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Introduction

This paper is concerned with the study of the regularity of solutions of the following non-linear elliptic equation

|∇u| γ F (D 2 u) = f in B 1 (1) 
where B 1 is the unit ball of R d and γ > 0, F is uniformly elliptic, F (0) = 0 and f is bounded.

Singular/degenerate fully non-linear elliptic equations. Equation (1) makes part of a class of non-linear elliptic equations studied in a series of papers by Birindelli and Demengel, starting with [START_REF] Birindelli | Comparison principle and Liouville type results for singular fully nonlinear operators[END_REF]. The specificity of these equations is that they are not uniformly elliptic; they are either singular or degenerate (in a way to be made precise).

Birindelli and Demengel proved many important results in the singular case such as comparison principles and Liouville type results [START_REF] Birindelli | Comparison principle and Liouville type results for singular fully nonlinear operators[END_REF], regularity and 1 uniqueness of the first eigenfunction [START_REF]Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators[END_REF] etc. In the degenerate case, the set of results [START_REF] Birindelli | Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators[END_REF][START_REF]Eigenvalue and Dirichlet problem for fully-nonlinear operators in non-smooth domains[END_REF] is less complete and in particular, there was no C 1,α estimate in the non-radial case (see [START_REF]Uniqueness of the first eigenfunction for fully nonlinear equations: the radial case[END_REF] for the radial case).

Alexandrov-Bakelman-Pucci (ABP) estimate were obtained for such equations independently in [START_REF] Dávila | Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations[END_REF] and [START_REF] Imbert | Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations[END_REF]. It was used to derive Harnack inequality in the singular case in [START_REF]Harnack inequality for singular fully nonlinear operators and some existence results[END_REF] and in both cases in [START_REF] Imbert | Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations[END_REF]. From Harnack inequality, it is classical to derive Hölder estimate ( [START_REF]Harnack inequality for singular fully nonlinear operators and some existence results[END_REF] in the singular case, [START_REF] Imbert | Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations[END_REF] in both cases).

Main result. The main result of this paper is the following Theorem 1. Assume that γ ≥ 0, F is uniformly elliptic, F (0) = 0, and f is bounded in B 1 . There exists α > 0 and C > 0 only depending on γ, the ellipticity constants of F and dimension d, such that any viscosity solution u of (1) is C 1,α and

[u] 1+α,B 1/2 ≤ C ||u|| L ∞ + ||f || 1 1+γ L ∞ .
Comments. Getting C 1,α estimates consists in proving that the graph of the function u can be approximated by planes with an error bounded by Cr 1+α in balls of radius r. The proof is based on an iterative argument, in which we show that the graph of u gets flatter (meaning better approximated by planes) in smaller balls. The iterative step, after a rescaling, amounts to show that if p • x + u satisfies (1) in B 1 with osc u ≤ 1, then the oscillation of u, up to a linear function p ′ • x, is smaller in a smaller ball. This is proved by compactness. In order to make such an argument work, the modulus of continuity of u has to be controlled independently of the slopes p and p ′ which can vary from one scale to the other. There is a difficulty since u -p • x does not satisfy any PDE independently of p. The main originality of this paper is to combine the method introduced by Ishii and Lions [START_REF] Ishii | Viscosity solutions of fully nonlinear secondorder elliptic partial differential equations[END_REF] to get Lipschitz estimate in the case of large slopes and the Harnack inequality approach of Krylov-Safonov-Caffarelli [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF] adapted in [START_REF] Imbert | Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations[END_REF] to the present framework for small slopes.

An alternative approach to find a modulus of continuity for solutions of the rescaled equation (see [START_REF]Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators[END_REF] below) for large slopes could be to apply the Harnack inequality from [START_REF] Savin | Small perturbation solutions for elliptic equations[END_REF] to get a uniform Hölder modulus of continuity for |p| large enough instead of the Ishii-Lions method to get a uniform Lipschitz estimate. We chose the latter approach because of its simplicity.

The following example shows that solutions u of (1) cannot be more regular than

C 1,α , even if f is Hölder continuous. Example 1. The function u(x) = |x| 1+α satisfies |Du| γ ∆u = C|x| (1+α)(γ+1)-(γ+2)
where C = (1 + α) 1+γ (d + α -1). In particular, if we choose α = 1/(1 + γ) the right hand side is simply constant. This example shows that even for a constant right hand side and F (D 2 u) = ∆u, we cannot expect in general the solution to be more regular than C 1,α with α < 1.

