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Abstract words: 160 

Article words: 8700 

 

Abstract 

This paper presents a Modified Harmony Search Optimization Algorithm (MHSO), specifically designed to 

solve two and three-objectives permutation flowshop scheduling problems, with due dates. To assess its 

capability, five sets of scheduling problems have been used to compare the MHSO with a known and highly 

efficient Genetic Algorithm (GA) chosen as benchmark. Obtained results show that the new procedure is 

successful in exploring large regions of the solution space and in finding a significant number of Pareto non-

dominated solutions. For those cases where the exhaustive evaluation of sequences can be applied the 

algorithm is able to find the whole non-dominated Pareto border, along with a considerable number of 

solutions that share the same optimal values for the considered optimization parameters. 

To validate the algorithm, five sets of scheduling problems are investigated in depth in comparison with the 

GA. Results obtained by both methods (exhaustive solutions have been provided as well for small sized 

problems) are fully described and discussed. 

 

Keywords: Permutation flowshop scheduling; Multi-criteria methodologies; Genetic Algorithms; Harmony 

Search Optimization. 

 

1. Introduction 

Flowshop scheduling has attracted many researchers over time since it was firstly proposed by Johnson in 

1954 (see, for example, Dannenbring, 1977, Lageweg et al., 1978, Potts, 1980, Osman and Potts, 1989, 

Pinedo, 1995, Nowicki and Smutnicki, 1996, Carlier and Rebai, 1996, Cheng et al., 1997, Haouari and 

Ladhari, 2003, Srikanth and Barkha, 2004, Ladhari and Haouari, 2005, Tseng and Lin, 2009) and has been 

extensively investigated by researchers both with single (refer, for instance, to Campbell, 1970, Ignall and 

Schrage, 1965, Nawaz et al., 1983) and multi-objective techniques (an extensive review is given in T’Kindt 

and Billaut, 2001). As it notoriously represents a computationally NP-hard problem and exhaustive 

evaluation applies only to undersized cases (i.e., when the number of job is reasonably small), most of the 

proposed approaches have focused on the use of optimization or on the adoption of metaheuristic techniques 

for single objective flowshop scheduling problems (Pan et al., 1997, Stevens et al.,1997, Cheng et al., 2001, 

Grabowski and Wodecki, 2004, Rajendran and Ziegler, 2005, Tasgetiren et al., 2007, Rajkumar et al., 2009, 

Lin et al., 2009). Literature on the subject is extensive and a comprehensive survey of makespan 

minimization from early works up to recent approaches of metaheuristics is provided by Hejazi et al. (2005), 

whereas a broad review of the evolution of the available methods over time is presented in Gupta and 

Stafford (2006). It is worth noting that the use of multiple criteria enables a more practical solution for the 
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decision makers (T’Kindt and Billaut, 2001). Indeed, single criterion optimizations do not consider the 

important trade-offs that intrinsically characterize the scheduling problem. Conversely, whether multiple 

objectives are optimized properly and conjointly, the solution narrows down to a limited subset of 

optimal/efficient feasible schedules among which the analyst may choose after appropriate considerations on 

the criteria themselves. Schaffer (1985) firstly introduced multi-criteria genetic algorithms (MCGA) and, 

since then, some modified MCGA procedures have been proposed to improve both the quality of the 

solutions and the speed of the search algorithms (Murata et al., 1996, Ponnambalam et al., 2004). Other 

methods have been applied as well. For example, Gangadharan et al. (1994) proposed a Simulated Annealing 

algorithm for two-criteria scheduling problems. Rajendran (1994) approached the problem of scheduling in 

flowshop and flowline-based manufacturing cell with the bicriteria of minimizing makespan and total 

flowtime of jobs. Cao et al. (2003) worked on production scheduling problems in manufacturing systems 

with parallel machine flowshops. The authors developed a mathematical programming model for combined 

part assignment and job scheduling. The objective was to minimize a weighted sum of production cost and 

the cost incurred from late product delivery Interesting efforts have been made to adapt Multi-Objective 

Immune Algorithms (MOIA) to scheduling problems (Tavakkoli-Moghaddam et al., 2007). Khan et al. 

(2007) addressed the problem of minimizing the weighted sum of makespan and maximum tardiness in an 

m-machine flow shop environment using a metaheuristic called Greedy Randomized Adaptive Search 

Procedure (GRASP). Yandra et al. (2007) discussed the application of a genetic algorithm featuring 

heterogeneous population to solve multi-objective flowshop scheduling problems. Braglia et al. (2009) 

presented a new heuristic for solving the flowshop scheduling problem that aims to minimize makespan and 

maximum tardiness. In this case, the Technique For Order Preference By Similarity of Ideal Solution 

(TOPSIS) algorithm is integrated with the Nawaz-Enscore-Ham (NEH) heuristic to generate a set of 

potential scheduling solutions. All the above mentioned techniques give interesting results, being able to 

evaluate a significant number of optimal or near-optimal solutions with reasonable computing efforts. 

Recently, the Harmony Search Optimization (HSO), an algorithm that mimics the music composition 

processes to explore the space of the feasible solutions, has been introduced by Geem et al. (2001). Although 

HSO has shown to be effective in most engineering optimization problems (Lee et al., 2004, Geem et al., 

2005, Geem, 2006, Kim et al., 2001,Kim et al., 2006), it has not been applied yet to scheduling issues. 

Owing to this, the present work presents a modified Harmony Search Optimization Algorithm (MHSO) 

addressed to solve two and three-objective permutation flowshop scheduling problems with due dates. 

Compared with a known and highly efficient GA (Murata et al., 1996), the new algorithm shows to be 

successful in exploring large regions of the solution space and in finding a large amount of feasible efficient 

solutions. For those cases where the exhaustive evaluation of sequences can be applied the algorithm is also 

able to find the whole non-dominated Pareto frontier in a large number of instances having the same initial 

data, along with a considerable number of solutions that share the same efficient values for the considered 

optimization parameters (in the following these will be called “equipollent” solutions). 
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The paper is organized as follows. Firstly, the multi-objective permutation flowshop scheduling problem is 

briefly presented and discussed, along with the parameters that have been considered for optimization. 

Following, the standard HSO and the proposed MSHO are described in detail. Finally five sets of scheduling 

problems are investigated in comparison with the GA proposed by Ishibuchi and Murata (1998), being the 

latter one of the most effective algorithms proposed in literature to cope with the subject. Results obtained 

with both methods (exhaustive solutions have been provided as well for small sized problems) are fully 

described and discussed. 

 

2. The multi-objective permutation flowshop scheduling problem with due dates 

Multi-objective scheduling enables a more practical solution for the decision makers as it allows to consider 

at one time and in a suitable manner a broader range of decision criteria. However, due to the fact that a 

solution that optimizes all the considered criteria often does not exist, a new definition of optimality must be 

introduced. Here, in particular, we refer to the Pareto optimality as defined by T’Kindt and Billaut (2001). In 

brief, multi-objective flowshop scheduling algorithms (MOFSA) aim to find (all or most of) the sequences 

that minimize (or maximize, if the case) the whole set of decision criteria or, in other words, the Pareto non-

dominated frontier of the solution space. Mathematically speaking, if fj(si) is the fitness function for the 

single j-th criterion to be evaluated for a generic sequence si, the problem can be expressed as: 

 ��������	
, ����	
, … , ����	
�    (1) 

 

where p is the global number of decision criteria. The sequence si is said to dominate another solution sj if 

the following applies: 

 ��: ����	
 � �����)  and   ��: ����	
 � �����
  (2) 

 

Figure 1 shows dominated and non-dominated solutions for a two-objective scheduling problem. 

 

FIGURE 1 HERE 

 

The standard permutation flowshop scheduling problem with due dates, in particular, can be formally 

enunciated as follows: a set of n jobs {J1, J2, …, Jn} has to be processed in sequence on m machines {M1, M2, 

…, Mm}. Each job consists of m operations (O1, O2, …, Om) and the j-th operation of each job must be 

processed on the j-th machine in the sequence. Each operation of a job is characterized by a processing time 

on each machine, leading to the definition of a n x m Processing Time Matrix (PTM) and by a due date 

(defining the n-sized Due Dates Vector, DDV). 
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The optimization criteria that have been used in the present study, in close accordance with Ishibuchi and 

Murata (1998), are the makespan (MS) and the maximum tardiness (MT) in the case of two-objective 

scheduling, being the total flowtime (TFT) the last criterion in the case of three-objective problems. 

 

3. Harmony Search Optimization 

Recently, Harmony Search Optimization (HSO) has been proposed as an algorithm that mimics music 

composing (Geem et al., 2001). Briefly, it tries to replicate the process that leads musicians to continuously 

adjust pitches and tunes to produce better harmonies and is based on the concept of an Harmony Memory 

(HM) that represents the acquired know-how of the music player. The creative process is made up of three 

different stages, during which the musician: 

1) draws from the HM to make the most of the past experiences; 

2) tries to modify the known melodies by adjusting pitches and changing notes in order to get new 

compositions; 

3) improvises and creates new harmonies from scratch, following inspiration. 

If the new melody sounds good (with respect to an aesthetic benchmark) it is inserted within the HM to 

increase and enhance the available repertoire. In mathematical terms this can be obtained by representing 

each harmony as a vector made up of exactly n elements, if n is the number of the variables that define the 

model. Each element within the vector corresponds to a note. The aesthetic benchmark is replaced by an 

appropriate fitness function (or more, in case of multi criteria optimization) and the problem can be easily 

brought back to the classical form reported in equation 1 (paragraph 2). Once the Harmony Memory Size 

(HMS) has been defined, the whole HM can be written as a matrix of HMS vectors: 

 

���
�� ��� ��� � ��� | ����
��� ��� � ��� | ����
! � � � | !��"#$ ��"#$ � ��"#$ | ���"#$
%&&

&'
 

 

The value of the fitness function(s) for each harmony is (are) included within the HM. 

The algorithm (Figure 2) starts by generating HMS random new harmonies. In general, each note (variable) 

should be chosen within its definition set (valid range) and considering the other notes that have already been 

inserted in order to avoid violated constraints. This issue can be easily overcome both by checking and 

adjusting the validity of the vector or by imposing penalties to the violating sequences. At each iteration a 

new harmony is generated in n successive steps (starting form position 1 to position n, where n is the number 

of variables) by means of three mechanisms: (i) random selection, (ii) memory considerations and (iii) pitch 

adjusting. 
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If the Harmony Memory Considering Rate (HMCR) is the rate representing the probability of choosing a 

note from the memory, the first method involves the random selection of a note from the valid range with a 

probability of 1 – HMCR. Therefore, a random number is extracted and, if its value is greater than HMCR 

and less than 1 a note is selected within the definition set: 

 �	( ) � * + 

 

where xi represents the variable at the current step and X is the above mentioned definition set. On the 

contrary, if the random value is less than HMCR a vector is randomly selected from the HM and the note 

corresponding to the current step is introduced within the new harmony: 

 �	( ) � * ��	� , �	� , … , �	"#$� 

 

If the constraints are somehow violated it is necessary to check the validity or to introduce penalties. Finally, 

as the musician modifies some notes to adjust their pitches to the neighboring ones, with the aim of obtaining 

a smooth and sound composition, so the algorithm requires to alter some variables with a certain probability 

(this is also referred to as Pitch Adjusting Rate, PAR). In practice, a note is randomly selected and its value is 

changed within the allowed range. 

If the new harmony is better than the worst one contained in the HM, with the respect to the fitness function 

(or referring to the Pareto optimality in the case of multiple objectives), the latter is overwritten to improve 

the knowledge base. The process is iterated up to the maximum number of iterations or until a particular 

terminating condition is satisfied. 

 

FIGURE 2 HERE 

 

The algorithm, modified and improved in several manners, has been successfully applied to some interesting 

engineering problems, such as structural design (Lee and Geem, 2004), water network design (Geem, 2006), 

traffic routing (Geem et al., 2005) and fluid leakage detection (Kim et al., 2001). 

