N

N

Ergodic infinite group extensions of geodesic flows on
translation surfaces
David Ralston, Serge Troubetzkoy

» To cite this version:

David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation
surfaces. Journal of modern dynamics, 2012, pp.477-497. 10.3934/jmd.2012.6.477 . hal-00660902

HAL Id: hal-00660902
https://hal.science/hal-00660902

Submitted on 18 Jan 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00660902
https://hal.archives-ouvertes.fr

ERGODIC INFINITE GROUP EXTENSIONS OF GEODESIC
FLOWS ON TRANSLATION SURFACES

DAVID RALSTON AND SERGE TROUBETZKOY

ABSTRACT. We show that generic infinite group extensions of geodesic flows on
square tiled translation surfaces are ergodic in almost every direction, subject
to certain natural constraints. Recently K. Fraczek and C. Ulcigrai have shown
that certain concrete staircases, covers of square-tiled surfaces, are not ergodic
in almost every direction. In contrast we show the almost sure ergodicity of
other concrete staircases. An appendix provides a combinatorial approach for
the study of square-tiled surfaces.

1. INTRODUCTION

In 1986 Kerchoff, Masur and Smillie showed that the the geodesic flow on a
compact translation surface is ergodic in almost every direction [17]. On the other
hand, the study of the dynamical properties on periodic infinite translation surfaces
is in its infancy. There is a natural necessary and sufficient condition for the recur-
rence of the geodesic flow in almost every direction for Z or R covers [11]. Generic
non-periodic translation surfaces are almost surely recurrent [29]. The almost sure
diffusion rate in the periodic full occupancy wind-tree model, a certain important
example of infinite translation surface, has also recently been understood [7]. We
turn to the question of ergodicity. In [12], a natural example the “simple staircase”
was shown to be ergodic in a.e. direction. In fact, the authors noticed that the
ergodicity reduces to a classically studied question of ergodicity of cylinder flows
(group valued skew products) over circle rotations initiated by Conze and studied
by many authors, see [4] for a good survey. The question of ergodicity for other
periodic translation surfaces reduces to the question of ergodicity of cylinder flows
over interval exchange transformations.

Recently, Fraczek and Ulcigrai have shown that certain periodic infinite transla-
tion surfaces are not ergodic in almost every direction [8]. More specifically, if the
compact square-tiled translation surface M is in the stratum #(2), and the infinite
translation surface M is a Z unramified cover of M, then the infinite surface is not
ergodic in a.e. direction. They showed a similar result for some Z? extensions such
as the periodic full occupancy wind-tree model.

In this article, we study the case when the surface M is a ramified cover of M.
This is generically the case. In the language of ergodic theory the flow on M is a G-
valued skew product over the geodesic flow on M for some Abelian locally compact
group G. Our result is a sufficient condition for both recurrence and almost sure
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2 DAVID RALSTON AND SERGE TROUBETZKOY

ergodicity to hold. This condition is based on ideas developed by M. Boshernitzan
[2] and K. Schmidt [26].

While our theorem is somewhat technical to state, it is applicable to many con-
crete examples. Suppose that M is a square tiled surface with a single-cylinder
direction (for example the torus), then any reasonable method of producing a Z?
(or more generally an Abelian locally compact group G) infinite surface M which is
a skew product over M is generically ergodic in almost every direction. We also pro-
duce concrete examples of staircases ergodic in almost every direction such as the
staircase in Figure 1. In the appendix, we give a procedure for determining which
square-tiled surfaces have a single-cylinder direction, as well as a quick method for
constructing such surfaces and determining their genus as well as the number and
type of singularities.

FIGURE 1. The periodic staircase with alternating steps of length
2 and 3 is ergodic in almost every direction. Opposite sides are
identified.

J. Chaika and P. Hubert have recently announced the following related result [3]:
for a given f :[0,1) — R with integral 0, which is the finite sum of characteristic
functions of intervals, for a set of full measure of interval exchange transformations
T the skew product T¢(z,¢) = (T'z, i+ f(x)) into the closed subgroup of R generated
by the values of f(z) is ergodic. Their methods of proof are close to ours.

2. TRANSLATION SURFACES

In this section we will give background material on translation surfaces as well
as some definitions for later use, see [15, 21, 31] for details. A translation surface
is a 2-dimensional manifold M and a finite set of points D = {d;,da,...,d,,} and
an open cover of M \ D by sets {U,} together with charts ¢, : U, — R? such that
for all «, B, with U, NUg # 0, ¢g © ¢Igl is a translation on its domain of definition
and at each singular point d; € D the surface has a 27n cone singularity for some
integer n > 1.

The surface M has a flat metric obtained by pulling back the Euclidean metric
on the plane via the coordinate charts. This metric is defined away from the set
D. In this metric geodesics that do not go through singularities project via the
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charts to straight lines in the plane in a fixed direction, and such geodesics are
either periodic or simple (do not intersect themselves). If the geodesic in direction
0 starting at © € M avoids D then we define the geodesic flow {(z) to the the
point obtained after moving in the direction € for a time ¢ starting at z. Since 0 is
usually fixed, we will often suppress the § dependence of the flow and simply write
ot(x). If the geodesic hits D, then the geodesic flow ¢:(z) is defined up to this
time. The geodesic flow preserves the surface area measure p.

Let I' C SL2(R) denote the Veech group of the surface, the group of affine
transformations (seen in SL2(IR) as acting on the charts of M) which preserve the
structure of M, and therefore permute the singularities D. If SLy(R)/T" is of finite
volume (i.e. T is a lattice), we say that M is a Veech surface.

Throughout the article we will assume that M is a compact translation surface;
by [17] the geodesic flow is (uniquely) ergodic in almost every 6. We will form
skew products over these flows in the following manner: let G be a locally compact
Abelian group with translation-invariant metric || - ||, whose identity element we
denote 0, with Haar measure v, and for a finite collection of geodesic path segments
{7} (disjoint without loss of generality) whose union we denote v, let f : v = G
be constant on each v; and 0 elsewhere. Given a point x € M and a direction 6
which is not parallel to any ~;, denote

Six) = Y fles(x)),
0<s<t
flws(x))#0

S g) ={r e M:Si(z) =g}, Blg)={yeG:ly—gl<e}.
Then the transformation @;, from M = M x G to itself, is given by

Gi(x,9) = (pi(z), g + Si(w)),

and it is this flow which we study; ¢: preserves the measure fi = p x v. An essential
value of a general skew product {M, f1, $;} is some g € G such that for every e > 0
and A C M with pu(A) > 0, there is some ¢ > 0 such that

(AN e (A) NS (Be(g))) > 0.

