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We study Levinson type theorems for the family of Aharonov-Bohm models from different perspectives. The first one is purely analytical involving the explicit calculation of the waveoperators and allowing to determine precisely the various contributions to the left hand side of Levinson's theorem, namely those due to the scattering operator, the terms at 0-energy and at energy +∞. The second one is based on non-commutative topology revealing the topological nature of Levinson's theorem. We then include the parameters of the family into the topological description obtaining a new type of Levinson's theorem, a higher degree Levinson's theorem. In this context, the Chern number of a bundle defined by a family of projections on bound states is explicitly computed and related to the result of a 3-trace applied on the scattering part of the model.

Introduction

In recent work [START_REF] Kellendonk | Levinson's theorem for Schrödinger operators with point interaction: a topological approach[END_REF][START_REF] Kellendonk | On the structure of the wave operators in one dimensional potential scattering[END_REF][START_REF] Kellendonk | The topological meaning of Levinson's theorem, half-bound states included[END_REF][START_REF] Kellendonk | On the wave operators and Levinson's theorem for potential scattering in R 3[END_REF][START_REF] Richard | New formulae for the wave operators for a rank one interaction[END_REF] it was advocated that Levinson's theorem is of topological nature, namely that it should be viewed as an index theorem. The relevant index theorem occurs naturally in the framework of non-commutative topology, that is, C * -algebras, their Ktheory and higher traces (unbounded cyclic cocycles). The analytical hypothesis which has to be fulfilled for the index theoretic formulation to hold is that the wave operators of the scattering system lie in a certain C * -algebra. In the examples considered until now, the index theorem substantially extends the usual Levinson's theorem which relates the number of bound states of 1 a physical system to an expression depending on the scattering part of the system. In particular it sheds new light on the corrections due to resonances and on the regularization which are often involved in the proof of this relation. It also emphasizes the influence of the restriction of the waves operators at thresholds energies.

In the present paper we extend these investigations in two directions. On the one hand, we apply the general idea for the first time to a magnetic system. Indeed, the Aharonov-Bohm operators describe a two-dimensional physical system involving a singular magnetic field located at the origin and perpendicular to the plane of motion. On the other hand, due to the large number of parameters present in this model, we can develop a new topological equality involving higher degree traces. Such an equality, which we call a higher degree Levinson's theorem, extends naturally the usual Levinson's theorem (which corresponds to a relation between an 0-trace and a 1-trace) and it is apparently the first time that a relation between a 2-trace and a 3-trace is put into evidence in a physical context. While the precise physical meaning of this equality deserves more investigations, we have no doubt that it can play a role in the theory of topological transport and/or of adiabatic pumping [START_REF] Bräunlich | Equivalence of topological and scattering approaches to quantum pumping[END_REF].

Let us describe more precisely the content of this paper. In Section 2 we recall the contruction of the Aharonov-Bohm operators and present part of the results obtained in [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF]. Earlier references for the basic properties of these operators are [START_REF] Adami | On the Aharonov-Bohm Hamiltonian[END_REF][START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF][START_REF] Dabrowski | Šť oviček: Aharonov-Bohm effect with δ-type interaction[END_REF][START_REF] Richard | New formulae for the Aharonov-Bohm wave operators[END_REF][START_REF] Ruijsenaars | The Aharonov-Bohm effect and scattering theory[END_REF]. In particular, we recall the explicit expressions for the wave operators in terms of functions of the free Laplacian and of the generator of the dilation group in R 2 . Let us mention that the theory of boundary triples, as presented in [START_REF] Brüning | Spectra of self-adjoint extensions and applications to solvable Schrödinger operators[END_REF] was extensively used in reference [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF] for the computation of these explicit expressions.

In Section 3 we state and prove a version of Levinson's theorem adapted to our model, see Theorem 3. It will become clear at that moment that a naive approach of this theorem involving only the scattering operator would lead to a completely wrong result. Indeed, the corrections due to the restriction of the wave operators at 0-energy and at energy equal to +∞ will be explicitly computed. Adding these different contributions leads to a first proof of Levinson's theorem. All the various situations, which depend on the parameters related to the flux of the magnetic field and to the description of the self-adjoint extensions, are summarized in Section 3.3. Let us stress that this proof is rather lengthy but that it leads to a very precise result. Note that up to this point, no C * -algebraic knowledge is required, all proofs are purely analytical.

The last two sections of the paper contain the necessary algebraic framework, the two topological statements and their proofs. So Section 4 contains a very short introduction to K-theory, cyclic cohomology, n-traces, Connes' pairing and the dual boundary maps. Obviously, only the very few necessary information on these subjects is presented, and part of the constructions are over-simplified. However, the authors tried to give a flavor of this necessary background for non-experts, but any reader familiar with these constructions can skip Section 4 without any loss of understanding in the last part of the paper.

In the first part of Section 5, we construct a suitable C * -algebra E which contains the wave operators. For computational reasons, this algebra should neither be too small nor too large. In the former case, the computation of its quotient by the ideal of compact operators would be too difficult and possibly not understandable, in the latter case the deducible information would become too vague. In fact, the algebra we propose is very natural once the explicit form of the wave operators is known. Once the quotient of the algebra E by the compact operators is computed, the new topological version of Levinson's theorem can be stated. This is done in Theorem 13 and in that case its proof is contained in a few lines. Note furthermore that there is a big difference between Theorem 3 and the topological statement (and its corollary). In the former case, the proof consisted in checking that the sum of various explicit contributions is equal to the number of bound states of the corresponding system. In the latter case, the proof involves a topological argument and it clearly shows the topological nature of Levinson's theorem. However, the statement is global, and the contributions due to the scattering operator and to the restrictions at 0-energy and at energy +∞ can not be distinguished. For that reason, both approaches are complementary. Note that the topological approach opens the way towards generalisations which could hardly be guessed from the purely analytical approach.

Up to this point, the flux of the magnetic field as well as the parameters involved in the description of the self-adjoint extension were fixed. In the second topological statement, we shall consider a smooth boundaryless submanifold of the parameter space and perform some computations as these parameters vary on the manifold. More precisely, we first state an equality between a continuous family of projections on the bound states and the image through the index map of a continuous family of unitary operators deduced from the wave operators, see Theorem 15. These unitary operators contain a continuous family of scattering operators, but also the corresponding continuous family of restrictions at energies 0 and +∞. Note that this result is still abstract, in the sense that it gives an equality between an equivalent class in the K 0 -theory related to the bounded part of the system with an equivalent class in the K 1 -theory related to the scattering part of the system, but nothing prevents this equality from being trivial in the sense that it yields 0 = 0.

In the final part of the paper, we choose a 2-dimensional submanifold and show that the second topological result is not trivial. More precisely, we explicitly compute the pairings of the K-equivalent classes with their respective higher degree traces. On the one hand this leads to the computation of the Chern number of a bundle defined by the family of projections. For the chosen manifold this number is equal to 1, and thus is not trivial. By duality of the boundary maps, it follows that the natural 3-trace applied on the family of unitary operators is also not trivial. The resulting statement is provided in Proposition 17. Note that this statement is again global. A distinction of each contribution could certainly be interesting for certain applications, but its computation could be rather tedious and therefore no further investigations have been performed in that direction.

The self-adjoint extensions

Let H denote the Hilbert space L 2 (R 2 ) with its scalar product •, • and its norm • . For any α ∈ (0, 1), we set

A α : R 2 \ {0} → R 2 by A α (x, y) = -α -y x 2 + y 2 , x x 2 + y 2 ,
corresponding formally to the magnetic field B = αδ (δ is the Dirac delta function), and consider the operator

H α := (-i∇ -A α ) 2 , D (H α ) = C ∞ c R 2 \ {0} . Here C ∞ c (Ξ)
denotes the set of smooth functions on Ξ with compact support. The closure of this operator in H, which is denoted by the same symbol, is symmetric and has deficiency indices [START_REF] Adami | On the Aharonov-Bohm Hamiltonian[END_REF][START_REF] Adami | On the Aharonov-Bohm Hamiltonian[END_REF].