 

4. A New Harmony Search for multi-objective permutation flowshop scheduling 

Since the HSO proved to be extremely performing while coping with some noteworthy engineering 

problems, it appears to be a good candidate to cope with the multi-objective standard permutation flowshop 

scheduling problem. The aim of the present work is that of showing its capabilities (both with respect to 

performances and quality of the solutions) and this is done by comparison with a well known and highly 

efficient GA. In particular, the mentioned GA is known in literature since it provides a large number of 

optimal solutions within short lapses of time. 
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To enhance the original HSO algorithm capabilities of exploring larger regions of the Pareto border while 

keeping a good computational speed some modifications have been introduced within the procedure. To 

begin with, the intrinsic structure of the algorithm remains almost unchanged: notes/variables represent jobs 

and a whole harmony is a sequence. Since each job can be introduced into a sequence only once, a strict 

check is carried out on all new harmonies and duplication of jobs within a sequence is not allowed. The 

MHSO continues to refer to the three classical mechanisms used to generate new harmonies (random 

selection, memory considerations and pitch adjusting). With respect to the quality of new generated 

harmonies, the multi-objective algorithm makes use of the known Pareto optimality definition with respect to 

the makespan, the maximum tardiness and, in the case of three-objective scheduling, the total flowtime 

criteria. Further, the algorithm introduces new concepts that help finding better solutions and moves a step 

forward in the direction of emulating the human behavior. A musician who improvises a new composition is 

influenced by early works (his/her own and those of other composers as well, that constitute the personal 

knowledge base) and usually tends to make the most of this heritage. The original HSO mimics this behavior 

by replicating a single note at time from a known harmony to the new one, but it lacks of the capability of 

introducing and preserving larger portions of a composition. It is worth noting that this aspect represents a 

notable advantage of genetic algorithms and, therefore, a similar process, named Large Portion Recovery 

(LPR) has been introduced within the HSO, along with the corresponding probability (Large Portion 

Recovery Ratio, LPRR). Practically speaking, this is obtained by performing, from time to time and in 

accordance to the LPRR, that is usually kept very small, a crossover and a mutation procedure on the best 

harmonies available within the HM. It is also known that most musicians are able to improvise new 

compositions for a period, after which they tend to re-use their early works, to take inspiration from the other 

composers, as creativity inevitably decreases over time, or simply to explore new and different musical 

genres. Sometimes this determines the flourishing of new inspiration and the overall improvement of their 

compositions. This aspect strictly resembles what occurs when the HSO, after a generally high number of 

iterations, becomes unable to explore new sections of the solution space and repeatedly visits the same 

sequences without further improvements. A solution, namely Harmony Recovery (HR), to this particular 

issue has been proposed and evaluated, based on a large scale LPR procedure. After a given number of 

iterations, that can be defined and controlled by means of an Harmony Recovery Ratio (HRR), the algorithm 

increases the recovery mechanism probability (acting on the LPRR) and the corresponding crossover 

activity. Doing so, the algorithms starts to take advantage of the most effective portions of the sequences that 

have been previously found. This step is preceded by a random regeneration of the HM (up to the 80% of the 

harmony memory can be updated, but generally it is suitable to update 50% or less of it), aimed to reduce the 

convergence of a large number of harmonies to a limited subset of the solutions space. To increase the 

capability of the algorithm of escaping from such unlikable situations, a random regeneration of the HM has 

also been forced whether the non-dominated memory (the so-called “elite”), that will be introduced and 

explained later, has not been updated within a given timeframe (usually a given percentage of the maximum 

number of iterations). 
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Consequently, the whole algorithm can be summarized as follows: 

1) the HM is randomly generated and the fitness functions are evaluated for each criterion and for each 

vector (as in the original HSO); 

2) the iterative procedure starts and lasts until the terminating conditions, to be defined for the specific 

problem under study, are met or the maximum number of iterations is reached. In the present work both 

the GA and the MHSO are stopped when the maximum number of iterations is reached. Since the aim of 

the study is to compare the two algorithms this allows to evaluate both speed and the relative quality of 

the solutions; 

3) for each iteration the following steps apply: 

a. if the current iteration number is less than a given amount, corresponding to the value of the HRR 

multiplied for the Maximum Number of Iterations (MNI) the HSO process is performed as usual 

(experience shows that good values for HRR are comprised between 0.6 and 0.8): 

i. a random number is extracted. If it is less than the LPRR (this value is kept very small, such 

as 0.001) then the LPR procedure is started and two harmonies from the HM are subjected to 

a two-points crossover operator to generate a new harmony. Indeed, harmonies are mere 

sequences and can be treated as chromosomes in a generic GA. The classical two-point 

crossover is here used to generate two new harmonies from two efficient parents: briefly, 

two random positions are selected within the parents and the corresponding chromosomes 

sections are plainly exchanged. The new harmony may also be subjected, in accordance to 

the PAR, to a pitch adjusting procedure as in the ordinary HSO. It is worth noting that this 

has been reduced to a mutation operator (both insertion and exchange of the elements of a 

sequence are randomly used), due to the fact that each job cannot be present more than once 

in each sequence. Also, the PAR may be optionally set linearly increasing between a 

minimum and a maximum values; 

ii. if the number is greater than LPRR the standard HSO procedure is performed. The worst - or 

better, an inefficient - harmony (the one that will be replaced by a new better solution) is 

picked on the basis of a roulette wheel selection process (Goldberg, 1989) rather than on the 

simple evaluation of the fitness function as in the original HSO. The procedure is based on 

the fact that the probability of each harmony of being selected and replaced is evaluated on 

the basis of a weighted fitness function of all criteria (with the same weights proposed by 

Ishibuchi and Murata (1998), that showed to be very effective). This is obviously greater for 

inefficient solutions. While on one hand the risk of removing good harmonies is kept very 

low due to a proper elitism procedure, on the other the algorithm prevents the threat of early 

convergence. Furthermore, this allows a straight and easy evaluation of the selection 

probability. Also, a local search procedure is started for every new harmony: the MHSO 

looks for a limited number of neighbors (carrying out a simple mutation procedure each 

time, where both insertion and exchange of the elements of a sequence are randomly used) 
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and, if a better solution emerges (here the Pareto optimality is used to evaluate the quality of 

the harmony), the original new sequence is overwritten. The previously selected inefficient 

harmony is finally replaced; 

b. on the other hand, if the current iteration number is greater than the value of the HRR multiplied 

for the Maximum Number of Iterations, the HR procedure is started: 

i. up to 80% of the current population can be randomly generated (and, necessarily, the old one 

overwritten), to simulate the fact that the musician begins to take inspiration from other 

composers or that he simply wants to explore new musical genres. This occurs when the 

above condition is met and allows the algorithm to move from a section of the Pareto border 

and to explore new portions of the solution space; 

ii. the LPRR is increased up to a maximum of 0.5 (experience shows that values between 0.01 

and 0.1 give the best results), and the algorithm goes on as usual; 

4) as briefly pinpointed before, at each iteration a proper elitism procedure is applied to the HM. The non-

dominated solutions found at every step are kept in a separate memory location that is punctually updated 

(i.e., solutions that become dominated when better ones are found are removed from the elite). In this 

case, to determine dominated and non-dominated harmonies, the algorithm refers to the Pareto optimality 

(as described by equations 1 and 2 of paragraph 2) rather than on the evaluation of the weighted fitness 

function of all criteria. To take advantage of this non-dominated memory, up to a maximum of 10% of the 

population size elite harmonies are inserted within the HM with the aim of improving the MHSO 

knowledge base, without forcing a premature convergence of the whole memory to a limited portion of 

the solution space (greater percentages, indeed, have shown to be particularly inefficient); 

5) if the non-dominated elite has not been updated within 1/6 of the maximum number of iterations (elite 

update delay) then a random regeneration (up to 80%) of the HM is forced. 

The complete MHSO procedure is hereafter summarized in the form of Pascal pseudo-code: 

 

generate random Harmony Memory; 

set LPRR to 0.0001 

while terminating conditions are not met or maximum iterations are not reached do 

    if (current iteration < HRR × MNI) or (LPRR = 0.5) then 

        extract a random number → Rand 

        if Rand < LPRR then 

            perform Large Portion Recovery (LPR) procedure to get a new harmony 

            extract a random number → Rand 

            if Rand < PAR then 

                perform Pitch Adjusting (mutation) procedure on the new harmony 

            end if 

        else 
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            perform standard HSO procedure and get new harmony → NHarmony 

            select inefficient harmony (roulette wheel selection) → IHarmony 

            perform local search procedure on NHarmony (in case of improvement overwrite) 

            if NHarmony improves IHarmony replaces it 

        end if 

    else 

        regenerate up to a maximum of 80% of current population 

        set LPRR to a maximum of 0.5 

    end if 

    perform elitism procedure (based on Pareto optimality) and update non-dominated elite 

    insert harmonies from elite to current population (up to a maximum of 10% of population size) 

   if elite not updated within 1/6 of MNI then regenerate up to 80% of current population 

end while 

 

It is also schematically reported if Figure 3. 

 

FIGURE 3 HERE 

 

 

5. Comparative analysis 

The MHSO presented in the paper has been compared with the Genetic Algorithm proposed by Ishibuchi and 

Murata (1998), that in the following will be indicated as Ishibuchi-Murata GA (IMGA). To this aim their 

formulation has been adopted with respect to: 

• the number of jobs and machines; 

• the generation of the initial population; 

• the selection of the objectives; 

• the setting of the operating parameters (that have been optimized as proposed by the authors themselves). 

This choice is mainly due to the fact that the above mentioned algorithm is known to be particularly effective 

in the context of the specific issue under analysis and that it refers both to two and three criteria optimization 

problems. Moreover, it is also known that the performances of GAs are seldom exceeded or even achieved 

by other procedures. Hence, it certainly represents a valuable benchmark. 

To begin with, the problems that have been examined in depth can be divided into two large sets, 

characterized by the number of optimization criteria (respectively 2 and 3) and each subdivided into five 

subsets with respect to the number of jobs (we assumed, respectively, n = 10, 20, 30, 50 and 100) and 

machines (we assumed, respectively, m = 5, 10, 15, 20 and 30). This choice is mainly due to the fact that the 
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IMGA has been tested by the authors (Ishibuchi and Murata, 1998) on similar problems (actually, they 

reported results for the two cases n = 10, m = 5 and n = 20, m = 10) and, therefore, this allows to perform a 

straightforward comparison. It is noteworthy that the IMGA has been tested with different sets of operating 

parameters (population size, crossover and mutation probabilities, elitism) with the aim of finding their best 

combinations before starting the comparative process. However, for smaller problems (n = 10, m = 5 and n = 

20, m = 10) the values proposed by the above mentioned authors still showed to be the best ones. For bigger 

problems (n = 30, m = 15, n = 50, m = 20 and n = 100, m = 30) the best combinations were chosen after a 

significant number of tests. 

The first set refers to a two-objectives optimization, where the adopted criteria are the makespan and the 

maximum tardiness, whereas the latter is aimed to a three-objectives optimization, being the total flowtime 

the last criterion. The initial population, the processing times and the due dates have been calculated as 

proposed in Ishibuchi and Murata (1998) and each set of these data has been used unaltered both when 

running the MHSO and the IMGA with the aim of allowing an easy comparison of the algorithms. In brief, 

the processing time of all jobs in a sequence have been specified as random numbers in the interval [1, 99] 

(or, in other words, they have been extracted from a discrete uniform distribution in the interval [1, 99]), 

whereas the due date of the single job has been evaluated at first on the basis of a randomly generated 

sequence. Indeed, given the completion time of the i-th job, namely CTM(i,m), the corresponding due date 

has been assumed equal to the following: 

 ,,��
 - ./0��, �
 1 23�45�67100,100: 
 

Also, the fitness functions used for the linear scaling roulette wheel selection strategy and the strategy itself 

(as formulated by Goldberg, 1989) have been borrowed by the same work. The former is represented by the 

weighted sum of the adopted criteria, or, concisely: 

 

���
 - 7 ; <	�	��
=
	>�  

 

where k is the number of criteria, ωi is the weight, fi(s) is the evaluation of the i-th criterion for the sequence 

s and, finally, f(s) is the overall fitness function. In the present work the same weights (constant multipliers) 

proposed by Ishibuchi and Murata (1998) have been adopted since the variance of the makespan is much 

smaller than that of the maximum tardiness (and differs from that of the total flowtime too), suggesting a 

normalization process aimed to handle the scheduling criteria equally. Furthermore, after several tests, they 

showed to be very effective and sensibly enhanced the whole algorithm. If Ψ designates the whole HM, it is 

certainly possible to evaluate its worst solution fworst(Ψ). In the case of a minimization problem this 

corresponds to the higher value of the fitness function. Hence, the selection probability can be defined as: 
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This value is used both when selecting two candidate sequences for the crossover required by the Large 

Recovery Procedure and when a single sequence is picked up to be overwritten by a better solution. In this 

last circumstance, owing to the fact that it is necessary to substitute the worst candidate with the higher 

probability, the selection is performed referring to the complementary of the above calculated chance ratio. 

 

5.1 The 10 jobs – 5 machines problem with 2 objectives 

A first class of 100 problems has been generated for n = 10 and m = 5, as this is the first test performed by 

Ishibuchi and Murata. This class is also interesting in that it allows to perform the exhaustive search and, 

therefore, to refer to a significant benchmark. The GA parameters have been set as follows: 

• PopSize = 20; 

• crossover probability = 0.9; 

• mutation probability = 0.3. 

The number of non-dominated chromosomes re-inserted within the population at each step has been fixed to 

3 and the local search depth to 2. Finally, the Maximum Number of Iterations (MNI) has been put equal to 

10000, in order to evaluate PopSize x MNI = 200000 chromosomes. 

As an example, referring to the processing times and the due dates reported in Table 1 and Table 2, the 

IMGA required about 2.55 seconds on a Core 2 Duo T7200 processor (2.0 GHz) with 2 GB RAM. 