As far as the authors know, the result of Theorem 1 is new even for the simple equation |∇u| γ ∆u = f (x). For this case we expect the optimal α to be in fact equal to 1/(1 + γ) although we did not work on that issue. For general fully nonlinear equations F (D 2 u) the value of α can get arbitrarily small even in the case γ = 0 (see [START_REF] Nadirashvili | Singular viscosity solutions to fully nonlinear elliptic equations[END_REF] for an example).

The paper is organized as follows. In section 2 we specify the notation to be used in the paper and we review a few well known definitions and results for fully nonlinear elliptic equations. In section 3 we restate Theorem 1 in a simplified form simply by rescaling. In section 3, we also show how the iteration of the improvement of flatness lemma implies the main theorem. The methods of section 3 are more or less standard for proving C 1,α regularity for elliptic equations. In section 4 we find a uniform modulus of continuity for the difference between the solution and a plane appropriately rescaled. Based on this continuity estimates we prove the improvement of oscillation lemma by a compactness argument. In the last section we show a technical lemma that says that viscosity solutions to |∇u| γ F (D 2 u) = 0 are also viscosity solutions to F (D 2 u) = 0. This lemma is used to characterize the limits in the compactness argument for the proof of the improvement of flatness lemma in section 4.

Preliminaries

Notation

For r > 0, B r (x) denotes the open ball of radius r centered at x. B r denotes B r (0). S d denotes the set of symmetric d × d real matrices. I denotes the identity matrix.

For α ∈ (0, 1] and

Q ⊂ R d , we consider [u] α,Q = sup x,y∈Q,x =y u(x) -u(y) |x -y| α , [u] 1+α,Q = sup ρ>0,x∈Q inf p∈R d sup z∈Bρ(x)∩Q |u(z) -p • z|.

Uniform ellipticity

We recall the definition of uniform ellipticity (see [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF] for more details). We say that a function F defined on the set of real symmetric matrices and taking real values is uniformly elliptic if there exist two positive constants λ and Λ such that for any two symmetric matrices X and Y , with Y ≥ 0 we have

λ tr Y ≤ F (X) -F (X + Y ) ≤ Λ tr Y.
The constants λ and Λ are called the ellipticity constants. Under this definition F (X) = -tr(X) is uniformly elliptic with ellipticity constants λ = Λ = 1, and

F (D 2 u) = -∆u = f (x) is a uniformly elliptic equation.
The maximum and minimum of all the uniformly elliptic functions F such that F (0) = 0, are called the Pucci operators. We write them P + and P -. Recall that P -has the closed form

P -(X) = -Λ tr X + -λ tr X -,
where tr X + is the sum of all positive eigenvalues of X and tr X -is the sum of all negative eigenvalues of X. With the definition of P + and P -at hand, it is equivalent that F is uniformly elliptic with the inequality

P -(Y ) ≤ F (X + Y ) -F (X) ≤ P + (Y ),
for any two symmetric matrices X and Y .

Two observations

The uniform ellipticity hypothesis on F implies that there exist α 0 ∈ (0, 1) and

C > 0 such that viscosity solutions of F (D 2 u) = 0 in B 1 are C 1,α0 in the interior of B 1 and [u] 1+α0,B 1/2 ≤ C||u|| L ∞ (B1) .
The constants α 0 and C depend on the ellipticity constants and dimension only.

Note that for any constant a > 0, the function a -1 F (aX) has the same ellipticity constants as F . This will be important when rescaling the equation.

Reduction of the problem

In this section, we first show that a simple rescaling reduces the proof of the problem to the case that ||u|| L ∞ ≤ 1/2 and ||f || L ∞ ≤ ε 0 for some small constant ε 0 which will be chosen later. We then further reduce the proof to an improvement of flatness lemma.

Rescaling

We work with the arbitrary normalization ||u|| L ∞ ≤ 1/2 because that implies that osc u ≤ 1 and that will be a good starting point for our iterative proof of C 1,α regularity. Proposition 1. In order to prove Theorem 1, it is enough to prove that

[u] 1+α,B 1/2 ≤ C assuming ||u|| L ∞ (B1) ≤ 1/2 and ||f || L ∞ (B1)
≤ ε 0 for some ε 0 > 0 which only depends on the ellipticity constants, dimension and γ.

