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A homogenization approach for the motion of motor proteins

Sepideh Mirrahimi ∗ Panagiotis E. Souganidis †‡

January 18, 2012

Abstract

We consider the asymptotic behavior of an evolving weakly coupled Fokker-Planck system of
two equations set in a periodic environment. The magnitudes of the diffusion and the coupling
are respectively proportional and inversely proportional to the size of the period. We prove that,
as the period tends to zero, the solutions of the system either propagate (concentrate) with a
fixed constant velocity (determined by the data) or do not move at all. The system arises in the
modeling of motor proteins which can take two different states. Our result implies that, in the limit,
the molecules either move along a filament with a fixed direction and constant speed or remain
immobile.

Key-Words: Hamilton-Jacobi equations, homogenization, molecular motor, singular perturbation,
viscosity solutions

AMS Class. No: 35B25, 35B27, 49L25, 92C05

1 Introduction

We study the asymptotics, as ε→ 0, of the weakly coupled Fokker-Planck system





n1ε,t − ε∆n1ε − divx(n
1
εDyψ(

x
ε
)) + 1

ε
ν1(x

ε
)n1ε =

1
ε
ν2(x

ε
)n2ε

in R
d × (0,∞),

n2ε,t − ε∆n2ε +
1
ε
ν2(x

ε
)n2ε =

1
ε
ν1(x

ε
)n1ε.

(1)

Systems like (1) have been used to model the motion of motor proteins along molecular filaments
or microtubules [13, 20, 2, 21, 9, 14]. The intracellular transport in eukaria is attributed to motor
proteins that transform the chemical energy into mechanical motion. For example myosins, which are
known for their role in the muscle contraction, move along actin filaments and kynesins move along
microtubules
In (1) the molecules have the conformations 1 and 2 with densities n1ε and n1ε respectively and are

influenced by the periodic potential ψ provided by the filaments (see [19]). The (periodic) functions
ν1 and ν2 indicate the rates of change between the two states. The existence of traveling waves, the
asymptotic speed of propagation for large time as well as the presence of concentration effects for
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models with diffusion and a periodic drift have been studied in many papers; for instance see [10, 8].
A system similar to (1) also appears in the stochastic Stokes’ drift where particles are suspended in
a liquid and are subjected to diffusion and a net drift due to the presence of a wave in the liquid [7].
From the mathematical point of view, we refer to [1] for a related homogenization problem as well as
to [15] for the homogenization of a similar equation with parabolic scaling.
To formulate our result for the densities n1ε and n2ε next we introduce the assumptions we will be

using throughout the paper. In addition to

ν1, ν2 and ψ are smooth and 1-periodic and ν1 > 0, ν2 > 0, (2)

we assume that

n1ε(x, 0) > 0 and n2ε(x, 0) > 0 for all x ∈ R
d , (3)

I0ε =

∫

R

n1ε(x, 0)dx +

∫

R

n2ε(x, 0)dx → I0 > 0, as ε→ 0, (4)





limε→0 ε lnn
1
ε(·, 0) = limε→0 ε lnn

2
ε(·, 0) = −∞ locally uniformly in R

d \ {0},

and

lim sup
y→0
ε→0

ε ln niε(y, 0) ≤ 0 for i = 1, 2,

(5)

and, there exist constants A > 0 and B such that, for all x ∈ R
d and i = 1, 2,

niε(x, 0) ≤ eε
−1(−A|x|+B). (6)

Let δ denote the Dirac mass at the origin. Our first result is

Theorem 1.1 Assume (2), (3), (4), (5) and (6). There exists v̄ ∈ R
d such that, as ε→ 0 and in the

sense of measures,
n1ε(t, x) + n2ε(t, x)⇀ δ(x− tv̄)I0. (7)

To prove Theorem 1.1 we analyze the behavior, as ε→ 0, of the functions R1
ε, R

2
ε : Rd × [0,∞) → R

which are obtained from n1ε and n2ε by the classical exponential change of variable (we show later in
the paper that n1ε > 0 and n2ε > 0)

n1ε = exp(−R1
ε/ε) and n2ε = exp(−R2

ε/ε), (8)

and solve the system





R1
ε,t − ε∆xR

1
ε + |DxR

1
ε|2 −Dyψ(

x
ε
) ·DxR

1
ε +∆yψ(

x
ε
) + ν2(x

ε
) exp(R

1
ε−R2

ε

ε
) = ν1(x

ε
)

in R
d × (0,∞)

R2
ε,t − ε∆xR

2
ε + |DxR

2
ε|2 + ν1(x

ε
) exp(R

2
ε−R1

ε

ε
) = ν2(x

ε
),

(9)
where we use the subscript x and y to differentiate between differentiation with respect to x and

the fast variable y = x/ε.
To state the second main result we recall that the “half-relaxed” upper and lower limits, denoted

R
i
and Ri respectively, of the family (Ri

ε)ε>0 are given, for (x, t) ∈ R
d × [0,∞) and i = 1, 2, by
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Ri(x, t) = lim inf
(y,s)→(x,t)

ε→0

R1
ε(y, s) and R

i
(x, t) = lim sup

(y,s)→(x,t)
ε→0

R1
ε(y, s). (10)

We have:

Theorem 1.2 Assume (2) and (3). Then

(i) R
1
= R

2
and R1 = R2 in R

d × (0,∞).
(ii) There exists a strictly convex H ∈ C1(Rd) satisfying H(0) = 0 and, for some C > 0, H(p) ≥

|p|2 − C such that R = R
1
= R

2
and R = R1 = R2 are respectively subsolution and supersolution of

Rt +H(Rx) ≤ 0 and Rt +H(Rx) ≥ 0 in R
d × (0,∞). (11)

(iii) Assume, in addition, (5). Then

R
1
= R

2
= R1 = R2 = +∞, in (Rd \ {0}) × {0}, R1(0, 0) ≥ 0 and R2(0, 0) ≥ 0. (12)

(iv) The special direction v̄ in Theorem 1.1 is

v̄ = DH(0). (13)

The asymptotic behavior of a time-independent version of (1) set in [0, 1], which is also controlled by
the same effective Hamiltonian H, was studied in [27] where it was proved that, for asymmetric poten-
tials, the mass concentrates at either x = 0 or x = 1. The asymmetry condition of [27] is DH(0) 6= 0.
This behavior is in agreement with our study of the time dependent problem. Indeed we prove here
that, if v̄ = DH(0) 6= 0, the proteins (mass) move (spread) with constant velocity v̄. Hence the mass
concentrates, for large times, on one end point of the filament, if the latter is assumed to have finite
length. We also refer to [25] for a large deviation approach for the asymptotic behavior of the sta-
tionary solution of a similar model but with two potentials and to [26] for the study of flashing ratchets.

By slight modifications of the proofs, all the results in this paper extend to systems with two
potentials like





n1ε,t − ε∆n1ε − divx(n
1
εDyψ

1(x
ε
)) + 1

ε
ν1(x

ε
)n1ε =

1
ε
ν2(x

ε
)n2ε

in R
d × (0,∞),

n2ε,t − ε∆n2ε − divx(n
2
εDyψ

2(x
ε
)) + 1

ε
ν2(x

ε
)n2ε =

1
ε
ν1(x

ε
)n1ε,

(14)

the only difference being in the value of the effective Hamiltonian H(·) –see Section 2. We also remark
that we cal also consider without any difficulty systems with more than two equations.

Our work is inspired from the ideas in wavefront propagation and large deviations [17, 5], the method
of perturbed test functions in homogenization [16] and the methods used in the study of the concen-
tration effects [6, 24] and motor effects [25, 27, 26].

Throughout the paper solutions are taken to be either classical, if smooth or, otherwise, in the
viscosity sense. We refer to [11, 4] for a general introduction to the theory of the latter. In addition
we denote by C positive constants which are independent of ε but may change from line to line.
Moreover, Br(x) is the open ball in R

d centered at x and of radius r > 0 and Br(x) stands for its
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closure. When x = 0 we simply write Br and Br respectively. Finally many statements in the paper
hold for i = 1, 2 without any changes. Hence, unless necessary, we will not be repeating the “for
i = 1, 2”.
The paper is organized as follows. In Section 2 we introduce the cell problem corresponding to (9),

we recall that it has a solution and we introduce H. In Section 3 we present some preliminary facts
about the family (niε)ε>0 and study the properties of the families (Ri

ε)ε>0 that are needed to prove

the convergence to R
i
, Ri. Theorem 1.2 is proved in Section 4. Using the results on the asymptotic

behavior of the family (Ri
ε)ε>0 we prove Theorem 1.1 in Section 5. The asymptotic behavior of the

family (niε)ε>0 in a more general setting is analyzed in Section 6. In Section 7 we compare our results
with the case of the parabolic scaling in [15]. Finally, for the convenience of the reader, we present in
the Appendix a sketch of the proof of the solvability of the cell problem and the properties of H.

2 The cell problem

In view of the presence of the exponential terms in (9) it is natural to expect that the R1
ε’s and R

2
ε ’s

converge, if at all, as ε→ 0 to the same limit R. Following [27] we insert in (9) the formal expansion

Ri
ε(x, t) = R(x, t) + εφi(

x

ε
) +Oi(ε2),

and, keeping only the terms multiplying ε0 and writing y for the fast variable x
ε
, we conclude that





Rt −∆yφ
1 + |Dyφ

1 +DxR|2 −Dyψ · (Dyφ
1 +DxR) + ∆yψ + ν2 exp(φ1 − φ2) = ν1

in R
d × (0,∞)

Rt −∆yφ
2 + |Dyφ

2 +DxR|2 + ν1 exp(φ2 − φ1) = ν2.
(15)

The goal is then to come up with φi’s so that (15) is independent of y. This leads to the problem
to find, for each p ∈ R

d, a unique constant H(p) such that the system, which is usually called the cell
problem,





−∆yφ
1 + |Dyφ

1 + p|2 −Dyψ · (Dyφ
1 + p) + ∆yψ + ν2 exp(φ1 − φ2) = ν1 +H(p)

in R
d,

−∆yφ
2 + |Dyφ

2 + p|2 + ν1 exp(φ2 − φ1) = ν2 +H(p),

(16)

admits an 1-periodic solution (φ1, φ2) called the corrector.
We have:

Lemma 2.1 For each p ∈ R
d there exists a unique constant H(p) such that (16) has an 1-periodic

solution (φ1, φ2). Moreover, H ∈ C1(Rd), H(0) = 0, H is strictly convex, there exists a constant C
such that H(p) ≥ |p|2 − C, and , hence, H(p) → ∞ as |p| → ∞.

