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Moderate deviations for the Durbin-Watson statistic related to the first-order autoregressive process

Valère Bitseki Penda, Hacène Djellout, Frédéric Proïa

Introduction

This paper is focused on the stable first-order autoregressive process where the driven noise is also given by a first-order autoregressive process. The purpose is to investigate moderate deviations for both the least squares estimator of the unknown parameter of the autoregressive process as well as for the serial correlation estimator associated with the driven noise. Our goal is to establish moderate deviations for the Durbin-Watson statistic [START_REF] Durbin | Testing for serial correlation in least squares regression[END_REF], [START_REF] Durbin | Testing for serial correlation in least squares regression[END_REF], [START_REF] Durbin | Testing for serial correlation in least squares regession[END_REF], in a lagged dependent random variables framework. First of all, we shall assume that the driven noise is normally distributed. Then, we will extend our investigation to the more general framework where the driven noise satisfies a less restrictive Chen-Ledoux type condition [START_REF] Chen | Moderate deviations for m-dependent random variables with Banach space value[END_REF], [START_REF] Ledoux | Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi[END_REF]. We are inspired by the recent paper of Bercu and Proïa [START_REF] Bercu | A sharp analysis on the asymptotic behavior of the Durbin-Watson statistic for the first-order autoregressive process[END_REF], where the almost sure convergence and the central limit theorem are established for both the least squares estimators and the Durbin-Watson statistic. Our results are proved via an extensive use of the results of Dembo [START_REF] Dembo | Moderate deviations for martingales with bounded jumps[END_REF], Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF] and Worms [START_REF] Worms | Principes de déviations modérées pour des martingales et applications statistiques[END_REF], [START_REF] Worms | Moderate deviations of some dependent variables. I. Martingales[END_REF], [START_REF] Worms | Moderate deviations of some dependent variables. II. Some kernel estimators[END_REF] on the one hand, and of the paper of Puhalskii [START_REF] Puhalskii | Large deviations of semimartingales: a maxingale problem approach. I. Limits as solutions to a maxingale problem[END_REF] and Djellout [START_REF] Djellout | Moderate deviations for martingale differences and applications to ϕ-mixing sequences[END_REF] on the other hand, about moderate deviations for martingales. In order to introduce the Durbin-Watson statistic, we shall focus our attention on the first-order autoregressive process given, for all n ≥ 1, by

{ X n = θX n-1 + ε n ε n = ρε n-1 + V n (1.1)
where we shall assume that the unknown parameters |θ| < 1 and |ρ| < 1 to ensure the stability of the model. In all the sequel, we also assume that (V n ) is a sequence of independent and identically distributed random variables with zero mean, positive variance σ 2 and satisfying some suitable assumptions. The square-integrable initial values X 0 and ε 0 may be arbitrarily chosen. We have decided to estimate θ by the least squares estimator

θ n = ∑ n k=1 X k X k-1 ∑ n k=1 X 2 k-1 . (1.2)
Then, we also define a set of least squares residuals given, for all 1 ≤ k ≤ n, by

ε k = X k -θ n X k-1 , (1.3) 
which leads to the estimator of ρ,

ρ n = ∑ n k=1 ε k ε k-1 ∑ n k=1 ε 2 k-1
.

(1.4)

Finally, the Durbin-Watson statistic is defined, for n ≥ 1, as

D n = ∑ n k=1 ( ε k -ε k-1 ) 2 ∑ n k=0 ε 2 k . (1.5)
This well-known statistic was introduced by the pioneer work of Durbin and Watson [START_REF] Durbin | Testing for serial correlation in least squares regression[END_REF], [START_REF] Durbin | Testing for serial correlation in least squares regression[END_REF], [START_REF] Durbin | Testing for serial correlation in least squares regession[END_REF], in the middle of last century, to test the presence of a significative first order serial correlation in the residuals of a regression analysis. A wide range of litterature is available on the asymptotic behavior of the Durbin-Watson statistic, frequently used in Econometry.

While it appeared to work pretty well in the classical independent framework, Malinvaud [START_REF] Malinvaud | Estimation et prévision dans les modèles économiques autorégressifs[END_REF] and Nerlove and Wallis [START_REF] Nerlove | Use of the Durbin-Watson statistic in inappropriate situations[END_REF] observed that, for linear regression models containing lagged dependent random variables, the Durbin-Watson statistic may be asymptotically biased, potentially leading to inadequate conclusions. Durbin [START_REF] Durbin | Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables[END_REF] proposed alternative tests to prevent this misuse, such as the h-test and the t-test, then substantial contributions were brought by Inder [START_REF] Inder | An approximation to the null distribution of the Durbin-Watson statistic in models containing lagged dependent variables[END_REF], King and Wu [START_REF] King | Small-disturbance asymptotics and the Durbin-Watson and related tests in the dynamic regression model[END_REF] and more recently Stocker [START_REF] Stocker | On the asymptotic bias of OLS in dynamic regression models with autocorrelated errors[END_REF]. Lately, a set of results have been established by Bercu and Proïa in [START_REF] Bercu | A sharp analysis on the asymptotic behavior of the Durbin-Watson statistic for the first-order autoregressive process[END_REF], in particular a test procedure as powerful as the h-test, and they will be summarized thereafter as a basis for this paper.

The paper is organized as follows. First of all, we recall the results recently established by Bercu and Proïa [START_REF] Bercu | A sharp analysis on the asymptotic behavior of the Durbin-Watson statistic for the first-order autoregressive process[END_REF]. In Section 2, we propose moderate deviation principles for the estimators of θ and ρ and for the Durbin-Watson statistic, given by (1.2), (1.4) and (1.5), under the normality assumption on the driven noise. Section 3 deals with the generalization of the latter results under a less restrictive Chen-Ledoux type condition on (V n ). Finally, all technical proofs are postponed to Section 4. Lemma 1.1. We have the almost sure convergence of the autoregressive estimator,

lim n→∞ θ n = θ * a.s.
where the limiting value

θ * = θ + ρ 1 + θρ . (1.6)
In addition, as soon as E[V 4 1 ] < ∞, we also have the asymptotic normality, √ n

( θ n -θ * ) L -→ N ( 0, σ 2 θ )
where the asymptotic variance

σ 2 θ = (1 -θ 2 )(1 -θρ)(1 -ρ 2 ) (1 + θρ) 3 . (1.7)
Lemma 1.2. We have the almost sure convergence of the serial correlation estimator,

lim n→∞ ρ n = ρ * a.s.
where the limiting value

ρ * = θρθ * . (1.8)
Moreover, as soon as E[V 4 1 ] < ∞, we have the asymptotic normality, √ n

( ρ n -ρ * ) L -→ N ( 0, σ 2 ρ )
with the asymptotic variance

σ 2 ρ = (1 -θρ) (1 + θρ) 3 ( (θ + ρ) 2 (1 + θρ) 2 + (θρ) 2 (1 -θ 2 )(1 -ρ 2 ) ) .
(1.9)

On top of that, we have the joint asymptotic normality,

√ n ( θ n -θ * ρ n -ρ * ) L -→ N ( 0, Γ ) 
where the covariance matrix where the limiting value

Γ = ( σ 2 θ θρσ 2 θ θρσ 2 θ σ 2 ρ ) . ( 1 
D * = 2(1 -ρ * ). (1.11)
In addition, as soon as E[V 4 1 ] < ∞, we have the asymptotic normality, √ n

( D n -D * ) L -→ N ( 0, σ 2 D )
where the asymptotic variance

σ 2 D = 4σ 2 ρ .
(1.12)

Proof. The proofs of Lemma 1.1, Lemma 1.2 and Lemma 1.3 may be found in [START_REF] Bercu | A sharp analysis on the asymptotic behavior of the Durbin-Watson statistic for the first-order autoregressive process[END_REF].