We denote by E(¢;) the union of all essential values. Then if E(@;) is nonempty,
it is a closed subgroup of G, and {M, @} is ergodic if and only if E(@;) = G and
{M, p:} is ergodic (see [1] for example). If 0 € E(p:), then the system is called
recurrent.

Definition 2.1. We will call a sequence of sets C), a quasi-rigidity sequence of sets
in the direction 6 if there is a sequence t, — oo, a sequence €, — 0 and a fixed
€ > 0 such that

b /’L(Cn) Z €,

o Vx € Chy, ”507571(:6) - :C” < €n, and

o u(CrAhp1Ch) < €.
That is, each set is of nontrivial measure, the map ¢, acts almost like the identity
on these sets, and they are nearly invariant under the flow ¢ (the use of ¢y is
arbitrary; any fixed positive time would do).
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Lemma 2.2. Suppose that {M, ¢:} is ergodic and that for some g € G we have a
quasi-rigidity sequence of sets Cy, such that

lim sup [|S, (x) —g|| = 0.
n—=0 peC,
Then g € E(¢¢).

Proof. This is merely a restatement for continuous flows of [5, Cor. 2.6]. In that
reference, it is assumed that G = RY, but the techniques apply to any locally
compact Abelian group with Haar measure and translation-invariant metric, as we
have assumed. A similar remark appears as [16, Thm. 11]; the notion of restricting
a search for essential values to certain subsets whose measure is bounded away from
zero is a common step in the study of periodic group extensions of finite-measure
systems. [l

hi ; tan |0 — 6;]

hi,ni
hii| 0

)

(67} [07%] QG on;

FIGURE 2. Decomposition of {M, ¢;} into periodic cylinders in
direction 6; of widths «; ; and heights h; ;; the top and bottom
of each rectangle are identified, and ¢; flows vertically at unit
speed. The error compared to the flow in direction € relative to
the width of the cylinders is bounded for periodic approximations,
bounded away from zero for fairly good periodic approximations,
and converging to zero for good periodic approximations.

Definition 2.3. If the geodesic flow ¢; in a particular direction 8 decomposes
the space M into a finite union of sets on which ¢, is periodic (see Figure 2), the
direction 6 is said to admit a representation by periodic cylinders. Given a sequence
{6;} of directions which admit a representation by periodic cylinders, denote the
cylinders by A; ;, the width of A; ; by «; ;, and the height of each cylinder (i.e. the
period of the geodesic flow in this cylinder) by h; ;.

The quantity
E; max{hi’jtan—w_ei' 1j = 1,2,...,ni}
Q5 5
will be called the error of the approzimation 0;. If §; — 0 and E; € O(1), we say that
{0;} is a sequence of periodic approxzimations to the flow in the direction §. Note
that if §; — 6 and 6 does not admit a representation by periodic cylinders (and only
countably many directions, those of saddle connections, i.e. orbit segments which
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begin and end at singular points, may have such a representation), then necessarily
we have

lim min h; ; = oo.
1—00 J

If furthermore E; — 0 we call the sequence {6;} a good sequence of periodic ap-
prozimations. If there is some ¢ > 0 such that for all i we have E; € (4,1/2) we
will call the sequence a fairly good sequence of periodic approrimations. See again
Figure 2. If inf {pu(A; ;) =h;j- i j:i=1,2,...,7=1,2,...,n;} > 0, we will say
that this sequence has cylinders of comparable measures.

Lemma 2.4. Suppose that 0 admits a sequence of good periodic approximations
{0;} with cylinders of comparable measures, and let {ir} be an increasing sequence
of positive integers. For some fized 6 > 0, consider a sequence of subcylinders Cy;
connected subsets of the cylinder A;, ; (for some j) which are invariant under the
flow in direction 0;,, and whose measure is at least pu(A;, ;). Assume further that
the boundary of each Cy, is separated from the boundary of A;, ; by a distance of at
least 6, ;. Then the {Cr} form a quasi-rigidity sequence of sets.

Proof. That p(Cy) is bounded away from zero follows from the condition that the
cylinders have comparable measures. As the sequence 6; was taken to be a sequence
of good periodic approximations, the relative error converges to zero. It now follows
from the fact that each C} is bounded away from the boundary of A;, ; that for
each © € C}, the orbit through time h;, ; of « remains in A;, ;, from which it
follows that
lione, (@) — 2]l < By, ; =25 0.
Finally, we have
1(p1CrACy) < 2 By iy 5

(the difference is exactly those = so close to the boundary of C}, that they flow out
of the subcylinder in unit time), which certainly converges to zero. (]

Definition 2.5. Suppose that the geodesic flow in direction § admits a representa-
tion by a single periodic cylinder. Then 6 will be called a single-cylinder direction.

Single-cylinder directions are of great convenience in studying translation sur-
faces. It was shown in [13] that if M is square-tiled with a prime number of tiles
and in H(2) (genus two with a single singularity), then M has a single-cylinder di-
rection. In [22, Cor. A.2] McMullen extended this result to all square-tiled surfaces
in H(2). Kontsevich and Zorich showed that there is a dense set of square tiled
surfaces in any stratum with single cylinder directions [18, Lemma 18]. Finally
Lanneau and Nguyen have identified certain substrata of H(4) and H(6) which
have single cylinder directions [19]. See Appendix A for a general technique for
constructing square-tiled surfaces with a single-cylinder direction.

The following is a standard argument in the study of translation surfaces, but
hardly elementary:

Lemma 2.6. Suppose that {M,p:} has at least one direction ' which admits a
representation by N periodic cylinders, and suppose that M is a Veech surface with
Veech group T'. Then for almost every direction 0, there is a sequence {6;} of di-
rections, chosen from the directions T'(0"), which are a good sequence of periodic
approzimations, with N cylinders of comparable measures, to the flow in the direc-
tion 0. Furthermore, for almost every direction 6 there is a sequence {6;} taken
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from the directions T'(0") of fairly good periodic approximations with N cylinders of
comparable measures.

Proof. Any element v € T' will transform the flow in direction ¢ to a flow in
another direction which must necessarily also admit a representation by periodic
cylinders. The number of cylinders and their measures are not changed by the
action of v € SL(2,R), so all that must be shown is that for almost every 6, a
sequence may be chosen out of this orbit which are a good or fairly good sequence
of periodic approximations to the flow in the direction of 6.

