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On the Achievability of Cramér–Rao
Bound in Noisy Compressed Sensing

Rad Niazadeh, Massoud Babaie-Zadeh, and Christian Jutten

Abstract—Recently, it has been proved in Babadi et al. [B. Babadi,
N. Kalouptsidis, and V. Tarokh, “Asymptotic achievability of the
Cramér–Rao bound for noisy compressive sampling,” IEEE Trans.
Signal Process., vol. 57, no. 3, pp. 1233–1236, 2009] that in noisy com-
pressed sensing, a joint typical estimator can asymptotically achieve the
Cramér–Rao lower bound of the problem. To prove this result, Babadi et al.
used a lemma, which is provided in Akçakaya and Tarokh [M. Akçakaya
and V. Trarokh, “Shannon theoretic limits on noisy compressive sam-
pling,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 492–504, 2010] that
comprises the main building block of the proof. This lemma is based on the
assumption of Gaussianity of the measurement matrix and its randomness
in the domain of noise. In this correspondence, we generalize the results
obtained in Babadi et al. by dropping the Gaussianity assumption on the
measurement matrix. In fact, by considering the measurement matrix as a
deterministic matrix in our analysis, we find a theorem similar to the main
theorem of Babadi et al. for a family of randomly generated (but determin-
istic in the noise domain) measurement matrices that satisfy a generalized
condition known as “the concentration of measures inequality.” By this,
we finally show that under our generalized assumptions, the Cramér–Rao
bound of the estimation is achievable by using the typical estimator
introduced in Babadi et al.

Index Terms—Chernoff bound, compressed sensing, joint typicality, typ-
ical estimation.

I. INTRODUCTION

Compressed sensing (CS), which is also known as compressive sam-
pling [3]–[5], is a well-known method for taking linear measurements
from a sparse vector. Compressed sensing proposes that one can re-
cover a sparse signal from a few number of measurements, and so it can
override the usual sampling method based on Nyquist criteria [3]. In
this correspondence, we revisit the problem of signal recovery in noisy
compressed sensing, in which the above mentioned measurements are
blended with noise. Indeed, suppose that noisy measurements of the
sparse signal are taken by a random measurement matrix in the fol-
lowing form:

� � ��� �� (1)

in which � is the original � � � sparse signal, � is the � � � vector
of measurements, � � ���� �������� is an � � � Gaussian noise
vector and � � ��� �� � � � �� � is an � �� measurement matrix
whose elements are usually generated at random. More precisely, these
elements are independent and identically distributed random variables
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drawn from some specific distributions (such as Gaussian, Bernoulli,
etc.), so that the overall measurement matrix will be appropriate in the
framework of recovery in compressive sampling [3], [4], [6], [7]. Sup-
pose that � is sparse, i.e., ���� � � � � where � � �� denotes the
��-norm, i.e., the number of nonzero components of �. Moreover, de-
fine � ������� as a subset of ��� � 	 	 	�� that contains the indexes
of nonzero elements of �, i.e., � � �� � ��� �� 	 	 	�� 
 �� �� �� in
which �� stands for the �th element of �. For this model, one can also
define the size parameters1 as in [1]:

�
�

	



�

�
� (2)

The main problem of compressive sampling is to estimate the un-
known sparse signal from its noisy measurements which are taken as
in (1). Many efforts have been done to find a practical recovery method
and some acceptable solutions have been proposed in the literature
whose computational cost are tolerable, such as the algorithms that
are proposed in [9]–[16]. On the other hand, there is another related
problem which is indeed the framework of our correspondence. In this
problem, we are searching for the existence of an efficient estimator, an
estimator that can achieve the Cramér–Rao lower bound [17] for the
mean-square error (MSE) of the estimation. It is important to note that
in this problem, computational complexity of the proposed estimator
has no importance (or much less importance when comparing to prac-
tical methods), while the achievablity of Cramér–Rao bound and the
existence of such an estimator is in the point of interest.

For our problem, two different Cramér–Rao lower bounds for MSE
have been studied in [1], [18] depending on the amount of knowledge
of the estimators about the sparsity structure of the original vector. The
first bound, which is known as CRB-S [18], is the Cramér–Rao lower
bound of a genie aided estimation (GAE) problem in which the esti-
mators know the location of the nonzero taps i.e., � , as if a Genie has
aided them with the location of the taps [18], [19]. This bound can be
described in closed form as [18]

CRB-S � �
�

� ���� �
�

���

��

(3)

in which �� is a submatrix of � that contains the columns corre-
sponding to the indexes in � . Among all of the estimators that know
the location of the taps, it can be shown that (as we will also show
later in this correspondence) the efficient estimator will be the struc-
tural least square estimator (SLSE) which finds the solution of the fol-
lowing problem [18]:

����� � �����
�

�� ����������
�

� (4)

in which �� is the � 	 � vector of nonzero taps. The second bound,
which is known as CRB-US [1], is the Cramér–Rao lower bound for the
estimation problem in which the estimators have only prior knowledge
about the cardinality of � i.e.,� , which indicates the degree of sparsity.
It is obvious that the Cramér–Rao bound for this kind of estimation is
not less than that of GAE, i.e.,

CRB-US 
 CRB-S� (5)