Our objective is to establish a set of moderate deviation principles on these estimates in order to get a better asymptotic precision than the central limit theorem. In all the sequel, (b n ) will denote a sequence of increasing positive numbers satisfying

1 = o(b 2 n ) and b 2 n = o(n), that is b n -→ ∞, b n √ n -→ 0. (1.13)
Remarks and Notations. In the whole paper, for any matrix M , M ′ and ∥M ∥ stand for the transpose and the euclidean norm of M , respectively. For any square matrix M , det(M ) and ρ(M ) are the determinant and the spectral radius of M , respectively. Moreover, we will shorten large deviation principle by LDP. In addition, for a sequence of random variables

(Z n ) n on R d×p , we say that (Z n ) n converges (b 2 n )-superexponentially fast in probability to some random variable Z if, for all δ > 0, lim sup n→∞ 1 b 2 n log P ( ∥Z n -Z∥ > δ ) = -∞.
This exponential convergence with speed b 2 n will be shortened as

Z n superexp -→ b 2 n Z.
The exponential equivalence with speed b 2 n between two sequences of random variables (Y n ) n and (Z n ) n , whose precise definition is given in Definition 4.2.10 of [START_REF] Dembo | Large deviations techniques and applications[END_REF], will be shortened as

Y n superexp ∼ b 2 n Z n .

On moderate deviations under the Gaussian condition

In this first part, we focus our attention on moderate deviations for the Durbin-Watson statistic in the easy case where the driven noise (V n ) is normally distributed. This restrictive assumption allows us to reduce the set of hypothesis to the existence of t > 0 such that (G.1)

E [ exp(tε 2 0 ) ] < ∞, (G.2) E [ exp(tX 2 0 ) ] < ∞.
Theorem 2.1. Assume that there exists t > 0 such that (G.1) and (G.2) are satisfied. Then, the sequence

( √ n b n ( θ n -θ *
) )

n≥1 satisfies an LDP on R with speed b 2 n and good rate function

I θ (x) = x 2 2σ 2 θ (2.1)
where σ 2 θ is given by (1.7). Theorem 2.2. Assume that there exists t > 0 such that (G.1) and (G.2) are satisfied. Then, as soon as θ ̸ = -ρ, the sequence

( √ n b n ( θ n -θ * ρ n -ρ *
))

n≥1 satisfies an LDP on R 2 with speed b 2 n and good rate function

K(x) = 1 2 x ′ Γ -1 x (2.2)
where Γ is given by (1.10). In particular, the sequence

(√ n b n ( ρ n -ρ *
) )

n≥1 satisfies an LDP on R with speed b 2 n and good rate function

I ρ (x) = x 2 2σ 2 ρ (2.3)
where σ 2 ρ is given by (1.9). Remark 2.1. The covariance matrix Γ is invertible if and only if θ ̸ = -ρ since one can see by a straightforward calculation that

det(Γ) = σ 2 θ (θ + ρ) 2 (1 -θρ) (1 + ρ 2 ) .
Moreover, in the particular case where θ = -ρ, the sequences

(√ n b n ( θ n -θ *
) )

n≥1 and

( √ n b n ( ρ n -ρ *
) )

n≥1
satisfy LDP on R with speed b 2 n and good rate functions respectively given by

I θ (x) = x 2 (1 -θ 2 ) 2(1 + θ 2 ) and I ρ (x) = x 2 (1 -θ 2 ) 2θ 4 (1 + θ 2 ) .
Theorem 2.3. Assume that there exists t > 0 such that (G.1) and (G.2) are satisfied. Then, the sequence

(√ n b n ( D n -D * ) )
n≥1 satisfies an LDP on R with speed b 2 n and good rate function

I D (x) = x 2 2σ 2 D (2.4)
where σ 2 D is given by (1.12). Proof. Theorem 2.1, Theorem 2.2 and Theorem 2.3 are proved in Section 4.

On moderate deviations under the Chen-Ledoux type condition

Via an extensive use of Puhalskii's result, we will now focus our attention on the more general framework where the driven noise (V n ) is assumed to satisfy the Chen-Ledoux type condition. Accordingly, one shall introduce the following hypothesis, for a = 2 and a = 4.

(CL.1) Chen-Ledoux. lim sup n→∞ 1 b 2 n log nP ( |V 1 | a > b n √ n ) = -∞. (CL.2) |ε 0 | a b n √ n superexp -→ b 2 n 0. (CL.3) |X 0 | a b n √ n superexp -→ b 2 n 0. Remark 3.1. If the random variable V 1 satisfies (CL.1) with a = 2, then lim sup n→∞ 1 b 2 n log nP ( V 2 1 -E[V 2 1 ] > b n √ n ) = -∞, (3.1)
which implies in particular that Var(V 4 1 ) < ∞. Moreover, if the random variable V 1 has exponential moments, i.e. if there exists t > 0 such that

E [ exp (tV 2 1 )
] < ∞, then (CL.1) is satisfied for every increasing sequence (b n ). From [START_REF] Arcones | The large deviation principle of empirical processes[END_REF], [START_REF] Eichelsbacher | Moderate deviations for i.i.d. random variables[END_REF], condition (3.1) is equivalent to say that the sequence

( 1 b n √ n n ∑ k=1 ( V 2 k -E[V 2 k ]
) )

n≥1 satisfies an LDP on R with speed b 2 n and good rate function 

I(x) = x 2 2Var(V 2 
∑ k=1 V 4 k > C ) = -∞.
θ ̸ = -ρ, the sequence ( √ n b n ( θ n -θ * ρ n -ρ * )) n≥1
satisfies the LDP on R 2 given in Theorem 2.2. In particular, the sequence

(√ n b n ( ρ n -ρ * ) ) n≥1
satisfies the LDP on R also given in Theorem 2.2.