The assumption that M is a Veech surface ensures that I', the Veech group, is
Fuchsian of the first kind. The fact that almost-every direction has a sequence of
good approximations coming from the orbit under I' of the single-cylinder direction
follows directly from [23, §9] (see [28] for a more general case). We state the
application of this theorem to our setting in the language of this article: for every
e > 0, there exists a set of full measure ©(g) C S* such that for any § € O(e), there
exists a sequence of N cylinder directions with slopes py, /gy such that [0 —p,, /qn| <
£/q%. Similarly as in [14], the conclusions for good approximations follow from
Patterson’s theorem. The appropriate lower bound for fairly good approximations
follows from the ergodicity techniques used to prove similar statements in [16, §2.2]:
the orbit of a completely periodic direction under I' will intersect arbitrary sets of
positive measure infinitely often in SLo(R)/T'. This quotient is of finite volume
and has finitely many cusps by assumption, so a nontrivial annular neighborhood
around a generic slope will also contain infinitely many points from the orbit I'(8");
the use of a fixed annulus as opposed to a sequence of shrinking neighborhoods
distinguishes fairly good approximations from good approximations. (I

In particular, if M is a Veech surface, then if the flow in direction 6’ is not
periodic the surface admits a representation by periodic cylinders of comparable
measures with whatever strength in approximation we desire. The conclusion of
Lemma 2.6 can in fact be strengthened to state that the set of exceptional directions
(those which cannot be approximated to the desired accuracy from the orbit under
T of any given single-cylinder direction) is not just of measure zero, but indeed of
Hausdorff dimension less than one. See again [16] for similar statements; we state
only that almost-every direction can be so approximated in the interest of simplicity
and generic appeal.

3. GENERIC CONSTRUCTIONS

Definition 3.1. Let 6, the direction of the geodesic flow, be fixed such that {M, ¢; }
admits a sequence of periodic approximations {6;}. Let D denote an arbitrary finite
subset of M. Then a point € (D \ D) is said to avoid D U D in direction 6 if for
some fixed € > 0 there is a sequence {¢;} so that each of the following holds:

o for each i, x belongs to the interior of some A, ;,

e the ¢;-neighborhood around the h; jsec|; — 0| orbit of = in the direction
of 6 remains in A; ; (restricted to those j for which = € 4; ;) and does not
intersect D U (D \ z), and

L] infi_mo eihi,j > €.

A sequence of neighborhoods C; for which = satisfies this definition for the same
€ > 0 will be called a sequence of orbit-neighborhoods for x. See Figure 4 for an
illustration (the sets C; 1 and C; o will be defined later). If every point in D avoids
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DUD, and if DN D = (), then we will say that Disa self-avoiding set in direction
0.

Note that we merely need some sequence of periodic approximations for each
f; in situations where a canonical method for finding approximations exists, a
subsequence of this canonical set suffices.

Proposition 3.2. Suppose 6 has a good sequence of periodic approzimations and fix
P € N. Then almost every element D € MP (with respect to the product measure)
is a self-avoiding set in the direction 6.

Proof. Tt suffices to show that the proposition is true for P = 1; larger sets may
then be inductively constructed one point at a time by presuming x; through xzp_4
are in D for the purposes of finding zp. Let 6 be fixed such that {6;} is a good
sequence of periodic approximations. For a fixed € > 0, let B; = B;(¢) be the
complement of the ¢’-neighborhood of the boundaries of the cylinders, where
,eminj{ag;}
S —
so that u(B;) > (1 —e€). See Figure 3. Now note that if = belongs to infinitely many

B;(¢), it is self-avoiding singleton: for sufficiently large i we have the error E; < e.
As

I (lim sup Bi) > limsup p(B;),
i—00 i—00
for this choice of € the set of self-avoiding singletons in direction € is of measure at

least (1 — €), and € was arbitrary. O

Corollary 3.3. Suppose that almost every 6 admits a sequence of good approxima-
tions. Then almost every subset D € MY is self-avoiding in almost every direction.

Proof. We certainly have almost surely that DN D =0. For a full-measure set of
0, a full-measure set of D is self-avoiding in direction 6. Apply Fubini’s theorem to
reverse the order of quantifiers. (I

hi»ni

;1 Q; 2 Qi

FIGURE 3. The e-proportion removed in constructing B;(e).
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Let S = {s1,...,8n} be a finite subset of M (possibly including points in D),
Li >0and 7; € S! (i = 1,...,n) be for the moment arbitrary. Let 7. be a
geodesic of length L, > 0 in direction 7, originating at s,. Note that we write
“a” geodesic since if s, € D there may be several possible such geodesics and if
a geodesic originating at s, arrives at a point of D, there are multiple possible
continuations. Although generically this will not happen, a priori we allow all such
geodesic segments. Let a,1,...,a, n() be a finite set of points in v, (N(r) is
arbitrary but finite); assume that a, ¢y = ¢r,(s-) (the terminus of +,.) and set
aro = $p. Denote by A the (finite) collection of all a, ; together with any d € D
such that d € ~; for some i.

Corollary 3.4. For fixed n, for almost every construction of v, and A (with initial
points s; chosen according to a probability measure on M absolutely continuous
with respect to u, lengths l,. chosen according to some probability measure absolutely
continuous with respect to Lebesgue on RT and directions 7, by a measure absolutely
continuous with respect to Lebesque measure on S', and A then chosen according to
a measure on vy which is absolutely continuous with respect to Lebesgue measure),
the set A is a self-avoiding set.

Proof. We apply Proposition 3.2, noting simply that we certainly have almost-
surely that no ; crosses a singularity d € D. (I

Let G be an Abelian locally compact group with translation invariant metric
endowed with Haar measure v, and we will use the segments ~y; to define our skew
product {M, @} as in §2. Define a function f : M — G to be piecewise constant
on each 7; with discontinuities a subset of A; denote the value of f between a; ;1
and a; ; by f; ;. Finally, denote

fia (j = 0)
oij =1 fije1— fi; (G =1,2,...N@E) —1)
_fi,N(i) (j = N(l))
The function f is defined to be identity off the segments ;; the values o; ; are the
‘jumps’ seen in f while flowing along the path ;.

Definition 3.5. Let 6 be fixed. A point z € (D \ D) which avoids (D U D) with
orbit neighborhoods C}, of heights hi, — oo will be called essential in direction 6 if
there is some P such that along an infinite subsequence of orbit neighborhoods we
have
sup  sup |y, (y)| < P.
k=1,2,... yeC}

Showing that points are essential is in general a very demanding requirement.

Single-cylinder directions, however, provide a ready approach.