Furthermore, in a recent work by Ben-Haim et al. [20] an expression
for CRB-US has been stated. In fact, they have shown that the behavior
of the CRB differs depending on whether or not the unknown sparse
vector has maximal support (i.e., ���� � � or ����  �). More

1In the context of compressive sampling, the linear system in (1) is under-de-
termined, i.e.,� � � . However, this assumption is not required in any of our
presented analyses. Hence, our provided lemmas and theorems in this corre-
spondence could be applied to the case of overdetermined noisy sparse recovery,
which appears in many applications in communication theory, for example in
sparse channel estimation [8].

accurately, they have shown that if the measurement matrix satisfies the
uniqueness theorem provided by Donoho et al. [3] and Candés et al. [4],
and if we consider the case of maximal support, i.e., when ���� � �

which is indeed our case in this correspondence, and if we consider
the case of finite size sparse recovery, i.e., when ��	 , and � are
fixed and limited, the Cramér–Rao bound equals to that of GAE (when
the sparsity pattern is known by the estimator), i.e., CRB-US equals
CRB-S. However, according to our best knowledge, no evidence of
exact achievability of CRB-US by the means of any practical estimator
or nonpractical estimators has been presented in the literature for the
case of fixed and limited��	 , and� . Therefore, if someone proposes
an estimator that can achieve CRB-S instead of CRB-US while it has
only prior knowledge about the sparsity degree, then it will be proven
that CRB-S and CRB-US are equal to each other (as stated in [20]) and
both of them are achievable by this proposed estimator.

Many efforts have been done to design an estimator with just the
knowledge about the cardinality of � that can achieve MSE as close as
possible to the GAE Cramér–Rao lower bound (CRB-S). Candés et al.
[19] and Haupt et al. [21] proposed estimators that can achieve CRB-S
up to a factor of ���� which is far from CRB-S. Interestingly, recent
works done by Babadi et al. [1] and Akçakaya et al. [2] have shown
that by using an impractical estimator known as “typical estimator,”
under certain constraints on � and �, one can asymptotically achieve
the Cramér–Rao bound of the GAE problem, i.e., CRB-S, without a
priori knowing � . By asymptotic, we mean where	�� and� tend to
infinity while the size parameters in (2) remain constant. In other words,
since the proposed typical estimator asymptotically achieves CRB-S,
one can conclude that a) CRB-S and CRB-US are asymptotically equal,
and b) this Cramér–Rao bound is achievable (note that, in general, the
Cramér–Rao bound of an estimation problem is not achievable, i.e., it
is not generally a tight bound for MSE).

The typical estimation in [1] and [2] is based on checking the Joint
Typicality of the noisy observations vector with all possible choices of
� , and then decoding the one which is jointly typical with the observed
�. Definition of joint typicality is introduced in [1], [2] and we will
review it later in this correspondence.2 After detecting the support of �,
typical estimator estimates the unknown vector � by using a structural
least square estimation method, i.e., it finds the solution of (4). In [1],
the proof of the achievability of the Cramér–Rao bound by using the
typical estimator is based on a lemma [2, Lemma 3.3], which bounds
the probability of two error events in the mentioned estimation process.
The first of these probabilities is the probability of the event that the
support of � is not jointly typical with � which we denote3 by �� ��
and the second one is the probability of the event that a subset � �
��� �� 	 	 	�� �� � with cardinality � is jointly typical with � which
we denote by �� � ��. Using this lemma, [1] shows that if the average
power of � is limited and if

� 
�

� � � ����
 � ��
� (6)

then the joint typical estimator achieves the Cramér–Rao bound as
	  �.

It is important to mention that the proof of the above mentioned state-
ment in [1] depends on the assumption that the elements of the mea-
surement matrix are drawn randomly from a Gaussian distribution, in
addition to the assumption that this matrix is stochastic in the noise do-
main. By this, we mean that this assumption will impose the considera-
tion of the elements of measurement matrix as random variables in our

2It is worth noting that the concepts of typicality and typical estimation have
been first introduced in the literature of Shannon’s work on information theory
[22], [23]. With some changes, this concept is adapted to the field of compressive
sampling in [1], [2].

3We will use the notations “�” and “ ” for indicating a jointly typical or a
non jointly typical pair in the rest of this correspondence.
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analysis, just like the elements of noise vector. On the contrary, these
assumptions are unnecessary in the ordinary framework of compressed
sensing, while we are looking to find a stable recovery method. In fact,
it is common to use non-stochastic but randomly generated measure-
ment matrices in this context, while assuming that the noise vector is
stochastic (because the estimator knows the exact measurement matrix,
but it is not aware of the noise vector). In addition, among all randomly
generated matrices, appropriate measurement matrices are those that
satisfy a constraint called “the concentration of measures inequality,”4

i.e., the following condition [24]:

������� � ����� � ������� � ����� ���� � � ��� �� (7)

where the probability is taken over random space for � 	� random-
generated matrix �� � � ��� �� is arbitrary, ����� is a constant de-
pending only on � and such that for all � � ��� ��� ����� � � and �
is an arbitrary fixed vector in � . Because of this mentioned differ-
ence in the assumptions made in [1] and ordinary assumptions made
in the framework of compressed sensing, one may wonder that the re-
sults obtained in [1] may be also valid in the case of a larger family
of measurement matrices than just the Gaussian matrices. Indeed, we
will introduce a family of random-generated matrices which satisfies a
modified version of concentration of measures inequality, i.e., the fol-
lowing condition:

BBP�������������� � �������� � ����� ���� � � ��� �� (8)

in which all the variables are the same as those in (7). Perhaps, the
most prominent example of matrices that satisfy (8), are those with
elements drawn independently and identically distributed according to
���� �� [24]; but, there is no force on having Gaussian entries in the
measurement matrix. More precisely, one can also use matrices whose
entries are independent realizations of 
� Bernoulli random variables

���� �
�� with probability �	�

�� with probability �	�
(9)

or related distributions such as

���� �

�
�
� with probability �

�

� with probability �
�

��� with probability �
�

(10)

and yet these matrices satisfy (8). In addition to example random
matrices described in (9) and (10), there are many other examples of
random matrices that satisfy the condition in (8) and have an important
role in statistical signal processing, communications,5 and in particular
compressive sampling. In fact, there is a well known class of linear
projections, mostly known as database friendly random projections
[25], that satisfies the condition in (8), and at the same time can
exploit the full allotment of dimensionality of a high-dimensional
point set. Random i.i.d. Gaussian matrices and those in (9) and (10)
are considered as examples within this class. Hence, as satisfying
(8) is a general property of commonly used random projection in
signal processing and compressive sampling, it may be interesting to
generalize the results obtained in [1] for this class of matrices. Then,
one can conclude that the Cramér–Rao bound of the estimation is also
asymptotically achievable by using the typical estimator introduced
in [1] and [2], while we use non-Gaussian matrices that satisfy the

4This condition is a preliminary condition for restricted isometry property
(RIP) which is a well-known sufficient condition in the area of compressed
sensing for robust and stable recovery of the original sparse vector via � -mini-
mization [6], [9].

5Many applications of using such non-Gaussian random projection, such as
sparse channel estimation [8], have been reported in the literature.

condition depicted in (8), which is a common and general condition
for measurement matrices in compressed sensing according to the
literature.

In this correspondence, according to the above discussion, we inves-
tigate the results obtained in [1], and then we generalize the conditions
for the problem of asymptotic achievability of Cramér–Rao bound in
noisy compressed sensing. More accurately, by using an alternative ap-
proach to this problem comparing to the one used in [1] and [2], i.e., by
assuming that the measurement matrix,�, is not stochastic in the noise
domain, we will find a lemma similar to [2, Lemma 3.3] and prove it
using a different method compared to the original one (by using Cher-
noff tail bounds for probability [26]). Since [2, Lemma 3.3] has been
used as the main building block to obtain the results of [1], one wonders
if those results (achievablity of CRB-S and asymptotic equivalence of
CRB-S and CRB-US) may be incorrect under our new assumption (�
is just generated at random, but it is deterministic when compared to
noise) and hence if they should be revised. In this purpose, we first
restate our proved lemma in the case of randomly generated (but deter-
ministic in noise domain) measurement matrices that satisfy (8). Sub-
sequently, we see that the final obtained form have very minor differ-
ences from [2, Lemma 3.3], while it is valid under the assumption that
� is a deterministic randomly generated matrix. Finally, we restudy
the results of [1] and see that although the main lemma used in [1] has
been changed in our analysis, fortunately, all of the results in [1] re-
main valid. In other words, in noisy compressed sensing and under our
modified version of concentration of measures inequality condition, the
Cramér–Rao bound is asymptomatically achievable by using a typical
estimator described in [1], and the constraint in (6) will also be valid
without any changes.

This correspondence paper is organized as follows. In the next sec-
tion, we will first review the definition of joint typicality and the typical
estimator introduced in [1]. Moreover, the main theorem of [1], and the
[2, Lemma 3.3] will be restudied. Indeed, we provide a new form of the
mentioned lemma under our new assumptions, in which the measure-
ment matrix is considered as a randomly generated matrix that satisfies
(8), although is deterministic in the noise domain. In Section III, the
Cramér–Rao lower bound on MSE for the compressed sensing problem
in a noisy setting will be discussed and we will show that the results
obtained in [1] remain valid under our generalized assumptions. So the
Cramér–Rao bound of the GAE problem and that of the problem in
which estimators have only prior knowledge about the degree of spar-
sity are asymptotically equal if the measurement matrix satisfies (8),
although it may not be Gaussian or random in the noise domain. In all
of the above discussions, we will use the model described in (1), and
we will assume that the matrix � is randomly generated, but since it is
known to the estimator, it should be treated as a deterministic matrix.

