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Abbreviations 

 

ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; AGE,advanced 

glycation end-products; b-FGF, basic fibroblast factor; C1q, complement subunit 1q; C3a/5a, 

complement subunit 3a and 5a; CK, cytokeratin; CK, cytokeratin-negative; CK
+
, cytokeratin-

positive; CL, corpus luteum; EGF, epidermal growth factor; FSH, follicle stimulating 

hormone; HMGB1, high mobility group box-1 protein; IFN, interferon; IL, interleukin; INIM, 

innate immunity; KIT, CD117 tyrosin kinase receptor; KIT
+, 

KIT-positive; LH, luteinizing 

hormone; LOX-1, lectin-like oxidized low density lipoprotein receptor 1; Myd88, myeloid 

differentiation factor 88; NK-1R, neurokinin-1 receptor; NF-kB , nuclear factor kB; oxLDL, 

oxidized low density lipoprotein; PCOS, polycystic ovary syndrome; PPRs, pattern-

recognition receptors; RANTES, regulated on activation, normal T cell expressed and 

secreted; ROS, reactive oxygen species; SP, substance P; TLR, toll-like receptor family; TIR, 

toll-IL-1 receptor domain; TNF, tumor necrosis-factor; TRIF , TIR-domain-containing 

adaptor protein producing IFN type I; TGF-β, tumor necrosis factor β; VEGF, vascular 

endothelial cell growth factor; Wnt, wingless 
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Abstract 

 

The ovulatory process is characterized by tissue wounding and, after oocyte expulsion, by 

healing being connected to the formation of a corpus luteum (CL). The ovulatory event thus 

compares with a sterile inflammation. The concept is forwarded that the ovulatory process 

depends on innate immunity (INIM) function. The ultimate trigger for INIM signaling are 

danger signals/alarmins from granulosa cells damaged by oxidative stress and reactive oxygen 

species (ROS), respectively. Alarmins like oxidized low density lipoprotein (oxLDL) are 

recognized by cytokeratin-positive (CK
+
) granulosa cells with the expression of toll-like 

receptor 4 (TLR4). The subsequent inside-out signaling from the antrum towards the thecal 

cell layer comprises inflammation and tissue disintegration, which might be dominated by the 

myeloid differentiation factor 88 (Myd88) gateway. Additive or co-regulatory function are 

expected from the complement cascade for vessel permeability and leukocyte immigration 

and the wingless (WnT)-signaling for cell adhesion of CK
+ 

granulosa cells. The outside-in-

signaling relates to the repair phase, which is primarily controlled by the TIR-domain-

containing adaptor protein producing IFN type I (TRIF) gateway of TLR signaling. The 

KIT/CD117 tyrosine kinase receptor and the tachykinin-tachykinin receptor system could be 

involved. The appealing concept of INIM function in the ovary is novel and inaugurates a 

novel research field. 

 

Key words: Ovulation, preovulatory follicle, oxidative stress, innate immunity , cytokeratin-

positive granulosa cells, toll-like receptor 4, signaling pathways 

 

1. Introduction 

 

The ovulatory process subdivides into three phases: the inflammatory phase, the rupture 

event, and the repair phase (Espey, 1994; Oktem and Oktay, 2008). Inflammation with 

leukocyte recruitment, vessel permeability and formation of capillary sprouts develops in the 

wall of a preovulatory follicle within 12 hours in humans and a few hours in small rodents 

like mice, rats, and hamsters. The rupture phase starts at the follicle apex with degradation of 

the basement membrane and contraction of smooth-muscle type thecal cells for expulsion of 

the oocyte into the Fallopian tube. The rupture event of one hour in humans primarily depends 

on the activation of matrix metalloproteinases and of prostaglandin E. The repair phase 

extends over three days in humans, comprises ingrowth of connective tissue and of capillaries 
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from the vascular thecal cell layer into the former avascular granulosa cell layer (Stocco et al., 

2007; Devoto et al., 2009). Both cell layers undergo luteinization showing the small lutein 

cells in the periphery of a young CL and the large lutein cells in the former granulosa cell 

layer and antrum space.  