We briefly recall the parametrization of the self-adjoint extensions of H α from [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF]. Some elements of the domain of the adjoint operator H * α admit singularities at the origin. For dealing with them, one defines linear functionals Φ

0 , Φ -1 , Ψ 0 , Ψ -1 on D (H * α ) such that for f ∈ D (H * α ) one has, with θ ∈ [0, 2π) and r → 0 + , 2πf(r cos θ, r sin θ) = Φ 0 (f)r -α + Ψ 0 (f)r α + e -iθ Φ -1 (f)r α-1 + Ψ -1 (f)r 1-α + O(r).
The family of all self-adjoint extensions of the operator H α is then indexed by two matrices C, D ∈ M 2 (C) which satisfy the following conditions:

(i) CD * is self-adjoint, (ii) det(CC * + DD * ) = 0, (1) 
and the corresponding extensions H CD α are the restrictions of H * α onto the functions f satisfying the boundary conditions

C Φ 0 (f) Φ -1 (f) = 2D αΨ 0 (f) (1 -α)Ψ -1 (f)
.

For simplicity, we call admissible a pair of matrices (C, D) satisfying the above conditions.

Remark 1. The parametrization of the self-adjoint extensions of H α with all admissible pairs (C, D) is very convenient but non-unique. At a certain point, it will be useful to have a one-toone parametrization of all self-adjoint extensions. So, let us consider U ∈ U (2) and set

C(U ) := 1 2 (1 -U ) and D(U ) = i 2 (1 + U ).
It is easy to check that C(U ) and D(U ) satisfy both conditions (1). In addition, two different elements [START_REF] Harmer | Hermitian symplectic geometry and extension theory[END_REF]. Thus, without ambiguity we can write H U α for the operator H

U, U of U (2) lead to two different self-adjoint operators H C(U ) D(U ) α and H C(U ) D(U ) α , cf.
C(U ) D(U ) α . Moreover, the set {H U α | U ∈ U (2)
} describes all self-adjoint extensions of H α . Let us also mention that the normalization of the above maps has been chosen such that H -1 α ≡ H 10 α = H AB α which corresponds to the standard Aharonov-Bohm operator studied in [START_REF] Aharonov | Significance of electromagnetic potentials in the quantum theory[END_REF][START_REF] Ruijsenaars | The Aharonov-Bohm effect and scattering theory[END_REF].

The essential spectrum of H CD α is absolutely continuous and covers the positive half line [0, +∞). The discrete spectrum consists of at most two negative eigenvalues. More precisely, the number of negative eigenvalues of H CD α coincides with the number of negative eigenvalues of the matrix CD * .

The negative eigenvalues are the real negative solutions of the equation det DM (z) -C = 0 where M (z) is, for z < 0,

M (z) = - 2 π sin(πα)   Γ(1 -α) 2 - z 4 α 0 0 Γ(α) 2 - z 4 1-α   ,
and there exists an injective map γ(z) : C 2 → H depending continuously on z ∈ C \ [0, +∞) and calculated explicitly in [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF] such that for each z < 0 one has ker(

H CD α -z) = γ(z) ker DM (z) - C .

Wave and scattering operators

One of the main result of [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF] is an explicit description of the wave operators. We shall recall this result below, but we first need to introduce the decomposition of the Hilbert space H with respect to a special basis. For any m ∈ Z, let φ m be the complex function defined by [0, 2π) θ → φ m (θ) := e imθ √ 2π . One has then the canonical isomorphism

H ∼ = m∈Z H r ⊗ [φ m ] , (2) 
where H r := L 2 (R + , r dr) and [φ m ] denotes the one dimensional space spanned by φ m . For shortness, we write H m for H r ⊗ [φ m ], and often consider it as a subspace of H. Let us still set

H int := H 0 ⊕ H -1 which is clearly isomorphic to H r ⊗ C 2 .
Let us also recall that the unitary dilation group {U τ } τ ∈R is defined on any f ∈ H and x ∈ R 2 by [U τ f](x) = e τ f(e τ x) .

Its self-adjoint generator A is formally given by 1 2 (X •(-i∇)+(-i∇)•X), where X is the position operator and -i∇ is its conjugate operator. All these operators are essentially self-adjoint on the Schwartz space on R 2 . Clearly, the group of dilations as well as its generator leave each subspace H m invariant.

Let us now consider the wave operators

Ω CD -:= Ω -(H CD α , H 0 ) = s -lim t→-∞ e itH CD α e -itH 0 .
where H 0 := -∆. It is well known that for any admissible pair (C, D) the operator Ω CD ± is reduced by the decomposition

H = H int ⊕ H ⊥ int and that Ω CD -| H ⊥ int = Ω AB -| H ⊥ int
. The restriction to H ⊥ int is further reduced by the decomposition (2) and it is proved in [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF]Prop. 10] that the channel wave operators satisfy for each m ∈ Z,

Ω AB -,m = ϕ - m (A) , with ϕ - m explicitly given for x ∈ R by ϕ - m (x) := e iδ α m Γ 1 2 (|m| + 1 + ix) Γ 1 2 (|m| + 1 -ix) Γ 1 2 (|m + α| + 1 -ix) Γ 1 2 (|m + α| + 1 + ix)
and

δ α m = 1 2 π |m| -|m + α| = -1 2 πα if m ≥ 0 1 2 πα if m < 0 .
It is also proved in [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF]Thm. 11] that

Ω CD -| H int = ϕ - 0 (A) 0 0 ϕ - -1 (A) + φ0 (A) 0 0 φ-1 (A) S CD α H 0 (3) 
with φm (x) given for m ∈ {0, -1} by

1 2π e -iπ|m|/2 e πx/2 Γ 1 2 (|m| + 1 + ix) Γ 1 2 (|m| + 1 -ix) Γ 1 2 (1 + |m + α| -ix) Γ 1 2 (1 -|m + α| -ix) .
Clearly, the functions ϕ - m and φm are continuous on R. Furthermore, these functions admit limits at ±∞:

ϕ - m (-∞) = 1, ϕ - m (+∞) = e 2iδ α m
, φm (-∞) = 0 and φm (+∞) = 1. Note also that the expression for the function S CD α (•) is given for κ ∈ R + by

S CD α (κ) := 2i sin(πα) Γ(1-α) e -iπα/2 2 α κ α 0 0 Γ(α) e -iπ(1-α)/2 2 1-α κ (1-α) • D Γ(1-α) 2 e -iπα 4 α κ 2α 0 0 Γ(α) 2 e -iπ(1-α) 4 1-α κ 2(1-α) + π 2 sin(πα) C -1 D • Γ(1-α) e -iπα/2 2 α κ α 0 0 -Γ(α) e -iπ(1-α)/2 2 1-α κ (1-α) .
As usual, the scattering operator is defined by the formula

S CD α := Ω CD + * Ω CD -.
Then, the relation between this operator and S CD α is of the form

S CD α | H int = S CD α ( H 0 ) with S CD α (κ) := e -iπα 0 0 e iπα + S CD α (κ) . ( 4 
)
The following result has been obtained in [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF]Prop. 13] and will be necessary further on:

Proposition 2. The map R + κ → S CD α (κ) ∈ U (2)
is continuous and has explicit asymptotic values for κ = 0 and κ = +∞. More explicitly, depending on C, D and α one has:

i) If D = 0, then S CD α (κ) = e -iπα 0 0 e iπα , ii) If det(D) = 0, then S CD α (+∞) = e iπα 0 0 e -iπα , iii) If dim[ker(D)] = 1 and α = 1/2, then S CD α (+∞) = (2P -1) i 0 0 -i , where P is the orthogonal projection onto ker(D) ⊥ , iv) If ker(D) = C 0 or if dim[ker(D)] = 1, α < 1/2 and ker(D) = 0 C , then S CD α (+∞) = e -iπα 0 0 e -iπα , v) If ker(D) = 0 C or if dim[ker(D)] = 1, α > 1/2 and ker(D) = C 0 , then S CD α (+∞) = e iπα 0 0 e iπα . Furthermore, a) If C = 0, then S CD α (0) = e iπα 0 0 e -iπα , b) If det(C) = 0, then S CD α (0) = e -iπα 0 0 e iπα , c) If dim[ker(C)] = 1 and α = 1/2, then S CD α (0) = (1 -2Π) i 0 0 -i , where Π is the orthogonal projection on ker(C) ⊥ . d) If ker(C) = 0 C or if dim[ker(C)] = 1, α > 1/2 and ker(C) = C 0 , then S CD α (0) = e -iπα 0 0 e -iπα , e) If ker(C) = C 0 or if dim[ker(C)] = 1, α < 1/2 and ker(C) = 0 C , then S CD α (0) = e iπα 0 0 e iπα .
3 The 0-degree Levinson's theorem, a pedestrian approach

In this section, we state a Levinson's type theorem adapted to our model. The proof is quite adhoc and will look like a recipe, but a much more conceptual one will be given subsequently. The main interest in this pedestrian approach is that it shows the importance of the restriction of the wave operators at 0-energy and at energy equal to +∞. Let us remind the reader interested in the algebraic approach that the present proof can be skipped without any loss of understanding in the following sections.