 

TABLE 1 HERE 

 

TABLE 2 HERE 

 

On average, running 100 times the same problem, the algorithm found 12 non-dominated heuristic Pareto 

points for a total of 62 sequences, as depicted by small orange triangles in Figure 4. Instead, the exhaustive 

solution (represented in Figure 4 by diamonds) required about 91.45 seconds to weigh up 10! sequences, 

found 11 border points for a total of 111 sequences and showed that 4 out of 12 of the border points found by 

the IMGA were dominated by the optimal border. 

 

FIGURE 4 HERE 

 

The same problem was in turn submitted to a MHSO characterized by the following parameters: 
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• HMS = 12; 

• HMCR = 0.95; 

• PAR = linearly increasing between 0.05 and 0.35; 

• LPRR = 0.0001; 

• HRR = 0.7. 

Referring to the maximum number of iterations and considering that the MHSO generates a single sequence 

at each step, whereas the IMGA generates PopSize chromosomes at each iteration, it was decided to set the 

value equal to PopSize × MNI. Actually, due to the fact that the MHSO performs the Harmony Recovery 

Procedure during the late iterations and that this involves a crossover procedure on the whole HM, it 

generally would examine a greater number of solutions than IMGA. Therefore, a constraint has been set to 

force the number of evaluated sequences to coincide with that of the IMGA. The algorithm required about 

4.91 seconds to evaluate 200000 sequences and found the whole Pareto border (11 points) corresponding to 

the exhaustive solution (Figure 5), for a total of 96 sequences (86.5% of the complete solution set). 

 

FIGURE 5 HERE 

 

On average, the IMGA required about 2.5 seconds to evaluate 200000 chromosomes, obtaining 7.9 Pareto 

points and a total of 51.7 non-dominated sequences. Actually, a simple comparison with the solutions found 

by the MHSO showed that IMGA was able to find an average of 4.8 non-dominated Pareto points and a total 

of 42.5 non-dominated sequences, the rest being taken over by the MHSO frontier. Indeed, the MSHO 

required about 5.13 seconds to discover 7.1 Pareto border points and 69.8 non-dominated sequences. In this 

case, the solutions always coincided with those found by the exhaustive (except two cases, where the MHSO 

missed one point) and were never dominated by those found by the IMGA. 

To better illustrate these results, a subset constituted by the first 10 trials has been reported in detail in Table 

3. 

 

TABLE 3 HERE 

 

Briefly, the PB column reports the Pareto border points (i.e., the non dominated solutions) found both by 

MHSO and IMGA, whereas the EPP columns shows the “equipollent” non-dominated points (two different 

sequences can be said “equipollent” if they share the same Pareto Point, or, in other words, if they give the 

same solutions for all the scheduling criteria). The third column reports the total number of non-dominated 

sequences (i.e., the sum of PB and EPP) and Time indicates the seconds that the algorithms took to get the 

solutions. Further, Act PB and Act EP refer to the compared non dominated borders found by both 

algorithms. Concisely, they show how many solutions are not dominated by those found by the other 

algorithm. Finally, the last column indicates whether the sequences coincide with those found by the 
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exhaustive procedure. A second trial (the same sets of data) has been carried out modifying the MNI for the 

IMGA (this also modifies the maximum number of iterations for the MHSO). To improve the IMGA 

performances, it was decided to let run the algorithm for exactly 100000 iterations. For instance, with respect 

to the first problem (extensively discussed above), the algorithm required on average (over 100 runs) 25.91 

seconds to evaluate 2000000 chromosomes and discovered all the 11 Pareto points and a total of 81 non-

dominated solutions on 111 (72.97%). On the other hand, the MHSO needed about 66.72 seconds to 

elaborate 2000000 harmonies and to find all the 11 Pareto points and a total of 106 non-dominated sequences 

on 111 (95.49%). It emerged, however, that the MHSO spent most of the time in verifying the “equipollent” 

non-dominated memory. Therefore, a test has been performed introducing a constraint on the number of 

iterations: whereas the MNI for the IMGA has been left unaltered, the MHSO has been forced to stop after 

1/3 of the original value. Results confirmed that the algorithm was still able to find the whole Pareto border 

in most cases, along with a greater number of “equipollent” solutions than the IMGA in less time. Indeed, on 

average, it found more than the 98% of the “equipollent” solutions evaluated in the previous test in 17.75 

seconds. A further test has been performed increasing the IMGA population size to 30 chromosomes, but 

results did not differ significantly from those described above. 

 

5.2 The 20 jobs – 10 machines problem with 2 objectives 

The following step entailed the analysis of a two-objective scheduling with n = 20 and m = 10. The trial was 

carried out based on 20 runs. Following the indications given by Ishibuchi and Murata the IMGA settings 

were left unchanged with respect to the previous test, with the exception of the populations size, fixed to 30, 

and the MNI that was set to 50000 iterations in order to evaluate 1500000 chromosomes. Referring to the 

MHSO, only the memory size was changed to 24 harmonies. 

As the exhaustive algorithm cannot be applied to this case, in order to compare the quality of the solutions 

two supplementary tools were used: (i)a graphical representation of the non-dominated Pareto frontier size 

evolving over time (Non-dominated growing rate, NDGR) and (ii) the Esbensen quality estimation 

(Esbensen, 1996). The former allows to get a direct and intuitive overview of the ability of the algorithm to 

find new solutions and the speed with which the non-dominated frontier improves (Figure 6), while the latter 

evaluates the average quality of the solutions. In addition, it has been introduced since it has been 

successfully used by Ishibuchi and Murata to assess the quality of the IMGA solutions and due to the fact 

that it represents a valuable tool to evaluate the quality also in a three-dimensional objective space (i.e., when 

dealing with 3 objective problems). 

 

FIGURE 6 HERE 

 

Briefly, following Esbensen the quality of a set of non-dominated solution can be estimated by randomly 

generating a large number (k) of weights and - using these values - by calculating the objective function over 

Page 14 of 90

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

15 

 

the entire non-dominated population. Greater values (smaller in modulus) indicate better solution sets. In 

brief, it is possible to write: 

 

J�K
 - 1L ; �3� M7 ; <�	
N

�>� ����
O=
	>�  

where: 

• Q(S) is the quality of the whole set of non-dominated solutions; 

• k is the large number of weights sets (in the following k will be assumed equal to 10000); 

• m is th number of criteria; 

• <�	 indicates the weight for the j-th criterion within the i-th set. Weights are randomly generated and are 

normalized to 1; 

• fj(s) is the evaluation of the j-th criterion for the sequence s. 

The IMGA behaved well as usual, being able to find good non-dominated borders. However, the MHSO 

always outperformed it. On average, over 20 tests, the IMGA found 16.2 Pareto points and a total of 36.7 

solutions in 42.83 seconds. On the other hand, the MHSO found 12.65 Pareto points and a total of 188.6 

solutions in 65.78 seconds. However, despite of the little advantage with respect to the computing time, the 

true non-dominated Pareto points discovered by the IMGA were only 2.66 (with a total of non-dominated 

solutions equal to 1.73), being the remaining dominated by those found by the MHSO. To confirm this 

tendency, the Esbensen index resulted equal to -718.98 for the IMGA and to -532.45 for the MHSO. Only a 

few common Pareto points were found during these tests. 

To better illustrate these results, a subset constituted by the first 10 trials has been reported in detail in Table 

4. 

 

TABLE 4 HERE 

 

The graphical representation of the NDGR shows, on average, that the MHSO finds many non-dominated 

solutions very early, at the beginning of the run, and, later on, it improves the Pareto border continuously. At 

a later stage, the algorithm, thanks to the Harmony Recovery procedure, begins to explore new border 

portions finding other good solutions. On the contrary, the IMGA tends to maintain the non-dominated 

border unchanged after a certain amount of iterations and, often, is unable to improve it anymore. This 

behavior is clearly visible in Figure 7. 

 

FIGURE 7 HERE 

 

5.3 The 10 jobs – 5 machines and 20 jobs – 10 machines problems with 3 objectives 
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The second set of tests was aimed to solve the scheduling problem with respect to three objectives. After 

some runs necessary to set the parameters correctly, both the IMGA and the MHSO were modified only with 

respect to the population size (respectively, 30 chromosomes and 18 harmonies) as changes in the other 

parameters proved to be ineffective. To show the results of the 10 jobs – 5 machines problem, a subset 

constituted by the first 10 runs has been reported in detail in Table 5. 

 

TABLE 5 HERE 

 

The outcomes prove that the MHSO again outperformed the IMGA, being able to find a larger amount of 

true non-dominated Pareto points. The influence the Harmony Recovery procedure was even greater than in 

the previous cases. It emerges that the MHSO often finds a border that coincides with the one found by the 

exhaustive procedure, whereas the IMGA rarely identifies more than 50% of it. 

The following step involved the analysis of a three-objective scheduling with n = 20 and m = 10. The test 

was carried out based on 20 runs. The IMGA settings were left unchanged with respect to the previous test, 

with the exception of the populations size, fixed to 30, and the MNI that was set to 50000 iterations in order 

to evaluate 1500000 chromosomes. Referring to the MHSO, only the memory size was increased to 36 

harmonies. A subset constituted by the first 10 runs has been reported in detail in Table 6. Corresponding 

examples of NDGRs are shown in Figure 8. 

 

TABLE 6 HERE 

 

FIGURE 8 HERE 

 

Again, it emerged that the MHSO spent most of the time in verifying the “equipollent” non-dominated 

memory and, therefore, it took more time to complete the job. A test has been performed introducing a 

constraint on the number of iterations: whereas the MNI for the IMGA has been left unchanged, the MHSO 

has been forced to stop after half of the original value. Results confirmed that the algorithm was still able to 

find the whole Pareto border in most cases, along with a greater number of “equipollent” solutions than the 

IMGA in less time. The outcomes have been reported in Table 7 and the NDGR corresponding to the first 

run is shown in Figure 9. 

 

TABLE 7 HERE 

 

FIGURE 9 HERE 

 

Figure 10 shows the Pareto borders (in two dimensions, with respect to the makespan and the tardiness 

criteria) for the MHSO and the IMGA found at the end of the first run, that required similar computation 
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times (45.66 and 43.73 seconds respectively). After comparing the two sets of data the whole IMGA border 

results to be dominated, confirming that even when evaluating half sequences with respect to the IMGA, the 

MHSO is able to appraise a very good solution. 

 

FIGURE 10 HERE 

 

This is also supported by the average values of the Esbensen index. Indeed, for the IMGA it remains almost 

unchanged (as obvious, since no modifications were introduced within the algorithm), while for the MHSO it 

grows a bit (in modulus). This means a worse solution with respect to the unconstrained case, but the MHSO 

still performs better than the IMGA. 

 

5.4 The 30 jobs – 15 machines problem with 2 and 3 objectives 

To further verify the algorithm capabilities additional tests were carried out on larger problems. Owing to the 

fact that Ishibuchi and Murata (1998) do not report data for these sets of problems some efforts were devoted 

to test the IMGA and to fix the parameters that give the best results before starting the comparative analysis. 

In particular, it emerged that the most sensible parameter is the population size, whereas the crossover and 

the mutation probabilities are effective in a limited range around the values proposed by the authors (these 

were, therefore, maintained almost unchanged). 

In the case of n = 30 and m = 15 the best performance for the IMGA was reached with a population size of 

40 chromosomes and 50000 iterations. The crossover and mutation probabilities have been taken equal to 0.9 

and 0.35 respectively. The number of non-dominated chromosomes re-inserted within the population at each 

step has been fixed to 3 and the local search depth to 2 as for smaller problems. Comparison was carried out 

with a MHSO having a population of 36 harmonies. Also, the MHSO was forced to stop after evaluating 

40% of the solutions evaluated by the IMGA, with the aim of making it more performing in terms of 

computational time (as already stated, after a number of iterations the MHSO spends most of the time in 

verifying the “equipollent” non-dominated memory and for large problems this penalizes it in terms of time). 

The test consisted of 100 runs and results showed that the IMGA required on average 23.69 seconds to find 

23 non dominated Pareto points and 41 equipollent solutions (the corresponding Esbensen quality estimation 

was equal to -1468.60). On the other hand, the MHSO found on average 28 Pareto points and 63 equipollent 

solutions in 18.03 seconds (with an Esbensen estimation of -1432.06). Comparing the two Pareto borders it 

emerged, however, that the MHSO again outperformed the IMGA: on average the former found 9 Pareto 

border points and 22 equipollent solutions that the IMGA did not discover or dominate. On the other hand, 

the latter found 4 Pareto points and 5 equipollent solutions that were not present within the solutions 

obtained by the MHSO. The IMGA gave better results (a better Pareto border and the corresponding 

Esbensen estimation) only 7 times on 100 runs. Results are summarized in Table 8, where ND is the column 

of the non-dominated solutions, Eqp that of the equipollent non-dominated points for the two algorithms. On 
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the other hand, the Exclusive ND and Eqp represent the non dominated solution that each algorithm did not 

discover or dominate with respect to the other. 