Proof. Given any function u under the assumptions of Theorem 1, we can take

κ = 2||u|| L ∞ + (||f || L ∞ /ε 0 ) 1/(1+γ) -1
and consider the scaled function ũ(x) = κu(x) solving the equation

|∇ũ| γ κF (κ -1 D 2 ũ) = κ 1+γ f (x).
We previously made the observation that the function κF (κ -1 X) has the same ellipticity constants as F (X). But now

||ũ|| L ∞ ≤ 1/2 and || f || L ∞ ≤ ε 0 . There- fore, if [ũ] 1+α,B 1/2 ≤ C,
by scaling back to u, we get

[u] 1+α,B 1/2 ≤ Cκ -1 ≤ C(||u|| L ∞ (B1) + ||f || 1/(1+γ) L ∞
) which concludes the proof.

It is enough to prove that the solution u of ( 1) is C 1,α at 0 that is to say that there exists C > 0 and α (only depending on the ellipticity constants, dimension and γ) such that for all r ∈ (0, 1), there exists p ∈ R d such that osc

Br (u -p • x) ≤ Cr 1+α .
(

) 2 
If we start with a function u such that osc B1 u ≤ 1, we already have the inequality for r = 1 with C = 1. In order to get such a result for all r ∈ (0, 1), it is enough to find ρ, α ∈ (0, 1) such that for all k ∈ N there exists p k ∈ R d such that osc

B ρ k (u -p k • x) ≤ ρ k(1+α) .
The inequality (2) follows with C = ρ -(1+α) . This is the reason why we consider r k = ρ k and we aim at proving by induction on k ∈ N the following Lemma 1. There exists ρ, α ∈ (0, 1) and ε 0 ∈ [0, 1] only depending on γ, ellipticity constants and dimension such that, as soon as a viscosity solution u of (1) with ||f || L ∞ ≤ ε 0 satisfies osc B1 u ≤ 1, then for all k ∈ N, there exists

p k ∈ R d such that osc Br k (u -p k • x) ≤ r 1+α k . (3) 
The choice of ρ depends on the C 1,α0 estimates for F (D 2 u) = 0. Precisely, since we assume that any viscosity solution u of F (D 2 u) = 0 in B 1 is C 1,α0 , it is in particular C 1,α0 at 0, that is to say there exists C 0 > 0 such that for all r ∈ (0, 1), there exists p ∈ R d such that osc

Br (u -p • x) ≤ C 0 r 1+α0 .
We then pick ρ ∈ (0, 2 -γ-1 ) such that

C 0 ρ α0 ≤ 1 4 . (4) 
Given a solution u of F = 0 in B 1 , we also pick

p ρ = p ρ (u) such that osc Bρ (u -p ρ • x) ≤ 1 4 ρ. (5) 

Reduction to the improvement of flatness lemma

In order to prove Lemma 1, we prove an improvement of flatness lemma; it is the core of the paper. It basically says that if p • x + u solves (1) in B 1 and the oscillation of u in B 1 is less than 1, say, then the function u can be approximated by a linear function in a smaller ball with an error that is less than the radius of the ball. We make this statement rigourous and quantitative now.

Lemma 2 (Improvement of flatness lemma). There exists ε 0 ∈ [0, 1] and ρ ∈ (0, 1) only depending on γ, ellipticity constants and dimension such that, for any p ∈ R d and any viscosity solution u of

|p + ∇u| γ F (D 2 u) = f in B 1 (6) such that osc B1 u ≤ 1 and f L ∞ (B1) ≤ ε 0 , there exists p ′ ∈ R d such that osc Bρ (u -p ′ • x) ≤ 1 2 ρ.
It is important to remark that the choice of ρ and ε 0 works for all vectors p in the previous Lemma. No constant depends on p.

We now explain how to derive Lemma 1 from Lemma 2.

Proof of Lemma 1. For k = 0, we simply choose p 0 = 0 and ( 3) is guaranteed by the assumption osc u ≤ 1.