The three phases are generally considered as entity. The general interest focuses on 

molecular patterns for capillary sprouting and on the recruitment of leukocyte subtypes in the 

preovulatory follicle wall (Brännström and Enskog, 2002; Fraser and Duncan, 2005; Berisha 

and Schams, 2005;). The third phase is neglected as repair phase of the damaged follicle and 

rather attributed to the formation of the CL. It is also overseen that the three phases represent 

the classical sequence of an acute sterile inflammation comprising tissue wounding and repair 

under the command of INIM (Medzhitov, 2008, 2010a; Rock et al., 2010). Innate immunity 

comes first to recognize danger signals whether they might come from infectious invaders or 

from dying and dead cells (Turvey and Broide, 2010). Among specialized INIM cells are the 

dendritic cells (DCs) being densely equipped with pattern-recognition receptors (PRRs; 

(O'Neill and Bowie, 2007; Takeuchi and Akira, 2010). The receptor name is derived from the 

capacity to recognize patterns/complexes of e.g. lipids, of proteins, of nucleic acids being in 

contrast to the selective antigen recognition by lymphocyte receptors of the adaptive 

immunity. The discovery of PRRs has generated the danger model as novel immune concept 

stating that nonself molecules belong to danger signals as superior force of immunoresponse 

activation (Matzinger, 2002, 2007). Any tissue/cell damage is associated with the release of 

danger signals, termed alarmins (Bianchi, 2007). They bind to PPRs and the subsequent 

signaling cascade has the capacity to activate a plethora of genes. They control cell 

death/growth, inflammation (leukocyte recruitment, angiogenesis, tissue disintegration) as 

well as anti-inflammation with tissue repair (O'Neill and Bowie, 2007; Takeuchi and Akira, 

2010). Presently, the PRRs consist of four families among them the toll-like receptor (TLR) 

family with 12 members in the mouse. The PPRs signaling cascade has a good and a bad side 

of a coin. In case of wounding, the INIM pathway is well balanced for healing to achieve the 

quick recovery of tissue integrity. On the other hand, an unbalanced action can cause chronic 

tissue injury and autoimmune diseases.  

The cyclic ovary is a site of tissue damage and healing related to follicular atresia, follicle 

rupture, CL formation and regression (Spanel-Borowski, 2010). It is a place where the 

physiological ability of INIM function is being revealed. Convincing hints that the ovulatory 

process is under immunosurveillance comes from gene expression analysis of 

granulosa/cumulus cells. They show genes like members of the TLR family (Tlr2,4,8 and 9), 
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the TLR adaptor molecules Cd14, C1q and Myd88 that all have been exclusively found in 

immune cells (Shimada et al., 2006; Shimada et al., 2008; Richards et al., 2008). In our 

opinion, immunosurveillance of the ovulatory process compares with the INIM answer in the 

backs of the endocrine system. The circumscribed damage of the follicle wall and the 

subsequent healing is managed like an acute sterile inflammation (Medzhitov, 2008, 2010a; 

Rock et al., 2010). It appears that INIM trains its specific immune cells according to the need 

of the ovary (Matzinger, 2007). The inflammatory reaction remains limited to the follicle 

because signaling transfer to the adaptive immunity is likely minor (Iwasaki and Medzhitov, 

2010; Medzhitov, 2010a). The provocative hypothesis is that, in the very final run of the 

ovulatory process, danger signals dramatically increase in the follicle compartment. Derived 

from damaged granulosa/cumulus cells, danger signals are sensed to activate the ovarian 

INIM system. The promising candidate for danger sensing are the CK
+
 granulosa cells, which 

regulate TLR4 expression under oxLDL treatment in culture (Serke et al., 2009; Serke et al., 

2010). The molecular steps and the cytokine profile generated by the activation cascade in 

CK
+
 cells are unknown. Yet evidence is given by gene analysis that the expression of 

inflammatory immunrelated genes starts in the granulosa cell layer (Shimada et al., 2006; 

Shimada et al., 2008; Richards et al., 2008). 

 

2. Danger in preovulatory follicles for onset of INIM function 

 

Oxidative stress is recognized as an important factor in aging structures. The preovulatory 

follicle represents an aging structure, because it is the terminal stage of a record extending 

from fetal period to ovulation time (Tatone et al., 2008). Therefore, the prevulatory follicle is 

likely more susceptible to oxidative stress than preceding follicle stages. Oxidative stress 

relates to the production of ROS as byproducts of full speed steroidogenesis in preovulatory 

granulosa cells (Hanukoglu, 2006). ROS is released from the mitochondrial respiratory chain 

through leaky membranes. Degenerating mitochondria in human granulosa cells from fresh 

follicle aspirates are judged as sign of ROS damage (Vilser et al., 2010). Another ROS source 

translates to a granulosa cell subtype without CK filaments, termed CK-negative (CK
-
) 

granulosa cell. It expresses the lectin-like oxidized low density lipoprotein receptor 1 (LOX-

1), a specific scavenger receptor for oxLDL (Duerrschmidt et al., 2006; Serke et al., 2009). 