Remark 3.5. We have already seen in Remark 2.1 that the covariance matrix Γ is invertible if and only if θ ̸ = -ρ. In the particular case where θ = -ρ, the sequences 

(√ n b n ( θ n -θ * ) ) n≥1 and ( √ n b n ( ρ n -ρ * ) )

Proof of the main results

For a matter of readability, some notations commonly used in the following proofs have to be introduced. First, for all n ≥ 1, let

L n = n ∑ k=1 V 2 k . ( 4.1) 
Then, let us define M n , for all n ≥ 1, as

M n = n ∑ k=1 X k-1 V k (4.2)
where M 0 = 0. For all n ≥ 1, denote by F n the σ-algebra of the events occurring up to time n,

F n = σ(X 0 , ε 0 , V 1 , • • • , V n ).
We infer from (4.2) that (M n ) n≥0 is a locally squareintegrable real martingale with respect to the filtration F = (F n ) n≥0 with predictable quadratic variation given by ⟨M ⟩ 0 = 0 and for all n ≥ 1, ⟨M ⟩ n = σ 2 S n-1 , where

S n = n ∑ k=0 X 2 k . (4.3)
Moreover, (N n ) n≥0 is defined, for all n ≥ 2, as

N n = n ∑ k=2 X k-2 V k (4.4)
and N 0 = N 1 = 0. It is not hard to see that (N n ) n≥0 is also a locally square-integrable real martingale sharing the same properties than (M n ) n≥0 . More precisely, its predictable quadratic variation is given by ⟨N ⟩ n = σ 2 S n-2 . To conclude, let P 0 = 0 and, for all n ≥ 1,

P n = n ∑ k=1 X k-1 X k . (4.5)

Proof of Theorem 2.1.

Before starting the proof of Theorem 2.1, we need to introduce some technical tools. Denote by ℓ the almost sure limit of S n /n [START_REF] Bercu | A sharp analysis on the asymptotic behavior of the Durbin-Watson statistic for the first-order autoregressive process[END_REF], given by where ℓ is given by (4.6).

ℓ = σ 2 (1 + θρ) (1 -θ 2 )(1 -θρ)(1 -ρ 2 ) . ( 4 
Proof. After straightforward calculations, we get that for all n ≥ 2,

S n n -ℓ = ℓ σ 2 [ ( L n n -σ 2 ) + 2θ * M n n -2θρ N n n + R n n ] (4.8)
where L n , M n , S n and N n are respectively given by (4.1), (4.2), (4.3) and (4.4),

R n = [2(θ + ρ)ρ * -(θ + ρ) 2 -(θρ) 2 ]X 2 n -(θρ) 2 X 2 n-1 + 2ρ * X n X n-1 + ξ 1 ,
and where the remainder term

ξ 1 = (1 -2θρ -ρ 2 )X 2 0 + ρ 2 ε 2 0 + 2θρX 0 ε 0 -2ρρ * (ε 0 -X 0 )X 0 + 2ρ(ε 0 -X 0 )V 1 .
First of all, (V n ) is a sequence of independent and identically distributed gaussian random variables with zero mean and variance σ 2 > 0. It immediately follows from Cramér-Chernoff's Theorem, expounded e.g. in [START_REF] Dembo | Large deviations techniques and applications[END_REF], that for all δ > 0, lim sup

n→∞ 1 n log P ( L n n -σ 2 > δ ) < 0. (4.9) Since b 2 n = o(n), the latter convergence leads to L n n superexp -→ b 2 n σ 2 , ( 4.10) 
ensuring the exponential convergence of L n /n to σ 2 with speed b 2 n . Moreover, for all δ > 0 and a suitable t > 0, we clearly obtain from Markov's inequality that

P ( X 2 0 n > δ ) ≤ exp (-tnδ) E [ exp(tX 2 0 ) ] ,
which immediately implies via (G.2),

X 2 0 n superexp -→ b 2 n 0, (4.11) 
and we get the exponential convergence of X 2 0 /n to 0 with speed b 2 n . The same is true for V 2 1 /n, ε 2 0 /n and more generally for any isolated term of order 2 in relation (4.8) whose numerator do not depend on n. Let us now focus our attention on X 2 n /n. The model (1.1) can be rewritten in the vectorial form,

Φ n = AΦ n-1 + W n (4.12) where Φ n = ( X n X n-1
) ′ stands for the lag vector of order 2,

W n = ( V n 0 ) ′ and A = ( θ + ρ -θρ 1 0 ) . (4.13)
It is easy to show that ρ(A) = max(|θ|, |ρ|) < 1 under the stability conditions. According to Proposition 4.1 of [START_REF] Worms | Principes de déviations modérées pour des martingales et applications statistiques[END_REF],

∥Φ n ∥ 2 n superexp -→ n 0,
which is clearly sufficient to deduce that

X 2 n n superexp -→ b 2 n 0. (4.14)
The exponential convergence of R n /n to 0 with speed b 2 n is achieved following exactly the same lines. To conclude the proof of Lemma 4.1, it remains to study the exponential asymptotic behavior of M n /n. For all δ > 0 and a suitable y > 0,

P ( M n n > δ ) = P ( M n n > δ, ⟨M ⟩ n ≤ y ) + P ( M n n > δ, ⟨M ⟩ n > y ) , ≤ exp ( - n 2 δ 2 2y 
) + P ( ⟨M ⟩ n > y ) , (4.15) 
by application of Theorem 4.1 of [START_REF] Bercu | Exponential inequalities for self-normalized martingales with applications[END_REF] in the case of a gaussian martingale. Then, noting that we have the following inequality,

S n ≤ αX 2 0 + βε 2 0 + βL n a.s. (4.16 
)

with α = 1 + (1 -|θ|) -2 and β = (1 -|ρ|) -2 (1 -|θ|) -2
, we get for a suitable t > 0,

P ( ⟨M ⟩ n > y ) ≤ P ( X 2 0 > y 3ασ 2 ) + P ( ε 2 0 > y 3βσ 2 ) + P ( L n-1 > y 3βσ 2 ) , ≤ exp ( -yt 3ασ 2 ) E [ exp(tX 2 0 ) ] + exp ( -yt 3βσ 2 ) E [ exp(tε 2 0 ) ] + P ( L n-1 > y 3βσ 2 ) , ≤ 3 max ( exp ( -yt 3ασ 2 ) E [ exp(tX 2 0 ) ] , exp ( -yt 3βσ 2 ) E [ exp(tε 2 0 ) ] , P ( L n-1 > y 3βσ 2 ) )
.

Let us choose y = nx, assuming x > 3βσ 4 . It follows that

1 b 2 n log P ( ⟨M ⟩ n > nx ) ≤ log 3 b 2 n + 1 b 2 n max ( -nxt 3ασ 2 + log E [ exp(tX 2 0 ) ] , -nxt 3βσ 2 + log E [ exp(tε 2 0 ) ] , log P ( L n-1 > nx 3βσ 2 
) ) .