We choose α > 0 small such that ρ α > 1/2. We assume now that k ≥ 0 and that we constructed already p k ∈ R d such that (3) holds true. We then consider for x ∈ B 1 ,

u k (x) = r -1-α k [u(r k x) -p k • (r k x)].
The vector p k is such that osc B1 u k ≤ 1. Moreover, u k satisfies

|r -α k p k + Du k | γ r 1-α F (r α-1 D 2 u k ) = f k (x) with f k (x) = r 1-α(1+γ) k f (r k x). In particular, f k L ∞ (B1) ≤ ε 0 as long as α < 1/(1 + γ).
Notice that the function r 1-α F (r α-1 X) has the same ellipticity constants as F (X), therefore the C 1,α0 estimates are conserved by this scaling. Now we apply Lemma 2 and get q k+1 such that osc

Bρ (u k -q k+1 • x) ≤ 1 2 ρ
Because of our choice of α, we then obtain p k+1 such that osc

Br k+1 (u -p k+1 • x) ≤ r 1+α k 1 2 ρ ≤ r 1+α k+1 .
The proof is now complete.

Equi-continuity of rescaled solutions

The proof of Lemma 2 relies on the following lemma in which the modulus of continuity of solutions of ( 6) is controlled.

Lemma 3 (Modulus of continuity independent of p). For all r > 0, there exist β ∈ (0, 1) and C > 0 only depending on ellipticity constants, dimension, γ and r and such that for all viscosity solution u of (6) with osc B1 u ≤ 1 and

||f || L ∞ (B1) ≤ ε 0 < 1 satisfies [u] β,Br ≤ C. ( 7 
)
In particular, the modulus of continuity of u is controlled independently of p.

Proof of Lemma 3

This lemma is a consequence of the two following ones.

Lemma 4 (Lipschitz estimate for large p's). Assume u solves (6) with osc B1 u ≤ 1 and ||f || L ∞ (B1) ≤ ε 0 < 1. If |p| ≥ 1/a 0 , with a 0 = a 0 (λ, Λ, d, γ, r), then any viscosity solution u of ( 6) is Lipschitz continuous in B r and

[u] 1,Br ≤ C (8) 
where C = C(λ, Λ, γ, d, r).

Lemma 5 (Hölder estimate for small p's). Assume u solves [START_REF]Regularity and uniqueness of the first eigenfunction for singular fully nonlinear operators[END_REF] We now turn to the proof of these two lemmas.

with osc B1 u ≤ 1 and ||f || L ∞ (B1) ≤ ε 0 < 1. If |p| ≤ 1/a 0 ,
Proof of Lemma 4. We rewrite (6) as

|e + aDu| γ F (D 2 u) = f
where e = p/|p| and a = 1/|p| ∈ [0, a 0 ] and

f = |p| -γ f.
Remark that f L ∞ (B1) ≤ a γ 0 ε 0 . We use viscosity solution techniques first introduced in [START_REF] Ishii | Viscosity solutions of fully nonlinear secondorder elliptic partial differential equations[END_REF]. For all x 0 ∈ B r/2 , we look for L 1 > 0 and L 2 > 0 such that

M = sup x,y∈Br u(x) -u(y) -L 1 ω(|x -y|) -L 2 |x -x 0 | 2 -L 2 |y -x 0 | 2 ≤ 0 where ω(s) = s -ω 0 s 3 2 if s ≤ s 0 := (2/3ω 0 ) 2 and ω(s) = ω(s 0 ) if s ≥ s 0 .
We choose ω 0 such that s 0 ≥ 1. We notice that if we proved such an inequality, the Lipschitz constant is bounded from above by any L > L 1 .

We argue by contradiction by assuming that M > 0. If (x, y) ∈ Br × Br denotes a point where the maximum is reached (recall that u is continuous and its oscillation is bounded), we conclude that

L 1 ω(|x -y|) + L 2 |x -x 0 | 2 + L 2 |y -x 0 | 2 ≤ osc B1 u ≤ 1. We choose L 2 = (4/r) 2 , so that |x -x 0 | ≤ r 4 and |y -x 0 | ≤ r 4 .
With this choice, we force the points x and y where the supremum is achieved to be in B r . Remark also that the supremum cannot be reached at (x, y) with x = y, otherwise M ≤ 0. Hence, we can write two viscosity inequalities.