The oxLDL-dependent LOX-1 regulation in CK
-
 granulosa cells is probably associated with 

ROS production as deduced from endothelial cell studies. They show ROS as byproduct of 

oxLDL- dependent LOX-1 signaling, and, in a vicious internal feedback, the ROS-dependent 
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LOX-1 increase, which amplifies oxLDL binding and the subsequent signaling cascade. Cell 

death ensues (Mehta et al., 2006; Chen et al., 2007). The amount of ROS determines 

beneficial or detrimental effects, either for endothelial cell survival or apoptosis (Dandapat et 

al., 2007). The same could hold true for the preovulatory follicle. Moderate ROS levels might 

do no harm, because cultured CK
- 
granulosa cells treated with 150 µg /ml oxLDL respond by 

survival autophagy (Serke et al., 2009). High ROS levels can cause cell death. Of note, 

oxLDL, which is oxidized from normal lipoprotein under ROS influence, is higher in 

concentration in the follicular fluid of obese women either with or without a polycystic ovary 

syndrome (PCOS) compared to normal-weight patients (Bausenwein et al., 2010). It is 

assumed that the damaged granulosa cells actively secrete alarmins or passively release them 

after death (Bianchi, 2007). Alarmins are often leaderless proteins, thus having a non-classical 

secretory pathway through exosomes. The growing list of alarmins comprise acute phase 

proteins, S100 proteins, advanced glycation end-products (AGE), high mobility group box-1 

protein (HMGB1), defensins and interleukin-1 (IL-1), which all are present in follicle cells 

and the follicular fluid of preovulatory follicles (Angelucci et al., 2006; Richards et al., 2008; 

Tatone et al., 2008; Grøndahl et al., 2009). Alarmins can engage IL-1 receptor, AGE receptor 

and TLRs. Because TLR4 is also a receptor for oxLDL (Takeda and Akira, 2005), this 

lipoprotein could act like an alarmin.  

The fresh follicle harvest from women under in vitro therapy contains between 20-50% 

dead granulosa cells depending on reproductive age, body weight and total follicle stimulating 

hormone (FSH) dose of the stimulation protocol (Vilser et al., 2010). The high range of dead 

cells is explained by different degrees of oxidative stress, thus not only attributed to the 

gonadotropin releasing hormone treatment, which induces classical apoptosis at the level of 

the ovary (Tsai et al., 2005; Giampietro et al., 2006). Different degrees of oxidative stress 

could modify different forms of cell death, which appear to occur simulteously in mature 

follicles (van Wezel et al., 1999; Stocco et al., 2007; Serke et al., 2009; Vilser et al., 2010). 

The interesting point is to unravel the danger signaling loops for either apoptosis, necrosis or 

cell-death autophagy in granulosa cell subtypes.  

The preovulatory follicle is a structure under oxidative stress, as has been forwarded by 

other groups. They have been interested to find correlations between oxidant/antioxidant 

levels in the follicular fluid and the oocyte quality, rate of fertilization and of implantation as 

well as embryo development (Oyawoye et al., 2003; Pasqualotto et al., 2004; Das et al., 2006; 

Appasamy et al., 2008). Our concept judges oxidative stress as final release mechanism of the 

ovulatory event. It is triggered by danger signals from dead granulosa cells and danger 
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sensing by intact CK
+
 cells with danger receptors like TLR4. In other words, oxidative stress 

activates INIM force to orchestrate the ovulatory process (Fig. 1A).  