A proof of Lemma 2.1 for d = 1 was included in [27]. For the convenience of the reader we sketch
in the Appendix the proof in R

d.

When considering the system (14) with two potentials, (16) is replaced by




−∆yφ
1 + |Dyφ

1 + p|2 −Dyψ
1 · (Dyφ

1 + p) + ∆yψ
1 + ν2 exp(φ1 − φ2) = ν1 +H(p)

in R
d.

−∆yφ
2 + |Dyφ

2 + p|2 −Dyψ
2 · (Dyφ

2 + p) + ∆yψ
2 + ν1 exp(φ2 − φ1) = ν2 +H(p),
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3 Some preliminaries and the properties of Ri
ε

We summarize in the next lemma some basic properties of the families (niε)ε>0. They are the con-
servation of mass, the strict positivity of the niε’s, and a global upper bound yielding that, as ε → 0,
there is very little mass at infinity.
We have:

Lemma 3.1 (i) For all t ≥ 0 and ε > 0,

∫

Rd

n1ε(x, t)dx +

∫

Rd

n2ε(x, t)dx = I0ε . (17)

(ii) Assume (2) and (3). Then
0 < niε in R

d × [0,+∞). (18)

(iii) Assume, in addition, (6). There exists D > 0 such that, for all (x, t) ∈ R
d × [0,+∞).

niε(x, t) ≤ exp(
−A|x|+B +Dt

ε
). (19)

In particular, there is small mass at infinity, i.e., for all t ≥ 0, there exists M =M(t) > 0 such that

∫

|x|≥M

niε(t, x)dx −→
ε→0

0. (20)

Proof. The conservation of the mass follows from adding the equations in (1) and integrating over
R
d.
The form of (1) and (2) and (3) allow us to use maximum principle-type arguments to obtain (18)

and (19).
Indeed let

F1,ε(n) = nt − ε∆n− divx(nDyψ(
x

ε
)) +

1

ε
ν1(

x

ε
)n− 1

ε
ν2(

x

ε
)n,

and

F2,ε(n) = nt − ε∆n+
1

ε
ν2(

x

ε
)n− 1

ε
ν1(

x

ε
)n.

It is easy to verify that nε = min(n1ε, n
2
ε) and Nε = max(n1ε, n

2
ε) satisfy, in R

d × (0,∞), respectively

max(F1,ε(nε), F2,ε(nε)) ≥ 0 and min(F1,ε(Nε), F2,ε(Nε)) ≤ 0. (21)

Since 0 is clearly a solution of the first inequality in (21), (18) follows from the strong maximum
principle.
To prove (19) we observe that, for D sufficiently large,

Gε(x, t) = exp(
−A|x|+B +Dt

ε
)

is a viscosity supersolution of the second inequality in (21). Since, in view of (6), we also have

Nε(x, 0) ≤ Gε(x, 0),

we conclude using again the comparison principle.
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Finally (20) follows from (19) after an appropriate choice of the constant M .

We turn now to the properties of the Ri
ε’s which are presented in Theorem 3.2 below. The proof

is rather long. The first part, which provides an one-sided Lipshitz-type continuity in time, is based
on the classical Harnack inequality. The lower bound in part(ii) follows from part(i). The arguments
leading to the upper bound (part(iii)) are more tedious and require as an intermediary step, namely,
the construction, again using part(i), of an appropriate local upper bound.

We have:

Theorem 3.2 (i) Assume (2) and (3). For all δ > 0, there exists Cδ > 0, such that, for all ε >
0, |z − z′| ≤ ε, εδ ≤ t0 and i, j = 1, 2,

Rj
ε(z

′, t0 + ε)−Ri
ε(z, t0) ≤ εCδ . (22)

(ii) Assume (2), (3), (4) and (5). For any a ∈ (0,∞), there exists ε0 = ε0(a) > 0 such that, for all
ε ≤ ε0,

Ri
ε ≥ −a in R

d × [0,∞). (23)

(iii) Assume (2), (3), (4) and (6). For any compact subset K of Rd × (0,∞), there exist CK > 0
and ε1 = ε1(K) > 0 such that, for all ε ≤ ε1 and (x, t) ∈ K,

Ri
ε(x, t) ≤ CK . (24)

Proof. We begin with the
Proof of (22): Observe that ñ1(y, τ) = n1ε(εy, ετ) and ñ2(y, τ) = n2ε(εy, ετ) are positive (recall (18))
solutions to





ñ1τ −∆yñ
1 − ñ1∆yψ(y)−Dyψ(y) ·Dyñ

1 + ν1ñ1 = ν2ñ2

in R
d × (0,∞)

ñ2τ −∆yñ
2 + ν2ñ2 = ν1ñ1,

(25)

a linear parabolic system with bounded, according to (2), coefficients. It follows from the classical
Harnack inequality [23] that, for each δ > 0, there exists, an independent of ε, Cδ > 0 such that for
all y0 ∈ R

d, τ0 ≥ δ and i, j = 1, 2,

sup
z∈B1(y0)

ñi(z, τ0) ≤ Cδ inf
z∈B1(y0)

ñj(z, τ0 + 1). (26)

Rewriting (26) in terms of n1 and n2 and in the original variables (x, t) we get

sup
z∈Bε(x0)

niε(z, t0) ≤ Cδ inf
z∈Bε(x0)

njε(z, t0 + ε), for (x0, t0) ∈ R
d × [εδ,+∞). (27)

Finally using (8) we obtain (22).