II. STATEMENT AND PROOF OF THE MAIN THEOREM

First, consider the noisy compressed sensing model in (1). As in [1],
we use the following definition for joint typicality:

Definition 2.1 (Joint Typicality): Suppose that 
 � ��� �� 	 	 	��
and �
� � � , in which �  � denotes the cardinality of a set. Let ��

denote the � 	� submatrix of � including those columns of � that
correspond to the indexes in 
. Let also 
� �����

	���
����

	

and 
�� ��
� . 
 and � are said to be jointly typical with order
�, denoted by (� � 
��, if and only if

�

�
�
�� ��� � � ��

�
�

 � �� (11)

In order to generalize the results in [1], we neglect the assumption
that � is a Gaussian random matrix in the noise domain. Indeed, we
assume that � is a randomly generated matrix, but is known to the
estimator, and hence should be considered as a deterministic matrix.
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Accordingly, we first introduce the following theorem, which is sim-
ilar to Lemma 3.3 in [2] and only depends on our new assumption on
measurement matrix:

Theorem 2.1 (Bounds on the Probabilities of Typicality): Assume
that in (1), � � �������. Additionally, assume that � � ��� �� 	 	 	��
and ��� � � . Considering an arbitrary small enough � � 
, the fol-
lowing expressions hold as � � ��

�

�
���
� ��� � � ��

�
	
�
� � �

���������	

��� 


(12)
�

�
���
� ��� � � ��

�
	
�
� 
 �

	 �� �� ��

�

�
� ����� ����� �����

��
� �

�
� � �

�
� ����� ����� �����

��
� �

�
� � 	���

�

(13)

in which 	��� � �� � ��	�� and ��� � ��������� , where �� is a
unitary matrix extracted from the eigenvalue decomposition of ��

� ,
i.e., ��

� � ����
�
� and � is a diagonal matrix. The � 
 �	 operator

denotes a vector comprising of the first  elements of the operand.
Proof of (12): The proof of this part is the same as the proof of

the first part of Lemma 3.3 in [2] with some minor modifications. For
the sake of readability, we will go through the steps of this proof. In
these steps, we will try to find the probability density function (pdf) of
���
� ��� assuming that� is known and deterministic, while the noise

vector is random.
Due to the fact that �� is the projector transform onto

� � ���������������� and since ������� � � , we have

��
� � � ��

� ����� � �� � ����
� ��

��
� is a symmetric matrix, therefore we can decompose it as

����
�
� , in which � is a diagonal matrix and �� is a unitary matrix

����
�
� � 	�. ��

� is an � � � matrix (which obviously has �
eigenvalues). In addition to that, [1] shows that �� is full-rank with
probability 1. This means that � � span�columns of ��� is a �

dimensional subspace of � as � ��. Moreover, for every � � � ,
we have ��

� � � 
 and so, the� basis vectors of � are� linearly in-
dependent eigenvectors of ��

� corresponding to the eigenvalue 0. Ad-
ditionally, for every � � � � � �orthogonal compliment of � �� ��,
we have ��

� � � �. In a similar way, we can show that � � is an
� �� dimensional subspace of � as � � � and so, the � ��

basis vectors of � � are the � � � linearly independent eigenvectors
of ��

� corresponding to the eigenvalue 1. Consequently, the main
diagonal of � consists of � �� 1’s and � 0’s. Moreover, we have

���
� ��� � ���

� ��� � ����
�
� �

�

� �
�
����

�
�����

�
� �

� ��������� � ������ (14)

in which �� � ��
� � is a white Gaussian random vector (according to

the fact that ��
� is just a deterministic rotation transform), i.e., �� �

��
� 	��	�. Without loss of generality, we can assume that the � ��

first elements of � are 1. Therefore, we can say that

�� � ������ � ������ � ������ 	 	 	 � ��������� (15)

Since�� is the sum of squares of��� independent Gaussian random
variables with mean 0 and variance 	��, it is a �� random variable of
order � �� with parameter 	��, i.e.,

���� � �� ���	�� ������� � ��� ���	��

This �� random variable has a moment generating function �
 ���,
which is defined by �
 ��� ��
 ��, and for every � satisfying the
condition � � ��	�� � 
 can be expressed as [27]

�
 ��� �
�

��� ��	���
� (16)

We can rewrite the probability in (12) as follows:

�

�
���
� ��� � � ��

�
	
�
� � �

� �� � �� ���	�� � ��

	 �� � ��� �� ���	��

� �� 
 ��� � �� ���	�� � (17)

So, by using Chernoff bounds on the tail probability [26], i.e.,

�� � 
 � ��� � �� 	 �
���
 ��� (18)

�� 
 
 � ��� 
 �� 	 �
���
 ���� (19)

we can bound the probabilities in (48). By applying (18) and (16), and
also considering the constraints needed for these equations, we have

�
 
 � 

�

�	��
� �� � ��� �� ���	��

	 �

�����	���
�� �� ��� �����	�� ����� (20)

By taking the derivative of ���� and finding its minimum in order to
obtain the tightest bound, we find that this minimum occurs at �� �
�

��
��

���������
. Moreover, it is easy to check that �� satisfies the

constraints imposed by (18) and (16), i.e., �� � 
 and � � �	���
� �

������

���������
� 
. Hence, we have

�� � ��� �� ���	�� 	 �����

�
�� � �� ���	��

�� ���	��
�� � ��

�	��

� ��
�� ���

�
�� � �

��

�� ���	��
� ��

�	��

� �� � �� ���

�
� �� � �

�

	���
�

�

	���
(21)

in which 	��� � �����
�

	��. Using the inequality ����� �

�
� 	 �

�
, we

can say that the bound in (21) decreases exponentially to 0 as� ��.
Similarly, using (19) and following the same approach as in the proof
of (21), we can bound ��� 
 ��� � �� ���	��� and so we will
have

�� 
 ��� � �� ���	��

	 �� � �� ���

�
� �� �� �

	���
� �

	���
� (22)
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Using the inequality ����� �

�
� � � �

�
, it is seen that the bound in

(22) approaches 0 exponentially as � � �. Consequently the prob-
ability in (12) will tend at least exponentially to 0, and so the proof is
complete.