 

TABLE 8 HERE 

 

The same test was repeated introducing the third criterion and modifying the population size parameter both 

for the IMGA and the MHSO (respectively, 50 chromosomes and 40 harmonies). The other parameters were 

left unchanged (after some tests these proved to be the most efficient), with the exception of the MHSO that 

was forced to stop after evaluating 50% of the solutions evaluated by the IMGA. The MHSO performed even 

better than in the previous case, being able to find on average 86 non dominated points and 42 equipollent 

solutions, whereas the IMGA found 92 non dominated points and 56 equipollent solutions. However, 

comparing the Pareto borders it emerged clearly that on average the former found 51 Pareto border points 

and 2 equipollent solutions that the IMGA did not discover, while the latter found 9 Pareto points and 5 

equipollent solutions that were not present within the solutions obtained by the MHSO. The average 

Esbensen quality estimations were, respectively, -16905.71 and -17501.43. 

 

5.5 The 50 jobs – 20 machines problem with 2 and 3 objectives 

In the case of n = 50 and m = 20 with 2 objectives the best performance was obtained with a population size 

of 60 chromosomes and 50000 iterations for the IMGA (again, the crossover and mutation probabilities have 

been taken equal to 0.9 and 0.35 respectively. The number of non-dominated chromosomes re-inserted 

within the population at each step has been fixed to 3 and the local search depth to 2) and 40 harmonies for 

the MHSO. Again, the MHSO was forced to stop after evaluating 50% of the solutions evaluated by the 

IMGA, with the aim of making it less time consuming. The test consisted of 100 runs and results showed that 

the IMGA required on average 73.12 seconds to find 27 non dominated Pareto points and 21 equipollent 

solutions (the corresponding Esbensen quality estimation was equal to -2373.04). On the other hand, the 

MHSO found on average 24 Pareto points and 33 equipollent solutions in 65.71 seconds (with an Esbensen 

estimation of -2300.85). Comparing the two Pareto borders it emerged again that the MHSO worked better 

than the IMGA: on average the former found 11 Pareto border points and 31 equipollent solutions that the 

IMGA did not discover. On the other hand, the latter found 7 Pareto points and 11 equipollent solutions that 

were not present within the solutions obtained by the MHSO. The IMGA gave better results (a better Pareto 

border and the corresponding Esbensen estimation) only 5 times on 100 runs. 

The runs were repeated for the three objective problem. This time, all parameters were left unchanged with 

respect to the previous test, as these proved to be the most efficient in a significant number of tests. The 

MHSO performed satisfactorily, being able to find on average 31 non dominated points and 67 equipollent 

solutions, whereas the IMGA found 115 non dominated points and 77 equipollent solutions. Comparing the 

Pareto borders it emerged that on average the MHSO found 31 Pareto border points and 2 equipollent 
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solutions that the IMGA did not discover or dominate, while the latter found 13 Pareto points and 0 

equipollent solutions that were not present within the solutions obtained by the MHSO. The average 

Esbensen quality estimations were, respectively, -43090.63 and -46445.67. 

 

5.6 The 100 jobs – 30 machines problem with 2 and 3 objectives 

Finally, the algorithm was applied to the case of n = 100 and m = 30 with 2 and 3 criteria. Referring to the 

IMGA the best performance was obtained with a population size of 60 chromosomes and 40000 iterations. 

Again, the crossover and mutation probabilities have been taken equal to 0.9 and 0.35 respectively. The 

number of non-dominated chromosomes re-inserted within the population at each step has been fixed to 3 

and the local search depth to 2. The same problem was in turn submitted to a MHSO characterized by the 

following parameters: 

• HMS = 40; 

• HMCR = 0.65; 

• PAR = linearly increasing between 0.05 and 0.15; 

• LPRR = 0.0001; 

• HRR = 0.85. 

The MHSO was forced to stop after evaluating 60% of the solutions evaluated by the IMGA to reduce the 

computing time. With respect to the two-criteria problem, the test consisted of 100 runs and results showed 

that the IMGA required on average 98.56 seconds to find 36 non dominated Pareto points and 11 equipollent 

solutions (the corresponding Esbensen quality estimation was equal to -5123.74). On the other hand, the 

MHSO found on average 25 Pareto points and 9 equipollent solutions in 109.93 seconds (with an Esbensen 

estimation of -5068,77). Comparing the two Pareto borders it emerged again that the MHSO worked better 

than the IMGA: on average the former found 13 Pareto border points and 7 equipollent solutions that the 

IMGA did not discover. On the other hand, the latter found 5 Pareto points and 10 equipollent solutions that 

were not present within the solutions obtained by the MHSO. All other points found by the IMGA were 

dominated by the MHSO border. The IMGA gave better results (a better Pareto border and the corresponding 

Esbensen estimation) 9 times on 100 runs. 

The runs were subsequently repeated for the three objective problem. All parameters were left unchanged 

with respect to the previous test, as these proved to be the most efficient in a significant number of runs. The 

MHSO found on average 168 non dominated points and 5 equipollent solutions, whereas the IMGA found 

143 non dominated points and 2 equipollent solutions. However, comparing the Pareto borders it emerged 

that on average the MHSO found 76 Pareto border points and 1 equipollent solutions that the IMGA did not 

discover or dominate, while the latter found 39 Pareto points and 0 equipollent solutions that were not 

present within the solutions obtained by the MHSO. The average Esbensen quality estimations were, 

respectively, -162157.12 and -169322.37. For such large problems, during the tests the IMGA showed to be 
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somewhat faster than the MHSO. Indeed, the IMGA required on average about 102 seconds to run, whereas 

the MHSO, evaluating 60% of the solutions calculated by the IMGA, needed about 123 seconds to complete. 

Results of this test are summarized in Table 9. 

 

 

5.7 Kruskal-Wallis hypothesis test for homogeneity 

To complete the validation of the algorithm, a Kruskal-Wallis hypothesis test for homogeneity (Law and 

Kelton, 1991) was performed to show that the non dominated Pareto border found by the MHSO 

outperforms the IMGA. The test was applied to the whole set of problems and showed that the MHSO 

obtained efficient solutions. Fox example, in the case of the 50 jobs, 20 machines and two criteria problem 

based on 50 runs (i.e., 50 different problems) for each algorithm, the statistic (T) was evaluated for two 

independent samples (k = 2) and at a level α = 0.99. Results clearly showed that the null hypothesis can be 

rejected, being T = 28.77 and P�Q�,�QR.TT�  = 6.635 (where P=Q�,�QU�  is the upper 1 – α critical value for a Chi-

square distribution with k – 1 degrees of freedom). When the test was performed with respect to the 100 jobs, 

30 machines problem there was evidence that the null hypothesis can be rejected again, being T = 21.15. The 

difference between T and P=Q�,�QU�  is even greater for smaller problems. Consequently, the Pareto border 

found by the MHSO is actually different from the one found by the IMGA and, considering the Esbensen 

quality estimations, it is possible to affirm that the modified Harmony Search behaved better that the Genetic 

Algorithm. 

 

 

Conclusions 

The paper has presented a modified Harmony Search Optimization (MHSO) algorithm applied to multi-

criteria permutation flowshop scheduling problems with due dates. Also, the results of a comparative 

analysis with respect to the Genetic Algorithm (GA) proposed by Ishibuchi and Murata (1998) are presented, 

with the aim of showing its remarkable performances. This choice is due to the fact that the mentioned GA is 

known to be particularly effective in the solution of the above mentioned problem. It is also known that in 

similar situations the performances of GAs are seldom exceeded or even achieved by other procedures 

representing, therefore, a valuable benchmark. 

The problems that have been examined in depth can be divided into two large sets, characterized by the 

number of optimization criteria (respectively 2 and 3) and each subdivided into two subsets with respect to 

the number of jobs (respectively, n = 10, 20, 30, 50 and 100) and machines (we assumed, respectively, m = 

5, 10, 15, 20 and 30). The first set refers to a two-objectives optimization, where the adopted criteria are the 

makespan and the maximum tardiness, whereas the latter is aimed to a three-objectives optimization, being 

the total flowtime the third criterion. 
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The outcomes show that the MHSO outperforms the IMGA, being able to find a larger amount of true non-

dominated Pareto points. When applied to small sized problems (n = 10), the exhaustive evaluation has 

shown that the MHSO often finds the whole border. As the exhaustive algorithm cannot be applied to larger 

problems, in order to compare the quality of the solutions two supplementary tools have been introduced: (i)a 

graphical representation of the non-dominated Pareto frontier size evolving over time and (ii) the Esbensen 

quality estimation (Esbensen, 1996). To complete the validation of the algorithm a Kruskal-Wallis 

hypothesis test for homogeneity has been performed to show that the non dominated Pareto borders found by 

the MHSO actually outperform those found by the IMGA. 

Due to the fact that the MHSO takes more time than the GA when evaluating the same number of sequences, 

constraints have been introduced to the number of iterations of the MHSO to verify its performances even in 

unfavorable situations. Results clearly show the validity of the proposed algorithm in that it still outperforms 

the GA in several tests. 

With respect to potential future works, the obtained results suggest to enhance the neighborhood search 

procedure to speed up the algorithm and to adapt it to other problems such as, for instance, layout 

optimization and network analysis (in particular Hub-and-Spoke problems). Also, it would be useful to 

develop the algorithm integrating it with other metaheuristic methods (GAs, Simulated Annealing, etc.) in an 

attempt to further improve its overall performance. 
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Table captions 

 

Table 1 – Processing times for a 10 jobs – 5 machines problem 

Table 2 – Due dates for a 10 jobs – 5 machines problem 

Table 3 – Outcomes of 10 runs for a 10 jobs – 5 machines – 2 objectives problem 

Table 4 – Outcomes of 10 runs for a 20 jobs – 10 machines – 2 objectives problem 

Table 5 – Outcomes of 10 runs for a 10 jobs – 5 machines – 3 objectives problem 

Table 6 – Outcomes of 10 runs for a 20 jobs – 10 machines – 3 objectives problem 

Table 7 – Outcomes of 10 runs for a 20 jobs – 10 machines – 3 objectives problem with constraints on the 

MHSO iterations 

Table 8 – Average outcomes of 100 runs for a 30 jobs – 15 machines – 2 objectives problem 

Table 9 – Average outcomes of 100 runs for a 100 jobs – 30 machines – 3 objectives problem 
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Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 

Job 1 85 31 3 84 18 

Job 2 98 8 94 69 7 

Job 3 26 75 30 24 43 

Job 4 18 10 9 25 11 

Job 5 44 13 96 45 7 

Job 6 42 10 50 39 87 

Job 7 96 42 81 13 28 

Job 8 15 84 33 27 4 

Job 9 96 39 14 97 93 

Job 10 49 72 83 81 87 

 

Table 1 – Processing times for a 10 jobs – 5 machines problem 
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Due 1 92 

Due 2 258 

Due 3 321 

Due 4 432 

Due 5 599 

Due 6 666 

Due 7 772 

Due 8 852 

Due 9 928 

Due 10 928 

 

Table 2 – Due dates for a 10 jobs – 5 machines problem 
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Table 3 – Outcomes of 10 runs for a 10 jobs – 5 machines – 2 objectives problem 
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Table 4 – Outcomes of 10 runs for a 20 jobs – 10 machines – 2 objectives problem 
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Table 5 – Outcomes of 10 runs for a 10 jobs – 5 machines – 3 objectives problem 
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Table 6 – Outcomes of 10 runs for a 20 jobs – 10 machines – 3 objectives problem 
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Table 7 – Outcomes of 10 runs for a 20 jobs – 10 machines – 3 objectives problem with constraints on the 

MHSO iterations 
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Table 8 – Average outcomes of 100 runs for a 30 jobs – 15 machines – 2 objectives problem 
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Table 9 – Average outcomes of 100 runs for a 100 jobs – 30 machines – 3 objectives problem 
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Figure captions 

 

Figure 1 – Dominated (square points) and non-dominated (rounded points) solutions 

Figure 2 – HSO algorithm flow diagram 

Figure 3 – MHSO algorithm flow diagram 

Figure 4 – IMGA and Exhaustive Pareto non-dominated frontier for a two-objective problem 

Figure 5 – IMGA (triangles), MHSO (circles) and exhaustive Pareto (diamonds) non-dominated frontier for 

a two-objective problem 

Figure 6 – NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 2 objectives 

problem 

Figure 7 – NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 2 objectives 

problem 

Figure 8 – Example of NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 3 

objectives problem 

Figure 9 – NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 3 objectives 

problem with constraints on the MHSO iterations 

Figure 10 – MHSO (circles) and IMGA (triangles) Pareto borders 
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Figure 1 – Dominated (square points) and non-dominated (rounded points) solutions  
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Figure 4 – IMGA and Exhaustive Pareto non-dominated frontier for a two-objective problem  
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Figure 5 – IMGA (triangles), MHSO (circles) and exhaustive Pareto (diamonds) non-dominated 
frontier for a two-objective problem  
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Figure 6 – NDGR for the MHSO (thick line) and for the IMGA  
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Figure 7 – NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 2 
objectives problem  
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Figure 8 – Example of NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines 
– 3 objectives problem  
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Figure 10 – MHSO (circles) and IMGA (triangles) Pareto borders  
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Abstract 

This paper presents a Modified Harmony Search Optimization Algorithm (MHSO), specifically designed to 

solve two and three-objectives permutation flowshop scheduling problems, with due dates. To assess its 

capability, five sets of scheduling problems have been used to compare the MHSO with a known and highly 

efficient Genetic Algorithm (GA) chosen as benchmark. Obtained results show that the new procedure is 

successful in exploring large regions of the solution space and in finding a significant number of Pareto non-

dominated solutions. For those cases where the exhaustive evaluation of sequences can be applied the 

algorithm is able to find the whole non-dominated Pareto border, along with a considerable number of 

solutions that share the same optimal values for the considered optimization parameters. 