Let us start by considering again the expression (3) for the operator Ω CD -| H int . It follows from the explicit expressions for the functions ϕ - m , φm and S CD α that Ω CD -| H int is a linear combination of product of functions of two non-commutating operators with functions that are respectively continuous on [-∞, ∞] and on [0, ∞] and which take values in M 2 (C). For a reason that will become limpid in the algebraic framework, we shall consider the restrictions of these products of functions on the asymptotic values of the closed intervals. Namely, let us first set for x ∈ R and κ 

∈ R + Γ 1 (C, D, α, x) := ϕ - 0 (x) 0 0 ϕ - -1 (x) + φ0 (x) 0 0 φ-1 (x) S CD α (0) , (5) 
Γ 2 (C, D, α, κ) := S CD α (κ) , (6) 
Γ 3 (C, D, α, x) := ϕ - 0 (x) 0 0 ϕ - -1 (x) + φ0 (x) 0 0 φ-1 (x) S CD α (+∞) , (7) 
M 2 (C). Now, we set ⊂ [0, ∞]×[-∞, ∞]
for the union of the four parts: 

= B 1 ∪B 2 ∪B 3 ∪B 4 , with B 1 = {0} × [-∞, ∞], B 2 = [0, ∞] × {+∞}, B 3 = {+∞} × [-∞, ∞] and B 4 = [0, ∞] × {-∞}. Then, we naturally define the function Γ(C, D, α, •) : → M 2 (C) by the relations Γ C, D, α, (0, x) = Γ 1 (C, D, α, x), Γ C, D, α, (κ, ∞) = Γ 2 (C, D, α, κ), Γ C, D, α, (∞, x) = Γ 3 (C, D, α, x) and Γ C, D, α, (κ, -∞) = Γ 4 (C, D, α, κ). In fact, since the following relations hold: Γ 1 (C, D, α, ∞) = Γ 2 (C, D, α, 0), Γ 2 (C, D, α, ∞) = Γ 3 (C, D, α, ∞), Γ 3 (C, D, α, -∞) = Γ 4 (C, D, α, ∞) and Γ 4 (C, D, α, 0) = Γ 1 (C, D, α, -∞),
wind Γ(C, D, α, •) = -#σ p (H CD α ) = -#{negative eigenvalues of CD * } .
Proof. The first equality is proved below by a case-by-case study. The equality between the cardinality of σ p (H CD α ) and the number of negative eigenvalues of the matrix CD * has been shown in [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF]Lem. 4].

We shall now calculate separately the contribution to the winding number from the functions

Γ 1 (C, D, α, •), Γ 2 (C, D, α, •) and Γ 3 (C, D, α, •).
The contribution due to the scattering operator is the one given by Γ 2 (C, D, α, •). It will be rather clear that a naive approach of Levinson's theorem involving only the contribution of the scattering operator would lead to a completely wrong result. The final results are presented in Section 3.3.

Contributions of Γ 1 (C, D, α, •) and Γ 3 (C, D, α, •)

In this section we calculate the contributions due to Γ 1 (C, D, α, •) and Γ 3 (C, D, α, •) which were introduced in ( 5) and [START_REF] Connes | Noncommutative geometry[END_REF]. For that purpose, recall first the relation

S CD α (κ) := e -iπα 0 0 e iπα + S CD α (κ) .
Since S CD α (0) and S CD α (+∞) are diagonal in most of the situations, as easily observed in Proposition 2, let us define for a ∈ C and m ∈ {0, -1} the following functions:

ϕ m (•, a) := ϕ - m (•) + a φm (•) .
Then, by a simple computation one obtains

ϕ m (x, a) = Γ 1 2 (|m| + 1 + ix) Γ 1 2 (|m| + 1 -ix) Γ 1 2 (|m + α| + 1 -ix) Γ 1 2 (|m + α| + 1 + ix) • • e iδ α m + a e -iπ|m|/2 e πx/2 2 sin π 2 (1 + |m + α| + ix) .
Let us mention that the equality

Γ(z) Γ 1 -z) = π sin(πz) (9) 
for z = 1 2 (1 + |m + α| + ix) has been used for this calculation. In the case a = 0, the function ϕ m (•, 0) clearly takes its values in T. We shall now consider the other two special cases ϕ 0 (•, e iπαe -iπα ) and ϕ -1 (•, e -iπα -e iπα ) which will appear naturally subsequently. Few more calculations involving some trigonometric relations and the same relation ( 9) lead to

ϕ 0 (x, e iπα -e -iπα ) = e iπα/2 Γ 1 2 (1 + ix) Γ 1 2 (1 -ix) Γ 1 2 (1 + α -ix) Γ 1 2 (1 + α + ix) sin π 2 (1 + α -ix) sin π 2 (1 + α + ix) = e iπα/2 Γ 1 2 (1 + ix) Γ 1 2 (1 -ix) Γ 1 2 (1 -α -ix) Γ 1 2 (1 -α + ix) and to ϕ -1 (x, e -iπα -e iπα ) = -e -iπα/2 Γ 1 + 1 2 ix Γ 1 -1 2 ix Γ 1 -1 2 (α + ix) Γ 1 -1 2 (α -ix) sin π 2 (α + ix) sin π 2 (α -ix) = -e -iπα/2 Γ 1 + 1 2 ix Γ 1 -1 2 ix Γ 1 2 (α -ix) Γ 1 2 (α + ix) .
Clearly, both functions are continuous and take values in T. Furthermore, since ϕ - m and φm have limits at ±∞, so does the functions ϕ m (•, a). It follows that the variation of the arguments of the previous functions can be defined. More generally, for any continuously differentiable function

ϕ : [-∞, ∞] → T we set Var[ϕ] := 1 i ∞ -∞ ϕ(x) -1 ϕ (x) dx .
Let us first state a convenient formula. Its proof is given in the Appendix B. As an easy corollary one obtains Corollary 5. The following equalities hold:

i) Var[ϕ m (•, 0)] = 2δ α m for m ∈ {0, -1}, ii) Var[ϕ 0 (•, e iπα -e -iπα )] = πα, iii) Var[ϕ -1 (•, e -iπα -e iπα )] = π(2 -α).
Let us now set

φ 1 (C, D, α) := Var det Γ 1 (C, D, α, •) and φ 3 (C, D, α) := -Var det Γ 3 (C, D, α, •) .
The sign " -" in the second definition comes from the sense of the computation of the winding number: from +∞ to -∞. By taking into account the above information and the expression S CD α (0) and S CD α (+∞) recalled in Proposition 2 one can prove:

Proposition 6. One has i) If D = 0, then φ 3 (C, D, α) = 0, ii) If det(D) = 0, then φ 3 (C, D, α) = -2π, iii) If ker(D) = C 0 or if dim[ker(D)] = 1, α < 1/2 and ker(D) = 0 C , then φ 3 (C, D, α) = -2π(1 -α), iv) If ker(D) = 0 C or if dim[ker(D)] = 1, α > 1/2 and ker(D) = C 0 , then φ 3 (C, D, α) = -2πα, v) If dim[ker(D)] = 1 and α = 1/2, then φ 3 (C, D, α) = -π. Furthermore, a) If C = 0, then φ 1 (C, D, α) = 2π, b) If det(C) = 0, then φ 1 (C, D, α) = 0, c) If ker(C) = 0 C or if dim[ker(C)] = 1, α > 1/2 and ker(C) = C 0 , then φ 1 (C, D, α) = 2π(1 -α), d) If ker(C) = C 0 or if dim[ker(C)] = 1, α < 1/2 and ker(C) = 0 C , then φ 1 (C, D, α) = 2πα, e) If dim[ker(C)] = 1 and α = 1/2, then φ 1 (C, D, α) = π.
Proof. Statements i) to iv) as well as statements a) to d) are easily obtained simply by taking the asymptotic values of S CD α (•) into account. So let us concentrate on the remaining statements. Let p = (p 1 , p 2 ) ∈ C 2 with p = 1, and let

P = |p 2 | 2 -p 1 p2 -p 1 p 2 |p 1 | 2
be the orthogonal projection onto p ⊥ . For x ∈ R, let us also set