Since b 2 n = o(n) and by virtue of (4.10) with δ = x/(3βσ 2 ) -σ 2 > 0, we obtain that lim sup 

n→∞ 1 b 2 n log P ( ⟨M ⟩ n > nx ) = -∞. ( 4 
P n n superexp -→ b 2 n ℓ 1 (4.20)
where

ℓ 1 = θ * ℓ.
Proof. The proof of Corollary 4.2 is immediately derived from the following inequality,

P n n -θ * S n n = 1 1 + θρ M n n + 1 1 + θρ R n (θ) n -θ * X 2 n n , ≤ 1 1 + θρ |M n | n + 1 1 + θρ |R n (θ)| n + |θ * | X 2 n n (4.21) with R n (θ) = θρX n X n-1 + ρX 0 (ε 0 -X 0 ).
We are now in the position to prove Theorem 2.1. We shall make use of the following deviation principle for martingales established by Worms [START_REF] Worms | Moderate deviations for stable Markov chains and regression models[END_REF].

Theorem 4.3 (Worms). Let (Y n ) be an adapted sequence with values in R p , and (V n ) a gaussian noise with variance σ 2 > 0. We suppose that (Y n ) satisfies, for some invertible square matrix C of order p and a speed sequence

(b 2 n ) such that b 2 n = o(n), the exponential convergence for any δ > 0, lim n→∞ 1 b 2 n log P ( 1 n n-1 ∑ k=0 Y k Y ′ k -C > δ ) = -∞. (4.22)
Then, the sequence

( M n b n √ n ) n≥1
satisfies an LDP on R p of speed b 2 n and good rate function

I(x) = 1 2σ 2 x ′ C -1 x (4.23)
where (M n ) is the martingale given by

M n = n ∑ k=1 Y k-1 V k .
Proof. The proof of Theorem 4.3 is contained in the one of Theorem 5 of [START_REF] Worms | Moderate deviations for stable Markov chains and regression models[END_REF] with d = 1.

Proof of Theorem 2.1. Let us consider the decomposition

√ n b n ( θ n -θ * ) = √ n b n ( σ 2 1 + θρ ) M n ⟨M ⟩ n + √ n b n ( 1 1 + θρ ) R n (θ) S n-1 , ( 4.24) 
that can be obtained by a straighforward calculation, where the remainder term R n (θ) is defined in (4.21). First, by using the same methodology as in convergence (4.11), we obtain that for all δ > 0 and for a suitable t > 0, lim sup

n→∞ 1 b 2 n log P ( X 2 0 b n √ n > δ ) ≤ lim n→∞ ( -tδ √ n b n ) + lim n→∞ 1 b 2 n log E [ exp(tX 2 0 ) ] , = -∞, (4.25) since b n = o( √ n)
, and the same goes for any isolated term in (4.24) of order 2 whose numerator do not depend on n. Moreover, under the gaussian assumption on the driven noise (V n ), it is not hard to see that

1 b n √ n max 1≤k≤n V 2 k superexp -→ b 2 n 0. (4.26)
As a matter of fact, for all δ > 0 and for all t > 0,

P ( max 1≤k≤n V 2 k ≥ δb n √ n ) = P ( n ∪ k=1 { V 2 k ≥ δb n √ n } ) ≤ n ∑ k=1 P ( V 2 k ≥ δb n √ n ) , ≤ n exp ( -tδb n √ n ) E [ exp ( tV 2 1 ) 
] .

In addition, as soon as 0

< t < 1/(2σ 2 ), E [ exp(tV 2 1 ) ] < ∞. Consequently, 1 b 2 n log P ( max 1≤k≤n V 2 k ≥ δb n √ n ) ≤ log n b 2 n - tδ √ n b n + log E [ exp (tV 2 1 ) ] b 2 n , ≤ √ n b n   log n b n √ n -tδ + log E [ exp (tV 2 1 ) ] b n √ n  
which clearly leads to (4.26). Furthermore, it follows from (1.1) that max 1≤k≤n

X 2 k ≤ 1 1 -|θ| X 2 0 + ( 1 1 -|θ| ) 2 max 1≤k≤n ε 2 k , ( 4.27) 
as well as

max 1≤k≤n ε 2 k ≤ 1 1 -|ρ| ε 2 0 + ( 1 1 -|ρ| ) 2 max 1≤k≤n V 2 k . (4.28)
Then, we deduce from (4.25), (4.26), (4.27) and (4.28) that where ℓ > 0 is given by (4.6). According to (4.29), the latter convergence and again Lemma 4.1 of [START_REF] Worms | Principes de déviations modérées pour des martingales et applications statistiques[END_REF], we deduce that

1 b n √ n max 1≤k≤n ε 2 k superexp -→ b 2 n 0 and 1 b n √ n max 1≤k≤n X 2 k superexp -→ b 2 n 0, which of course imply the exponential convergence of X 2 n /(b n √ n) to 0, with speed b 2 n . Therefore, we obtain that R n (θ) b n √ n superexp -→ b 2 n 0. ( 4 
√ n b n ( 1 1 + θρ ) R n (θ) S n-1 superexp -→ b 2 n 0. (4.31)
Hence, we obtain from (4.30) that the same is true for n and good rate function given, for all x ∈ R, by

σ 2 1 + θρ M n b n √ n ( n ⟨M ⟩ n - 1 σ 2 ℓ ) superexp -→ b 2 n 0, ( 4 
J(x) = x 2 2ℓσ 2 . (4.33) As a consequence, √ n b n ( θ n -θ * ) superexp ∼ b 2 n 1 ℓ(1 + θρ) M n b n √ n , (4.34) 
and this implies that both of them share the same LDP, see e.g. [START_REF] Dembo | Large deviations techniques and applications[END_REF]. One shall now take advantage of the contraction principle [START_REF] Dembo | Large deviations techniques and applications[END_REF] to establish that ( √ n( θ n -θ * )/b n ) satisfies an LDP with speed b 2 n and good rate function I θ (x) given by (2.1). The contraction principle enables us to conclude that the good rate function of the LDP with speed b 2 n associated with equivalence (4.34) is given by I θ (x) = J(ℓ(1 + θρ)x), that is

I θ (x) = x 2 2σ 2 θ ,
which achieves the proof of Theorem 2.1.

Proof of Theorem 2.2.

We need to introduce some more notations. For all n ≥ 2, let

Q n = n ∑ k=2 X k-2 V k . (4.35)
In addition, for all n ≥ 1, denote

T n = 1 + θ * ρ * - ( 1 + ρ * ( θ n + θ * ) ) S n S n-1 + ( 2ρ * + θ n + θ * ) P n S n-1 - Q n S n-1 , ( 4.36) 
where S n and P n are respectively given by (4.3) and (4.5). Finally, for all n ≥ 0, let

J n = n ∑ k=0 ε 2 k (4.37)
where the residual set ( ε n ) is given in (1.3). A set of additional technical tools has to be expounded to make the proof of Theorem 2.2 more tractable.