 

3. The CK
+
 granulosa cells as danger sensor and potential DCs 

 

Not the fibroblast-like CK
-
 cell type, only the epithelioid CK

+
 granulosa cell type respond 

to the treatment of oxLDL, nLDL and serum-free medium by upregulating TLR4 and CD14 

(Serke et al., 2009; Serke et al., 2010). In addition, ROS generation is increased, whereas 

steroiodgenesis is decreased (Serke et al., 2009). For this reason, the CK
+ 

cells have come into 

sight as danger sensor through the TLR4 cascade being induced by oxLDL. The CK
+
 cells 

confer two complex signaling pathways leading to immunoresponses and inflammatory 

cytokines (Kumar et al., 2009; Takeuchi and Akira, 2010). The Myd88-dependent nuclear 

factor kB (NF-kB) pathway could explain peak values of tumor necrosis factor , interleukin-

1β and interleukin-6 (TNF-, Il-1β, IL-6) in preovulatory follicles (Adashi, 1990; Brännström 

et al., 1994a), and the mitogen-associated-protein-kinases (MAPks) signaling for 

inflammation and tissue disintegration (Fig. 1A). The TLR-Il-1 receptor domain (TIR)-

dependent pathway of TLR signaling causes the activation of interferon (IFN) type I (, β) 

genes mediating anti-inflammatory responses (Fig. 1B). The two multipurpose TLR-

dependent pathways are ancient signaling systems as are the complement cascade, wingless 

(Wnt) signaling, and the tachykinin-tachykinin-receptor system (Severini et al., 2002; Köhl, 

2006; Pereira et al., 2009). These cascades compare in evolution with the development of 

INIM roughly 600 millions of years ago (Endo et al., 2006; Turvey and Broide, 2010). The 

possible co-regulation is indicated for the complement and Wnt system (Gordon et al., 2005; 

Hajishengallis and Lambris, 2010). The signal cascades might act independently or become 

co-regulatory partners of the TLR pathways at receptor level or downstream of the signaling 

pathway. For example, TLR4 activation requires the heterodimerization with CD 14 or CD36 

as co-regulatory receptors (Miller et al., 2003; Stewart et al., 2010). The dominance of one of 

the postulated co-regulatory partners could mediate specific signaling changes in the TLR 

regulatory loop. In the rupture phase (Fig. 1A), the complement-dependent co-regulation 

might contribute to changes in fibrinolytic activity, vessel permeability, leukocyte 

immigration connective tissue degradation (Köhl, 2006; Hajishengallis and Lambris, 2010). 

The canonical Wnt signaling for β-catenin production could mediate adherens junction 

formation to create a microenvironment between CK
+
 cells as given evidence for uterine 

development, pre-implantation and decidualisation (Sonderegger et al., 2010). In this line is 
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the report on Wnt4 knock out mice showing disturbed follicle development and infertility 

(Boyer et al., 2010). In the late phase of the ovulatory event (Fig. 1B), the modification of 

TLR signaling is suggested to rely on the co-regulation of the tachykin-tachkinin receptor 

system. The cooperation might guide the anti-inflammatory response for tissue repair (see 4). 

The special nature of CK
+
 cells dates back to early fetal life when primordial follicles with 

CK
+
 cells arise from the medullary part of sex cords in the aorta-gonado-mesonephros region. 

The CK
+ 

cells are transiently unapparent in growing follicles, and reappear in preovulatory 

follicles as well as in freshly ruptured follicles and in the forming CL (Löffler et al., 2000). 

The CK
+
 cells are assumed to switch off the CK genes in the CL stage of secretion and 

regression to become granulosa-like cells as extensively documented (Spanel-Borowski, 

2010). The reasons for the risky statement relates to the in situ observation on steroidogenic 

luteal cells with decreasing CK intensities and to the successful cultivation of granulosa-like 

luteal cells. They depict long and thin DC-like processes at the ultrastructural level. The 

granulosa-like cells are well maintained under the treatment with 200 IU/0.5 ml IFN- with 

the tendency to increase cell number and adhesion molecules like N-cadherin and neuronal 

cell adhesion molecule-140. Additionally, the major histocompatibility complex class II is 

upregulated by 80fold in granulosa-like cells compared to basal levels. Collectively, the 

granulosa-like cells reminds of DCs, which typically respond in a constructive manner to 

IFN-, a key regulator of DC function in INIM (Billiau and Matthys, 2009). The big task is to 

prove that the metamorphosis from CK
+
 cell to the granulosa-like cell is associated with the 

ability of antigen-presentation and with naïve T cell training.  