ϕ(P, x) := ϕ - 0 (x) 0 0 ϕ - -1 (x) + φ0 (x) 0 0 φ-1 (x) 2P i 0 0 -i whose determinant is equal to g(x) := ϕ - 0 (x) ϕ - -1 (x) + 2i φ0 (x) ϕ - -1 (x) |p 2 | 2 -2iϕ - 0 (x) φ-1 (x)|p 1 | 2 .
By taking the explicit expressions for these functions one obtains

g(x) = Γ 1 2 (1 + ix) Γ 1 2 (1 -ix) Γ 1 2 ( 3 2 -ix) Γ 1 2 ( 3 2 + ix) Γ 1 2 (2 + ix) Γ 1 2 (2 -ix) Γ 1 2 ( 3 2 -ix) Γ 1 2 ( 3 2 + ix) • 1 + i e iπ/4 e πx/2 π Γ 1 2 ( 1 2 -ix) Γ 1 2 ( 3 2 + ix) .
Now, by setting z = 3 4 + i x 2 and by some algebraic computations one obtains

1 + ie iπ/4 e πx/2 π Γ 1 2 ( 1 2 -ix) Γ 1 2 ( 3 2 + ix) = 1 + i π e -iπ(z-1) Γ(1 -z) Γ(z) = 1 -i e -iπz sin(πz) = -i cos(πz) sin(πz) = -i 1 tan 3π 4 + i πx 2 = -i tanh( πx 2 ) -i tanh( πx)
2 ) + i .

Thus, one finally obtains that

g(x) = -i Γ 1 2 (1 + ix) Γ 1 2 (1 -ix) Γ 1 2 ( 3 2 -ix) Γ 1 2 ( 3 2 + ix) Γ 1 2 (2 + ix) Γ 1 2 (2 -ix) Γ 1 2 ( 3 2 -ix) Γ 1 2 ( 3 2 + ix) tanh( πx 2 ) -i tanh( πx 2 ) + i .
Note that this function does not depend on the projection P at all.

Clearly one has

Var[g] = Var[ϕ 1 2 , 3 4 ] + Var[ϕ 1, 3 4 ] + Var tanh( π• 2 ) -i tanh( π• 2 ) + i = - π 2 + π 2 + π = π. Now, by observing that φ 3 (C, D, α) = -Var[g] in the case v), one concludes that in this special case φ 3 (C, D, α) = -π.
For the case e), observe that by setting P := 1 -Π, one easily obtains that in this special case Γ 6) is equal to S CD α (•). We are interested here in the phase of det S CD α (κ) acquired as κ runs from 0 to +∞; we denote this phase by

1 (C, D, α, •) = ϕ(P, •). It follows that φ 1 (C, D, α) = Var[g] and then φ 1 (C, D, α) = π. 3.2 Contribution of Γ 2 (C, D, α, •) Recall first that Γ 2 (C, D, α, •) defined in (
φ 2 (C, D, α). Note that if det S CD α (κ) = f (κ) f (κ) for a non-vanishing continuous function f : R + → C * , then φ 2 (C, D, α) = -2 arg f (+∞) -arg f (0) ,
where arg : R + → R is a continuous function defined by the argument of f . In the sequel, we shall also use the notation θ : C * → (-π, π] for the principal argument of a complex number different from 0. Now, let us consider κ > 0 and set S(κ) := S CD α (κ). For shortness, we also set L := π 2 sin(πα) C and

B := b 1 (κ) 0 0 b 2 (κ) = Γ(1-α) 2 α κ α 0 0 Γ(α) 2 1-α κ (1-α) , Φ := e -iπα/2 0 0 e -iπ(1-α)/2 , J := 1 0 0 -1 .
Note that the matrices B, Φ and J commute with each other, that the matrix B is self-adjoint and invertible, and that J and Φ are unitary.

I) If D = 0, then S CD α is constant and φ 2 (C, D, α) = 0. II) Let us assume det(D) = 0, i.e. D is invertible. Without loss of generality, we may assume that D = 1, as explained in [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF]Sec. 3], and that C and hence L are self-adjoint. We write C = (c jk ), L = (l jk ) and we then use the expression

S(κ) = Φ B -1 L B -1 + cos(πα)J + i sin(πα) B -1 L B -1 + cos(πα)J -i sin(πα) Φ J , ( 10 
)
derived in [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF]. By direct calculation one obtains det

S(κ) = f (κ) f (κ) with f (κ) = det B -1 LB -1 + cos(πα)J -i sin(πα) = det(L) b -2 1 (κ) b -2 2 (κ) -1 + cos(πα) l 22 b -2 2 (κ) -l 11 b -2 1 (κ) -i sin(πα) l 11 b -2 1 (κ) + l 22 b -2 2 (κ) ( 11 
)
and f is non-vanishing as the determinant of an invertible matrix.

For the computation of φ 2 (C, D, α) we shall have to consider several cases. We first assume that det(C) = 0, which is equivalent to det(L) = 0. In that case one clearly has det S CD α (0) = det S CD α (+∞) , and then φ 2 (C, D, α) will be a multiple of 2π. Furthermore, note that θ f (+∞) = π and that θ f (0) = 0 if det(L) > 0 and θ f (0) = π if det(L) < 0.

Assuming that l 11 l 22 ≥ 0 (which means that f is either non-negative or non-positive, and its sign is opposite to that of tr(L)), one has the following cases: Now, if l 11 l 22 < 0 the main difference is that the parameter α has to be taken into account. On the other hand, one has det(L) < 0 which implies that arg f (+∞) -arg f (0) has to be a multiple of 2π. For the computation of this difference, observe that the equation

f (κ) = 0 (for κ ≥ 0) is equivalent to b -2 1 (κ) b -2 2 (κ) = - l 22 l 11 ⇐⇒ κ 2α-1 = 2 2α-1 Γ(α) Γ(1 -α) - l 11 l 22 . ( 12 
)
For α = 1/2 this equation has a unique solution κ 0 , and it follows that the sign of f (κ) will be different for κ < κ 0 and for κ > κ 0 (and will depend on α and on the relative sign of l 11 and l 22 ).

Let us now estimate f (κ 0 ). We have

f (κ) = det(L) b -2 1 (κ) b -2 2 (κ) -1 + cos(πα) l 22 b -2 2 (κ) -l 11 b -2 1 (κ) ≤ -|l 11 l 22 | b -2 1 (κ) b -2 2 (κ) -1 + | cos(πα)| l 22 | b -2 2 (κ) + |l 11 | b -2 1 (κ) = -|l 11 l 22 | b -2 1 (κ) b -2 2 (κ) + 1 -| cos(πα)| l 22 | b -2 2 (κ) + |l 11 | b -2 1 (κ) = -1 -| cos(πα)| |l 11 l 22 | b -2 1 (κ) b -2 2 (κ) + 1 -| cos(πα)| |l 11 | b -2 1 (κ) -1 |l 22 |b -2 2 (κ) -1 .
Hence using [START_REF] Harmer | Hermitian symplectic geometry and extension theory[END_REF] and the equality -

l 22 l 11 = |l 22 | |l 11 | one obtains f (κ 0 ) ≤ -1 -| cos(πα)| |l 11 l 22 | b -2 1 (κ 0 )b -2 2 (κ 0 ) + 1 -| cos(πα)| |l 22 |b -2 2 (κ 0 ) -1 2 < 0.
This estimate implies that 0 is not contained in the interior of the curve f (R + ), which means that arg f (+∞) -arg f (0) = 0 for all α = 1/2.