We continue with the
Proof of the uniform bounds from below: Arguing by contradiction we assume that for some
a > 0 there exist εk → 0 and (xk, tk) ∈ R

d × [0,∞) such that

min
(
R1

εk
(xk, tk), R

2
εk
(xk, tk)

)
< −a.
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Newt observe that, in view of (5) and (6), for ε ≤ εa with εa small enough, we have

min
(
R1

εk
(xk, tk), R

2
εk
(xk, tk)

)
> −a

2
.

Moreover min
(
R1

ε, R
2
ε

)
is a supersolution to

max
(
R1

ε,t − ε∆xR
1
ε + |DxR

1
ε|2 −Dyψ(

x
ε
) ·DxR

1
ε +∆yψ(

x
ε
) + ν2(x

ε
)− ν1(x

ε
),

R2
ε,t − ε∆xR

2
ε + |DxR

2
ε|2 + ν1(x

ε
)− ν2(x

ε
)
)
≥ 0,

which admits −a
2 − ct as a subsolution provided c is chosen sufficiently large.

It follows that, for ε ≤ εa and t ≥ 0,

min
(
R1

ε(·, t), R2
ε(·, t)

)
≥ −a

2
− ct, in R

d,

and therefore, if δ = a
2c , for ε ≤ εa,

min
(
R1

ε , R
2
ε

)
≥ −a, in R

d × [0, δ].

As a result the sequence (xk, tk) chosen at the beginning of the proof must satisfy tk > δ.

Using (22) we deduce that there exists C1 > 0 such that, as k → ∞ and for all x such that
|x− xk| ≤ εk and i = 1, 2,

Ri
εk
(x, tk + εk) ≤ Ri

εk
(xk, tk) + C1εk ≤ −a+ C1εk.

It follows that

∫

Rd

niεk(x, tk + εk)dx ≥
∫

|x−xk|≤εk

e
−

Ri
εk

(x,tk+εk)

εk dx ≥ |Bεk(xk)|e
a
εk

−C1 .

The right hand side of this inequality blows up as k → ∞, while the left hand side is bounded in
view of (17) and (4), again a contradiction.

The last part of the proof is devoted to the
Proof of the uniform upper bounds on compact: Fix a compact subset K of R

d × (0,∞),
observe that

t0 = inf{s ∈ (0,∞) : there exists x ∈ R
d such that (x, s) ∈ K} > 0,

choose t1 ∈ (0, t0) and write t̄1 = t1/2 and t̄2 = t1/4.
It follows from (4), (17) and (20) that there exist ε1 > 0 and M > 0 both dependent on t1 such

that, if ε ≤ ε1, then ∫

|x|≤M

n1ε(x, t̄1) + n2ε(x, t̄1) dx ≥ I0
2
,

and, hence, in view of (8), there exists some a > 0 such that

min
|x|≤M
i=1,2

Ri
ε(x, t̄1) ≤ b = − ln(

aI0
Md

).
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Assume next that the above minimum is achieved at some point xε ∈ B̄M and for i = i∗. Applying
(22) L =

⌊
t1
2ε

⌋
times with i = i∗, j = 2, x0 = xε and δ = t̄1, we find some C = Cδ > 0 such that, for

all x ∈ BLε(xε),
R2

ε(x, t̄1 + Lε) ≤ b+CLε ≤ b+ Ct̄1. (28)

Choose γ ≥ b+ Ct̄1 and for some β > 0 to be fixed below define φ1 : Bt̄1(xε)× (0,∞) → R by

φ1(x, t) =
1

t̄21 − |x− xε|2
+ βt+ γ

We claim that, for ε ≤ ε2 = min(t̄2, ε1),

R2
ε ≤ φ1 in Qε = Bt̄1(xε)× [t̄1 + Lε,+∞), (29)

and, therefore,
R2

ε ≤ φ1 in Q1
ε = Bt̄1(xε)× [t1,+∞). (30)

To prove (29) we first notice that, in view of (28) and the choice of γ

R2
ε(·, t̄1 + Lε) ≤ b+ Ct̄1 ≤ γ ≤ φ1(·, t̄1 + Lε) in Bt1

(xε)

.
Moreover, if β is large enough, using (2), for all (x, t) ∈ Qε, we have

φ1t−∆xφ
1+|Dxφ|2 = β−ε

(
2d

(t̄21 − |x− xε|2)2
+

8|x− xε|2
(t̄21 − |x− xε|2)3

)
+

4|x− xε|2
(t̄21 − |x− xε|2)4

> D = max
y∈Rd

ν2(y).

The inequality above and (9) yield that, for all (x, t) ∈ Qε,

φ1t − ε∆xφ
1 + |Dxφ

1|2 + ν1(
·
ε
) exp(

R2
ε −R1

ε

ε
) > ν2.

Since R2
ε ≤ φ1 on the parabolic boundary of Qε, (29) follows from the maximum principle.