Corollary 4.4. By virtue of Lemma 4.1 and under the same assumptions, we have the exponential convergence

Q n n superexp -→ b 2 n ℓ 2
where ℓ 2 = ((θ + ρ)θ * -θρ)ℓ.

Proof. The proof of Corollary 4.4 immediately follows from the inequality,

Q n n -((θ + ρ)θ * -θρ) S n n = θ * M n n + N n n + ξ Q n n , ≤ |θ * | |M n | n + |N n | n + |ξ Q n | n (4.38)
where ξ Q n is a residual made of isolated terms such that

ξ Q n n superexp -→ b 2 n 0,
see e.g. the proof of Theorem 3.2 in [START_REF] Bercu | A sharp analysis on the asymptotic behavior of the Durbin-Watson statistic for the first-order autoregressive process[END_REF] where more details are given on ξ Q n . Lemma 4.

Under the assumptions of Theorem 2.2, we have the exponential convergence

A n superexp -→ b 2 n A where A n = n 1 + θρ     1 S n-1 0 T n J n-1 - (θ + ρ) J n-1     , ( 4.39) 
and

A = 1 ℓ(1 + θρ)(1 -(θ * ) 2 ) ( 1 -(θ * ) 2 0 θρ + (θ * ) 2 -(θ + ρ) ) . ( 4 

.40)

Proof. Via (4.30), we directly obtain the exponential convergence,

1 (1 + θρ) n S n-1 superexp -→ b 2 n 1 ℓ(1 + θρ) . ( 4 

.41)

The combination of Lemma 4.1, Corollary 4.2, Corollary 4.4 and Lemma 4.1 of [START_REF] Worms | Principes de déviations modérées pour des martingales et applications statistiques[END_REF] shows, after a simple calculation, that

T n superexp -→ b 2 n (θ * ) 2 + θρ. (4.42)
Moreover, J n given by (4.37) can be rewritten as 

J n = S n -2 θ n P n + θ 2 n S n-1 , which leads, via Lemma 4.1 in [22], to J n n superexp -→ b 2 n ℓ(1 -(θ * ) 2 ). ( 4 
) T n J n-1 superexp -→ b 2 n (θ * ) 2 + θρ ℓ(1 + θρ)(1 -(θ * ) 2 ) , ( 4.44) 
and finally, Proof of Theorem 2.2. We shall make use of the decomposition

( n 1 + θρ ) θ + ρ J n-1 superexp -→ b 2 n θ + ρ ℓ(1 + θρ)(1 -(θ * ) 2 ) . ( 4 
√ n b n ( θ n -θ * ρ n -ρ * ) = 1 b n √ n A n Z n + B n , (4.46)
where A n is given by (4.39), (Z n ) n≥0 is the 2-dimensional vector martingale given by

Z n = ( M n N n ) , (4.47)
and where the remainder term

B n = 1 (1 + θρ) √ n b n    R n (θ) S n-1 R n (ρ) J n-1     . (4.48)
The first component R n (θ) is given in (4.21) while R n (ρ), whose definition may be found in the proof of Theorem 3.2 in [START_REF] Bercu | A sharp analysis on the asymptotic behavior of the Durbin-Watson statistic for the first-order autoregressive process[END_REF], is made of isolated terms. Consequently, (4.25) and (4.29) are sufficient to ensure that

R n (θ) b n √ n superexp -→ b 2 n 0 and R n (ρ) b n √ n superexp -→ b 2 n 0.
Therefore, we obtain that n and good rate function given, for all x ∈ R 2 , by 

B n superexp -→ b 2 n 0. ( 4 
J(x) = 1 2σ 2 x ′ Λ -1 x, ( 4 
(Λ) = ℓ 2 (1-(θ * ) 2 ) > 0 implying that Λ is invertible. As a consequence, 1 b n √ n (A n -A)Z n superexp -→ b 2 n 0, (4.53)
and we deduce from (4.46) that

√ n b n ( θ n -θ * ρ n -ρ * ) superexp ∼ b 2 n 1 b n √ n AZ n . (4.54)
This of course implies that both of them share the same LDP. The contraction principle [START_REF] Dembo | Large deviations techniques and applications[END_REF] enables us to conclude that the rate function of the LDP on R 2 with speed b 2 n associated with equivalence (4.54) is given, for all x ∈ R 2 , by K(x) = J(A -1 x), that is

K(x) = 1 2 x ′ Γ -1 x,
where Γ = σ 2 AΛA ′ is given by (1.10), and where we shall suppose that θ ̸ = -ρ to ensure that A is invertible. In particular, the latter result also implies that the good rate function of the LDP on R with speed b 2 n associated with (

√ n( ρ n - * )/b n ) is given, for all x ∈ R, by I ρ (x) = x 2 2σ 2 ρ ,
where σ 2 ρ is the last element of the matrix Γ. This achieves the proof of Theorem 2.2.

Proof of Theorem 2.3.

For all n ≥ 1, denote by f n the explosion coefficient associated with J n given by (4.37), that is

f n = J n -J n-1 J n = ε 2 n J n . (4.55) It follows from decomposition (C.4) in [2] that √ n b n ( D n -D * ) = -2 √ n b n ( 1 -f n )( ρ n -ρ * ) + √ n b n ζ n , ( 4.56) 
where the remainder term ζ n is made of isolated terms. As before, we clearly have

√ n b n ζ n superexp -→ b 2 n 0 and f n superexp -→ b 2 n 0. As a consequence, √ n b n ( D n -D * ) superexp ∼ b 2 n -2 √ n b n ( ρ n -ρ * ) , ( 4.57) 
and this implies that both of them share the same LDP. The contraction principle [START_REF] Dembo | Large deviations techniques and applications[END_REF] enables us to conclude that the rate function of the LDP on R with speed b 2 n associated with equivalence (4.57) is given, for all x ∈ R, by I D (x) = I ρ (-x/2), that is

I D (x) = x 2 2σ 2 D ,
which achieves the proof of Theorem 2.3. Proof. Under (CL.1), (CL.2) and (CL.3), and following the same methodology as the one used to establish (4.29), we get

Proofs of

X 2 n b n √ n superexp -→ b 2 n 0, (4.58) 
and Cauchy-Schwarz inequality implies that this is also the case for any isolated term of order 2, such as

X n X n-1 /(b n √ n).
This allows us to control each remainder term. Note that (CL.2), (CL.3) and (4.58) are obviously true for

ε 4 0 /n, X 4 0 /n, ε 2 0 /n, X 2 0 /n and X 2 n /n, since b n √ n = o(n).
Moreover, if follows from Theorem 2.2 of [START_REF] Eichelsbacher | Moderate deviations for i.i.d. random variables[END_REF] under (CL.1) with a = 2, that