Proposition 3.6 (Koksma-type inequality). Suppose that M is a translation sur-
face and the function f is defined as above. Assume further that 0’ is a single
cylinder direction, with the cylinder height given by h (and width 1/h). Suppose
that the flow in the single cylinder direction §', sees an average value of the identity
in G. Then, for every x not on the boundary of the cylinder we have

N(i) n

ISa(@) < 4> > [l fusll;

j=1 i=1
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where the sum Sp(x) is with respect to the flow in the direction 6.

Proof. We denote by ¢; ; the projected length of the geodesic segment connecting
a; j—1 to a;; in the direction transverse to §'. That the average value of the sums
in the cylinder is identity is equivalent to

N(i) n

(1) Zz.fi,j%',j =0.

j=1i=1
This condition is sufficient for recurrence of the flow in the event that G = Z or R
(see [25]), and is clearly necessary in all cases where G contains elements of infinite
order.

Given a particular segment, the points a; j—1 and a; ; are in the cylinder (possibly
on the boundary), and the segment between them completely crosses the cylinder
some number of times. Denote this number by P; ;. There are also possibly two
partial crossings corresponding to the segment leaving a; ;1 and arriving into a; ;
(in P ; = 0 then there is only one such segment); denote by p; ; and pj ; respectively
the lengths of these two segments when measured in the transverse direction to the
flow. We have

P
0<q,;——21<

/ /! 1 2
0<p;;pi; <+ 5 o

h )
the latter of which we rewrite as
|Pij — qighl <2.
As the entire space is shown in this single periodic cylinder, the entire segment
is represented by these pieces, so (1) translates to

N(@i) n
P,
(2) SN i < R er/il,j) =0.

j=1 i=1

The periodic orbit of any point z in the direction 6’ (ignoring the orbits contain-
ing the points a; ;) crosses the segment from a; j_1 to a; ; a total of P; ; + ¢; j(x)
times, where

(biJ ('T) € {0’ L, 2} )
according to whether it crosses neither ‘partial segment,” one of them, or both.
Then we have

N(i) n
Su(@) =D 3 fii(Pij + ¢ij(x))

j=1 i=1

N(@i) n N(@i) n
ISu(@) < {[D° D fusPu| +2D D I fisl
j=1 i=1 j=1 i=1
SHUN D fagais| 4D Y lIfil
j=1 i=1 j=1 i=1

N(@i) n

=433 Il .

j=1i=1
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Theorem 3.7. Let a = a;,; be an essential point with respect to a good sequence
of periodic approximations. Then o = o0; ; is an essential value of the skew product
{M, ¢} for the flow in direction 0. In particular, the skew product is recurrent.

Proof. Using a good sequence of periodic approximations allows us to consider for
almost every x, for sufficiently large ¢ the flow in direction 6 and the flow in direction
0; are indistinguishable through length h; ;, at least insofar as the sums Sy, ; () are
concerned. The point a has a sequence of orbit-neighborhoods C}, which remain in
the same periodic cylinder A;, ;. The only discontinuity of f in C} is the point a by
definition. So we split the orbit-neighborhood into two sets of equal measure C}, 1
and Cj,2 so that the sum Sy, (x) is constant on each. Furthermore, the difference
between the two values taken is exactly o. See Figure 4. Without loss of generality,
then, assume that for z € Ci 1 and y € Cj, 2 we have

Shik,j (y) = Shik,j (I) +o.
As there is a uniform bound P across all values and G is locally compact, by passing
to a subsequence (which we continue to denote {i;}) we may find some limit

lim Sy, (ye€Cr1)=g, lm Sy, (ye€Cr1)=g+o.
k—o0 k k—o0 k

Both C},1 and Cyo are a quasi-rigidity sequence sets by Lemma 2.4, so by
Lemma 2.2, both g and g+ o are in E(@;). As the set of essential values is a group,

< Eiaiy g

FIGURE 4. The two halves of the orbit-neighborhood C; = C; 1 U
C 2 which do not intersect any discontinuities of f and whose sums
differ by exactly o in the proof of Theorem 3.7.

Corollary 3.8. If the closed subgroup of G generated by the jumps’ o;; at essential
points a;; is all of G, then the geodesic flow on M is ergodic in direction 0 provided
the underlying flow {M, p:} is ergodic in direction 6. If all discontinuities a, ; are
essential points, then every value f; ; is an essential value for {M, Pt}

That is, for a generic method of making ‘cuts’ «; on the surface M and using
them to form a G-fold cover, as long as the values f; ; include generators for the
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group G, the extension is ergodic in almost every direction provided we may show
the discontinuities are essential points in almost-every direction.

Example 3.9. Let M be the two-torus T = [0,1)? with standard identifications
(which is flat without any singularities). Almost every direction 6 has a good se-
quence of single-cylinder periodic directions given by a subsequence of the continued
fraction convergents to 0, and the flow {M, ¢;} is ergodic in any irrational direc-
tion. Let {g;} generate the group G, and for each i construct a pair of parallel
geodesics of equal length, at random starting points, in random directions, and of
random lengths (with the relevant distributions are all absolutely continuous with
respect to Lebesgue). Define f to be £g; on these pairs. Then in any direction not
parallel to such a segment, the projection of f to the base segment [0,1) x {0} will
be of bounded variation (Var(f) = 4> |g:|) and have integral zero, so by a com-
bination of Propositions 3.2 and 3.6, Theorem 3.7, and Corollary 3.8, for generic
such constructions the skew product {M , Pt} is ergodic in almost every direction.

Instead of generating ‘parallel pairs’ of cuts, we could generate single cuts which
are subdivided appropriately. For example, suppose that that a;g; + big, = 0,
where a; and b; are in R, and the smallest closed subgroup in G containing all of
the {g:, g} } is G itself. Generate 7 cuts of random length in random directions, and
subdivide each cut into two portions whose ratio is a;/b;; let f take value g; on the
segment of proportional length b; and value g; on the other.

Note that any ‘reasonable’ method for generating cuts on M which ensures that
the transfer function f has zero integral in almost-every direction will also gener-
ically ensure that the skew product {M , @t} is ergodic in almost every direction,
provided that bounds on sums in cylinders may be established; by Proposition 3.6
Veech surfaces which admit a single-cylinder direction will automatically obey such
a bound.