For ε ≤ ε2 let Q2 = (Rd \ Bt̄2(xε)) × (t1,+∞) and for positive constants α, η, ζ to be fixed below
consider the map φ2 : (Rd \Bt̄2(xε))× (t1,+∞) → R given by

φ2(x, t) =
α|x− xε|2
t− t1

+ ηt+ ζ.

We claim that
R2

ε ≤ φ2 in Q2. (31)

As above we will show that, if we choose α, η and ζ appropriately, φ2 is a supersolution in Q2 of the
equation satisfied by R2

ε and is above R2
ε on the parabolic boundary of Q2.

To this end notice that, in view of (30), we may select ζ and η large enough so that, for ε ≤ ε2,

R2
ε ≤ ηt+ ζ ≤ φ2 on ∂Bt̄2(xε)× (t1,∞).

Moreover, for sufficiently large α, η, we have

φ1t −∆xφ
1 + |Dxφ|2 = η − α|x− xε|2

(t− t1)2
− 2εαd

t− t1
+

4α2|x− xε|2
(t− t1)2

> D,

8



and, hence, in Q2,

φ2t − ε∆xφ
2 + |Dxφ

2|2 + ν1(
·
ε
) exp(

R2
ε −R1

ε

ε
) > ν2(

·
ε
).

Since clearly R2
ε(·, t1) ≤ φ2(·, t1) in (Rd \Bt̄2(xε)), using again the maximum principle we find (31).

To conclude observe that (30) and (31) yield that the family (R2
ε)ε>0 is uniformly bounded from

above in any compact subset of R
d × (t1,∞[ and thus, in particular, on K, for ε ≤ ε1. Finally,

using again (22), we deduce that the family (R1
ε)ε>0 is also uniformly bounded from above on K, for

ε ≤ min(ε1, t0 − t1).

4 Convergence to the Homogenized equation-The proof of Theo-

rem 1.2

Before we begin the proof, we remark that, in view of the claimed properties of H (convexity and
coercivity), the equation

Rt +H(Rx) = 0 in R
d × (0,∞), (32)

admits a comparison principle even for initial data taking the value ∞ (see [12]). However, this and
Theorem 1.2 do not lead to R ≤ R. Indeed we show in the next section that, in addition to (12) in
Theorem 1.2, the conservation of mass yields

R(0, 0) = R1(0, 0) = R2(0, 0) = 0.

To be able to use the comparison principle it is necessary to have R
1
(0, 0) = R

2
(0, 0) ≤ 0, which is not

possible. Indeed, since R
1
and R

2
are upper semicontinuous, (12) implies R

1
(0, 0) = R

2
(0, 0) = +∞.

We continue with the

Proof of Theorem 1.2. It is immediate from (22) that (i) holds. Moreover it follows from Theorem
3.2 (ii) that

0 ≤ R1 ≤ R
1

and 0 ≤ R2 ≤ R
2
on R

d × [0,∞), (33)

and thus, in particular, the second part of (12).

To prove (11) we employ the so called perturbed test function method. Since the arguments are
similar here we only show that R is a subsolution of (11).

To this end we assume that, for some smooth ϕ, R − ϕ achieves a strict local maximum at
(x0, t0) ∈ R

d × (0,∞). Following [27], we perturb ϕ using the solution (φ1, φ2) of the cell prob-
lem (16) corresponding to p = Dϕ(x0, t0). It follows that there exists (xε, tε) ∈ R

d× (0,∞) → (x0, t0),
as ε → 0, such that the maxi=1,2(R

i
ε − ϕ − εφi( ·

ε
)) is attained at (xε, tε) and, without any loss of

generality since the argument is identical, for i = 1. Hence,

R1
ε(xε, tε)− εφ1(

xε
ε
) ≥ R2

ε(xε, tε)− εφ2(
xε
ε
). (34)

That R1
ε is a solution of (9) yields

ϕt(xε, tε)− ε∆xϕ(xε, tε)−∆yφ
1(xε

ε
) + |Dxϕ(xε, tε) +Dyφ

1(xε

ε
)|2

−Dyψ(
xε

ε
) ·

(
Dxϕ(xε, tε) +Dxφ

1(xε

ε
)
)
+∆yψ(

xε

ε
) + ν2(xε

ε
) exp(R

1
ε−R2

ε

ε
) ≤ ν1(xε

ε
).
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Using the latter and (34) and writing pε = Dϕ(xε, tε) we get

ϕt(xε, tε)− ε∆xϕ(xε, tε)−∆yφ
1(xε

ε
) + |pε +Dyφ

1(xε

ε
)|2 −Dyψ(

xε

ε
) ·

(
pε +Dxφ

1(xε

ε
)
)

+∆yψ(
xε

ε
) + ν2(xε

ε
) exp(φ1(xε

ε
)− φ2(xε

ε
)) ≤ ν1(xε

ε
).

It follows from the above inequality and the definition of the effective Hamiltonian (16) that, for
some o(1) → 0 as ε→ 0,

ϕt(xε, tε)− ε∆xϕ(xε, tε) +H(Dxϕ(xε, tε)) ≤ o(1),

and the conclusion follows letting ε→ 0.