Proof of (13): Similar to the previous part, we have

��
� � � ��

� ����� � ��

� ��
�

�����

���� �
�����

���� � �

� ��
�

�����

���� � � �

In the same way, we can decompose ��
� � ����

�
� , in which � is

similar to the one in the previous part and�� is a unitary matrix. Then,
we have

��
� �

�

� ����
�
�

�����

���� � �

�

� �������

in which ��� � ��
� ��

����� ���
�
� �� is a Gaussian random vector

with mean 	��� � ����� �
����� ���

�
� �� and autocovariance ma-

trix ������	���������	����� � � �� � ����, which are results of the
fact that � is deterministic. It is important to note that the remaining
proof of this part of [2, Lemma 3.3] (which is so similar to our pro-
posed lemma) is based on the Gaussian assumption on �, in addition
to the assumption that this matrix is random in the domain of noise6;
nevertheless, our proof is free from such assumptions while we assume
that the measurement matrix is deterministic. As a result, this assump-
tion will help us to generalize our results for other types of randomly
generated measurement matrices that are common in the compressed
sensing area, as will be shown later in this correspondence.

To continue our proof, without loss of generality we can assume that
the first � �� elements of the main diagonal of � are 1 and so

�� � ������� � ����� �� � ����� �� 
 
 
 � ������	 �� (23)

in which ���� 	 ��	�
 �
�
�� for every � � � � � �� . In addition to

these, we have

��	

���

	
�

� �
�����

�
�
� ��

��	
��

�

�
����� 
����

���
�
��
� �

�

 (24)

in which the � 
 ���	 operator denotes a subvector of the first � �
� elements and ��� � ���

� �����	 . For the sake of simplicity of
notations, we define �� � �

� ����� 
���� ���
�
��
� �

�

 . Now, the

sum of the squares of � �� independent Gaussian random variables
���� , each having mean 	�, is a noncentral � random variable of order
� �� with parameters ��� and ��	

���
	�
� . So we have

���� � �� ������ ���
�

������ � ��� ������ � �����
�
�
�
�

In addition, this � random variable has a moment generating function
�� ���, which is defined by �� ��� ��� ��, and for every � sat-
isfying �� ����� � � can be expressed as [27]

�� ��� �
�

��� ������
���

�
��	
���

	�
�

�� �����
� (25)

6This approach is very common in the framework of information theory, when
one tries to show the achievability of a rate in a channel [22].

By centralizing the probability in (13) with respect to the mean of ��,
we can rewrite the probability in (13) as

�

�
���

� ��� � � ��

�
�
�

� � �

� �� � �� ������ � ��

� �� � �� ������ � ��

� �� � �� ������ � ���� � 	��

� �� � �� ������ ���
�
� ��	� (26)

in which 	� � �� � � � � (we assume that � is small enough so that
� � ��). Similar to the proof of (12), we will use Chernoff bounds
stated in (18) and (19) to bound the probability in (26). More accurately,
by the use of (19) we get

�� � � � �� � �� ������ ���
� ��	�

� ��� �� �� ������ ���
� ��	� �� ��� ����� (27)

By plugging in the value of �� ��� from (25) for every � satisfying
� � ����� � �
 ���� is equal to

���� �
�

��� ������

� ���
�

��	
���

	�
�

�� �����
� � �� ������ ���

� ��	� � (28)

As shown in the Appendix (Lemma A.1), by taking the derivative of
���� with respect to � , one can see that this function will reach its
minimum value at ��, calculated as following:

�
� �

��� � �	�� ���� � ����� � ����� � ���	�

���� ��� � 	�� ���� �
(29)

in which ���� � ��	
�

���. Moreover, this �� is negative (and hence
satisfies the constraint � � ������ � �), as stated by Lemma A.1.
By plugging (29) and the expressions obtained in the Appendix for
� � ������


�

��� �
and � 

��� �
in (27), we will have the tightest

Chernoff bound for the probability in (27) as

����� �
����� � ����� � ���	�� ����

���

� ��� ��
���� ���� � 	�� ����� ����������	�

����
� (30)

After some manipulations, this bound can be rewritten as

��� ��

�

���� � ��� � 	�� ���� � ��� �� �� ��

�� ��� �

���

�� ��

�
��

����� � ���� �� �� ��

�� ��� �
� ����

���
� (31)

Before proceeding any further, we will introduce the following
lemma.

Lemma 2.2: For any �  and � � � � �, we have the following:
•
�
�� � � � � �

�
�;

• ���� � �� � �� � �

�
��.