To validate the algorithm, five sets of scheduling problems are investigated in depth in comparison with the 

GA. Results obtained by both methods (exhaustive solutions have been provided as well for small sized 

problems) are fully described and discussed. 

 

Keywords: Permutation flowshop scheduling; Multi-criteria methodologies; Genetic Algorithms; Harmony 

Search Optimization. 

 

1. Introduction 

Flowshop scheduling has attracted many researchers over time since it was firstly proposed by Johnson in 

1954 (see, for example, Dannenbring, 1977, Lageweg et al., 1978, Potts, 1980, Osman and Potts, 1989, 

Pinedo, 1995, Nowicki and Smutnicki, 1996, Carlier and Rebai, 1996, Cheng et al., 1997, Haouari and 

Ladhari, 2003, Srikanth and Barkha, 2004, Ladhari and Haouari, 2005, Tseng and Lin, 2009) and has been 

extensively investigated by researchers both with single (refer, for instance, to Campbell, 1970, Ignall and 

Schrage, 1965, Nawaz et al., 1983) and multi-objective techniques (an extensive review is given in T’Kindt 

and Billaut, 2001). As it notoriously represents a computationally NP-hard problem and exhaustive 

evaluation applies only to undersized cases (i.e., when the number of job is reasonably small), most of the 

proposed approaches have focused on the use of optimization or on the adoption of metaheuristic techniques 

for single objective flowshop scheduling problems (Pan et al., 1997, Stevens et al.,1997, Cheng et al., 2001, 

Grabowski and Wodecki, 2004, Rajendran and Ziegler, 2005, Tasgetiren et al., 2007, Rajkumar et al., 2009, 

Lin et al., 2009). Literature on the subject is extensive and a comprehensive survey of makespan 

minimization from early works up to recent approaches of metaheuristics is provided by Hejazi et al. (2005), 

whereas a broad review of the evolution of the available methods over time is presented in Gupta and 
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Stafford (2006). It is worth noting that the use of multiple criteria enables a more practical solution for the 

decision makers (T’Kindt and Billaut, 2001). Indeed, single criterion optimizations do not consider the 

important trade-offs that intrinsically characterize the scheduling problem. Conversely, whether multiple 

objectives are optimized properly and conjointly, the solution narrows down to a limited subset of 

optimal/efficient feasible schedules among which the analyst may choose after appropriate considerations on 

the criteria themselves. Schaffer (1985) firstly introduced multi-criteria genetic algorithms (MCGA) and, 

since then, some modified MCGA procedures have been proposed to improve both the quality of the 

solutions and the speed of the search algorithms (Murata et al., 1996, Ponnambalam et al., 2004). Other 

methods have been applied as well. For example, Gangadharan et al. (1994) proposed a Simulated Annealing 

algorithm for two-criteria scheduling problems. Rajendran (1994) approached the problem of scheduling in 

flowshop and flowline-based manufacturing cell with the bicriteria of minimizing makespan and total 

flowtime of jobs. Cao et al. (2003) worked on production scheduling problems in manufacturing systems 

with parallel machine flowshops. The authors developed a mathematical programming model for combined 

part assignment and job scheduling. The objective was to minimize a weighted sum of production cost and 

the cost incurred from late product delivery Interesting efforts have been made to adapt Multi-Objective 

Immune Algorithms (MOIA) to scheduling problems (Tavakkoli-Moghaddam et al., 2007). Khan et al. 

(2007) addressed the problem of minimizing the weighted sum of makespan and maximum tardiness in an 

m-machine flow shop environment using a metaheuristic called Greedy Randomized Adaptive Search 

Procedure (GRASP). Yandra et al. (2007) discussed the application of a genetic algorithm featuring 

heterogeneous population to solve multi-objective flowshop scheduling problems. Braglia et al. (2009) 

presented a new heuristic for solving the flowshop scheduling problem that aims to minimize makespan and 

maximum tardiness. In this case, the Technique For Order Preference By Similarity of Ideal Solution 

(TOPSIS) algorithm is integrated with the Nawaz-Enscore-Ham (NEH) heuristic to generate a set of 

potential scheduling solutions. All the above mentioned techniques give interesting results, being able to 

evaluate a significant number of optimal or near-optimal solutions with reasonable computing efforts. 

Recently, the Harmony Search Optimization (HSO), an algorithm that mimics the music composition 

processes to explore the space of the feasible solutions, has been introduced by Geem et al. (2001). Although 

HSO has shown to be effective in most engineering optimization problems (Lee et al., 2004, Geem et al., 

2005, Geem, 2006, Kim et al., 2001,Kim et al., 2006), it has not been applied yet to scheduling issues. 

Owing to this, the present work presents a modified Harmony Search Optimization Algorithm (MHSO) 

addressed to solve two and three-objective permutation flowshop scheduling problems with due dates. 

Compared with a known and highly efficient GA (Murata et al., 1996), the new algorithm shows to be 

successful in exploring large regions of the solution space and in finding a large amount of feasible efficient 

solutions. For those cases where the exhaustive evaluation of sequences can be applied the algorithm is also 

able to find the whole non-dominated Pareto frontier in a large number of instances having the same initial 

data, along with a considerable number of solutions that share the same efficient values for the considered 

optimization parameters (in the following these will be called “equipollent” solutions). 
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The paper is organized as follows. Firstly, the multi-objective permutation flowshop scheduling problem is 

briefly presented and discussed, along with the parameters that have been considered for optimization. 

Following, the standard HSO and the proposed MSHO are described in detail. Finally five sets of scheduling 

problems are investigated in comparison with the GA proposed by Ishibuchi and Murata (1998), being the 

latter one of the most effective algorithms proposed in literature to cope with the subject. Results obtained 

with both methods (exhaustive solutions have been provided as well for small sized problems) are fully 

described and discussed. 

 

2. The multi-objective permutation flowshop scheduling problem with due dates 

Multi-objective scheduling enables a more practical solution for the decision makers as it allows to consider 

at one time and in a suitable manner a broader range of decision criteria. However, due to the fact that a 

solution that optimizes all the considered criteria often does not exist, a new definition of optimality must be 

introduced. Here, in particular, we refer to the Pareto optimality as defined by T’Kindt and Billaut (2001). In 

brief, multi-objective flowshop scheduling algorithms (MOFSA) aim to find (all or most of) the sequences 

that minimize (or maximize, if the case) the whole set of decision criteria or, in other words, the Pareto non-

dominated frontier of the solution space. Mathematically speaking, if fj(si) is the fitness function for the 

single j-th criterion to be evaluated for a generic sequence si, the problem can be expressed as: 

 

    (1) 

 

where p is the global number of decision criteria. The sequence si is said to dominate another solution sj if 

the following applies: 

 

  (2) 

 

Figure 1 shows dominated and non-dominated solutions for a two-objective scheduling problem. 

 

FIGURE 1 HERE 

 

The standard permutation flowshop scheduling problem with due dates, in particular, can be formally 

enunciated as follows: a set of n jobs {J1, J2, …, Jn} has to be processed in sequence on m machines {M1, M2, 

…, Mm}. Each job consists of m operations (O1, O2, …, Om) and the j-th operation of each job must be 

processed on the j-th machine in the sequence. Each operation of a job is characterized by a processing time 

on each machine, leading to the definition of a n x m Processing Time Matrix (PTM) and by a due date 

(defining the n-sized Due Dates Vector, DDV). 
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The optimization criteria that have been used in the present study, in close accordance with Ishibuchi and 

Murata (1998), are the makespan (MS) and the maximum tardiness (MT) in the case of two-objective 

scheduling, being the total flowtime (TFT) the last criterion in the case of three-objective problems. 

 

3. Harmony Search Optimization 

Recently, Harmony Search Optimization (HSO) has been proposed as an algorithm that mimics music 

composing (Geem et al., 2001). Briefly, it tries to replicate the process that leads musicians to continuously 

adjust pitches and tunes to produce better harmonies and is based on the concept of an Harmony Memory 

(HM) that represents the acquired know-how of the music player. The creative process is made up of three 

different stages, during which the musician: 

1) draws from the HM to make the most of the past experiences; 

2) tries to modify the known melodies by adjusting pitches and changing notes in order to get new 

compositions; 

3) improvises and creates new harmonies from scratch, following inspiration. 

If the new melody sounds good (with respect to an aesthetic benchmark) it is inserted within the HM to 

increase and enhance the available repertoire. In mathematical terms this can be obtained by representing 

each harmony as a vector made up of exactly n elements, if n is the number of the variables that define the 

model. Each element within the vector corresponds to a note. The aesthetic benchmark is replaced by an 

appropriate fitness function (or more, in case of multi criteria optimization) and the problem can be easily 

brought back to the classical form reported in equation 1 (paragraph 2). Once the Harmony Memory Size 

(HMS) has been defined, the whole HM can be written as a matrix of HMS vectors: 

 

 

 

The value of the fitness function(s) for each harmony is (are) included within the HM. 

The algorithm (Figure 2) starts by generating HMS random new harmonies. In general, each note (variable) 

should be chosen within its definition set (valid range) and considering the other notes that have already been 

inserted in order to avoid violated constraints. This issue can be easily overcome both by checking and 

adjusting the validity of the vector or by imposing penalties to the violating sequences. At each iteration a 

new harmony is generated in n successive steps (starting form position 1 to position n, where n is the number 

of variables) by means of three mechanisms: (i) random selection, (ii) memory considerations and (iii) pitch 

adjusting. 
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If the Harmony Memory Considering Rate (HMCR) is the rate representing the probability of choosing a 

note from the memory, the first method involves the random selection of a note from the valid range with a 

probability of 1 – HMCR. Therefore, a random number is extracted and, if its value is greater than HMCR 

and less than 1 a note is selected within the definition set: 

 

 

 

where xi represents the variable at the current step and X is the above mentioned definition set. On the 

contrary, if the random value is less than HMCR a vector is randomly selected from the HM and the note 

corresponding to the current step is introduced within the new harmony: 

 

 

 

If the constraints are somehow violated it is necessary to check the validity or to introduce penalties. Finally, 

as the musician modifies some notes to adjust their pitches to the neighboring ones, with the aim of obtaining 

a smooth and sound composition, so the algorithm requires to alter some variables with a certain probability 

(this is also referred to as Pitch Adjusting Rate, PAR). In practice, a note is randomly selected and its value is 

changed within the allowed range. 

If the new harmony is better than the worst one contained in the HM, with the respect to the fitness function 

(or referring to the Pareto optimality in the case of multiple objectives), the latter is overwritten to improve 

the knowledge base. The process is iterated up to the maximum number of iterations or until a particular 

terminating condition is satisfied. 

 

FIGURE 2 HERE 

 

The algorithm, modified and improved in several manners, has been successfully applied to some interesting 

engineering problems, such as structural design (Lee and Geem, 2004), water network design (Geem, 2006), 

traffic routing (Geem et al., 2005) and fluid leakage detection (Kim et al., 2001). 

 

4. A New Harmony Search for multi-objective permutation flowshop scheduling 

Since the HSO proved to be extremely performing while coping with some noteworthy engineering 

problems, it appears to be a good candidate to cope with the multi-objective standard permutation flowshop 

scheduling problem. The aim of the present work is that of showing its capabilities (both with respect to 

performances and quality of the solutions) and this is done by comparison with a well known and highly 
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efficient GA. In particular, the mentioned GA is known in literature since it provides a large number of 

optimal solutions within short lapses of time. 