L n n superexp -→ b 2 n σ 2 . (4.59)
Furthermore, since (M n ) is a locally square integrable martingale, we infer from Theorem 2.1 of [START_REF] Bercu | Exponential inequalities for self-normalized martingales with applications[END_REF] that for all x, y > 0,

P ( |M n | > x, ⟨M ⟩ n + [M ] n ≤ y ) ≤ 2 exp ( - x 2 2y 
) , (

where the predictable quadratic variation ⟨M ⟩ n = σ 2 S n-1 is described in (4.3) and the total quadratic variation is given by [M ] 0 = 0 and, for all n ≥ 1, by

[M ] n = n ∑ k=1 X 2 k-1 V 2 k . ( 4.61) 
According to (4.60), we have for all δ > 0 and a suitable b > 0,

P ( |M n | n > δ ) ≤ P ( |M n | > δn, ⟨M ⟩ n + [M ] n ≤ nb ) + P ( ⟨M ⟩ n + [M ] n > nb ) , ≤ 2 exp ( - nδ 2 2b ) + P ( ⟨M ⟩ n + [M ] n > nb ) , ≤ 2 max ( P ( ⟨M ⟩ n + [M ] n > nb ) , 2 exp ( - nδ 2 2b 
)) .

Consequently, lim sup

n→∞ 1 b 2 n log P ( |M n | n > δ ) ≤ lim sup n→∞ 1 b 2 n log P ( ⟨M ⟩ n + [M ] n > nb ) . ( 4.62) 
We have for all b > 0,

P ( ⟨M ⟩ n + [M ] n > nb ) ≤ P ( ⟨M ⟩ n > nb 2 ) + P ( [M ] n > nb 2 ) , ≤ 2 max ( P ( ⟨M ⟩ n > nb 2 ) , P ( [M ] n > nb 2 
)) . (4.63)

Moreover, for all n ≥ 1, let us define

T n = n ∑ k=0 X 4 k and Γ n = n ∑ k=1 V 4 k ,
and note that we easily have the following inequality,

T n ≤ αX 4 0 + βε 4 0 + βΓ n a.s. (4.64) with α = 1 + (1 -|θ|) -4 and β = (1 -|ρ|) -4 (1 -|θ|) -4
. This implies that, for n large enough, one can find γ > 0 such that T n ≤ γΓ n a.s.

choosing for example γ = 3 max(α, β), under (CL.2) and (CL.3) for a = 4. According to Theorem 2.2 of [START_REF] Eichelsbacher | Moderate deviations for i.i.d. random variables[END_REF] under (CL.1) with a = 4, we also have the exponential convergence,

Γ n n superexp -→ b 2 n τ 4 , ( 4.65) 
where

τ 4 = E[V 4 1 ]
, leading, via Cauchy-Schwarz inequality and (4.64), to lim sup

n→∞ 1 b 2 n log P ( [M ] n n > δ ) ≤ lim sup n→∞ 1 b 2 n log P ( Γ n n > δ √ γ ) , = -∞, ( 4.66) 
where δ > τ 4 √ γ. Exploiting (4.16) and (4.59), the same result can be achieved for ⟨M ⟩ n /n under (CL.1) with a = 2 and δ > σ 4 γ. As a consequence, it follows from (4.63), (4.66) and the latter remark that lim sup

n→∞ 1 b 2 n log P ( ⟨M ⟩ n + [M ] n n > b ) = -∞, ( 4.67) 
as soon as b > σ 4 γ + τ 4 √ γ. Therefore, the exponential convergence of M n /n to 0 with speed b 2 n is obtained via (4.62) and (4.67), that is, for all δ > 0 and b > σ Let us introduce a simplified version of Puhalskii's result [START_REF] Puhalskii | Large deviations of semimartingales: a maxingale problem approach. I. Limits as solutions to a maxingale problem[END_REF] applied to a sequence of martingale differences, and two technical lemmas that shall help us to prove our results. Theorem 4.7 (Puhalskii). Let (m n j ) 1≤j≤n be a triangular array of martingale differences with values in R d , with respect to the filtration (F n ) n≥1 . Let (b n ) be a sequence of real numbers satisfying (1.13). Suppose that there exists a symmetric positive-semidefinite matrix Q such that

4 γ + τ 4 √ γ, lim sup n→∞ 1 b 2 n log P ( |M n | n > δ ) = -∞. ( 4 
1 n n ∑ k=1 E [ m n k (m n k ) ′ F k-1 ] superexp -→ b 2 n Q. ( 4 

.69)

Suppose that there exists a constant c > 0 such that, for each 1 ≤ k ≤ n,

|m n k | ≤ c √ n b n a.s. ( 4 

.70)

Suppose also that, for all a > 0, we have the exponential Lindeberg's condition

1 n n ∑ k=1 E [ |m n k | 2 I { |m n k |≥a √ n bn } F k-1 ] superexp -→ b 2 n 0. (4.71)
Then, the sequence

( 1 b n √ n n ∑ k=1 m n k ) n≥1
satisfies an LDP on R d with speed b 2 n and good rate function

Λ * (v) = sup λ∈R d ( λ ′ v - 1 2 λ ′ Qλ
) .

In particular, if Q is invertible, Proof. We introduce the empirical measure associated with the geometric ergodic Markov chain (X n ) n≥0 ,

Λ * (v) = 1 2 v ′ Q -1 v. ( 4 
Λ n = 1 n n ∑ k=1 δ X k , ( 4.73) 
with invariant probability measure denoted by µ. It is well-known that the sequence (Λ n ) satisfies the upper bound of the moderate deviations, see e.g. [START_REF] Djellout | Moderate deviations for Markov chains with atom[END_REF] for more details. Let us define, for f (x) = x 2 , the following truncations,

f (R) (x) = f (x) min ( 1, ( f (x) -(R -1) ) + ) and f (R) (x) = min ( f (R) (x), R
) .

Thus, we have 0 ≤ f (x)I {f (x)≥R} ≤ f (R) (x) ≤ f (x), and, as a consequence,

0 ≤ Λ n ( f I {f ≥R} ) ≤ Λ n ( f (R) -f (R) ) + Λ n ( f (R) ) -µ ( f (R) ) + µ ( f (R)
) .

We also have

f (R) -f (R) = ( f (R) -R ) I {f (R) ≥R} ≤ ( f -R ) I {f ≥R} = f - ( f ∧ R
) .