Example 3.10. Let M be square-tiled: a finite cover of the torus such that M
may be considered to be tiled by squares which share corners. Then M is a Veech
surface; this fact was first shown by Veech using Boshernitzan’s criterion in [30],
but modern proofs center around the use of arithmetic subgroups of SLa(R) (see
e.g. [13, App. C], [9, Thm. 5.5]). Assume further that M has a single-cylinder
direction, so that almost every direction # admits a good sequence of periodic single-
cylinder directions. By the same argument as in the previous example, then, for a
generic method of constructing f the corresponding flow is ergodic in almost every
direction.

See Appendix A for material relating to determining which square-tiled surfaces
have a single-cylinder direction as well as for a simple method of generating such
surfaces. While convenient, the assumption that M admits a single-cylinder direc-
tion is not necessary to apply the ideas and results of this section; an example of a
class of surfaces with no single-cylinder directions for which certain constructions
generically produce ergodic covers is addressed in Example 4.6 and the remark
following that example.

We remark that the idea of comparing ergodic sums on two different sides of
a discontinuity goes back at least as far as [26] and can be found more recently
in [6], and the notion of finding generic points bounded a positive proportional
distance from the orbits of singularities can be found in [2]. A similar approach to
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studying ergodicity of real-valued skew products over rank-one interval exchange
transformations can be found in [3].

4. GENERALIZED STAIRCASES

In this section we shall apply the same principles as in our generic construc-
tions to certain specific skew products of square-tiled surfaces called generalized
staircases.

Definition 4.1. Let M be a translation surface, and let M be a Z¢ cover of M
formed by taking for each ¢ = 1,2,...,d a pair of parallel cuts of equal length, with
f = te; on each cut, where e; is the i-th standard basis element for 72, If all of
the cuts intersect at most at their endpoints, then M will be called a generalized
staircase over M ; there is a natural visualization of the flow on the surface with some
number of cuts which transfer the flow along a Z?-periodic cover. If furthermore M
is square-tiled and each cut is of length one (the length of the sides of the squares)
and all endpoints are integer points, M will be called a natural staircase over M.

Note that if each cut is nontrivial in homology, then the Z?-cover of M is un-
ramified, and if M € H(2), by [8, Thm. 1.4] the system {M, @} is not ergodic
in almost every direction. However, if some of the cuts have endpoints which are
not in D (the singularities of the flat matric on M), then we have constructed a
ramified cover over a set of marked points D. It is direct to see that if M consists
of a single square then only trivial natural staircases are possible. If we represent
the torus with two squares, however, then a natural staircase which is a ramified
cover becomes possible. This cover of the torus was presented in [12], where is was
shown to be equivalent to a previously studied cylinder transformation, known to
be ergodic in all irrational directions.

Generalized staircases can be parameterized by the base points and lengths of
their respective cuts. The results of the previous section may be readily adapted
under the addition restriction that the cuts are parallel to sides to ensure that
generic generalized staircases are ergodic in almost every direction. However specific
directions can have quite different behavior.

Example 4.2. Let M = T be the two-torus. Suppose that 6 is a direction which
admits a good sequence of periodic approximations. Then there exist uncountably
many choices of 3,7 such that with cuts as in Figure 5, the skew product model
of the corresponding generalized staircase {'ﬁ‘, &t} is nonregular (the only essential
values are {0,00}). This staircase is the same as the skew product considered by
Conze in [4, Thm. 4.2] where exactly this conclusion is shown. Therefore the
geodesic flow is recurrent (0 is an essential value), but not ergodic (not all of Z are
essential values).

The situation of natural staircases is in some sense more interesting: the severe
restrictions imposed by the integer endpoints of the cuts present an immediate
obstacle to directly applying the techniques of the previous section without modifi-
cation. If the staircase is given by an unramified cover, then all endpoints of the cuts
are singularities, and there is no adapting our techniques (indeed, for M € H(2)
the flow will not be ergodic in almost every direction by [8]). So assume that at
least one of the cuts has an endpoint (with integer coordinates, as we consider a
natural staircase) which is not a singularity. In a square-tiled surface, the directions
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FIGURE 5. A generalized staircase over the 2-torus which is non-
regular for uncountably many parameters 3, r.

which admit representation by periodic cylinders correspond to rational-slope flows
on the plane. The endpoints of our cuts are all integer points in the plane, as are
all of the singularities D; the endpoints of our cuts will always belong to the edge
of the periodic cylinders and therefore orbit into singularities in the directions of
the periodic approximations, a rather insurmountable impediment to directly apply
Definition 3.1.

Thus far, however, the only identifications of the edges of the cylinders we have
used is the identification of the top to the bottom, but there are also certain iden-
tifications on the sides of the cylinders. It is illustrative to make explicit which
directions for square-tiled surfaces form different types of periodic approximation.
Let M be square-tiled on k squares. The flow in direction # induces a rotation by
¢’ =1/60 mod 1 on S! when the bases of all squares are projected to a single circle.
Let the continued fraction expansion of ¢ be given by

9/ = [al,ag,ag, .. ]

Then the periodic approximations corresponding to the sequence of the convergents
Pn/Gn to 0. The relative error E,, of the approximation is no more than kqy||gn8’||
(the standard error of ||g,0’'|| multiplied by the number of squares, as a single
cylinder must wind through all of them, and divided by the width 1/¢,), and it is

standard that .
— <k ol < .
T T

Therefore a good sequence of periodic approximations corresponds to a subsequence
of partial quotients diverging, while a fairly good sequence of periodic approxima-
tions corresponds to a subsequence of partial quotients at least as large as 2k + 1,
but bounded above. Both situations are clearly satisfied for generic €. It is not
immediately clear that if M admits a single-cylinder direction that both conditions
are generically satisfied along the subsequence of p,, /¢, which correspond to these
single-cylinder directions, but this fact holds by the Patterson/Sullivan theorem
used in Lemma 2.6.

Theorem 4.3. Suppose that M is square-tiled and f defines a natural staircase.
Assume that d is not a singularity of the flat metric, but is an endpoint of a cut
along which f takes the value e; (and not the end point of any other cut). Assume
further that along a subsequence of fairly good periodic approximations there exist
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cylinders A; ; with d on both sides of A; ;, and for each of these approzimations 0;
there is some P (independent of i) such that for each x € A; ;

1S ; (@) < P,

where the sum is with respect to the flow in the periodic direction 0;. Then e; is
a finite essential value of {M, Pt} in direction 0. If d is the endpoint of several
cuts, then the essential value is given by the sum of the values of f on the cuts
terminating at d. In both cases the staircase is recurrent.