The proof is elementary and is left to the reader.
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It is important to note that �� ��
�� ��� �

� �� ��� �

�� �� ��� �
, and so

we have that � � �� ��
�� ��� �

� �. Hence, by using the first part of
Lemma (2.2) and some further manipulations, we can bound (30) as

����� � ��� �
�
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� (32)

After simplifying (32) we have:
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It is also important to note that as ��
�� ��� �

� � ��
�� ��� �

, we have
� � ��

�� ��� �
� �. Now, by applying the second part of Lemma 2.2

we can make an upper bound for (33) as the following:
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� (34)

Therefore, according to (34), (27) and (26), we have finally come to the
following result:
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� (35)

and this will complete the proof of (13).
It is important to note that if we see the proof of Theorem 2.1, then we

will conclude that this theorem holds asymptotically in probability, i.e.,
if you test the validity of Theorem 2.1 for infinite numbers of randomly
generated�, then this theorem may not be valid for just finite numbers
of �. Moreover, as � � � the size of this finite set will tend to
zero. Accordingly, one can say that as � � �, Theorem 2.1 may
not be valid for just asymptotic zero number of randomly generated
�, or simply it is asymptotically valid. However, as we will see later
in Section III, we want to consider the achievability of Cramér–Rao
bound in asymptotic case, and so this asymptotic validation should be
enough.

In addition to what has been stated in Theorem 2.1, when the size of
the problem tends to infinity and � satisfies the introduced concentra-
tion of measures inequality depicted in (8) (for instance, its elements
are drawn i.i.d from ���� �� or distributions such as the ones intro-
duced in (9) and (10)), one may find an equivalent bound using the
following lemma:

Lemma 2.3: If the elements of � are randomly and independently
generated according to a distribution that satisfies (8), then we have

����� 	����

�
	�

�

� �

�
	 � �� ���

�����
�
��

� (36)

in which �� � � and ��� are defined as in Theorem 2.1.

Proof: Suppose that �� and �� are two arbitrary fixed vectors in
� . Then for every � � ��� ��, the following inequalities hold with a

probability that tends exponentially to 1 as � tends to ��

��� �������
� � �����

� � �� 
 �������
� (37)

��� �������
� � �����
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� (38)

��� ������ � ���
� � ����� � ����
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 ������ � ���
�
� (39)

Using (37), (38) and (39), it is straightforward to show that
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 ����
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� �����
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� �� 
 �������
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 ����

��� (40)

By setting �� and �� with 1’s in their �th and �th elements respectively
and 0’s in their other elements, for � �� �, we will have

�	� �
�

�
�


� �	 � 	�� (41)

and in the case of � � �, we will have

�� � �
�

�
�


� �� � � 
 �� (42)

These events hold valid with a probability that tends exponentially to
1 as � tends to � for a fix value of � and �. By applying the union

bound on all �
�

	
� � ������

�
choices for � and �, if � � � then the

following equation holds for every � and �, with a probability that still
tends to 1 as � increases:

�

�
�


� �	 � � if � �� ��

�

�
�


� �	 � � if � � �� (43)

Now, consider the matrix ��

������ . We want to show this �� �

�� 	� matrix will also satisfy the modified version of the concen-
tration of measures inequality. In other words, we want to show that
for every � � � , the following equation holds with a probability that
tends exponentially to 1 as � tends ��

��� ���� ������� � ���

��������

� � ��
 ���� ��������
(44)

To show this, we have

�


��

���
�

�

� �


�



�


�




���
�


�

���
��� (45)

To simplify (45), lets see how the matrix �� is constructed. First,
choose a set of indexes in 
�� 	� � � � ��� such as� � 
�� 	� � � ���, so
that ��� � � , and also  � � and � � �. Then, we choose� columns
of��	
� � ��

�
� corresponding to the indexes in �. Following (43),

we can say that the columns of ��	
� corresponding to the indexes
in  are an approximate orthonormal basis for the span of columns of
�� with a probability that tends exponentially to 1 as � � �, and
this approximation will become more accurate as � is chosen smaller.
Therefore, these columns can be considered asymptotically as approxi-
mations for the orthonormal eigenvectors of the symmetric matrix���
corresponding to zero eigenvalue, and again these approximations will
become more accurate as � is chosen smaller. Similarly, the columns
of��	
� corresponding to the indexes in � can be considered as an
approximate orthonormal basis for the kernel space of�� with a prob-
ability that tends exponentially to 1, and so they are approximations
for orthonormal eigenvectors of ��� corresponding to the eigenvalue
1. Consequently, by the definition of�� (i.e., its first � �� columns
are orthonormal eigenvectors of ��� corresponding to eigenvalue 1



524 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 1, JANUARY 2012

and the next � column are orthonormal eigenvectors of ��� corre-
sponding to zero eigenvalue) and the approximate orthogonal property
of the selected columns of � as � � � (43), and by doing some
simple manipulations, we have

�
�
�

�

���
�
�
�

���
�

� ��

�
���� � (46)

and this approximation will become more accurate as � is chosen
smaller. By substituting the approximation stated in (46) with corre-
sponding term in (45), we have

�
�
��

���
�

�

�
� ��

�
������ (47)

and again, this approximation will be more accurate with smaller �. So,
following (8), one can say that for small enough � the (44) holds with
a probability that tends exponentially to 1 as � grows.7 Now, using
(44) and similar to what we have stated about the columns of �, we
can conclude that the columns of ���

������ � ����� �
�
�� � � � � �

�
� �

satisfy the following equation as � � �:

�

�� ���
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� �

�
� � 	

if � �� �� �
�����

���� �
�
� � � if � � �� (48)

Substituting (48) in (24) will complete the proof.
Now, using Lemma 2.3, we can rewrite the bound in (13) after some

manipulations as
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(49)

in which �� � �

���
�. Interestingly, the asymptotic bound obtained in

(49) is very similar to the bound obtained in [2, Lemma 3.3]. In fact,
the bound obtained in [2] is as the following:

�
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�
�
�
� 	 �
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� ��
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��	�� �
��
� � ���

�

� (50)

Although these bounds are not identical, but they are very similar.

III. OVERVIEW OF CRAMÉR–RAO LOWER BOUND AND

THE JOINTLY TYPICAL ESTIMATOR

In this section, we will discuss the problem of estimating � from
noisy observations. The estimation process has two phases. In the first
phase, the estimator will detect � � ������� � 	��� ��� � � � ��
 which
is the location of the taps. The second phase includes estimating �	 �
�
� � 
� � � � � � 
� �� which is the value of the taps. In our discussion,
we are going to survey the Cramér–Rao lower bound of the estimation
problem. By using the idea of two-phase estimation, we consider two
special kinds of estimation process in this work. In the first case, the
estimator has a complete prior knowledge of � , i.e., a genie has aided
us with � . In the second case, we have no prior knowledge of � except
for its cardinality, � , which shows the level of sparsity. We will then
derive that these two bounds are asymptotically equal to each other and

7Note that for small enough � we require large enough � (following what
has been stated in (8)), so that the concentration of measures inequality will be
satisfied with high probability.

are achievable by typical estimation, as shown in [1] although the main
theorem used in [1] has been changed.

The model in (1) can be rewritten as

� � ��� � � �	�	 � �� (51)

Now, if the estimator knows � and wants to estimate �	 from � and
� , then the Cramér–Rao bound of the estimation can be computed using
the following theorem, stated in [1], [28]:

Theorem 3.1 (Cramér–Rao Bound of Genie Aided Estimation):
Considering the model depicted in (1) and estimators of the form
���� � � � ��	 , the Fisher information matrix of the GAE, which is
defined as

��� �
�

��	
��� �� � �	 �

�

��	
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�

� (52)

is equal to

��� �
�

���
�
�
	�	 � (53)

and so we have the following Cramér–Rao bound8 for the estimator
��	 � ���� � ��

	��	 � ��	 ���	 � ��	 �
� 
 � 

�� � �
�
� �

�
	�	

��

(54)

	��	 � ��	�
�
 � �

�
�����
 �

�
	�	

��

� CRB-S� (55)

Proof: The proof is given in [1] and [28].
In a GAE, by using a simple least square estimator for the model

of (51) we can achieve the Cramér–Rao bound mentioned in (55), i.e.,
this estimator is efficient. In a more mathematical way, we have the
following theorem.

Theorem 3.2 (Structural Least Square Estimator (SLSE)): Consider
the following genie aided estimator

��	 � ���� � � � ������ �� ��	�	� � �
�
	�	

��

�
�
	 ��

then we have

	��	 � ��	�
�
 � �

�
�����
 �

�
	�	

��

� (56)

Proof: The proof is similar to the proof of achievability of
the Cramér–Rao bound by the least square estimator where noise is
Gaussian [17] and is omitted due to the lack of space.
When considering the asymptotic case in the estimation process, one
may use the equivalent limit of the bound in (55) using the following
lemma.

Lemma 3.3: If the elements of � are generated independently and
identically distributed according to a distribution that satisfies (8), con-
sidering the model in (51), we will have

CRB-S �� ��
�
� �

�

�
�
�
�� (57)

Proof: The proof of this lemma is given in [1] for the special case
that elements of � are i.i.d Gaussian random variables. Generalization
of this proof for the family of distributions that satisfy (8) is elementary
and is left to the reader.

Now, we are going to investigate the relation between CRB-S and
CRB-US (which is Cramér–Rao bound of the estimators with just
knowledge about the cardinality of � ) under the assumption that the
measurement matrix, �, is a randomly generated but deterministic

8The equation� � � means that��� is non-negative definite.
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matrix that satisfies our modified concentration of measures inequality
described in (8). As was mentioned before, CRB-S and CRB-US seem
to be different bounds at the first glance. But interestingly, as was
shown in [1], in the asymptotic case they tend to each other. The proof
of this statement in [1] is based on [2, Lemma 3.3], which is based on
the Gaussianity of the measurement matrix and its randomness in the
noise domain. So, one may wonder if the results in [1] are still correct
under our new generalized assumptions, which fortunately is, as we
will discuss later in this section. For showing this, we investigate the
method of estimation in [1] which is based on a combinatorial search
for finding the support of original sparse vector. Before proceeding
any further, we will state the definition of this estimator as in [1].