For δ > 0, the functions f (R) and f -(f ∧ R) are continuous and bounded by f which is µ-integrable, and they converge to 0 as R goes to infinity. By Lebesgue's Theorem, there exists R > 0 large enough such that µ( f (R) ) + µ(f -(f ∧ R)) < δ/4. Thus,

P ( 1 n n ∑ k=1 X 2 k I {X 2 k ≥R} > δ ) ≤ P ( Λ n (f ) -µ(f ) > δ/4 ) + P ( Λ n (f ∧ R) -µ(f ∧ R) > δ/4 ) + P ( Λ n ( f (R) ) -µ( f (R) ) > δ/4
) . (4.74)

From Lemma 4.6, we have that for all δ > 0, lim sup

n→∞ 1 b 2 n log P ( Λ n (f ) -µ(f ) > δ ) = -∞.
By the upper bound of the moderate deviation principle for the sequence (Λ n ) given in [START_REF] Djellout | Moderate deviations for Markov chains with atom[END_REF], we obtain that lim sup

R→∞ lim sup n→∞ 1 b 2 n log P ( Λ n (f ∧ R) -µ(f ∧ R) > δ ) = -∞,
and lim sup

R→∞ lim sup n→∞ 1 b 2 n log P ( Λ n ( f (R) ) -µ( f (R) ) > δ ) = -∞,
which, via inequality (4.74), achieves the proof of Lemma 4.8. Note that Remark 4.1 is immediately derived from the latter proof, see e.g. [START_REF] Worms | Principes de déviations modérées pour des martingales et applications statistiques[END_REF] for more details.

Lemma 4.9. Under (CL.1), (CL.2) and (CL.3), the sequence

( M n b n √ n ) n≥1
satisfies an LDP on R with speed b 2 n and good rate function

J(x) = x 2 2ℓσ 2 (4.75)
where ℓ is given by (4.6).

Proof. From now on, in order to apply Puhalskii's result for the moderate deviations for martingales, we introduce the following modification of the martingale (M n ) n≥0 , for r > 0 and R > 0,

M (r,R) n = n ∑ k=1 X (r) k-1 V (R) k (4.76)
where, for all 1 ≤ k ≤ n,

X (r) k = X k I { |X k |≤r √ n bn } and V (R) k = V k I { |V k |≤R } -E [ V k I { |V k |≤R } ] . ( 4.77) 
Then, we have to prove that for all r > 0 the sequence (M (r,R) n

) is an exponentially good approximation of (M n ) as R goes to infinity, see e.g. Definition 4.2.14 in [START_REF] Dembo | Large deviations techniques and applications[END_REF]. This approximation, in the sense of the large deviations, is described by the following convergence, for all r > 0 and all δ > 0, lim sup 

R→∞ lim sup n→∞ 1 b 2 n log P ( |M n -M (r,R) n | b n √ n > δ ) = -∞. ( 4 
∑ k=0 X 2 k I { |X k |>r √ n bn } superexp -→ b 2 n 0. ( 4 

.80)

We introduce the following notations,

σ 2 R = E [ (V (R) 1 ) 2 ] and S (r) n = n ∑ k=0 (X (r) k ) 2 .
Then, we easily transfer properties (4.79) and (4.80) to the truncated martingale (M (r,R) n

) n≥0 . We have for all R > 0 and all r > 0, 

⟨M (r,R) ⟩ n n = σ 2 R S (r) n-1 n = -σ 2 R ( S n-1 n - S (r) n-1 n ) + σ 2 R S n-1 n superexp -→ b 2 n σ 2 R ℓ
J R (x) = x 2 2σ 2 R ℓ . ( 4 

.81)

It will be possible to drive the moderate deviations result for the martingale (M n ) n≥0 by proving relation (4.78). For that matter, let us now introduce the following decomposition,

M n -M (r,R) n = L (r) n + F (r,R) n where L (r) n = n ∑ k=1 ( X k-1 -X (r) k-1 ) V k and F (r,R) n = n ∑ k=1 ( V k -V (R) k ) X (r) k-1 .
One has to show that for all r > 0,

L (r) n b n √ n superexp -→ b 2 n 0, (4.82) 
and, for all r > 0 and all δ > 0, that lim sup

R→∞ lim sup n→∞ 1 b 2 n log P ( |F (r,R) n | b n √ n > δ ) = -∞. ( 4 

.83)

On the one hand, note that for any η > 0, 2+η) . This implies that, for n large enough, one can find γ > 0 such that

n ∑ k=0 |X k | 2+η ≤ α|X 0 | 2+η + β|ε 0 | 2+η + β n ∑ k=1 |V k | 2+η a.s. with α = 1 + (1 -|θ|) -(2+η) and β = (1 -|ρ|) -(2+η) (1 -|θ|) -(
n ∑ k=0 |X k | 2+η ≤ γ n ∑ k=1 |V k | 2+η a.s. (4.84)
taking for example γ = 3 max(α, β), under (CL.2) and (CL.3) for a = 2 + η. Thus, ) n≥0 is a locally square-integrable real martingale whose predictable quadratic variation is given by ⟨F (r,R) ⟩ 0 = 0 and, for all n ≥ 1, by

|L (r) n | b n √ n = 1 b n √ n n ∑ k=1 X k-1 I { |X k-1 |>r √ n bn } V k , ≤ 1 b n √ n ( r √ n b n ) -η ( n ∑ k=1 |X k-1 | 2+η ) 1/2 ( n ∑ k=1 V 2 k |X k-1 | η ) 1/2 , ≤ λ(r, η, γ) ( b n √ n ) η-1 1 n n ∑ k=1 |V k | 2+η a.s. ( 4 
⟨F (r,R) ⟩ n = E [ ( V 1 -V (R) 1
) 2 ] S (r)

n-1 .

To prove (4.83), we will use Theorem 1 of [START_REF] Djellout | Moderate deviations for martingale differences and applications to ϕ-mixing sequences[END_REF]. For R large enough and all k ≥ 1, we have

P ( X (r) k-1 ( V k -V (R) k ) > b n √ n F k-1 ) ≤ P ( V k -V (R) k > b 2 n r ) , = P ( V 1 -V (R) 1 > b 2 n r ) = 0.
This implies that lim sup 

( V k -V (R) k ) > b n √ n F k-1
))

= -∞. 

⟨F (r,R) ⟩ n n = Q R S (r) n-1 n = -Q R ( S n-1 n - S (r) n-1 n ) + Q R S n-1 n superexp -→ b 2 n Q R ℓ
where

Q R = E [ ( V 1 -V (R) 1 ) 2 ] ,
and ℓ is given by (4.6). Moreover, it is clear that Q R converges to 0 as R goes to infinity.