 

4. Eosinophils and tachykinin expression for tissue repair in INIM function 

 

In the preovulatory follicle wall, mast cells appear to be absent and the number of T cells 

as main representatives of the adaptive immune system are low in number (Best et al., 1996; 

Spanel-Borowski et al., 1997; Bauer et al., 2001). It points to a minor cross-talk between 

INIM and adaptive immunity. Segmented leukocytes densely populate the follicle wall being 

neutrophils or eosinophils obviously in dependence of the species and of the early or late 

ovulatory phase. In small rodents with a 4-day-estrous cycle, neutrophils are found in the 

follicle wall (Brännström et al. 1994b; Brännström et al., 1994b; Brännström and Enskog, 

2002), whereas, in human and bovine follicles in the transition to a CL, the CD18-positive 

leukocyte pool relate to 90% of eosinophils (Aust et al., 2000; Reibiger and Spanel-Borowski, 

2000). Their classical role in parasite infections is here extended to sterile inflammation as 
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INIM function. Eosinophils are involved in immunoregulation, angiogenesis and tissue repair 

(Munitz and Levi-Schaffer, 2004; Blanchard and Rothenberg, 2009). Eosinophils are likely 

not innocent bystanders, but active participants in the developing CL. The favourite influence 

could relate to vessel stabilization as wells as to the fibrogenic capacity with fibroblast 

proliferation and collagen synthesis under the influence of eosinophilic vascular endothelial 

cell growth factor (VEGF), b-fibroblast growth factor (b-FGF), and transforming growth 

factor β (TGF-β). Eosinophil recruitment into the ruptured follicle could be guided by the 

regulated on activation, normal T cell expressed and secreted (RANTES) molecule, because it 

is increased in tumor necrosis-factor  (TNF-) treated granulosa cell cultures (Aust et al., 

2000). Additionally, L-selectin (CD62L) on eosinophils and the counterreceptor (CD62P) on 

microvascular endothelial cells being highly expressed in the developing CL seem to be 

involved (Rohm et al., 2002). The influence of tachykinins, in particular of substance P (SP)-

like molecules, and its neurokinin-1 receptor (NK-1R) are also considered for specifying 

eosinophil function. The tachykinin family comprises members like SP, neurokinin A and B, 

and endokinins all derived from separate preprotachykinin genes and precursor proteins 

(Severini et al., 2002). The neurogenic inflammation in allergic and chronic inflammatory 

disorders correlates with eosinophil accumulation, elevated levels of SP and NK-1R in 

diseases of the lung, gut and joints (O'Connor et al., 2004). In respect to the bovine ovary, the 

periphery of the freshly ruptured follicle displays a network of SP-like structure in 

immunofluoresence staining and, in gene analysis, the preprotachykinin I as well as the NK-

1R (Reibiger et al., 2001). Mice gene-deficient for the NK-1R gene display signs of the 

luteinized and unruptured follicle syndrome, which lacks oocyte expulsion, yet develops 

functional CL (Qublan et al., 2006; Löffler et al., 2004b). Evidence is collected that the 

tachykinin-tachykinin receptor system is influential as intraovarian modulator in granulosa 

and luteal cells (Löffler et al., 2004a; Brylla et al., 2005; Debeljuk, 2006). Collectively, the 

neuropeptide system might be part of the acute INIM answer to optimize the repair phase 

through eosinophil specification (Lambrecht, 2001). The exact cell source of tachykinin 

production awaits clarification for the young CL. That eosinophils might indicate a specific 

immunoresponse in the CL, has been forwarded many years ago (Murdoch and Steadman, 

1991). 

 

5. Inside-out and outside-in-signaling as INIM order 
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The general opinion is that degradation of the follicle wall starts somewhere outside. The 

surface epithelial cells close to the preovulatory follicle are said to release factors in support 

of connective tissue degradation. This opinion should be discarded, because follicle rupture 

occurs in spite of denudation of the surface epithelium (Wright et al., 2010). Additionally, 

superovulated ovaries form rats, golden hamsters and rabbits develop atypical follicle ruptures 

with intra-ovarian oocyte release (Spanel-Borowski, 2010). Under the luteinizing hormone 

(LH) surge, genes for the two essential pathways [progesterone-receptor pathway for protease 

production like ADAMTS-1 (a disintegrin and metalloproteinase with thrombospondin 

motifs), cathepsin L and the epidermal growth factor (EGF)-superfamily signaling for 

cumulus expansion] are predominantly detected in the granulosa cell layer (Espey, 2006; 