To prove the first part of (12), since the arguments are identical, here we only show that R1(·, 0) =
R

1
(·, 0) = ∞ in R

d \{0}. To this aim, we fix κ > 0, we select an auxiliary function ξ ∈ C∞(Rd) such
that 0 < ξ(x) < 1 for x ∈ R

d \ {0} and ξ(0) = 0, and prove that

max(R1
t +H(R1

x), R
i − κξ ) ≥ 0 in R

d × [0,∞). (35)

Since we already know that (35) holds in R
d × (0,∞), to conclude we assume that, for a smooth φ,

R1 − φ achieves a (strict) local maximum in (x0, 0) and we prove that either

R1(x0, 0) ≥ κξ(x0),

or

φt(x0, 0) +H(φx(x0, 0)) ≥ 0. (36)

If x0 = 0, the former is clearly true since R1(0, 0) ≥ 0 = κξ(0).

So we assume that R1 − φ has a local maximum in (x0, 0) with x0 6= 0 and, in addition, that
R1(x0, 0) < κξ(x0). Repeating the arguments used earlier in the proof we obtain, for some (xε, tε) →
(x0, 0) as ε→ 0, we have

ϕt(xε, tε)− ε∆xϕ(xε, tε) +H(Dxϕ(xε, tε)) ≥ o(1).

Indeed (5) and the facts that R1(x0, 0) < κξ(x0) < κ and limε→0R
1
ε(y, 0) = +∞ for all y near x0 yield

that tε > 0. The claim now follows by letting ε→ 0.

Assume next that, for some x0 6= 0, R1(x0, 0) = b < +∞. We fix δ > 0 and let

µδ(x, t) = −|x− x0|2
δ

− γt

for γ = γ(δ) > 0 to be determined later.

Since R1 is lower semicontinuous, R1 − µδ attains a minimum at some (xδ, tδ) ∈ R
d × [0,∞) such

that, as δ → 0, (xδ, tδ) → (x0, 0), provided that γ → ∞ as δ → 0.

Observe next that the choice of (xδ, tδ) yields

|xδ − x0|2
δ

≤ R1(xδ, tδ) +
|xδ − x0|2

δ
+ γtδ ≤ R1(x0, 0) = b, (37)

and, hence,

|xδ − x0| ≤
√
bδ.
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If tδ > 0, according to part (ii), we must have µδt (xδ, tδ) +H(Dµδ(xδ, tδ)) ≥ 0 and, hence,

− γ +H

(
−2(xδ − x0)

δ

)
≥ 0, (38)

which cannot be true if we choose γ > sup|x|≤
√
bδ
H(−2x

δ
).

Now we assume that tδ = 0. If R1(x0, 0) < κξ(x0), then (37) yields R1(xδ, 0) < κδξ(xδ) for some
κδ → κ as δ → 0. Using (35) with κδ at the point (xδ, 0) we obtain again (38) and thus a contradiction.
It follows that R1(x0, 0) > κξ(x0), which also leads to a contradiction, since it holds for arbitrarily

large κ and R1(x0, 0) = b < +∞.
The first part of (12) now follows.

5 The transport of the concentration points - The proof of Theo-

rem 1.1

We present here the
Proof. [Proof of Theorem 1.1] Using (11), (12), the standard optimal control formula [22, 18, 3] and
a barrier argument similar to the one of Section 5 in [17], we obtain that R satisfies

R(x, t) ≥ inf
(ζ(s),s)∈Rd×(0,∞)+

ζ(0)=0, ζ(t)=x

∫ t

0
H⋆(ζ̇(s))ds +max(R1(0, 0), R2(0, 0)), (39)

with H⋆(p) = supq∈Rd(p · q −H(q)).
Observe next that, since Lemma 2.2 yields

lim
|q|→+∞

p · q −H(q) ≥ lim
|q|→+∞

p · q − |q|2 + C = −∞,

the maximum of (p · q −H(q)) is attained at some qp ∈ R
d such that p = DH(qp).

Moreover, since H is strictly convex and H(0) = 0, we have

DH(qp) · qp −H(qp) ≥ 0 with equality only if qp = 0.

Hence we deduce that

H∗(p) > 0 for all p 6= DH(0) and H∗ (DH(0)
)
= 0.

Therefore, using (39) and (12), we obtain that

R ≥ 0 in R
d ×R

+ and if R(x, t) = 0, then x = tDH(0) and R1(0, 0) = R2(0, 0) = 0. (40)

It follows from the latter, (8) and (10) that, for i = 1, 2,

lim sup
(y,s)→(x,t)

ε→0

niε(y, s) = 0 in R
d × [0,+∞) \ {(tDH(0), t) | t ∈ [0,+∞)}.

Finally the last claim and (17) yield that the (n1ε + n2ε)’s converge weakly along subsequences to a
measure n with

supp n ⊂ {(t∇H(0), t) | t ∈ [0,∞)}.
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Since we also know that, according to (20), no mass escapes to infinity as ε → 0, we deduce (7)
using (17). Moreover, in view of (40), we obtain that

R1(0, 0) = R2(0, 0) = 0.