For the special case α = 1/2, the equation ( 12) has either no solution or holds for all κ ∈ R + . In the former situation, f has always the same sign, which means that the arg f (+∞)arg f (0) = 0. In the latter situation, f is real, and obviously arg f (+∞) -arg f (0) = 0. In summary, one has obtained:

II.6) If c 11 c 22 < 0, then φ 2 (C, D, α) = 0.
Let us now assume that det(C) = 0 but C = 0, i.e. det(L) = 0 but L = 0. In that case one simply has

f (κ) = -1 + cos(πα) l 22 b -2 2 (κ) -l 11 b -2 1 (κ) -i sin(πα) l 11 b -2 1 (κ) + l 22 b -2 2 (κ) .
Furthermore, one always has l 11 l 22 ≥ 0, which means that f is either non-negative or nonpositive. Then, since θ f (+∞) = π, it will be sufficient to calculate the value θ f (0) . i) Assume first that l 11 = 0, which automatically implies that l 22 = 0 and l 12 = l 21 = 0. Then one has

f (κ) = -1 + cos(πα) l 22 b -2 2 (κ) -i sin(πα) l 22 b -2 2 (κ) and θ f (0) = -πα if l 22 > 0 π(1 -α) if l 22 < 0 .
By taking into account the sign of f , one then obtains

arg f (+∞) -arg f (0) = -π(1 -α) if l 22 > 0 πα if l 22 < 0 .
ii) Similarly, if we assume now that l 22 = 0, we then have l 11 = 0, l 12 = l 21 = 0 and

f (κ) = -1 -cos(πα) l 11 b -2 1 (κ) -i sin(πα) l 11 b -2 1 (κ).
It then follows that

θ f (0) = πα if l 11 < 0 -π(1 -α) if l 11 > 0 and arg f (+∞) -arg f (0) = π(1 -α) if l 11 < 0 -πα if l 11 > 0 .
iii) Assume now that l 11 l 22 = 0 (which means automatically l 11 l 22 > 0) and that

α = 1/2. Since b 1 (κ) = b 2 (κ) =: b(κ) one then easily observes that f (κ) = -1 -i tr(L) b -2 (κ), θ f (0) = -π
2 sign tr(L) and arg f (+∞) -arg f (0) = -π 2 sign tr(L) . iv) Assume that l 11 l 22 = 0 and that α < 1/2. In this case one can rewrite

f (κ) = -1 + cos(πα) b -2 2 (κ) l 22 -l 11 b 2 2 (κ) b 2 1 (κ) -i sin(πα) b -2 2 (κ) l 22 + l 11 b 2 2 (κ) b 2 1 (κ)
.

Since b 2 (κ)/b 1 (κ) → 0 as κ → 0+, one has the same limit values and phases as in i).

v) Similarly, if l 11 l 22 = 0 and α > 1/2, we have the same limit and phases as in ii). 

c(κ) = b 2 1 (κ) |p 2 | 2 e -iπα -b 2 2 (κ) |p 1 | 2 e iπα and X -:= b 2 1 (κ) |p 2 | 2 -b 2 2 (κ) |p 1 | 2 , X + := b 2 1 (κ) |p 2 | 2 + b 2 2 (κ) |p 1 | 2 .
In that case it has been shown in [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF] that

S = Φ c(κ) + -1 M (κ) Φ J ,
where

M (κ) := e iπα X -+ -2 i sin(πα) b 1 (κ) b 2 (κ) p 1 p2 -2 i sin(πα) b 1 (κ) b 2 (κ) p1 p 2 e -iπα X -+
and is a real number which will be specified below. Note that det M (κ) = |c(κ) + | 2 which ensures that S is a unitary operator. Therefore, by setting

g(κ) := c(κ) + = cos(πα) b 2 1 (κ) |p 2 | 2 -b 2 2 (κ) |p 1 | 2 + -i sin(πα) b 2 1 (κ) |p 2 | 2 + b 2 2 (κ) |p 1 | 2 , one has φ 2 (C, D, α) = -2 arg g(+∞) -arg g(0) ,
where arg : R + → R is a continuous function defined by the argument of g. Note already that we always have g < 0.

We first consider the special case α = 1/2. In that case we have b 1 (κ) = b 2 (κ) =: b(κ), and then g(κ) = -ib 2 (κ).

If = 0, we have θ g(0) = θ( ) and θ g(+∞) = -π/2. Therefore Let us now consider the case α < 1/2, and assume first that = 0. It follows that θ g(0) = θ( ). To calculate θ g(+∞) one has to consider two subcases. So, on the one hand let us assume in addition that p 1 = 0. Then one has

arg g(+∞) -arg g(0) = -π/2 if > 0 π/2 if < 0 . If = 0,
g(κ) = -cos(πα) b 2 2 (κ) |p 1 | 2 - b 2 1 (κ) b 2 2 (κ) |p 2 | 2 -i sin(πα) b 2 2 (κ) |p 1 | 2 + b 2 1 (κ) b 2 2 (κ) |p 2 | 2 . Since b 1 (κ)/b 2 (κ) → 0 as κ → +∞, one obtains θ g(+∞) = -π(1 -α) and arg g(+∞) -arg g(0) = -π(1 -α), if > 0 πα, if < 0 .
On the other hand, if p 1 = 0, then one has

g(κ) = + b 2 1 (κ) cos(πα) -i sin(πα) ,
which implies that θ g(+∞) = -πα and that

arg g(+∞) -arg g(0) = -πα, if > 0 π(1 -α), if < 0 .
Now, let us assume that = 0. In this case the above limits for κ → +∞ still hold, so we only need to calculate θ g(0) . Firstly, if p 2 = 0, we have

g(κ) = cos(πα) b 2 1 (κ) |p 2 | 2 - b 2 2 (κ) b 2 1 (κ) |p 1 | 2 -i sin(πα) b 2 1 (κ) |p 2 | 2 + b 2 2 (κ) b 2 1 (κ) |p 1 | 2 ,
and since b 2 (κ)/b 1 (κ) → 0 as κ → 0+ it follows that θ g(0) = -πα. Secondly, if p 2 = 0, then

g(κ) = -b 2 2 (κ) cos(πα) + i sin(πα) ,
and we get θ g(0) = -π(1 -α).

In summary, for det(D) = 0, D = 0 and α < 1/2, we have obtained

IV.4) if < 0 and p 1 = 0, then φ 2 (C, D, α) = -2πα, IV.5) if < 0 and p 1 = 0, then φ 2 (C, D, α) = -2π(1 -α), IV.6) if > 0 and p 1 = 0, then φ 2 (C, D, α) = 2π(1 -α), IV.7) if > 0 and p 1 = 0, then φ 2 (C, D, α) = 2πα, IV.8) if = 0, p 1 = 0 and p 2 = 0 then φ 2 (C, D, α) = 2π(1 -2α),
IV.9) if = 0 and p 1 = 0 or if = 0 and p 2 = 0, then φ 2 (C, D, α) = 0.

The case det(D) = 0, D = 0 and α > 1/2 can be treated analogously. We simply state the results: Let us finally recall some relationship between the constant and the matrices C and D in the case IV). As explained before, we can always assume that C = (1 -U )/2 and D = i(1 + U )/2 for some U ∈ U (2). Recall that in deriving the equalities (IV.1)-(IV.15) we assumed dim[ker(D)] = 1, i.e. -1 is an eigenvalue of U of multiplicity 1. Let e iθ , θ ∈ (-π, π) be the other eigenvalue of U . Then by the construction explained in [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF], one has

IV.10) if < 0 and p 2 = 0, then φ 2 (C, D, α) = -2π(1 -α),
= π 2 sin(πα) 1 -e iθ i(1 + e iθ ) = - π 2 sin(πα) sin θ 2 cos θ 2 .
On the other hand, the eigenvalues of the matrix CD * = i(U -U * )/4 are λ 1 = 0 and

λ 2 = i(e iθ -e -iθ )/4 = -1 2 sin(θ) = -sin θ 2 cos θ 2 .
It follows that λ 2 and have the same sign. Therefore, in (IV.1)-(IV.15) one has: < 0 if CD * has one zero eigenvalue and one negative eigenvalue, = 0 if CD * = 0 and > 0 if CD * has one zero eigenvalue and one positive eigenvalue.

Case-by-case results

In this section we finally collect all previous results and prove the case-by-case version of Levinson's theorem. The interest of this analysis is that the contribution of the 0-energy operator For simplicity, we shall write H for H CD α and φ j for φ j (C, D, α). We also recall that the number #σ p (H) of eigenvalues of H is equal to the number of negative eigenvalues of the matrix CD * [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF]Lem. 4].