Richards et al., 2002; Hernandez-Gonzalez et al., 2006). All of these observations point to a 

degradation process from the interior of the follicle to the exterior site, thus to an inside-out-

signaling in the preovulatory period. The concept is that, in the first phase of the ovulatory 

process, the TLR-signaling in CK
+
 cells is shaped by co-regulatory systems (complement 

receptor 1q, receptors for complement subunit 3a and 5a, Wnt-signaling) in support of tissue 

wounding/rupture (Fig. 1A). Cytokines and chemokines from the granulosa cell layer activate 

cells in the thecal cell layer in a paracrine manner. Here cells positive for CD117 tyrosin 

kinase receptor (KIT) develop (Spanel-Borowski et al., 2007). Segmented leukocytes are 

recruited and amplify the inflammatory pattern to mediate capillary sprouting and connective 

tissue degradation. The inside-out-signaling comes to an end with the expulsion of the oocyte 

by contraction of the follicle wall. The subsequent outside-in-signaling from the former thecal 

cell layer towards the granulosa cell layer orchestrates tissue repair (Fig. 1B). The 

microvascular bed stabilizes, granulosa and thecal cell luteinize, connective tissue replaces the 

former antrum. The KIT-KIT ligand system comes into play, a system responsible for cell 

migration and differentiation (Rönnstrand, 2004). According to immunostained sections KIT-

positive (KIT
+
) thecal cells are reinforced in the freshly ruptured follicle and, after basement 

membrane degradation, mingle with the adjacent granulosa cells (Spanel-Borowski et al., 

2007). A cross-talk between CK
+ 

granulosa cells and KIT
+
 thecal cells might loosen 

intercellular contacts and contribute to the postulated conversion of CK
+
 cells into granulosa-

like luteal cells. The tachykinin-NK-1R system is favored as co-regulatory system as well (see 

4). The complex world of molecule interactions between CK
+
 cells and KIT

+
 cells is totally 

unknown. 

 

6. Clinical Challenges and Summary 
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The concept of INIM force in endocrine function of the ovary provides a novel strategy in 

the therapy of ovarian disorders. They might depend on inadequate activation or inhibition of 

danger TLR signaling through CK
+
 granulosa cells. The overactivation of inflammatory 

signaling could cause the life-threatening general edema due to VEGF overproduction in 

women with the hyperstimulation syndrome (Kahnberg et al., 2009). Likewise overactivation 

of the inflammatory cascade could lead to atypical follicle ruptures with intra-ovarian oocyte 

release and striking tissue damage in superovulated ovaries (Spanel-Borowski, 2010). On the 

other hand, inhibition of TLR signaling explains anovulation disorders like the luteinized and 

unruptured follicle syndrome with high progesterone levels (Qublan et al., 2006) and the 

PCOS with androgen excess (Wild et al., 2010). Obese women suffer from anovulations. The 

cause could an excessive oxidative stress, which is indicated by higher levels of oxLDL in the 

follicular fluid of obese women with and without PCOS compared to normal-weight women 

(Bausenwein et al., 2010). Of interest, catalase activity as antioxidant-defence system is 

augmented in the follicular fluid of obese women and in the supernatant of oxLDL treated 

CK
+
 granulosa cell cultures (Bausenwein et al., 2010; Serke et al., 2010). Thus, catalase 

activitity could become a parameter of oxidative stress in assisted reproductive treatment. 

Obese women of older reproductive age show up to 50% of dead granulosa cells in the fresh 

follicle harvest (Vilser et al., 2010). The findings indicate that danger signals/alarmins are 

unbalanced and INIM action out of order in the ovary. Because regular body excercises and 

food restriction can restore ovulation in obese women (Rachon and Teede, 2010; Thomson et 

al., 2010), life style changes might contribute to INIM balance in the ovary. Wedge resection 

and ovarian drilling, which both are effective in PCOS women (Api, 2009), could contribute 

to beneficial INIM function. The surgical interventions leave no harm, which reflects the 

enormous self-healing potential of the ovary. Of course, INIM does not stand alone in the 

immune control of ovarian function. It interacts with the adaptive immunity. The conversation 

between the two powerful systems probably changes in intensity in dependence of the local 

need. A low T cell number in the preovulatory follicle wall might signify a limited interaction 

with the adaptive immunity, whereas augmented T cells in the CL of regression speaks for 

exchanges between the two immune systems (Best et al., 1996; Spanel-Borowski et al., 1997; 

Bauer et al., 2001). A disturbed conversation between INIM and adaptive immunity is 

reflected by altered T cell profiles in the follicular fluid of patients with idiopathic infertility 

and in ovaries with premature ovarian failure due to autoimmune damage (Lukassen et al., 

2003; Vujovic, 2009). It is noteworthy that ovarian cancer preferentially develops in women 
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above the sixties when folliculogenesis and thus ovarian INIM function has ceased (Kumar et 

al., 2009). Because DCs process antigens and train naïve T cells to become helper and 

suppressor cells (Banchereau and Steinman, 1998; Mellman and Steinman, 2001; Turvey and 

Broide, 2010), DCs are key players between INIM and adaptive immunity. As documented 

thoroughly, the CK
+ 

cells are the promising candidate for immature DCs in preovulatory 

follicles, and granulosa-like cells for mature DC in the CL (Spanel-Borowski, 2010). 