6 The case with several Dirac masses initially

We proved Theorem 1.1 under assumptions (5) which imply that the densities n1ε and n2ε are both
initially concentrated at the origin. The result can be generalized to densities concentrated at several
points and probably not on the same points. If this is the case, the initial condition is written as





limε→0 ε ln n
1
ε(cot, 0) = limε→0 ε lnn

2
ε(·, 0) = −∞ locally uniformly in R

d \ (A ∪ B),

and

lim sup
y→x
ε→0

ε ln niε(y, 0) ≤ 0 for all x ∈ A ∪ B.
(41)

We have:

Theorem 6.1 Assume (2), (3), (4), (6) and (41). Then, for i = 1, 2 and as ε → 0, along subse-
quences and in the sense of measures, n1ε ⇀ n1 and n2ε ⇀ n2with with

supp (n1 + n2)(·, t) ⊂ C(t) = {x1 + tDH(0), · · · , xn + tDH(0)} ∪ {y1 + tDH(0), · · · , ym + tDH(0)}.

Proof. The proof of Theorem 6.1 follows along the same lines as the one of Theorem 1.1. The only
difference is that (12) and (39) are replaced respectively by

R
1
= R

2
= R1 = R2 = +∞ in (Rd \ C(0)) × {0}, R1 ≥ 0 and R2 ≥ 0 in C(0) × {0},

and

R(x, t) ≥ inf
(ζ(s),s)∈Rd×(0,∞)

ζ(0)∈C(0), ζ(t)=x

{∫ t

0
H⋆(ζ̇(s))ds+max

(
R1(ζ(0), 0), R2(ζ(0), 0)

)}
. (42)

Therefore, we have

R ≥ 0 in R
d × (0,∞) and if R(x, t) = 0, then x ∈ C(t).

The other parts of the proof are similar.

7 A comparison with results for parabolic scaling

We describe here the connection between our result and the study in [15] of the asymptotics, as ε→ 0,
of the solutions to

nε,t = (aij(
x

ε
,
t

ε2
)nε,xj

)xi
+

1

ε
bi(
x

ε
,
t

ε2
)nε,xi

+
1

ε2
c(
x

ε
,
t

ε2
)nε in R

d × (0,∞). (43)
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Notice that this is a single equation — not a system—obtained after a parabolic scaling (x, t) 7→
(x
ε
, t
ε2
) rather than the hyperbolic scaling (x, t) 7→ (x

ε
, t
ε
) of the problem we consider in this paper.

Nevertheless, as we explain below, there are some similarities.

It is proved in [15] that the solution nε of (43) admits the expansion

nε(x, t) = w(
x

ε
,
t

ε2
) exp(−λ0t

ε2
)v0(x− b̄

ε
t, t) + o(1). (44)

The result we obtain here with the hyperbolic scaling formally gives

niε(x, t) = wi(
x

ε
,
t

ε
)ρi(t)δ(x −DH(0)t) + o(1). (45)

In particular we obtain a Dirac mass instead of the function v0 while the term exp(−λ0t
ε2

) disappears
because we have conservation of mass. Moreover t/ε is replaced by t, because of the difference in the
scaling. There is, however, as we explain below a close connection between the function w in (44) and
wi in (45).

Indeed w in [15] is the principal eigenvector of the periodic cell problem

ws − (aij(z, s)wzj )zi − bi(z, s)wzi − c(z, s)w = Λ0w,

while we have

wi = exp(−φi),

where (φ1, φ2) is the principle eigenvector for the cell problem (16) corresponding to p = 0 with the
corresponding eigenvalue H(0) = 0. This is because for (x̄, t̄) in the support of ni, we have R(x̄, t̄) = 0
and thus DR(x̄, t̄) = 0.

A The proof of Lemma 2.1

Step 1: We prove that, for all p ∈ R
d, there exists a unique H(p) with the properties stated in Lemma

2.1. Following [27], for i = 1, 2, we define

χi(y) = exp(−p · y − φi(y)).

Multiplying the two equations in (16) by χ1 and χ2 respectively, we obtain




−∆yχ

1 − divy(Dyψ χ
1) + ν1χ1 − ν2χ2 = −H(p)χ1,

−∆yχ
2 + ν2χ2 − ν1χ1 = −H(p)χ2.

(46)

with the boundary condition

y → ep.y χi(y) is one-periodic and χi > 0. (47)

We also impose the normalization

∫ 1

0
(χ1(y) + χ2(y))dy = 1. (48)
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It follows from the Krein-Rutman Theorem that, for all p ∈ R
d, there exists a unique constant H(p)

and functions (χ1, χ2) satisfying (46) together with (47) and (48).

Step 2: To prove that H ∈ C1(Rd) we rewrite (46) in terms of wi
p(y) = ep·yχi(y), which in view of

(47) are 1-periodic, and obtain the new system




−∆yw

1
p + 2p ·Dyw

1
p − divy(Dyψ w

1
p) +

(
−|p|2 + p ·Dyψ + ν1

)
w1
p − ν2w2

p = −H(p)w1
p,

−∆yw
2
p + 2p ·Dyw

2
p +

(
−|p|2 + ν2

)
w2
p − ν1w1

p = −H(p)w2
p.