To enhance the original HSO algorithm capabilities of exploring larger regions of the Pareto border while 

keeping a good computational speed some modifications have been introduced within the procedure. To 

begin with, the intrinsic structure of the algorithm remains almost unchanged: notes/variables represent jobs 

and a whole harmony is a sequence. Since each job can be introduced into a sequence only once, a strict 

check is carried out on all new harmonies and duplication of jobs within a sequence is not allowed. The 

MHSO continues to refer to the three classical mechanisms used to generate new harmonies (random 

selection, memory considerations and pitch adjusting). With respect to the quality of new generated 

harmonies, the multi-objective algorithm makes use of the known Pareto optimality definition with respect to 

the makespan, the maximum tardiness and, in the case of three-objective scheduling, the total flowtime 

criteria. Further, the algorithm introduces new concepts that help finding better solutions and moves a step 

forward in the direction of emulating the human behavior. A musician who improvises a new composition is 

influenced by early works (his/her own and those of other composers as well, that constitute the personal 

knowledge base) and usually tends to make the most of this heritage. The original HSO mimics this behavior 

by replicating a single note at time from a known harmony to the new one, but it lacks of the capability of 

introducing and preserving larger portions of a composition. It is worth noting that this aspect represents a 

notable advantage of genetic algorithms and, therefore, a similar process, named Large Portion Recovery 

(LPR) has been introduced within the HSO, along with the corresponding probability (Large Portion 

Recovery Ratio, LPRR). Practically speaking, this is obtained by performing, from time to time and in 

accordance to the LPRR, that is usually kept very small, a crossover and a mutation procedure on the best 

harmonies available within the HM. It is also known that most musicians are able to improvise new 

compositions for a period, after which they tend to re-use their early works, to take inspiration from the other 

composers, as creativity inevitably decreases over time, or simply to explore new and different musical 

genres. Sometimes this determines the flourishing of new inspiration and the overall improvement of their 

compositions. This aspect strictly resembles what occurs when the HSO, after a generally high number of 

iterations, becomes unable to explore new sections of the solution space and repeatedly visits the same 

sequences without further improvements. A solution, namely Harmony Recovery (HR), to this particular 

issue has been proposed and evaluated, based on a large scale LPR procedure. After a given number of 

iterations, that can be defined and controlled by means of an Harmony Recovery Ratio (HRR), the algorithm 

increases the recovery mechanism probability (acting on the LPRR) and the corresponding crossover 

activity. Doing so, the algorithms starts to take advantage of the most effective portions of the sequences that 

have been previously found. This step is preceded by a random regeneration of the HM (up to the 80% of the 

harmony memory can be updated, but generally it is suitable to update 50% or less of it), aimed to reduce the 

convergence of a large number of harmonies to a limited subset of the solutions space. To increase the 

capability of the algorithm of escaping from such unlikable situations, a random regeneration of the HM has 

also been forced whether the non-dominated memory (the so-called “elite”), that will be introduced and 
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explained later, has not been updated within a given timeframe (usually a given percentage of the maximum 

number of iterations). 

Consequently, the whole algorithm can be summarized as follows: 

1) the HM is randomly generated and the fitness functions are evaluated for each criterion and for each 

vector (as in the original HSO); 

2) the iterative procedure starts and lasts until the terminating conditions, to be defined for the specific 

problem under study, are met or the maximum number of iterations is reached. In the present work both 

the GA and the MHSO are stopped when the maximum number of iterations is reached. Since the aim of 

the study is to compare the two algorithms this allows to evaluate both speed and the relative quality of 

the solutions; 

3) for each iteration the following steps apply: 

a. if the current iteration number is less than a given amount, corresponding to the value of the HRR 

multiplied for the Maximum Number of Iterations (MNI) the HSO process is performed as usual 

(experience shows that good values for HRR are comprised between 0.6 and 0.8): 

i. a random number is extracted. If it is less than the LPRR (this value is kept very small, such 

as 0.001) then the LPR procedure is started and two harmonies from the HM are subjected to 

a two-points crossover operator to generate a new harmony. Indeed, harmonies are mere 

sequences and can be treated as chromosomes in a generic GA. The classical two-point 

crossover is here used to generate two new harmonies from two efficient parents: briefly, 

two random positions are selected within the parents and the corresponding chromosomes 

sections are plainly exchanged. The new harmony may also be subjected, in accordance to 

the PAR, to a pitch adjusting procedure as in the ordinary HSO. It is worth noting that this 

has been reduced to a mutation operator (both insertion and exchange of the elements of a 

sequence are randomly used), due to the fact that each job cannot be present more than once 

in each sequence. Also, the PAR may be optionally set linearly increasing between a 

minimum and a maximum values; 

ii. if the number is greater than LPRR the standard HSO procedure is performed. The worst - or 

better, an inefficient - harmony (the one that will be replaced by a new better solution) is 

picked on the basis of a roulette wheel selection process (Goldberg, 1989) rather than on the 

simple evaluation of the fitness function as in the original HSO. The procedure is based on 

the fact that the probability of each harmony of being selected and replaced is evaluated on 

the basis of a weighted fitness function of all criteria (with the same weights proposed by 

Ishibuchi and Murata (1998), that showed to be very effective). This is obviously greater for 

inefficient solutions. While on one hand the risk of removing good harmonies is kept very 

low due to a proper elitism procedure, on the other the algorithm prevents the threat of early 

convergence. Furthermore, this allows a straight and easy evaluation of the selection 

probability. Also, a local search procedure is started for every new harmony: the MHSO 
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looks for a limited number of neighbors (carrying out a simple mutation procedure each 

time, where both insertion and exchange of the elements of a sequence are randomly used) 

and, if a better solution emerges (here the Pareto optimality is used to evaluate the quality of 

the harmony), the original new sequence is overwritten. The previously selected inefficient 

harmony is finally replaced; 

b. on the other hand, if the current iteration number is greater than the value of the HRR multiplied 

for the Maximum Number of Iterations, the HR procedure is started: 

i. up to 80% of the current population can be randomly generated (and, necessarily, the old one 

overwritten), to simulate the fact that the musician begins to take inspiration from other 

composers or that he simply wants to explore new musical genres. This occurs when the 

above condition is met and allows the algorithm to move from a section of the Pareto border 

and to explore new portions of the solution space; 

ii. the LPRR is increased up to a maximum of 0.5 (experience shows that values between 0.01 

and 0.1 give the best results), and the algorithm goes on as usual; 

4) as briefly pinpointed before, at each iteration a proper elitism procedure is applied to the HM. The non-

dominated solutions found at every step are kept in a separate memory location that is punctually updated 

(i.e., solutions that become dominated when better ones are found are removed from the elite). In this 

case, to determine dominated and non-dominated harmonies, the algorithm refers to the Pareto optimality 

(as described by equations 1 and 2 of paragraph 2) rather than on the evaluation of the weighted fitness 

function of all criteria. To take advantage of this non-dominated memory, up to a maximum of 10% of the 

population size elite harmonies are inserted within the HM with the aim of improving the MHSO 

knowledge base, without forcing a premature convergence of the whole memory to a limited portion of 

the solution space (greater percentages, indeed, have shown to be particularly inefficient); 

5) if the non-dominated elite has not been updated within 1/6 of the maximum number of iterations (elite 

update delay) then a random regeneration (up to 80%) of the HM is forced. 

The complete MHSO procedure is hereafter summarized in the form of Pascal pseudo-code: 

 

generate random Harmony Memory; 

set LPRR to 0.0001 

while terminating conditions are not met or maximum iterations are not reached do 

    if (current iteration < HRR × MNI) or (LPRR = 0.5) then 

        extract a random number → Rand 

        if Rand < LPRR then 

            perform Large Portion Recovery (LPR) procedure to get a new harmony 

            extract a random number → Rand 

            if Rand < PAR then 

                perform Pitch Adjusting (mutation) procedure on the new harmony 
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            end if 

        else 

            perform standard HSO procedure and get new harmony → NHarmony 

            select inefficient harmony (roulette wheel selection) → IHarmony 

            perform local search procedure on NHarmony (in case of improvement overwrite) 

            if NHarmony improves IHarmony replaces it 

        end if 

    else 

        regenerate up to a maximum of 80% of current population 

        set LPRR to a maximum of 0.5 

    end if 

    perform elitism procedure (based on Pareto optimality) and update non-dominated elite 

    insert harmonies from elite to current population (up to a maximum of 10% of population size) 

   if elite not updated within 1/6 of MNI then regenerate up to 80% of current population 

end while 

 

It is also schematically reported if Figure 3. 

 

FIGURE 3 HERE 

 

 

5. Comparative analysis 

The MHSO presented in the paper has been compared with the Genetic Algorithm proposed by Ishibuchi and 

Murata (1998), that in the following will be indicated as Ishibuchi-Murata GA (IMGA). To this aim their 

formulation has been adopted with respect to: 

• the number of jobs and machines; 

• the generation of the initial population; 

• the selection of the objectives; 

• the setting of the operating parameters (that have been optimized as proposed by the authors themselves). 

This choice is mainly due to the fact that the above mentioned algorithm is known to be particularly effective 

in the context of the specific issue under analysis and that it refers both to two and three criteria optimization 

problems. Moreover, it is also known that the performances of GAs are seldom exceeded or even achieved 

by other procedures. Hence, it certainly represents a valuable benchmark. 

To begin with, the problems that have been examined in depth can be divided into two large sets, 

characterized by the number of optimization criteria (respectively 2 and 3) and each subdivided into five 
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subsets with respect to the number of jobs (we assumed, respectively, n = 10, 20, 30, 50 and 100) and 

machines (we assumed, respectively, m = 5, 10, 15, 20 and 30). This choice is mainly due to the fact that the 

IMGA has been tested by the authors (Ishibuchi and Murata, 1998) on similar problems (actually, they 

reported results for the two cases n = 10, m = 5 and n = 20, m = 10) and, therefore, this allows to perform a 

straightforward comparison. It is noteworthy that the IMGA has been tested with different sets of operating 

parameters (population size, crossover and mutation probabilities, elitism) with the aim of finding their best 

combinations before starting the comparative process. However, for smaller problems (n = 10, m = 5 and n = 

20, m = 10) the values proposed by the above mentioned authors still showed to be the best ones. For bigger 

problems (n = 30, m = 15, n = 50, m = 20 and n = 100, m = 30) the best combinations were chosen after a 

significant number of tests. 

The first set refers to a two-objectives optimization, where the adopted criteria are the makespan and the 

maximum tardiness, whereas the latter is aimed to a three-objectives optimization, being the total flowtime 

the last criterion. The initial population, the processing times and the due dates have been calculated as 

proposed in Ishibuchi and Murata (1998) and each set of these data has been used unaltered both when 

running the MHSO and the IMGA with the aim of allowing an easy comparison of the algorithms. In brief, 

the processing time of all jobs in a sequence have been specified as random numbers in the interval [1, 99] 

(or, in other words, they have been extracted from a discrete uniform distribution in the interval [1, 99]), 

whereas the due date of the single job has been evaluated at first on the basis of a randomly generated 

sequence. Indeed, given the completion time of the i-th job, namely CTM(i,m), the corresponding due date 

has been assumed equal to the following: 

 

 

 

Also, the fitness functions used for the linear scaling roulette wheel selection strategy and the strategy itself 

(as formulated by Goldberg, 1989) have been borrowed by the same work. The former is represented by the 

weighted sum of the adopted criteria, or, concisely: 

 

 

 

where k is the number of criteria, ωi is the weight, fi(s) is the evaluation of the i-th criterion for the sequence 

s and, finally, f(s) is the overall fitness function. In the present work the same weights (constant multipliers) 

proposed by Ishibuchi and Murata (1998) have been adopted since the variance of the makespan is much 

smaller than that of the maximum tardiness (and differs from that of the total flowtime too), suggesting a 

normalization process aimed to handle the scheduling criteria equally. Furthermore, after several tests, they 

showed to be very effective and sensibly enhanced the whole algorithm. If Ψ designates the whole HM, it is 
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certainly possible to evaluate its worst solution fworst(Ψ). In the case of a minimization problem this 

corresponds to the higher value of the fitness function. Hence, the selection probability can be defined as: 

 

 

 

This value is used both when selecting two candidate sequences for the crossover required by the Large 

Recovery Procedure and when a single sequence is picked up to be overwritten by a better solution. In this 

last circumstance, owing to the fact that it is necessary to substitute the worst candidate with the higher 

probability, the selection is performed referring to the complementary of the above calculated chance ratio. 

 

5.1 The 10 jobs – 5 machines problem with 2 objectives 

A first class of 100 problems has been generated for n = 10 and m = 5, as this is the first test performed by 

Ishibuchi and Murata. This class is also interesting in that it allows to perform the exhaustive search and, 

therefore, to refer to a significant benchmark. The GA parameters have been set as follows: 

• PopSize = 20; 

• crossover probability = 0.9; 

• mutation probability = 0.3. 

The number of non-dominated chromosomes re-inserted within the population at each step has been fixed to 

3 and the local search depth to 2. Finally, the Maximum Number of Iterations (MNI) has been put equal to 

10000, in order to evaluate PopSize x MNI = 200000 chromosomes. 

As an example, referring to the processing times and the due dates reported in Table 1 and Table 2, the 

IMGA required about 2.55 seconds on a Core 2 Duo T7200 processor (2.0 GHz) with 2 GB RAM. 

 

TABLE 1 HERE 

 

TABLE 2 HERE 

 

On average, running 100 times the same problem, the algorithm found 12 non-dominated heuristic Pareto 

points for a total of 62 sequences, as depicted by small orange triangles in Figure 4. Instead, the exhaustive 

solution (represented in Figure 4 by diamonds) required about 91.45 seconds to weigh up 10! sequences, 

found 11 border points for a total of 111 sequences and showed that 4 out of 12 of the border points found by 

the IMGA were dominated by the optimal border. 