Definition 3.1 (Joint Typicality Estimator): The Joint Typicality Es-
timator finds a set of indices, � � ��� �� � � ��� with cardinality of �
which is jointly typical with � with order of �. After that, it will pro-
duce the estimate ��� as

�
�
���

��

�
�
� �� (58)

If the estimator does not find a unique solution for � , it will return an
all-zero vector as its output.

In the main theorem of [1], it is shown that under certain constraints,
the MSE of the jointly typical estimator is upper bounded by ����. But
the proof of this property is strongly based on [2, Lemma 3.3], which
cannot be used under our new assumptions, as was mentioned before.
Instead, we use our variant of this lemma (Theorem 2.1 and especially
its asymptotic form in (49)). According to the fact that this variant and
the original form in [2] are not much different from each other, we can
show that the main theorem in [1] remains valid without any necessary
changes. More accurately, we have the following theorem.

Theorem 3.4 (Revised Version of Main Theorem in [1]): Consider
the model described in (51) and suppose that � is a randomly gener-
ated, but a deterministic matrix in the noise domain that satisfies (8).
Let ��� be the output of the jointly typical estimator defined in Defini-
tion 3.1. In addition, let 	��� ��	��� �
��. If

• �� ���
������

� � as � � �;
• ����� grows polynomially in � ;
• � � �

�	
 ��������
;

then we have

���� � ����
�� 	 ��

�
�� (59)

as � � � for a fixed � and .
Proof: Our proof, is exactly the same as the proof in [1] with some

minor changes. First, similar to the mentioned proof, we try to upper
bound the MSE of the estimation. Indeed, by repeating the first steps
described by (17)–(22) of [1], applying the new form of [2, Lemma
3.3], which contains the bounds in (12) and (13) and also by using the
asymptotic form of Theorem 2.1 described in (49), we can upper bound
the MSE of joint typical estimator, i.e., ���� � ����

��, by
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Similar to [1], we use the inequality
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to upper bound the ��th term in the summation of (60) by
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in which ��
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. Again, similar to [1], we define
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(63)

Now, by [2, Lemmas 3.4, 3.5, and 3.6], we can easily conclude that
���� attains its maximum at either � � � or � � �

�
if �� ���

������
� �

as � � �. So, we can upper bound (60) as
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In addition, we have
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and
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It is obvious that �� �
�
� grows linearly to �� as � � �. Addition-

ally, if �� � � 
 ���� � �� or equivalently � � �
�	
 ��������

then
���� will also grow linearly to �� as � � �. Hence, the exponent
of the second term in (64) tends to �� as long as ���� grows poly-
nomially with respect to � . So we have the following inequality when
� � �

���� � ����
�� 	 ��

�
� (67)

which completes the proof.
Now, by comparing the result of Theorem 3.4 with (57) and (5), we

come to the conclusion that under the assumption we made about� (its
distribution satisfies (8)), the CRB-S and CRB-US are asymptotically
equal. In addition, they can be asymptotically achieved using the jointly
typical estimator.

IV. CONCLUSION

In this correspondence paper, we examined the problem of the
achievability of the Cramér–Rao bound in noisy compressed sensing
under some new assumptions on the measurement matrix. Indeed, we
relax our analysis from the Gaussianity constraint on the measurement
matrix and its randomness in the domain of noise. Instead, we assumed
that this matrix is randomly generated according to a distribution that
satisfies some sort of concentration of measures inequality (described
in (8)), but is deterministic in the noise domain. Mainly, we focused
on the proof of [2, Lemma 3.3], which was the main building block of
the interesting results obtained in [1]. After reproving a new form of
the above mentioned lemma using our new assumptions, we showed
that the main theorem of [1] is still valid under these assumptions. So,
the Cramér–Rao bound of the GAE and the Cramér–Rao bound for
estimation with no prior knowledge about the original vector except
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for its degree of sparsity, are indeed asymptotically equal and the
jointly typical estimator first introduced in [1] can achieve this bound.
Unfortunately, this method of estimation is impractical and to the best
knowledge of the authors, the problem of finding a practical estimator
that can achieve the Cramér–Rao bound is still open.

APPENDIX

Lemma A.1: The function ���� defined in (28) will reach its min-
imum at �� given in (29). Moreover, �� � � and �� �����

� � �.
Proof: By taking the derivative of ���� with respect to � and

setting it to zero, we will have the following equation for finding the
roots of ��
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in which � ��� �������. By solving this equation with respect to
� , we will have two solutions for ��
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First, it is important to note that both of these solutions are real, as by
substituting �� � �� with � we will have that ����

� � ����� � 
���� 	
���

� � 
�����

� � 
��� � �. Furthermore, it also shows that �� � �
and �� � �. As we are looking for a �� that satisfies the constraint
� � ������ � �, the latter solution �� is not acceptable, and so we
have � 	 �� � ������� 	 ��. By taking the second derivative of
���� with respect to � , it is easy to show that �

��
����� � � and so

���� will reach its minimum value at ��. It is important to note that
the following expressions are also valid and can be extracted from the
expression for ��
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By looking at (71), it is obvious that the nominator of the
right-hand side of this equation is a negative term (because
����

� � ����� � 
���� � ���

� � ���), while the denominator,
i.e., 
���, is a positive term. So, by using the fact that �� �����

� � �
(as we have proven before), one can concludes that �� � �, which
completes the proof.
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