(49)

Assuming for the moment that w1
p and w2

p are differentiable with respect to p, after differentiating
(49) we get





−∆y∂pw
1
p + 2p ·Dy∂pw

1
p − divy(Dyψ ∂pw

1
p) +

(
−|p|2 + p · ∇yψ + ν1

)
∂pw

1
p − ν2∂pw

2
p

+2Dyw
1
p + (−2p+Dyψ)w

1
p = −H(p)∂pw

1
p −H

′
(p)w1

p,

−∆y∂pw
2
p + 2p ·Dy∂pw

2
p +

(
−|p|2 + ν2

)
∂pw

2
p − ν1∂pw

1
p + 2Dyw

2
p − 2pw2

p = −H(p)∂pw
2
p

−H ′
(p)w2

p.

Let (w1
p,∗, w

2
p,∗) be the solution to the adjoint system of (49) –note that Fredholm’s alternative implies

the existence of such a solution. Multiplying the equations of (49) by w1
p,∗ and w2

p,∗, integrating with
respect to y and adding the two resulting equations we obtain

2

∫
w1
p,∗Dyw

1
pdy + 2

∫
w2
p,∗Dyw

2
pdy +

∫
Dyψw

1
pw

1
p,∗dy = (2p −DH(p))(

∫
w1
pw

1
p,∗dy +

∫
w2
pw

2
p,∗dy),

which yields a formula for DH(p).

To prove the above claim rigorously, we write the system satisfied by difference quotients with respect
to p and we use the same idea as above to prove that the difference quotients h−1(H(p+hek)−H(p))
converge to the above formula, as h → 0. Indeed from this formulation we first obtain that H(p) is
continuous with respect to p. Then we show that w1

p and w2
p are continuous with respect to p and,

finally, we pass to the limit h→ 0.

To prove that w1
p and w2

p are continuous with respect to p, we show that, for any sequence (pn)n∈N
such that pn → p, the corresponding eigenfunctions (w1

pn
, w2

pn
) converge to (w1

p, w
2
p) as n → ∞. This

follows, for example, from the stability of viscosity solutions, the continuity of H, the uniqueness (up
to a multiplicative constant) of the eigenfunctions (w1

p, w
2
p) and the normalization condition (48).

Step 3: The proof of H(0) = 0.

The adjoint system to (46) is




−∆yu

1 +Dyψ ·Dyu
1 + ν1u1 = ν1u2 −H(p)u1,

−∆yu
2 + ν2u2 = ν2u1 −H(p)u2,

(50)

with the condition

y → e−p·yui(y) 1 -periodic and ui > 0.
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When p = 0, (50) admits the trivial solution (u1, u2) = (1, 1) and the constant H(0) = 0. The claim
follows from the uniqueness of the positive eigenvector.

Step 4: The proof of the strict convexity of H(p).
Arguing by contradiction we assume that there exist p1, p2 such that

H(p1) +H(p2)

2
≤ H(

p1 + p2
2

).

Let (φ11, φ
2
1) and (φ12, φ

2
2) be solutions of (16) corresponding to p = p1 and p = p2 respectively.

Adding the corresponding equations we find

−∆y(
φ1
1+φ1

2
2 ) + |Dy(

φ1
1+φ1

2
2 ) + p1+p2

2 |2 −Dyψ ·
(
Dy(

φ1
1+φ1

2
2 ) + p1+p2

2

)
+∆yψ

+ν2 exp(
φ1
1+φ1

2−φ2
1−φ2

2
2 )

< −∆y(
φ1
1+φ1

2
2 ) + 1

2 |Dyφ
1
1 + p1|2 + 1

2 |Dyφ
1
2 + p2|2 −Dyψ ·

(
Dyφ

1
1+p1
2

)
−Dyψ ·

(
Dyφ

1
2+p2
2

)

+∆yψ + ν2

2 exp(φ11 − φ21) +
ν2

2 exp(φ12 − φ22)

= ν1 + H(p1)+H(p2)
2 ) ≤ ν1 +H(p1+p2

2 ),

and

−∆y(
φ2
1+φ2

2
2 ) + |Dy(

φ2
1+φ2

2
2 ) + p1+p2

2 |2 + ν1 exp(
φ2
1+φ2

2−φ1
1−φ1

2
2 ) < ν2 +H(p1+p2

2 ).

It follows that the pair (
φ1
1+φ1

2
2 ,

φ2
1+φ2

2
2 ) is a strict subsolution to the cell problem (16) corresponding

to p = p1+p2
2 . This, however, contradicts the fact that H(p1+p2

2 ) is the principal eigenvalue of the
system.

Step 5: The proof of H(p) ≥ |p|2 − C.
Rewriting (16) we find
{
−∆yφ

1 + |Dyφ
1|2 − (Dyψ − 2p) ·Dyφ

1 −Dyψ · p+∆yψ + ν2 exp(φ1 − φ2) = ν1 +H(p)− |p|2,
−∆yφ

2 + |Dyφ
2|2 + 2p ·Dyφ

2 + ν1 exp(φ2 − φ1) = ν2 +H(p)− |p|2.

Assume next that max[0,1](φ
1, φ2) is attained at the point ȳ. If φ1(ȳ) > φ2(ȳ), then

−∆φ1(ȳ) ≥ 0 and Dφ1(ȳ) = 0,

and, hence,
H(p) ≥ −‖∆ψ‖L∞ − |p| ‖Dyψ‖L∞ − ‖ν1‖L∞ + |p|2.

If φ1(ȳ) > φ2(ȳ), then, similarly, we find

H(p) ≥ −‖ν1‖L∞ + |p|2.

The claim now follows.
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