 

FIGURE 4 HERE 
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The same problem was in turn submitted to a MHSO characterized by the following parameters: 

• HMS = 12; 

• HMCR = 0.95; 

• PAR = linearly increasing between 0.05 and 0.35; 

• LPRR = 0.0001; 

• HRR = 0.7. 

Referring to the maximum number of iterations and considering that the MHSO generates a single sequence 

at each step, whereas the IMGA generates PopSize chromosomes at each iteration, it was decided to set the 

value equal to PopSize × MNI. Actually, due to the fact that the MHSO performs the Harmony Recovery 

Procedure during the late iterations and that this involves a crossover procedure on the whole HM, it 

generally would examine a greater number of solutions than IMGA. Therefore, a constraint has been set to 

force the number of evaluated sequences to coincide with that of the IMGA. The algorithm required about 

4.91 seconds to evaluate 200000 sequences and found the whole Pareto border (11 points) corresponding to 

the exhaustive solution (Figure 5), for a total of 96 sequences (86.5% of the complete solution set). 

 

FIGURE 5 HERE 

 

On average, the IMGA required about 2.5 seconds to evaluate 200000 chromosomes, obtaining 7.9 Pareto 

points and a total of 51.7 non-dominated sequences. Actually, a simple comparison with the solutions found 

by the MHSO showed that IMGA was able to find an average of 4.8 non-dominated Pareto points and a total 

of 42.5 non-dominated sequences, the rest being taken over by the MHSO frontier. Indeed, the MSHO 

required about 5.13 seconds to discover 7.1 Pareto border points and 69.8 non-dominated sequences. In this 

case, the solutions always coincided with those found by the exhaustive (except two cases, where the MHSO 

missed one point) and were never dominated by those found by the IMGA. 

To better illustrate these results, a subset constituted by the first 10 trials has been reported in detail in Table 

3. 

 

TABLE 3 HERE 

 

Briefly, the PB column reports the Pareto border points (i.e., the non dominated solutions) found both by 

MHSO and IMGA, whereas the EPP columns shows the “equipollent” non-dominated points (two different 

sequences can be said “equipollent” if they share the same Pareto Point, or, in other words, if they give the 

same solutions for all the scheduling criteria). The third column reports the total number of non-dominated 

sequences (i.e., the sum of PB and EPP) and Time indicates the seconds that the algorithms took to get the 

solutions. Further, Act PB and Act EP refer to the compared non dominated borders found by both 
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algorithms. Concisely, they show how many solutions are not dominated by those found by the other 

algorithm. Finally, the last column indicates whether the sequences coincide with those found by the 

exhaustive procedure. A second trial (the same sets of data) has been carried out modifying the MNI for the 

IMGA (this also modifies the maximum number of iterations for the MHSO). To improve the IMGA 

performances, it was decided to let run the algorithm for exactly 100000 iterations. For instance, with respect 

to the first problem (extensively discussed above), the algorithm required on average (over 100 runs) 25.91 

seconds to evaluate 2000000 chromosomes and discovered all the 11 Pareto points and a total of 81 non-

dominated solutions on 111 (72.97%). On the other hand, the MHSO needed about 66.72 seconds to 

elaborate 2000000 harmonies and to find all the 11 Pareto points and a total of 106 non-dominated sequences 

on 111 (95.49%). It emerged, however, that the MHSO spent most of the time in verifying the “equipollent” 

non-dominated memory. Therefore, a test has been performed introducing a constraint on the number of 

iterations: whereas the MNI for the IMGA has been left unaltered, the MHSO has been forced to stop after 

1/3 of the original value. Results confirmed that the algorithm was still able to find the whole Pareto border 

in most cases, along with a greater number of “equipollent” solutions than the IMGA in less time. Indeed, on 

average, it found more than the 98% of the “equipollent” solutions evaluated in the previous test in 17.75 

seconds. A further test has been performed increasing the IMGA population size to 30 chromosomes, but 

results did not differ significantly from those described above. 

 

5.2 The 20 jobs – 10 machines problem with 2 objectives 

The following step entailed the analysis of a two-objective scheduling with n = 20 and m = 10. The trial was 

carried out based on 20 runs. Following the indications given by Ishibuchi and Murata the IMGA settings 

were left unchanged with respect to the previous test, with the exception of the populations size, fixed to 30, 

and the MNI that was set to 50000 iterations in order to evaluate 1500000 chromosomes. Referring to the 

MHSO, only the memory size was changed to 24 harmonies. 

As the exhaustive algorithm cannot be applied to this case, in order to compare the quality of the solutions 

two supplementary tools were used: (i)a graphical representation of the non-dominated Pareto frontier size 

evolving over time (Non-dominated growing rate, NDGR) and (ii) the Esbensen quality estimation 

(Esbensen, 1996). The former allows to get a direct and intuitive overview of the ability of the algorithm to 

find new solutions and the speed with which the non-dominated frontier improves (Figure 6), while the latter 

evaluates the average quality of the solutions. In addition, it has been introduced since it has been 

successfully used by Ishibuchi and Murata to assess the quality of the IMGA solutions and due to the fact 

that it represents a valuable tool to evaluate the quality also in a three-dimensional objective space (i.e., when 

dealing with 3 objective problems). 

 

FIGURE 6 HERE 
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Briefly, following Esbensen the quality of a set of non-dominated solution can be estimated by randomly 

generating a large number (k) of weights and - using these values - by calculating the objective function over 

the entire non-dominated population. Greater values (smaller in modulus) indicate better solution sets. In 

brief, it is possible to write: 

 

 

where: 

• Q(S) is the quality of the whole set of non-dominated solutions; 

• k is the large number of weights sets (in the following k will be assumed equal to 10000); 

• m is th number of criteria; 

•  indicates the weight for the j-th criterion within the i-th set. Weights are randomly generated and are 

normalized to 1; 

• fj(s) is the evaluation of the j-th criterion for the sequence s. 

The IMGA behaved well as usual, being able to find good non-dominated borders. However, the MHSO 

always outperformed it. On average, over 20 tests, the IMGA found 16.2 Pareto points and a total of 36.7 

solutions in 42.83 seconds. On the other hand, the MHSO found 12.65 Pareto points and a total of 188.6 

solutions in 65.78 seconds. However, despite of the little advantage with respect to the computing time, the 

true non-dominated Pareto points discovered by the IMGA were only 2.66 (with a total of non-dominated 

solutions equal to 1.73), being the remaining dominated by those found by the MHSO. To confirm this 

tendency, the Esbensen index resulted equal to -718.98 for the IMGA and to -532.45 for the MHSO. Only a 

few common Pareto points were found during these tests. 

To better illustrate these results, a subset constituted by the first 10 trials has been reported in detail in Table 

4. 

 

TABLE 4 HERE 

 

The graphical representation of the NDGR shows, on average, that the MHSO finds many non-dominated 

solutions very early, at the beginning of the run, and, later on, it improves the Pareto border continuously. At 

a later stage, the algorithm, thanks to the Harmony Recovery procedure, begins to explore new border 

portions finding other good solutions. On the contrary, the IMGA tends to maintain the non-dominated 

border unchanged after a certain amount of iterations and, often, is unable to improve it anymore. This 

behavior is clearly visible in Figure 7. 

 

FIGURE 7 HERE 
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5.3 The 10 jobs – 5 machines and 20 jobs – 10 machines problems with 3 objectives 

The second set of tests was aimed to solve the scheduling problem with respect to three objectives. After 

some runs necessary to set the parameters correctly, both the IMGA and the MHSO were modified only with 

respect to the population size (respectively, 30 chromosomes and 18 harmonies) as changes in the other 

parameters proved to be ineffective. To show the results of the 10 jobs – 5 machines problem, a subset 

constituted by the first 10 runs has been reported in detail in Table 5. 

 

TABLE 5 HERE 

 

The outcomes prove that the MHSO again outperformed the IMGA, being able to find a larger amount of 

true non-dominated Pareto points. The influence the Harmony Recovery procedure was even greater than in 

the previous cases. It emerges that the MHSO often finds a border that coincides with the one found by the 

exhaustive procedure, whereas the IMGA rarely identifies more than 50% of it. 

The following step involved the analysis of a three-objective scheduling with n = 20 and m = 10. The test 

was carried out based on 20 runs. The IMGA settings were left unchanged with respect to the previous test, 

with the exception of the populations size, fixed to 30, and the MNI that was set to 50000 iterations in order 

to evaluate 1500000 chromosomes. Referring to the MHSO, only the memory size was increased to 36 

harmonies. A subset constituted by the first 10 runs has been reported in detail in Table 6. Corresponding 

examples of NDGRs are shown in Figure 8. 

 

TABLE 6 HERE 

 

FIGURE 8 HERE 

 

Again, it emerged that the MHSO spent most of the time in verifying the “equipollent” non-dominated 

memory and, therefore, it took more time to complete the job. A test has been performed introducing a 

constraint on the number of iterations: whereas the MNI for the IMGA has been left unchanged, the MHSO 

has been forced to stop after half of the original value. Results confirmed that the algorithm was still able to 

find the whole Pareto border in most cases, along with a greater number of “equipollent” solutions than the 

IMGA in less time. The outcomes have been reported in Table 7 and the NDGR corresponding to the first 

run is shown in Figure 9. 

 

TABLE 7 HERE 

 

FIGURE 9 HERE 
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Figure 10 shows the Pareto borders (in two dimensions, with respect to the makespan and the tardiness 

criteria) for the MHSO and the IMGA found at the end of the first run, that required similar computation 

times (45.66 and 43.73 seconds respectively). After comparing the two sets of data the whole IMGA border 

results to be dominated, confirming that even when evaluating half sequences with respect to the IMGA, the 

MHSO is able to appraise a very good solution. 

 

FIGURE 10 HERE 

 

This is also supported by the average values of the Esbensen index. Indeed, for the IMGA it remains almost 

unchanged (as obvious, since no modifications were introduced within the algorithm), while for the MHSO it 

grows a bit (in modulus). This means a worse solution with respect to the unconstrained case, but the MHSO 

still performs better than the IMGA. 

 

5.4 The 30 jobs – 15 machines problem with 2 and 3 objectives 

To further verify the algorithm capabilities additional tests were carried out on larger problems. Owing to the 

fact that Ishibuchi and Murata (1998) do not report data for these sets of problems some efforts were devoted 

to test the IMGA and to fix the parameters that give the best results before starting the comparative analysis. 

In particular, it emerged that the most sensible parameter is the population size, whereas the crossover and 

the mutation probabilities are effective in a limited range around the values proposed by the authors (these 

were, therefore, maintained almost unchanged). 

In the case of n = 30 and m = 15 the best performance for the IMGA was reached with a population size of 

40 chromosomes and 50000 iterations. The crossover and mutation probabilities have been taken equal to 0.9 

and 0.35 respectively. The number of non-dominated chromosomes re-inserted within the population at each 

step has been fixed to 3 and the local search depth to 2 as for smaller problems. Comparison was carried out 

with a MHSO having a population of 36 harmonies. Also, the MHSO was forced to stop after evaluating 

40% of the solutions evaluated by the IMGA, with the aim of making it more performing in terms of 

computational time (as already stated, after a number of iterations the MHSO spends most of the time in 

verifying the “equipollent” non-dominated memory and for large problems this penalizes it in terms of time). 

The test consisted of 100 runs and results showed that the IMGA required on average 23.69 seconds to find 

23 non dominated Pareto points and 41 equipollent solutions (the corresponding Esbensen quality estimation 

was equal to -1468.60). On the other hand, the MHSO found on average 28 Pareto points and 63 equipollent 

solutions in 18.03 seconds (with an Esbensen estimation of -1432.06). Comparing the two Pareto borders it 

emerged, however, that the MHSO again outperformed the IMGA: on average the former found 9 Pareto 

border points and 22 equipollent solutions that the IMGA did not discover or dominate. On the other hand, 

the latter found 4 Pareto points and 5 equipollent solutions that were not present within the solutions 
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obtained by the MHSO. The IMGA gave better results (a better Pareto border and the corresponding 

Esbensen estimation) only 7 times on 100 runs. Results are summarized in Table 8, where ND is the column 

of the non-dominated solutions, Eqp that of the equipollent non-dominated points for the two algorithms. On 

the other hand, the Exclusive ND and Eqp represent the non dominated solution that each algorithm did not 

discover or dominate with respect to the other. 

 

TABLE 8 HERE 

 

The same test was repeated introducing the third criterion and modifying the population size parameter both 

for the IMGA and the MHSO (respectively, 50 chromosomes and 40 harmonies). The other parameters were 

left unchanged (after some tests these proved to be the most efficient), with the exception of the MHSO that 

was forced to stop after evaluating 50% of the solutions evaluated by the IMGA. The MHSO performed even 

better than in the previous case, being able to find on average 86 non dominated points and 42 equipollent 

solutions, whereas the IMGA found 92 non dominated points and 56 equipollent solutions. However, 

comparing the Pareto borders it emerged clearly that on average the former found 51 Pareto border points 

and 2 equipollent solutions that the IMGA did not discover, while the latter found 9 Pareto points and 5 

equipollent solutions that were not present within the solutions obtained by the MHSO. The average 

Esbensen quality estimations were, respectively, -16905.71 and -17501.43. 