In light of foregoing, we infer from Theorem 1 of [START_REF] Djellout | Moderate deviations for martingale differences and applications to ϕ-mixing sequences[END_REF] that (F n and good rate function

I R (x) = x 2 2Q R ℓ .
In particular, this implies that for all δ > 0, 

lim
√ n b n ) η n ∑ k=1 X 2 k-1 I { |X k-1 |>r √ n bn } ≤ n ∑ k=1 |X k-1 | 2+η ≤ γ n ∑ k=1 |V k | 2+η ,
for n large enough and η > 0, leading to

P ( 1 n n ∑ k=1 X 2 k-1 I { |X k-1 |>r √ n bn } > δ ) ≤ P ( 1 n n ∑ k=1 |V k | 2+η > δ γ ( r √ n b n ) η )
. ))

n≥1 satisfies an LDP on R 2 with speed b 2 n and good rate function

J(x) = 1 2σ 2 x ′ Λ -1 x (4.90)
where Λ is given by (4.51).
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 1013 Lemma We have the almost sure convergence of the Durbin-Watson statistic, lim n→∞ D n = D * a.s.

Theorem 3 . 1 . 1 . 3 . 2 .

 31132 Assume that (CL.1), (CL.2) and (CL.3) are satisfied. Then, the sequence ( on R given in Theorem 2.Theorem Assume that (CL.1), (CL.2) and (CL.3) are satisfied. Then, as soon as
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 133 satisfy the LDP on R given in Remark 2.Theorem Assume that (CL.1), (CL.2) and (CL.3) are satisfied. Then, the sequence (√ n b n ( D n -D * ) ) n≥1 satisfies the LDP on R given in Theorem 2.3. Proof. Theorem 3.1, Theorem 3.2 and Theorem 3.3 are proved in Section 4.
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 641 Lemma Under the assumptions of Theorem 2.1, we have the exponential convergence S

  .32) since Lemma 4.1 together with Theorem 4.3 with p = 1 directly show that (M n /(b n √ n)) satisfies an LDP with speed b 2

  .45) Finally, (4.41) together with (4.44) and (4.45) achieve the proof of Lemma 4.5.

  .49) In addition, it follows from Lemma 4.5 and Theorem 4.3 with p = 2 that (Z n /(b n √ n)) satisfies an LDP on R 2 with speed b 2

Theorem 3 . 1 , 3 .

 313 Theorem 3.2 and Theorem 3.We shall now propose a technical lemma ensuring that all results already proved under the gaussian assumption still hold under the Chen-Ledoux type condition. Lemma 4.6. Under (CL.1), (CL.2) and (CL.3), all exponential convergences of Lemma 4.1, Corollary 4.2, Corollary 4.4 and Lemma 4.5 still hold.

  .68) The same obviously holds for N n /n. Following the same lines as in the proofs of Lemma 4.1, Corollary 4.2, Corollary 4.4 and Lemma 4.5, hypothesis (CL.2) and (CL.3) with a = 4 together with exponential convergences (4.58), (4.59) and (4.68) are sufficient to achieve the proof of Lemma 4.6.

  .85) by virtue of (4.84) and Hölder's inequality, where λ(r, η, γ) > 0 can be evaluated under suitable assumptions of moment on (V n ). As a consequence, for all δ > 0, as soon as η > 1, under (CL.1) with a = 2 + η. We deduce that L proof of (4.82), under (CL.1), (CL.2) and (CL.3) for a > 3. On the other hand, (F (r,R) n

(4. 88 )

 88 For all γ > 0 and all δ > 0, we obtain from Lemma 4.8 and Remark 4.

Finally, from Lemma 4 . 6 ,

 46 Lemma 4.8 and Remark 4.1, it follows that

  satisfies an LDP on R of speed b 2

Lemma 4 . 10 .

 410 Under (CL.1), (CL.2) and (CL.3), the sequence (

  By virtue of Lemma 4.1 and under the same assumptions, we have the exponential convergence

	It enables us by (4.15) to deduce that for all δ > 0, lim sup n→∞ 1 b 2 n log P ( M n n > δ	)	= -∞.	(4.18)
	The same result is also true replacing M n by -M n in (4.18) since M n and -M n share the
	same distribution. Therefore, we find that			
	M n n	superexp -→ n b 2	0.		(4.19)
	A similar reasoning leads to the exponential convergence of N n /n to 0, with speed b 2 n .
	Finally, we obtain (4.7) from (4.8) together with (4.10), (4.11), (4.14) and (4.19) which
	achieves the proof of Lemma 4.1.			
	Corollary 4.2.			
					.17)

  .72)Proof. The proof of Theorem 4.7 is contained e.g. in the proof of Theorem 3.1 in[START_REF] Puhalskii | Large deviations of semimartingales: a maxingale problem approach. I. Limits as solutions to a maxingale problem[END_REF].

	Lemma 4.8. Under (CL.1), (CL.2) and (CL.3) with a = 2, we have for all δ > 0, lim sup R→∞ lim sup n→∞ 1 n log P ( 1 k=1 n n ) ∑ X 2 k I {|X k |>R} > δ < 0.
	Remark 4.1. Lemma 4.8 implies that the exponential Lindeberg's condition given by (4.71)
	is satisfied.

  sup go to infinity clearly leads to the end of the proof of (4.83). We are able to conclude now that (M By application of Theorem 4.2.16 in[START_REF] Dembo | Large deviations techniques and applications[END_REF], we find that (M n /(b n √ n)) satisfies an LDP on R with speed b 2 n and good rate function J(x) = sup The identification of the rate function J = J, where J is given in (4.75) is done easily, which concludes the proof of Lemma 4.9.

	n→∞	1 b 2 n	log P	(	|F b n (r,R) n √ n	|	> δ	)	≤ -	δ 2 2Q R ℓ	,	(4.89)
	and letting R											

(r,R) n /(b n √ n)) is an exponentially good approximation of (M n /(b n √ n)). δ>0 lim inf R→∞ inf z∈B x,δ J R (z),

where J R is given in (4.81) and B x,δ denotes the ball {z : |z -x| < δ}. Remark 4.2. If we suppose that (CL.1) holds with a > 2, then the exponential Lindeberg's condition in Lemma 4.8 is easier to establish. Indeed, using (4.84), it follows that ( r
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Proof. We follow the same approach as in the proof of Lemma 4.9. We shall consider the 2-dimensional vector martingale (Z n ) n≥0 defined in (4.47). In order to apply Theorem 4.7, we introduce the following truncation of the martingale (Z n ) n≥0 , for r > 0 and R > 0,

is given in (4.76) and where N (r,R) n is defined in the same manner, that is, for all n ≥ 2,

given by (4.77). The exponential convergence (4.52) still holds, by virtue of Lemma 4.6, which immediately implies hypothesis (4.69). On top of that, Lemma 4.8 ensures that, for all r > 0,

justifying hypothesis (4.71). Via Theorem 4.7, (Z

n and good rate function J R given by

Finally, it is straightforward to prove that (Z n , as it was already proved. Therefore, for a better readability, we may skip the most accessible parts of these proofs whose development merely consists in following the same lines as those in the proofs of Theorem 2.1, Theorem 2.2 and Theorem 2.3, taking advantage of Lemma 4.9 and Lemma 4.10, and applying the contraction principle given e.g. in [START_REF] Dembo | Large deviations techniques and applications[END_REF].