Before doing so, we compute the gradient of the test-function for u with respect to x and y at (x, y)

q x = q + 2L 2 x
and q y = q -2L 2 y

where q = L 1 ω ′ (|δ|) δ, δ = x -y and δ = δ/|δ|. To get appropriate viscosity inequalities, we shall use Jensen-Ishii's Lemma in order to construct a limiting sub-jet (q x , X) of u at x and a limiting super-jet (q y , Y ) of u at y such that the following 2n × 2n matrix inequality holds for all ι > 0 small enough (depending on the norm of Z):

X 0 0 -Y ≤ Z -Z -Z Z + (2L 2 + ι)I where Z = L 1 D 2 (ω(|•|))(x-y).
We refer the reader to [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF][START_REF] Barles | Lipschitz regularity of solutions for mixed integro-differential equations[END_REF] for details. Applying the previous matrix inequality as a quadratic form inequality to vectors of the form (v, v) we obtain

(X -Y )v, v ≤ (4L 2 + ι)|v| 2 . (9) 
Therefore X -Y ≤ (4L 2 + ι)I, or equivalently, all eigenvalues of X -Y are less than 4L 2 + ι. On the other hand, applying now the particular vector ( δ, -δ), we obtain

(X -Y ) δ, δ ≤ (4L 2 +ι-6ω 0 L 1 |x-y| -1/2 )| δ| 2 ≤ (4L 2 +ι-3 √ 2ω 0 L 1 )| δ| 2 . (10) 
Thus, at least one eigenvalue of X -Y is less than (4L 2 + ι -3ω 0 √ 2L 1 ) (which will be a negative number). We next consider the minimal Pucci operator P -. We recall that -P -(A) equals λ times the sum of all negative eigenvalues of A plus Λ times the sum of all positive eigenvalues. Therefore, from ( 9) and ( 10), we obtain

P -(X -Y ) ≥ -λ(4L 2 + ι -3 √ 2ω 0 L 1 ) -Λ(d -1)(4L 2 + ι) ≥ -(λ + (d -1)Λ)(4L 2 + ι) + 3 √ 2ω 0 λL 1 .
We now write the two viscosity inequalities and we combine them in order to get a contradiction.

|e + aq x | γ F (X) ≤ f (x) |e + aq y | γ F (Y ) ≥ f (y).
We will choose a 0 small enough depending on L 1 and L 2 so that |aq x | ≤ 1/2 and |aq y | ≤ 1/2. The constant L 1 will be chosen later and its value does not depend on this choice of a 0 . In particular, we have We now use that F is uniformly elliptic to write

F (X) ≥ F (Y ) + P -(X -Y ).
Combining the previous displayed inequalities and recalling ||f ||

L ∞ ≤ ε 0 yields 3 √ 2ω 0 λL 1 ≤ (λ + Λ(d -1))(4L 2 + ι) + 2 γ+1 ε 0 .
Choosing L 1 large enough depending on λ, Λ, d, γ, and the previous choice of L 1 (which depends on r only), we obtain a contradiction. Note that this choice of L 1 does not depend on the previous choice of a 0 , so we should first choose L 1 large and then a 0 small. The proof of the lemma is now complete.

Proof of Lemma 5. The equation can be written as G(Du, D 2 u) = f with G(q, X) = |p + q| γ F (X).

In particular, if |q| ≥ 2a -1 0 then |p + q| γ ≥ a -γ 0 . In particular,

G(q, X) = 0 |q| ≥ 2a -1 0 ⇒ P + (D 2 u) + a γ 0 |f | A γ ≥ 0 P -(D 2 u) -a γ 0 |f | A γ ≤ 0
where P ± denote extremal Pucci's operators associated with the ellipticity constants of F . We know from [START_REF] Imbert | Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equations[END_REF] that there exists β 1 ∈ (0, 1) and C 1 only depending on r, dimension and ellipticity constants of F such that

[u] β1,Br ≤ C 1 osc B1 u + max(2a -1 0 , f L n (B1) ) ≤ C 1 (1 + max(2a -1 0 , ε 0 )).
The proof of the lemma is now complete.

Proof of the improvement of flatness Lemma

With Lemma 3 in hand, we can now turn to the proof of Lemma 2.

Proof of Lemma 2. We argue by contradiction and we assume that there exist sequences

ε n → 0, p n ∈ R d , f n such that f n L ∞ (B1) ≤ ε n , and u n satisfying (6) with (p, f ) = (p n , f n ) such that for all p ′ ∈ R d , osc Bρ (u n -p ′ • x) > 1 2 ρ.
Remark that f n → 0 as n → ∞.