>0/q;

Ph

FIGURE 6. A modified orbit-neighborhood used in staircases: C; ;
and C; o are the two colored parallelograms. The region outside the
cylinder appears somewhere inside via the appropriate identifica-
tion and there are no singularities within C; ; or C; 2. No cuts have
endpoints within these neighborhoods other than the specified cuts
with values 4e; with common endpoint d. The time A’ flow (to
traverse the entire vertical distance) acts as horizontal translation
by En/Gn € [0/Gn,1/2¢y] on this set. The constant ¢ is from the
definition of fairly good approximation.

Proof. The singularities and ramification points are arranged along the edges of
the periodic cylinders A; ;. The flow in the direction 6; induces the rotation by
pi/q; on the projection of all horizontal bases of the k squares to a single circle.
Note that the vertical distance between successive singularities and ramification
points on the boundary of the cylinder (i.e. the geodesic distance in direction 6;
between them) must be at least ¢;, and the height of any cylinder is no more
than kq;, where k is the number of squares in M. Consider the flow of a vertical
interval of length g; both above and below d on both sides of A; ;, and arrange the
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cylinder so that this interval is at the bottom of one side. We flow this interval
forward until intersecting the height of d within the cylinder, and backwards to
the height of the base of the cylinder; this notion is well-defined despite the flow
exiting the cylinder in one of these directions as there are no singularities near d
(see Figure 6). No other discontinuities of f are in these vertical segments, then,
and furthermore the cuts with endpoint d cuts across the cylinder A; ; from exactly
one of the two copies of d on the boundary of A, ; (because d is an endpoint of
the cut). See Figure 6; the two halves of this orbit neighborhood are C; 1 and C; o;
because there are no singularities within height ¢; of d along the boundary of the
cylinder there is no problem extending these neighborhoods outside the boundary.
The distances are maintained as drawn, and any cut besides those with endpoint
d which might intersect these neighborhoods must pass completely through them;
the only endpoint of any cut seen in C; ; and C; 2 is d. The difference in the ergodic
sums is therefore exactly a sum of +e;, the values of f on the cuts terminating at
d. As the error E; is not larger than half the width of A; ; (as we have a fairly
good sequence of periodic directions), these neighborhoods may flow for time to
traverse the entire height of the cylinder without intersecting the sides (except for
the small bit at the bottom where there are no singularities, as mentioned prior).
The measure of each orbit neighborhood can be measured by the product of the
vertical length of the segment between d and the nearest singularity (which is at
least g; as we are square-tiled) and the horizontal drift; the error term E;, which is a
positive portion of 1/¢; as we have assumed only a fairly good sequence of periodic
approximations; the measure of each C;,, is at least J, where 6 > 0 is the fixed
constant from the definition of a fairly good sequence of periodic approximations.

Therefore the sets C; 1 and C; 2 again form a quasi-rigidity sequence of sets (their
near-invariance under ¢; is clear from construction). As in Theorem 3.7, the the
sum of the values of f on the cuts terminating at d is the difference in sums between
infinitely many of the two C; ;1 and C} 2, and is therefore an essential value. O

Corollary 4.4. Suppose that for each i, at least one endpoint one of the cuts where
f takes value e; is not a singularity and is not the endpoint of any other cut, and
assume that M admits a single-cylinder direction. Then the natural staircase given
by f is ergodic in almost every direction.

Proof. As M admits a single-cylinder periodic direction, almost every 6 has a fairly
good sequence of single-cylinder periodic directions by Lemma 2.6. As there is only
one cylinder to consider, the relevant bound on sums used in Theorem 4.3 is satisfied
by Proposition 3.6. As we assume that each cut has a non-singularity endpoint not
shared by any other cut, the group of essential values therefore contains each e;. [

Example 4.5. Consider the surface on at least five squares given by Figure 7; one
row of two squares and one row of at least three. The first presentation with cuts
as marked on the left and its associated staircase is not ergodic in almost every
direction by [8, Thm. 1.4]; The surface is in H(2) and both cuts are nontrivial in
H,(M,Z). The presentation on the right, however, has both cuts with an endpoint
which is not a singularity; by Theorem 4.3, then, the flow on the corresponding
staircase is ergodic in almost every direction. Note that the two compact surfaces
are the same, and the only difference is in the choice of cuts!

The condition that there is some direction 8’ such that {M, ¢} decomposes into
a single periodic cylinder is convenient but not necessary:
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f=+1

L o

f=-1

a
b

FIGURE 7. Both surfaces are equivalent (given the same number
of omitted squares), but the two different realizations as a natu-
ral staircase are quite different. Identification is by opposite-side
except where marked with a, b.

Example 4.6. Let M be the square-tiled surface in Figure 8, and assume that
the number of tiles in each row is odd and at least five. Then if we construct a Z-
staircase using the cuts marked, this staircase is ergodic in almost every direction.
This surface, however, admits no single-cylinder directions.

Proof. That each row has more than three squares ensures that the two cuts with
value +1 do not join together to form a loop; each cut of value +1 therefore has
both endpoints not singularities. The assumption that the number of squares in
each row is odd guarantees the existence of an integer involution point; a vertex
around which we may rotate the entire figure by 7. Suppose that some flow in
slope ¢/p > 1 is a single-cylinder direction. This flow induces a rotation by p/q on
the bases of the squares; a periodic cylinder will be of width 1/¢q and may be taken
to begin with an interval of length 1/¢ extending horizontally from this involution
point. That this surface has no single-cylinder directions follows from Corollary
A.5, where this particular example is referenced.

The surface clearly has a decomposition into two cylinders of equal measure and
length: the horizontal flow achieves such a decomposition, and the two cylinders
are exchanged by the involution. By setting the involution point to be the origin,
the involution itself may be represented as —Id. Of course —Id is in the center of I,
the Veech group. It follows that any image of these two cylinders under any element
of T" also consists of two components which are exchanged by the involution.

Note that f, the function used to define the staircase, is invariant under this
involution. Combining this fact with the fact that the involution exchanges the
two cylinders, we see that the ergodic sum in each periodic cylinder is equal to the
other. As their sum must be the average of the function, each periodic cylinder
sees a total sum of zero. We may then consider the endpoint of the cut with value
+1 and directly apply the same construction in Figure 6 to find an essential value

of £1 for this staircase.
O

Note that any probabilistic technique of generating covers (not restricted to
natural staircases, so the cuts are simple geodesic segments as in §3) on these
surfaces which respects the following

e The flow in the horizontal direction of every point sees a sum of zero across
all cuts traversed through one period,

e the cuts are generated pairwise, invariant under the involution,

e the values taken on the cuts generate the group G
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—1|2n+2 +1{4dn+1|{4n+2

1 2 +1 2n+1|—-1

FIGURE 8. The surface M for example 4.6; the labels one through
4n + 2 on the squares are used in Appendix A. Opposite sides
are identified; the surface is in H(1,1) and has no single-cylinder
directions. We form a staircase using the indicated values on the
specified unit intervals.

will generically produce covers which are ergodic in almost-every direction, exactly
via the techniques of §3.