We consider first the very special situations: 

No Conditions #σ p (H) φ 1 φ 2 φ 3 j φ j I D = 0 0 0 0 0 0 III C = 0 0 2π 0 -2π 0 
E) < 0, α = 1/2 1 π -π -2π -2π
On the other hand, if dim[ker(D)] = 1 and α = 1/2 one has:

No Conditions #σ p (H) φ 1 φ 2 φ 3 j φ j IV.1 > 0 0 0 π -π 0 IV.2 = 0 0 π 0 -π 0 IV.3 < 0 1 0 -π -π -2π
If dim[ker(D)] = 1, α < 1/2 and if (p 1 , p 2 ) ∈ ker(D) one obtains:

No Conditions #σ p (H) φ 1 φ 2 φ 3 j φ j IV.4 < 0, p 1 = 0 1 0 -2πα -2π(1 -α) -2π IV.5 < 0, p 1 = 0 1 0 -2π(1 -α) -2πα -2π IV.6 > 0, p 1 = 0 0 0 2π(1 -α) -2π(1 -α) 0 IV.7 > 0, p 1 = 0 0 0 2πα -2πα 0 IV.8 = 0, p 1 p 2 = 0 0 2πα 2π(1 -2α) -2π(1 -α) 0 IV.9.a = 0, p 1 = 0 0 2πα 0 -2πα 0 IV.9.b = 0, p 2 = 0 0 2π(1 -α) 0 -2π(1 -α) 0 Finally, if dim[ker(D)] = 1, α > 1/2 and (p 1 , p 2 ) ∈ ker(D) one has: No Conditions #σ p (H) φ 1 φ 2 φ 3 j φ j IV.10 < 0, p 2 = 0 1 0 -2π(1 -α) -2πα -2π IV.11 < 0, p 2 = 0 1 0 -2πα -2π(1 -α) -2π IV.12 > 0, p 2 = 0 0 0 2πα -2πα 0 IV.13 > 0, p 2 = 0 0 0 2π(1 -α) -2π(1 -α) 0 IV.14 = 0, p 1 p 2 = 0 0 2π(1 -α) -2π(1 -2α) -2πα 0 IV.15.a = 0, p 1 = 0 0 2πα 0 -2πα 0 IV.15.b = 0, p 2 = 0 0 2π(1 -α) 0 -2π(1 -α) 0
4 K-groups, n-traces and their pairings

In this section, we give a very short account on the K-theory for C * -algebras and on various constructions related to it. Our aim is not to present a thorough introduction to these subjects but to recast the result obtained in the previous section in the most suitable framework. For the first part, we refer to [START_REF] Rørdam | An introduction to K-theory for C * -algebras[END_REF] for an enjoyable introduction to the subject.

K-groups and boundary maps

The K 0 -group of a unital C * -algebra E is constructed from the homotopy classes of projections in the set of square matrices with entries in E. Its addition is induced from the addition of two orthogonal projections: if p and q are orthogonal projections, i.e. pq = 0, then also p + q is a projection. Thus, the sum of two homotopy classes [p] 0 + [q] 0 is defined as the class of the sum of the block matrices [p ⊕ q] 0 on the diagonal. This new class does not depend on the choice of the representatives p and q. K 0 (E) is defined as the Grothendieck group of this set of homotopy classes of projections endowed with the mentioned addition. In other words, the elements of the K 0 -group are given by formal differences: [p] 0 -[q] 0 is identified with [p ] 0 -[q ] 0 if there exists a projection r such that [p] 0 + [q ] 0 + [r] 0 = [p ] 0 + [q] 0 + [r] 0 . In the general non-unital case the construction is a little bit more subtle.

The K 1 -group of a C * -algebra E is constructed from the homotopy classes of unitaries in the set of square matrices with entries in the unitisation of E. Its addition is again defined by: [u] 1 +[v] 1 = [u⊕v] 1 as a block matrix on the diagonal. The homotopy class of the added identity is the neutral element. Now, let us consider three C * -algebras J , E and Q such that J is an ideal of E and Q is isomorphic to the quotient E/J . Another way of saying this is that J and Q are the left and right part of an exact sequence of C * -algebras

0 → J i → E q → Q → 0, (13) 
i being an injective morphism and q a surjective morphism satisfying ker q = im i. There might not be any reasonable algebra morphism between J and Q but algebraic topology provides us with homomorphisms between their K-groups: ind : K 1 (Q) → K 0 (J ) and exp : K 0 (Q) → K 1 (J ), the index map and the exponential map. These maps are also referred to as boundary maps. For the sequel we shall be concerned only with the index map. It can be computed as follows: If u is a unitary in Q then there exists a unitary w ∈ M 2 (E) such that q(w) = u 0 0 u * . It turns out that w ( 1 0 0 0 ) w * lies in the unitisation of i M 2 (J ) so that [w ( 1 0 0 0 ) w * ] 0 -[( 1 0 0 0 )] 0 defines an element of K 0 (J ). ind([u] 1 ) is that element. With a little luck there exists even a partial isometry w ∈ E such that q(w) = u. Then (1 -w * w) and (1 -ww * ) are projections in J and we have the simpler formula ind

[u] 1 = 1 -w * w 0 -1 -ww * 0 . ( 14 
)

Cyclic cohomology, n-traces and Connes' pairing

For this part, we refer to [7, Sec. III] or to the short surveys presented in [START_REF] Kellendonk | Edge current channels and Chern numbers in the integer quantum Hall effect[END_REF]Sec. 5] or in [START_REF] Kellendonk | Boundary maps for C * -crossed products with R with an application to the quantum Hall effect[END_REF]Sec. 4 & 5]. For simplicity, we denote by N the set of natural number including 0.

Given a complex algebra B and any n ∈ N, let C n λ (B) be the set of (n + 1)-linear functional on B which are cyclic in the sense that any η ∈ C n λ (B) satisfies for each w 0 , . . . , w n ∈ B:

η(w 1 , . . . , w n , w 0 ) = (-1) n η(w 0 , . . . , w n ) .
Then, let b :

C n λ (B) → C n+1 λ (B)
be the Hochschild coboundary map defined for w 0 , . . . , w n+1 ∈ B by

[bη](w 0 , . . . , w n+1 ) := n j=0 (-1) j η(w 0 , . . . , w j w j+1 , . . . , w n+1 ) + (-1) n+1 η(w n+1 w 0 , . . . , w n ) .

An element η ∈ C n λ (B) satisfying bη = 0 is called a cyclic n-cocyle, and the cyclic cohomology HC(B) of B is the cohomology of the complex

0 → C 0 λ (B) → • • • → C n λ (B) b → C n+1 λ (B) → . . . .
A convenient way of looking at cyclic n-cocycles is in terms of characters of a graded differential algebra over B. So, let us first recall that a graded differential algebra (A, d) is a graded algebra A together with a map d : A → A of degree +1. More precisely, A := ⊕ ∞ j=0 A j with each A j an algebra over C satisfying the property A j A k ⊂ A j+k , and d is a graded derivation satisfying d 2 = 0. In particular, the derivation satisfies d(w 1 w 2 ) = (dw 1 )w 2 + (-1) deg(w 1 ) w 1 (dw 2 ), where deg(w 1 ) denotes the degree of the homogeneous element w 1 .

A cycle (A, d, ) of dimension n is a graded differential algebra (A, d), with A j = 0 for j > n, endowed with a linear functional : A → C satisfying dw = 0 if w ∈ A n-1 and for w j ∈ A j , w k ∈ A k :

w j w k = (-1) jk w k w j .
Given an algebra B, a cycle of dimension n over B is a cycle (A, d, ) of dimension n together with a homomorphism ρ : B → A 0 . In the sequel, we will assume that this map is injective and hence identify B with a subalgebra of A 0 (and do not write ρ anymore). Now, if w 0 , . . . , w n are n + 1 elements of B, one can define the character η(w 0 , . . . , w n ) ∈ C by the formula:

η(w 0 , . . . , w n ) := w 0 (dw 1 ) . . . (dw n ) . ( 15 
)
As shown in We can now introduce the precise definition of a n-trace over a Banach algebra. For an algebra B that is not necessarily unital, we denote by B := B ⊕ C the algebra obtained by adding a unit to B. Definition 7. A n-trace on a Banach algebra B is the character of a cycle (A, d, ) of dimension n over a dense subalgebra B of B such that for all w 1 , . . . , w n ∈ B and any x 1 , . . . , x n ∈ B there exists a constant c = c(w 1 , . . . , w n ) such that

(x 1 da 1 ) . . . (x n dw n ) ≤ c x 1 . . . x n .
Remark 8. Typically, the elements of B are suitably smooth elements of B on which the derivation d is well defined and for which the r.h.s. of ( 15) is also well defined. However, the action of the n-trace η can sometines be extended to more general elements (w 0 , . . . , w n ) ∈ B n+1 by a suitable reinterpretation of the l.h.s. of [START_REF] Kellendonk | On the structure of the wave operators in one dimensional potential scattering[END_REF].