Innate immunity is being detected as mighty force for the regulation of tissue disintegration 

and integrity through sterile inflammation (Medzhitov, 2010b). The ovary is a site with 

controlled tissue damage and repair, which have been judged as footmarks of INIM (Spanel-

Borowski, 2010). The ovary is thus a model of choice to get insights into the physiological 

INIM function, a still hidden aspect. The ultimate trigger for ovulation induction appears to be 

the increase in oxidative stress/ROS within the preovulatory follicle. As long as INIM 

signaling is balanced by a restricted cell death of granulosa cells, the molecular sequence is 

beneficial for the ovulatory process. Future generations have to unravel the cross-talk of 

ovarian INIM with the adaptive immunity and the endocrine system. The efforts will generate 

alternate strategies for the treatment of ovarian disorders. Years of work lie adhead to disclose 

the complexity of the INIM world as beneficial danger signaling cascade not only in the 

ovulatory event but also in follicular atresia and luteolysis. The present concept opens an 

exciting new field of INIIM research and renovates the general interest in the biology of the 

ovary.  
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Legends 
 

Fig. 1 

Working hypothesis for the inside-out signaling of CK
+
 cells as effector cells of INIM 

orchestrating follicular rupture in (A). The inside-out cascade commands the inflammatory 

response with breakdown of the extracellular matrix (ECM) under the control of the Myd88-

dependent TLR signaling. In (B) the outside-in signaling mediates the healing phase being 

responsible for the transformation into a CL. For outside-in-signalin, the TLR4 cascade 

preferentially relates to the TIR-domain-containing adaptor protein producing IFN-β (TRIF) 

leading to the interferon-regulatory factor 3 (IFR-3) transcription factors for tissue repair. 

Anti-inflammatory processes dominate. Pathways for disintegration and regeneration overlap, 

yet the dominance shifts with time. Pathways are simplified. Theoretical associations are in 

grey. Modified from Spanel-Borowski (2010) 

A: The CK
+
 cells create a microenvironment by prominent cell junctions. The basement 

membrane is intact, fibroblasts and KIT
+
 cells are withhold in the thecal cell layer. The G-

coupled receptors (complement receptor 3R for C3a and C5) as well as for Wnt signaling) 

might act independently or co-regulate the TLR4 pathway in CK
+
 cells by modulating at the 

receptor level or downstream. The C3R-dependent pathways of mitogen-activated protein 

kinases (MAPKs) are grouped into the extracellular signal-related kinases (ERK), c-Jun-N-

terminal kinases (JNK) and the p38 mitogen activated protein kinases (p38). The C3R-

dependent pathway also comprises the Janus kinase-signal transducer and activator of 

transcription (JAK-STAT), an alternate second messenger system. The Wnt-signaling 

generates β-catenin for adherence junctions in CK
+ 

granulosa cells. The final TLR4 signaling 

is connected with the Myd 88-adaptor protein, which activates either the inihibiting kinases 

(IKK complex) as core element of nuclear factor-b (NF-B) cascade or MAPKs for activator 

protein-1 (AP-1). Altogether, signaling supports pro-inflammation, controls cell proliferation, 

differentiation and cell death. It generates immunoregulatory responses for the recruitment of 

monocytes and neutrophils through endothelial cell activation. 

B. The CK
+
 cells beome mobile after loss of cell junctions. The basement membrane 

disintegrates, fibroblasts and KIT
+
 cells proliferate and migrate towards the former antrum. 

The TLR4 signaling through the TRIF-IRF3-dependent gateway finally activates IFN type I 

genes. The tachykinin-tachykinin-receptor cascade might play a co-regulatory role. The final 

outcome of the anti-inflammatory events relates to immigration of eosinophils. Their specific 
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factors could mediate sprouting and maturation of capillaries as well connective tissue 

growth.  
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