APPENDIX A. PERMUTATIONS AND PARALLELOGRAM-TILED SURFACES

While the aforementioned results of Hubert-Lelievre, McMullen, Kontsevich-
Zorich and Lanneau-Nguyen guarantee for certain square-tiled M the existence of
directions 6; which decompose M into a single periodic cylinder (providing the
bound on ergodic sums necessary in the definition of essential points, Definition
3.5), it is of interest to quickly determine which square-tiled surfaces admit such a
direction in general.

Any square-tiled translation surface, with k£ total squares, may be identified
with a pair of permutations in X, (the permutation group of k elements) (o, 0y).
From a combinatorial perspective it is unimportant that the tiles are squares; any
parallelogram tiling would suffice (and still allows a notion of ‘top/bottom’ and
‘left /right’). The permutation oy, is given by the identification of the right side
of the tile indexed by i with the left side of the tile indexed by (), while the
top of tile 4 is identified with the bottom of the tile of index o, (i): see Figure 9.
The observation that square-tiled surfaces may be indexed by pairs of permutations
appears in [27].

oy (1)

) o (i)

FIGURE 9. The permutations o, and o, used to identify the
square-tiled M. oj, tracks identification of the horizontal flow, and
o, tracks the vertical flow.
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It is clear that any choice of (o4,0,) along with a choice of parallelogram tile
defines a square-tiled translation surface M, and that any choice of charts for a
surface M which gives a tiling by parallelograms can be identified with such a pair
of permutations. In the search for single-cylinder directions the distinction between
squares and parallelograms is unimportant (the two being distinguished only by an
affine transformation), so we will use squares without loss of generality.

Theorem A.1. The parallelogram-tiled translation surface identified by (on,0,) is
connected if and only if (on,0,), the subgroup of ¥y generated by o and oy, acts
transitively on Zy,. The cycle decomposition of the commutator

1

G = oy, 0n] =0, oogloouoah

encodes the stratum of M : the number of distinct vertices is given by the number
of cycles in &, and each corresponding vertex has cone angle 2w times the length of
the cycle.

Proof. Suppose that there is a proper subset S C Zj, which is invariant under each
of o1,, 0,. Then the collection of squares indexed by S contains no identification to
squares indexed by Zj \ S, thereby forming at least two connected components. On
the other hand, if there are no proper invariant subsets, then given any two indices
¢ and j, there is a sequence of o4, which connect the square indexed by ¢ to that
indexed by j through some sequence of side identifications (where t,, € {h,v}).
Consider the upper-right corner of the tile indexed by i. The commutator &
exactly encodes the trajectory of a counter-clockwise circle around this corner, and
the conclusion is direct from this observation. Let V' be the number of cycles in
[0y, 0n]. Then M is given as a surface with k faces (the tiles), 2k edges (each edge
is used in exactly two tiles) and V vertices. By computing the Euler characteristic,
the genus g is given by
_k=V 1
g - 2 + 3
assuming that M is connected (otherwise we could consider each connected com-
ponent separately). O

Corollary A.2. Let ¢ be an arbitrary element of the commutator subgroup of X.
Then the number of cycles in & is either odd or even according to whether k is odd
or even.

Proof. Tt is not difficult to show (for example, by induction on n) that the com-
mutator subgroup of ¥ is Ay, the alternating subgroup, and that Ay is in fact
exactly the set of commutators. The claim may be then shown directly for any
element of A,. However, it may also be derived here from the Euler characteristic
and Theorem A.1: the genus must be an integer. In the event that & is the commu-
tator of two permutations with a shared proper invariant subset, the corresponding
translation surface is not connected, but we may apply the same reasoning to each
connected component. (I

Now suppose that we flow along M in a rational direction (recall that without loss
of generality we are using unit squares as tiles). Assume that the slope is ¢/p > 1,
so that in the time necessary for the flow to traverse a unit of vertical distance,
it traverses a horizontal distance of p/q. Then we define a new tiling of M by kq
parallelograms: the new tile of index (i —1)g+j (fori=1,...,kand j=1,...,q)
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is defined to be the parallelogram given by flowing the interval [( — 1)/q,j/q) in
the base of the square of index i for a vertical distance of one. See Figure 10. If
the flow were of slope less than one, we could perform an analogous retiling using
intervals of the vertical edges of the original tiles, flowed to a horizontal distance of
one.

The new tiling can also be described with a pair of permutations o}, o,. We
are free to choose which direction of these new parallelograms should correspond to
‘vertical’; whether the direction ¢/p was larger or less than one, there is a natural
choice. As our figure uses a flow of slope larger than one, we let the flow correspond

to the ‘vertical’ direction in the new tiles.

FIGURE 10. Retiling the surface M based on the flow in direction
q/p > 1. If the large square is the original tile of index i, then the
highlighted parallelogram is the new tile of index (i — 1)q + j.

Lemma A.3. The new permutations are defined by

o (i—1)g+7i+1 (j<9q)
n(ig +J) {(gh(i)—l)q+1 (4 =q),

(ou(i) =1)g+3j+p (j<q-0p)
((ovoon)(i)—=)g+j+p—q (G =q—p).

Proof. The horizontal identification is direct (refer again to Figure 10). For the
vertical identifications, note that flowing to traverse one unit of vertical distance,
we either flow only through the top of a square, or first across the right edge and
then through the top, exactly according to whether the base of the interval is less
than (1 — p/q) or not. O

o (iqg+ j) = {

These permutations are of limited practical use: the number of tiles increases
with the complexity of the slope. We may, however, reduce the problem to a
permutation on k elements if we relax the requirements on the parallelograms. In
a tiling, it is necessary for all singularities of the metric to belong to the set of
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corners of the tiles. Without this requirement, however, we may cover M with k
parallelograms with sides horizontal and of slope ¢/p: the parallelogram of index
i is given by flowing the interval [0,1/¢) on the bottom of the square of index i
through a vertical distance of gq.