The importance of n-traces relies on their duality relation with K-groups. Recall first that M q (B) ∼ = M q (C) ⊗ B and that tr denotes the standard trace on matrices. Now, let B be a C * -algebra and let η n be a n-trace on B with n ∈ N even. If B is the dense subalgebra of B mentioned in Definition 7 and if p is a projection in M q (B ), then one sets

η n , p := c n [tr ⊗η n ](p, . . . , p).
Similarly, if B is a unital C * -algebra and if η n is a n-trace with n ∈ N odd, then for any unitary u in M q (B ) one sets

η n , u := c n [tr ⊗η n ](u * , u, u * , . . . , u)
the entries on the r.h.s. alternating between u and u * . The constants c n are given by

c 2k = 1 (2πi) k 1 k! , c 2k+1 = 1 (2πi) k+1 1 2 2k+1 1 (k + 1 2 )(k -1 2 ) • • • 1 2 .
There relations are referred to as Connes' pairing between K-theory and cyclic cohomology of B because of the following property, see [6, Thm. 2.7] for a precise statement and for its proof: In the above framework, the values η n , p and η n , u depend only of the K 0 -class [p] 0 of p and of the K 1 -class [u] 1 of u, respectively. We now illustrate these notions with two basic examples which will be of importance in the sequel.

Example 9. If B = K(H), the algebra of compact operators on a Hilbert space H, then the linear functional on B is given by the usual trace Tr on the set K 1 of trace class elements of K(H). Furthermore, since any projection p ∈ K(H) is trace class, it follows that η 0 , p ≡ Tr, p is well defined for any such p and that this expression gives the dimension of the projection p.

For the next example, let us recall that det denotes the usual determinant of elements of M q (C).

Example 10. If B = C S 1 , M q (C) for some q ≥ 1, let us fix B := C 1 S 1 , M q (C) . We parameterize S 1 by the real numbers modulo 2π using θ as local coordinate. As usual, for any w ∈ B (which corresponds to an homogeneous element of degree 0), one sets [dw](θ) := w (θ) dθ (which is now an homogeneous element of degree 1). Furthermore, we define the graded trace v dθ := π -π tr[v(θ)] dθ for an arbitrary element v dθ of degree 1. This defines the 1-trace η 1 . A unitary element in u ∈ C 1 S 1 , M q (C) (or rather its class) pairs as follows:

η 1 , u = c 1 [tr ⊗η 1 ](u * , u) := 1 2πi π -π tr[u(θ) * u (θ)] dθ . ( 16 
)
For this example, the extension of this expression for any unitary u ∈ C S 1 , M q (C) is quite straightforward. Indeed, let us first rewrite u =: e iϕ for some ϕ ∈ C 1 S 1 , M q (R) and set β(θ) := det[u(θ)]. By using the equality det[e iϕ ] = e i tr [ϕ] , one then easily observed that the quantity ( 16) is equal to

1 2πi π -π β(θ) * β (θ) dθ .
But this quantity is known to be equal to the winding number of the map β : S 1 → T, a quantity which is of topological nature and which only requires that the map β is continuous.

Altogether, one has thus obtained that the l.h.s. of ( 16) is nothing but the winding number of the map det[u] : S 1 → T, valid for any unitary u ∈ C S 1 , M q (C) .

Dual boundary maps

We have seen that an n-trace η over B gives rise to a functional on K i (B) for i = 1 or i = 2, i.e. the map η, • is an element of Hom(K i (B), C). In that sense n-traces are dual to the elements of the (complexified) K-groups. An important question is whether this dual relation is functorial in the sense that morphisms between the K-groups of different algebras yield dual morphisms on higher traces. Here we are in particular interested in a map on higher traces which is dual to the index map, i.e. a map # which assigns to an even trace η an odd trace #η such that η, ind(

•) = #η, • . ( 17 
)
This situation gives rise to equalities between two numerical topological invariants.

Such an approach for relating two topological invariants has already been used at few occasions. For example, it has been recently shown that Levinson's theorem corresponds to a equality of the form (17) for a 0-trace and a 1-trace [START_REF] Kellendonk | The topological meaning of Levinson's theorem, half-bound states included[END_REF]. In Section 5.3 we shall develop such an equality for a 2-trace and a 3-trace. On the other hand, let us mention that similar equalities have also been developed for the exponential map in (17) instead of the index map. In this framework, an equality involving a 0-trace and a 1-trace has been put into evidence in [START_REF] Kellendonk | Gap labelling and the pressure on the boundary[END_REF]. It gives rise to a relation between the pressure on the boundary of a quantum system and the integrated density of states. Similarly, a relation involving 2-trace and a 1-trace was involved in the proof of the equality between the bulk-Hall conductivity and the conductivity of the current along the edge of the sample, see [START_REF] Kellendonk | Edge current channels and Chern numbers in the integer quantum Hall effect[END_REF][START_REF] Kellendonk | Boundary maps for C * -crossed products with R with an application to the quantum Hall effect[END_REF].

Non-commutative topology and topological Levinson's theorems

In this section we introduce the algebraic framework suitable for the Aharonov-Bohm model. In fact, the following algebras were already introduced in [START_REF] Kellendonk | On the structure of the wave operators in one dimensional potential scattering[END_REF] for the study of the wave operators in potential scattering on R. The similar form of the wave operators in the Aharonov-Bohm model and in the model studied in that reference allows us to reuse part of the construction and the abstract results. Let us stress that the following construction holds for fixed α and (C, D). These parameters will vary only at the end of the section.

The algebraic framework

For the construction of the C * -algebras, let us introduce the operator B := 1 2 ln(H 0 ), where H 0 = -∆ is the usual Laplace operator on R 2 . The crucial property of the operators A and B is that they satisfy the canonical commutation relation [A, B] = i so that A generates translations in B and vice versa, e iBt Ae -iBt = A + t, e iAs Be -iAs = B -s.

Furthermore, both operators leave the subspaces H m invariant. More precisely, for any essentially bounded functions ϕ and η on R, the operator ϕ(A)η(B) leaves each of these subspaces invariant. Since all the interesting features of the Aharonov-Bohm model take place in the subspace H int ∼ = L 2 (R + , r dr) ⊗ C 2 , we shall subsequently restrict our attention to this subspace and consider functions ϕ, η defined on R and taking values in M 2 (C). Now, let E be the closure in B(H int ) of the algebra generated by elements of the form ϕ(A)ψ(H 0 ), where ϕ is a continuous function on R with values in M 2 (C) which converges at ±∞, and ψ is a continuous function R + with values in M 2 (C) which converges at 0 and at

+∞. Stated differently, ϕ ∈ C R, M 2 (C) with R = [-∞, +∞], and ψ ∈ C R + , M 2 (C) with R + = [0, +∞].
Let J be the norm closed algebra generated by ϕ(A)ψ(H 0 ) with functions ϕ and ψ for which the above limits vanish. Obviously, J is an ideal in E, and the same algebras are

obtained if ψ(H 0 ) is replaced by η(B) with η ∈ C R, M 2 (C) or η ∈ C 0 R, M 2 (C) , respectively.
Furthermore, the ideal J is equal to the algebra of compact operators K(H int ), as shown in [START_REF] Kellendonk | On the structure of the wave operators in one dimensional potential scattering[END_REF]Sec. 4].

Let us already mention the reason of our interest in defining the above algebra E. Since for m ∈ {0, -1} the functions ϕ - m and φm have limits at ±∞, and since S CD α also has limits at 0 and +∞, it follows from (3) that the operator Ω CD -| H int belongs to E. Since J = K(H int ), the image of Ω CD -| H int by the quotient map q : E → E/J corresponds to the image of Ω CD -| H int in the Calkin algebra. This motivates the following computation of the quotient E/J .

To describe the quotient E/J we consider the square := R + × R whose boundary is the union of four parts:

= B 1 ∪ B 2 ∪ B 3 ∪ B 4 , with B 1 = {0} × R, B 2 = R + × {+∞}, B 3 = {+∞} × R and B 4 = R + × {-∞}. We can then view Q := C , M 2 (C) as the subalgebra of C R, M 2 (C) ⊕ C R + , M 2 (C) ⊕ C R, M 2 (C) ⊕ C R + , M 2 (C)
given by elements (Γ 1 , Γ 2 , Γ 3 , Γ 4 ) which coincide at the corresponding end points, that is,

Γ 1 (+∞) = Γ 2 (0), Γ 2 (+∞) = Γ 3 (+∞), Γ 3 (-∞) = Γ 4 (+∞), Γ 4 (0) = Γ 1 (-∞).
The following lemma corresponds to results obtained in [START_REF] Georgescu | Iftimovici: C * -algebras of quantum Hamiltonians[END_REF]Sec. 3.5] rewritten in our framework.