Thanks to Lemma 3, we can extract a subsequence of (u n ) n converging locally uniformly in B 1 to a continuous function u ∞ . Remark that we have in particular for all p

′ ∈ R d , osc Bρ (u ∞ -p ′ • x) > 1 2 ρ. (11) 
We are going to prove that u ∞ satisfies F (D 2 u ∞ ) = 0 in B 1 . This will imply that there exists a vector p ρ such that (5) holds true. This is the desired contradiction with [START_REF]Harnack inequality for singular fully nonlinear operators and some existence results[END_REF].

To prove that F (D 2 u ∞ ) = 0 in B 1 , we now distinguish two cases.

If we can extract a converging subsequence of p n , then we also do it for u n and we get at the limit

|p ∞ + ∇u ∞ | γ F (D 2 u ∞ ) = 0 in B 1 .
In particular, we have F (D 2 u ∞ ) = 0 in B 1 (see Lemma 6 in the next subsection).

If now we cannot extract a converging subsequence of p n , then |p n | → ∞ and in this case, we extract a converging subsequence from e n = p n /|p n | and dividing the equation by |p n | we get at the limit

|e ∞ + 0∇u ∞ | γ F (D 2 u ∞ ) = 0 in B 1
for e ∞ = 0 so that we also have in this case F (D 2 u ∞ ) = 0 in B 1 . The proof of the lemma is now complete.

5 Viscosity solutions of |∇u| γ F(D 2 u) = 0

In the previous subsection, we used the following lemma.

Lemma 6. Assume that u is a viscosity solution of

|p + ∇u| γ F (D 2 u) = 0 in B 1 .
Then u is a viscosity solution of F (D 2 u) = 0 in B 1 .

Proof. We reduce the problem to p = 0 as follows. The function

v = u + p • x satisfies |∇v| γ F (D 2 v) = 0 in B 1 .
If we proved the result for p = 0, we conclude that

F (D 2 u) = F (D 2 v) = 0 in B 1 .
We now assume that p = 0. We only prove the super-solution property since the sub-solution property is very similar.

Consider a test-function φ touching u strictly from below at x ∈ B 1 . We assume for simplicity that x = 0. Hence, we have, φ(0) = u(0) = 0 and φ < u in B r \ {0} for some r > 0. We can assume without loss of generality that φ is quadratic: φ(x) = 1 2 Ax • x + b • x. If b = 0, then we get the desired inequality: F (A) ≥ 0.

If b = 0, we argue by contradiction by assuming that F (A) < 0. Since F is uniformly elliptic, this implies that A has a least one positive eigenvalue. Let S be the direct sum of eigensubspace corresponding to non-negative eigenvalues. Let P S denote the orthogonal projection on S. We then consider the following test function ψ(x) = φ(x) + ε|P S x|.

Since φ < u in B r , then u -ψ reaches its minimum at x 0 in Br in the interior of the ball for ε small enough. We claim first that P S x 0 = 0. Indeed, if this is not true, we use the fact that Hence Ax 0 + εe 0 = 0 and we get the following contradiction

F (A) ≥ F (A + εB) ≥ 0.
The proof is now complete.

  then u is β-Hölder continuous in B r and [u] β,Br ≤ C where β = β(λ, Λ, d, r, a 0 ) and C = C(λ, Λ, d, r, a 0 ).

1 2 ≤

 12 min(|e + aq x |, |e + aq y |).

|P s x| = min |e|=1 e

 |e|=1 • P S x and we deduce that for all e ∈ R d such that |e| = 1, the test-function φ(x) + εe • P S x touches u at x 0 and we thus have for all such e's|Ax 0 + εP S e| γ F (A) ≥ 0.Hence, there exists such an e such that Dφ(x 0 ) + εP S e = 0 and we get the contradiction F (A) ≥ 0.Since P S x 0 = 0, ψ is smooth in a neighbourhood of x 0 and we get the following viscosity inequality|Ax 0 + εe 0 | γ F (A + εB) ≥ 0where e 0 = P S x 0 /|P S x 0 | and B ≥ 0 since x → |P S x| is convex. Remark next that (Ax 0 + εe 0 ) • P S x 0 = P S Ax 0 • x 0 + ε|P S x 0 | ≥ ε|P S x 0 | > 0.

Acknowledgements. The authors are grateful to I. Birindelli and F. Demengel for pointing out this open problem and for the fruitful discussions they had together.

Luis Silvestre was partially supported by the Sloan fellowship and NSF grants DMS-1065979 and DMS-1001629.