It is direct to see that the k parallelograms defined in this way are disjoint: the
induced rotation on the bases is of p/q for each unit of vertical distance traversed,
so a vertical distance of ¢ is traversed before the left endpoint of this interval
intersects an integer point. These tiles must therefore cover M, as we construct k
such tiles and each has equal measure to the original squares. It is not a proper
tiling, however, as the singularities will presumably belong to the sides of these
parallelograms. Now compare with the proper retiling by kq parallelograms, each
of the k parallelograms in the improper tiling is tiled by ¢ proper parallelograms,
so the proper tiling is a subtiling of the improper tiling. The permutation 6 € 3,

6(i) = (o)*((i = g+ 1)

is the permutation induced by this subtiling in the flow direction.
Then the following is clear by our construction:

Theorem A.4. The flow in slope q/p is a single-cylinder direction if and only if
6 1s a single cycle on k elements.

Generation of & from the original pair (op,0,) is intimately related to Farey
series, the Stern-Brocot tree, and a notion from combinatorics (used mostly in
computer science) called Lyndon words. On {0,1}", define the homomorphism ¢
by

gf)(O) = Ov, ¢(1) =0y O0h,
and we construct words wy,/, of length ¢ with exactly p ones in the following manner,
beginning with wg = 0 and wy = 1: let p/q < p’/q’ and assume that p'q — pq’ = 1.
Let p”/q" = (p+p')/(q + ¢') be the Farey sum (the ‘bad arithmetic sum’). Then
Wyt /g = Wp/qWp' /g’ -

See [20] for background in combinatorics on words; we will not present that
background here. A binary word of finite length is called a Lyndon word if each
left factor has an average strictly smaller than the overall average of the word, i.e.
it is strictly smaller in lexicographic order than all of its rotations.

Then our Farey-series-based construction generates all (binary, finite) Sturmian
Lyndon words; the correspondence is made quite explicit by considering the geomet-
ric construction of Sturmian words by counting crossings of vertical versus horizon-
tal integer-grid segments, and the Lyndon property is quickly seen to be inherited
by the given order of composition under the assumption that both w,/, and wy /¢
are Lyndon words. That of all primitive Sturmian words of a given length and
density there is only one which is also a Lyndon word is fairly direct to show; a
proof appears in [24].

Note that we defined & to track the orbit of the interval [0,1/¢) on the base of
a square. Considering a different interval or a vertical segment would amount to
performing a fixed cyclic transformation on the sequence of permutations used to
define 6. That is, instead of considering

0 =TL,0T90+-0Ty
where each 7; is either o, or o,, we would consider

Tk OTk4+10 0Ty OTL O+ OTk—1.



ERGODIC GROUP EXTENSIONS 21

This new permutation is naturally seen to be in the same conjugacy class as ¢, and
therefore has the same number and length of cycles. Similarly, as the labeling of the
tiles was arbitrary, it is only the conjugacy class/cycle decomposition of the resulting
permutation that is of interest. It would be of considerable interest to classify
the permutation pairs (op,0,) on k elements which generate a “Farey-Sturmian”
composition in the described manner which is a k-cycle. Together with the cycle
decomposition of the commutator [o,,0,], knowing which pairs can generate k-
cycles would classify the square-tiled surfaces with a single-cylinder direction!

Corollary A.5. If oy and o, generate a subgroup of Xy which contains no k-cycle,
then M admits no single-cylinder direction.

Proof. For slopes larger than one the result is immediate. For slopes less than one,
we would perform an analogous construction as indicated previously with the same
result. Alternately, any cylinder decomposition for a slope less than one may be
mapped via the Veech group to a slope larger than one. ([

Consider for example the surfaces given in Figure 8, with squares labeled as in

that figure:
on=(1...2n4+1))((2n+2)...(4n +2)),
op = (1)(2(2n4+2))(3(2n+3)) ... ((2n+ 1)(4n 4+ 1))(4n + 2).

Both o, and o, are in the alternating group Ag (o}, is the product of two disjoint
cycles of equal length, and o, is explicitly given as an even number of transposi-
tions), but a 4n + 2-cycle is a composition of 4n + 1 transpositions. Therefore by
the above corollary, this surface admits no single-cylinder directions.

Example A.6. The eierlegende Wollmilchsau is the surface on eight squares de-
fined by

op = (1234)(5678), o, = (1836)(2745).
This surface is of genus 3 with four singularities of cone angle 47: from the per-
mutation presentation, the number of vertices (and therefore the genus) and their
cone angles may be read off the commutator of o, and op:

(o, on] = (13)(24)(57)(68).

Both oj, and o, are in Ag, while a complete 8-cycle has seven transpositions. There-
fore this surface has no single-cylinder directions. This result also follows from the
fact that the Veech group is all of SLa(Z) [10]. Therefore all periodic decompositions
are of the same type: two cylinders of equal heights and measures.

Corollary A.7. Let o, and oy, define a (connected) square-tiled surface, and let
o = |ou,0n]. If & contains at least d cycles of length one, then it is possible to
construct a Z¢ natural staircase whose geodesic flow is ergodic in almost every
direction. On the other hand, if there are no cycles of length one and M € H(2),
then no natural staircase is ergodic in almost every direction.

Proof. The statement about the possibility of ergodic d-dimensional natural stair-
cases follows from Corollary 4.4, using the vertices which are not singularities (fixed
points under &) as endpoints of distinct cuts whose values generate Z?. If there
are no cycles of length one, then all integer points are singularities. All cuts are
therefore nontrivial in the relative homology group Hi (M, D,Z). In the event that
M € H(2), then, the geodesic flow is not ergodic in almost every direction, again
citing [8]. O
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The above techniques may be used to quickly generate surfaces with single-
cylinder directions. Assuming that a surface is tiled by parallelograms one through
k such that vertical flow is a single cylinder, the permutation o, therefore encodes
the stratum of the surface. Letting the tiles be given in order, so that o,(i) =
i+1 mod k, the singularities may be deduced from the cycle decomposition of the
commutator

(00, 01](i) = o3t (on (i) + 1) — 1.

For arbitrary dimension d the techniques of this appendix may be used to study d-
cube tiled translation manifolds through the use of d permutations (for the relevant
face identifications in each dimension). A single-cylinder direction therefore gives
rise to a parallelepiped tiling for which one of the permutations is a single cycle.
The geometric data is still encoded by the permutations, if more involved to extract.
For example, the number of connected components still corresponds directly to the
number of invariant sets in the group generated by the given permutations, and
the singularities of the flat metric at certain (d — 2)-dimensional simplices involves
commutators of the permutations. As geodesic flows in higher dimensions are poorly
understood at present, we have phrased all the above in the particular case d = 2.
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