 

5.5 The 50 jobs – 20 machines problem with 2 and 3 objectives 

In the case of n = 50 and m = 20 with 2 objectives the best performance was obtained with a population size 

of 60 chromosomes and 50000 iterations for the IMGA (again, the crossover and mutation probabilities have 

been taken equal to 0.9 and 0.35 respectively. The number of non-dominated chromosomes re-inserted 

within the population at each step has been fixed to 3 and the local search depth to 2) and 40 harmonies for 

the MHSO. Again, the MHSO was forced to stop after evaluating 50% of the solutions evaluated by the 

IMGA, with the aim of making it less time consuming. The test consisted of 100 runs and results showed that 

the IMGA required on average 73.12 seconds to find 27 non dominated Pareto points and 21 equipollent 

solutions (the corresponding Esbensen quality estimation was equal to -2373.04). On the other hand, the 

MHSO found on average 24 Pareto points and 33 equipollent solutions in 65.71 seconds (with an Esbensen 

estimation of -2300.85). Comparing the two Pareto borders it emerged again that the MHSO worked better 

than the IMGA: on average the former found 11 Pareto border points and 31 equipollent solutions that the 

IMGA did not discover. On the other hand, the latter found 7 Pareto points and 11 equipollent solutions that 

were not present within the solutions obtained by the MHSO. The IMGA gave better results (a better Pareto 

border and the corresponding Esbensen estimation) only 5 times on 100 runs. 

The runs were repeated for the three objective problem. This time, all parameters were left unchanged with 

respect to the previous test, as these proved to be the most efficient in a significant number of tests. The 
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MHSO performed satisfactorily, being able to find on average 31 non dominated points and 67 equipollent 

solutions, whereas the IMGA found 115 non dominated points and 77 equipollent solutions. Comparing the 

Pareto borders it emerged that on average the MHSO found 31 Pareto border points and 2 equipollent 

solutions that the IMGA did not discover or dominate, while the latter found 13 Pareto points and 0 

equipollent solutions that were not present within the solutions obtained by the MHSO. The average 

Esbensen quality estimations were, respectively, -43090.63 and -46445.67. 

 

5.6 The 100 jobs – 30 machines problem with 2 and 3 objectives 

Finally, the algorithm was applied to the case of n = 100 and m = 30 with 2 and 3 criteria. Referring to the 

IMGA the best performance was obtained with a population size of 60 chromosomes and 40000 iterations. 

Again, the crossover and mutation probabilities have been taken equal to 0.9 and 0.35 respectively. The 

number of non-dominated chromosomes re-inserted within the population at each step has been fixed to 3 

and the local search depth to 2. The same problem was in turn submitted to a MHSO characterized by the 

following parameters: 

• HMS = 40; 

• HMCR = 0.65; 

• PAR = linearly increasing between 0.05 and 0.15; 

• LPRR = 0.0001; 

• HRR = 0.85. 

The MHSO was forced to stop after evaluating 60% of the solutions evaluated by the IMGA to reduce the 

computing time. With respect to the two-criteria problem, the test consisted of 100 runs and results showed 

that the IMGA required on average 98.56 seconds to find 36 non dominated Pareto points and 11 equipollent 

solutions (the corresponding Esbensen quality estimation was equal to -5123.74). On the other hand, the 

MHSO found on average 25 Pareto points and 9 equipollent solutions in 109.93 seconds (with an Esbensen 

estimation of -5068,77). Comparing the two Pareto borders it emerged again that the MHSO worked better 

than the IMGA: on average the former found 13 Pareto border points and 7 equipollent solutions that the 

IMGA did not discover. On the other hand, the latter found 5 Pareto points and 10 equipollent solutions that 

were not present within the solutions obtained by the MHSO. All other points found by the IMGA were 

dominated by the MHSO border. The IMGA gave better results (a better Pareto border and the corresponding 

Esbensen estimation) 9 times on 100 runs. 

The runs were subsequently repeated for the three objective problem. All parameters were left unchanged 

with respect to the previous test, as these proved to be the most efficient in a significant number of runs. The 

MHSO found on average 168 non dominated points and 5 equipollent solutions, whereas the IMGA found 

143 non dominated points and 2 equipollent solutions. However, comparing the Pareto borders it emerged 

that on average the MHSO found 76 Pareto border points and 1 equipollent solutions that the IMGA did not 
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discover or dominate, while the latter found 39 Pareto points and 0 equipollent solutions that were not 

present within the solutions obtained by the MHSO. The average Esbensen quality estimations were, 

respectively, -162157.12 and -169322.37. For such large problems, during the tests the IMGA showed to be 

somewhat faster than the MHSO. Indeed, the IMGA required on average about 102 seconds to run, whereas 

the MHSO, evaluating 60% of the solutions calculated by the IMGA, needed about 123 seconds to complete. 

Results of this test are summarized in Table 9. 

 

 

5.7 Kruskal-Wallis hypothesis test for homogeneity 

To complete the validation of the algorithm, a Kruskal-Wallis hypothesis test for homogeneity (Law and 

Kelton, 1991) was performed to show that the non dominated Pareto border found by the MHSO 

outperforms the IMGA. The test was applied to the whole set of problems and showed that the MHSO 

obtained efficient solutions. Fox example, in the case of the 50 jobs, 20 machines and two criteria problem 

based on 50 runs (i.e., 50 different problems) for each algorithm, the statistic (T) was evaluated for two 

independent samples (k = 2) and at a level α = 0.99. Results clearly showed that the null hypothesis can be 

rejected, being T = 28.77 and  = 6.635 (where  is the upper 1 – α critical value for a Chi-

square distribution with k – 1 degrees of freedom). When the test was performed with respect to the 100 jobs, 

30 machines problem there was evidence that the null hypothesis can be rejected again, being T = 21.15. The 

difference between T and  is even greater for smaller problems. Consequently, the Pareto border 

found by the MHSO is actually different from the one found by the IMGA and, considering the Esbensen 

quality estimations, it is possible to affirm that the modified Harmony Search behaved better that the Genetic 

Algorithm. 

 

 

Conclusions 

The paper has presented a modified Harmony Search Optimization (MHSO) algorithm applied to multi-

criteria permutation flowshop scheduling problems with due dates. Also, the results of a comparative 

analysis with respect to the Genetic Algorithm (GA) proposed by Ishibuchi and Murata (1998) are presented, 

with the aim of showing its remarkable performances. This choice is due to the fact that the mentioned GA is 

known to be particularly effective in the solution of the above mentioned problem. It is also known that in 

similar situations the performances of GAs are seldom exceeded or even achieved by other procedures 

representing, therefore, a valuable benchmark. 

The problems that have been examined in depth can be divided into two large sets, characterized by the 

number of optimization criteria (respectively 2 and 3) and each subdivided into two subsets with respect to 

the number of jobs (respectively, n = 10, 20, 30, 50 and 100) and machines (we assumed, respectively, m = 
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5, 10, 15, 20 and 30). The first set refers to a two-objectives optimization, where the adopted criteria are the 

makespan and the maximum tardiness, whereas the latter is aimed to a three-objectives optimization, being 

the total flowtime the third criterion. 

The outcomes show that the MHSO outperforms the IMGA, being able to find a larger amount of true non-

dominated Pareto points. When applied to small sized problems (n = 10), the exhaustive evaluation has 

shown that the MHSO often finds the whole border. As the exhaustive algorithm cannot be applied to larger 

problems, in order to compare the quality of the solutions two supplementary tools have been introduced: (i)a 

graphical representation of the non-dominated Pareto frontier size evolving over time and (ii) the Esbensen 

quality estimation (Esbensen, 1996). To complete the validation of the algorithm a Kruskal-Wallis 

hypothesis test for homogeneity has been performed to show that the non dominated Pareto borders found by 

the MHSO actually outperform those found by the IMGA. 

Due to the fact that the MHSO takes more time than the GA when evaluating the same number of sequences, 

constraints have been introduced to the number of iterations of the MHSO to verify its performances even in 

unfavorable situations. Results clearly show the validity of the proposed algorithm in that it still outperforms 

the GA in several tests. 

With respect to potential future works, the obtained results suggest to enhance the neighborhood search 

procedure to speed up the algorithm and to adapt it to other problems such as, for instance, layout 

optimization and network analysis (in particular Hub-and-Spoke problems). Also, it would be useful to 

develop the algorithm integrating it with other metaheuristic methods (GAs, Simulated Annealing, etc.) in an 

attempt to further improve its overall performance. 
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Table captions 

 

Table 1 – Processing times for a 10 jobs – 5 machines problem 

Table 2 – Due dates for a 10 jobs – 5 machines problem 

Table 3 – Outcomes of 10 runs for a 10 jobs – 5 machines – 2 objectives problem 

Table 4 – Outcomes of 10 runs for a 20 jobs – 10 machines – 2 objectives problem 

Table 5 – Outcomes of 10 runs for a 10 jobs – 5 machines – 3 objectives problem 

Table 6 – Outcomes of 10 runs for a 20 jobs – 10 machines – 3 objectives problem 

Table 7 – Outcomes of 10 runs for a 20 jobs – 10 machines – 3 objectives problem with constraints on the 

MHSO iterations 

Table 8 – Average outcomes of 100 runs for a 30 jobs – 15 machines – 2 objectives problem 

Table 9 – Average outcomes of 100 runs for a 100 jobs – 30 machines – 3 objectives problem 
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 Machine 1 Machine 2 Machine 3 Machine 4 Machine 5 

Job 1 85 31 3 84 18 

Job 2 98 8 94 69 7 

Job 3 26 75 30 24 43 

Job 4 18 10 9 25 11 

Job 5 44 13 96 45 7 

Job 6 42 10 50 39 87 

Job 7 96 42 81 13 28 

Job 8 15 84 33 27 4 

Job 9 96 39 14 97 93 

Job 10 49 72 83 81 87 

 

Table 1 – Processing times for a 10 jobs – 5 machines problem 
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Due 1 92 

Due 2 258 

Due 3 321 

Due 4 432 

Due 5 599 

Due 6 666 

Due 7 772 

Due 8 852 

Due 9 928 

Due 10 928 

 

Table 2 – Due dates for a 10 jobs – 5 machines problem 
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Table 3 – Outcomes of 10 runs for a 10 jobs – 5 machines – 2 objectives problem 
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Table 4 – Outcomes of 10 runs for a 20 jobs – 10 machines – 2 objectives problem 
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Table 5 – Outcomes of 10 runs for a 10 jobs – 5 machines – 3 objectives problem 
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Table 6 – Outcomes of 10 runs for a 20 jobs – 10 machines – 3 objectives problem 
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Table 7 – Outcomes of 10 runs for a 20 jobs – 10 machines – 3 objectives problem with constraints on the 

MHSO iterations 
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Table 8 – Average outcomes of 100 runs for a 30 jobs – 15 machines – 2 objectives problem 
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Table 9 – Average outcomes of 100 runs for a 100 jobs – 30 machines – 3 objectives problem 
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Figure captions 

 

Figure 1 – Dominated (square points) and non-dominated (rounded points) solutions 

Figure 2 – HSO algorithm flow diagram 

Figure 3 – MHSO algorithm flow diagram 

Figure 4 – IMGA and Exhaustive Pareto non-dominated frontier for a two-objective problem 

Figure 5 – IMGA (triangles), MHSO (circles) and exhaustive Pareto (diamonds) non-dominated frontier for 

a two-objective problem 

Figure 6 – NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 2 objectives 

problem 

Figure 7 – NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 2 objectives 

problem 

Figure 8 – Example of NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 3 

objectives problem 

Figure 9 – NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 3 objectives 

problem with constraints on the MHSO iterations 

Figure 10 – MHSO (circles) and IMGA (triangles) Pareto borders 
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Figure 1 – Dominated (square points) and non-dominated (rounded points) solutions 
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Figure 2 – HSO algorithm flow diagram 
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Figure 3 – MHSO algorithm flow diagram 
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Figure 4 – IMGA and Exhaustive Pareto non-dominated frontier for a two-objective problem 
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Figure 5 – IMGA (triangles), MHSO (circles) and exhaustive Pareto (diamonds) non-dominated frontier for 

a two-objective problem 
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Figure 6 – NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 2 objectives 

problem 
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Figure 7 – NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 2 objectives 

problem 
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Figure 8 – Example of NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 3 

objectives problem 
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Figure 9 – NDGR for the MHSO (thick line) and for the IMGA in a 20 jobs – 10 machines – 3 objectives 

problem with constraints on the MHSO iterations 
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Figure 10 – MHSO (circles) and IMGA (triangles) Pareto borders 
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