
where M

(r,R)
n is given in (4.76) and where N

(r,R)
n is defined in the same manner, that is, for

all n ≥ 2,

N (r,R)
n =

n∑
k=2

X
(r)
k−2V

(R)
k (4.91)

with X
(r)
n and V

(R)
n given by (4.77). The exponential convergence (4.52) still holds, by

virtue of Lemma 4.6, which immediately implies hypothesis (4.69). On top of that, Lemma
4.8 ensures that, for all r > 0,

1

n

n∑
k=0

X2
kI

{
|Xk|>r

√
n

bn

} superexp−→
b2n

0, (4.92)

justifying hypothesis (4.71). Via Theorem 4.7, (Z
(r,R)
n /(bn

√
n)) satisfies an LDP on R2 with

speed b2n and good rate function JR given by

JR(x) =
1

2σ2
R

x′Λ−1x. (4.93)

Finally, it is straightforward to prove that (Z
(r,R)
n /(bn

√
n)) is an exponentially good ap-

proximation of (Zn/(bn
√
n)). By application of Theorem 4.2.16 in [6], we deduce that

(Zn/(bn
√
n)) satisfies an LDP on R2 with speed b2n and good rate function given by

J̃(x) = sup
δ>0

lim inf
R→∞

inf
z∈Bx,δ

JR(z),

where JR is given in (4.93) and Bx,δ denotes the ball {z : |z− x| < δ}. The identification of

the rate function J̃ = J is done easily, which concludes the proof of Lemma 4.10. �

Proofs of Theorem 3.1, Theorem 3.2 and Theorem 3.3. The residuals appearing
in the decompositions (4.24), (4.46) and (4.56) still converge exponentially to zero under
(CL.1), (CL.2) and (CL.3), with speed b2n, as it was already proved. Therefore, for a
better readability, we may skip the most accessible parts of these proofs whose development
merely consists in following the same lines as those in the proofs of Theorem 2.1, Theorem
2.2 and Theorem 2.3, taking advantage of Lemma 4.9 and Lemma 4.10, and applying the
contraction principle given e.g. in [6].
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