Lemma 11. E/J is isomorphic to Q. Furthermore, for any ϕ ∈ C R, M 2 (C) and for any ψ ∈ C R + , M 2 (C) , the image of ϕ(A)ψ(H 0 ) through the quotient map q : E → Q is given by Γ 1 (•) = ϕ(•)ψ(0), Γ 2 (•) = ϕ(+∞)ψ(•), Γ 3 (•) = ϕ(•)ψ(+∞) and Γ 4 (•) = ϕ(-∞)ψ(•).
Stated differently, the algebras J , E and Q are part of the short exact sequence of C * -algebras [START_REF] Kellendonk | Gap labelling and the pressure on the boundary[END_REF]. And as already mentioned, the operator Ω CD -| H int clearly belongs to E. Furthermore, its image through the quotient map q can be easily computed, and in fact has already been computed. Indeed, the function Γ(C, D, α, •) introduced in Section 3 is precisely q Ω CD -| H int , as we shall see it in the following section.

Remark 12. We still would like to provide an alternative description of the above algebras and of the corresponding short exact sequence. Since is isomorphic to T, one first observes that Q ≡ C , M 2 (C) is isomorphic to C T, M 2 (C) . Furthermore, by Stone-Weierstrass Theorem one clearly has that C(T) is the C * -algebra generated by the continuous bijective function u : T λ → u(λ) := λ ∈ T ⊂ C with winding number 1. Then, up to a natural equivalence there are not so many C * -algebras B which fit into an exact sequence of the form 0 → K → B → C(T) → 0, with K the algebra of compact operators. In fact, it turns out that they are classified by the Fredholm-index of a lift û of u [START_REF] Davidson | C * -algebras by example[END_REF]Thm. IX.3.3]. In the present case we can use an exactly solvable model to find out that û can be taken to be an isometry of co-rank 1 and hence this index is -1 [START_REF] Kellendonk | On the structure of the wave operators in one dimensional potential scattering[END_REF]. Our extension is thus what one refers to as the Toeplitz extension. This means that E is the tensor product of M 2 (C) with the C * -algebra generated by an element û satisfying û * û = 1 and ûû * = 1 -e 00 where e 00 is a rank 1 projection. The surjection q is uniquely defined by q(û) = u. Our exact sequence is thus the tensor product with M 2 (C) of the exact sequence

0 → K i → C * (û) q → C * (u) → 0. ( 18 
)
5.2 The 0-degree Levinson's theorem, the topological approach

We can now state the topological version of Levinson's theorem.

Theorem 13. For each α ∈ (0, 1) and each admissible pair (C, D), one has [START_REF] Adami | On the Aharonov-Bohm Hamiltonian[END_REF]. In fact, this was already mentioned when the functions Γ j (C, D, α, •) were introduced.

Ω CD -| H int ∈ E. Furthermore, q Ω CD -| H int = Γ(C, D, α, •) ∈ Q

Proof of Theorem 13. The image of Ω CD

-| H int through the quotient map q is easily obtained by taking the formulae recalled in Lemma 11 into account. Then, since Ω CD -| H int is a lift for Γ(C, D, α, •), the image of [Γ(C, D, α, •)] 1 though the index map is obtained by the formula [START_REF] Kellendonk | Levinson's theorem for Schrödinger operators with point interaction: a topological approach[END_REF]:

ind[Γ(C, D, α, •)] 1 = 1 -Ω CD -| H int * Ω CD -| H int 0 -1 -Ω CD -| H int Ω CD -| H int * 0 = [0] 0 -P CD α 0 .
Theorem 13 covers the K-theoretic part of Levinson's theorem. In order to get a genuine Levinson's theorem, by which we mean an equality between topological numbers, we need to add the dual description, i.e. identify higher traces on J and Q and a dual boundary map. As a matter of fact, the algebras considered so far are too simple to allow for non-trivial results in higher degree and so we must content ourselves here to identify a suitable 0-trace and 1trace which can be applied to P CD α and Γ(C, D, α, •), respectively. Clearly, only the usual trace Having these constructions at our disposal we can now state the main result of this section. For the statement, we use the one-to-one parametrization of the extensions of H α introduced in Remark 1 and let α ∈ (0, 1). We consider a family {Ω -(H U α , H 0 )} (U,α)∈X ∈ B(H int ), parameterized by some compact orientable and boundaryless submanifold X of U (2) × (0, 1). This family defines a map Ω :

X → E, Ω(U, α) = Ω -(H U α , H 0 ), a map Γ : X → Q, Γ(U, α, •) = Γ C(U ), D(U ), α, • = q(Ω -(H U
α , H 0 )), and a map P : X → J , P(U, α) = P U α the orthogonal projection of the subspace of H int spanned by the bound states of H U α .

Theorem 15. Let X be a smooth, compact and orientable n-dimensional submanifold of U (2) × (0, 1) without boundary. Let us assume that the map Ω : X → E is continuous. Then the following equality holds:

ind[Γ] 1 = -[P] 0
where ind is the index map from

K 1 C(X, Q) to K 0 C(X, J ) . Furthermore, the numerical equality #η X , [Γ] 1 = -η X , [P] 0 ( 20 
)
also holds.

Proof. For the first equality we can simply repeat pointwise the proof of Theorem 13. Since we required Ω to be continuous, its kernel projection P is continuous as well. The second equality follows from of a more general formula stating that the map η X → #η X is dual to the boundary maps [START_REF] Elliott | Nest: Cyclic cohomology for one-parameter smooth crossed products[END_REF]. We also mention that another proof can be obtained by mimicking the calculation given in the Appendix of [START_REF] Kellendonk | Edge current channels and Chern numbers in the integer quantum Hall effect[END_REF]. For the convenience of the reader, we sketch it in the Appendix A and refer to [START_REF] Kellendonk | Edge current channels and Chern numbers in the integer quantum Hall effect[END_REF] for details.

Let us point out that r.h.s. of ( 20) is the Chern number of the vector bundle given by the eigenstates of H U α . The next section is devoted to a computation of this number for a special choice of manifold X.

An example of a non trivial Chern number

We shall now choose a 2-dimensional manifold X and show that the above relation between the corresponding 2-trace and 3-trace is not trivial. More precisely, we shall choose a manifold X such that the r.h.s. of [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF] is not equal to 0.

For that purpose, let us fix two complex numbers λ 1 , λ 2 of modulus 1 with λ 1 < 0 < λ 2 and consider the set X ⊂ U (2) defined by :

X = V λ 1 0 0 λ 2 V * | V ∈ U (2) .
Clearly, X is a two-dimensional smooth and compact manifold without boundary, which can be parameterized by

X = ρ 2 λ 1 + (1 -ρ 2 )λ 2 ρ(1 -ρ 2 ) 1/2 e iφ (λ 1 -λ 2 ) ρ(1 -ρ 2 ) 1/2 e -iφ (λ 1 -λ 2 ) (1 -ρ 2 )λ 1 + ρ 2 λ 2 | ρ ∈ [0, 1] and φ ∈ [0, 2π) .
(21) Note that the (θ, φ)-parametrization of X is complete in the sense that it covers all the manifold injectively away from a subset of codimension 1, but it has coordinate singularities at ρ ∈ {0, 1}.

By [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF]Lem. 15], for each U ≡ U (ρ, φ) ∈ X the operator H U α has a single negative eigenvalue z ≡ z(U ) defined by the equality det (1 + U )M (z) + i(1 -U ) = 0, and one has

ker(H U α -z) = γ(z) ker (1 + U )M (z) + i(1 -U ) . ( 22 
)
Here, M (z) is the Weyl function which is a 2 × 2 diagonal matrix and γ(z) : C 2 → H an injective linear map (see subsection 2.1). The orthogonal projection onto ker(H U αz) is denoted by P U α and we shall consider E = {im P U α | U ∈ X} which is a subbundle of the trivial bundle X × H. Our next aim is to calculate its Chern number ch(E), first in terms of the Chern number of a simpler bundle. In view of ( 22) X × C 2 (U, ξ) → (U, γ(z(U ))ξ) ∈ X × H defines a continuous isomorphism between the subbundle F of the trivial bundle X × C 2 defined by

F = ker (1 + U )M (z) + i(1 -U ) | U ∈ X .
and E, and hence ch(E) = ch(F ). Now, the assumptions on λ 1 and λ 2 imply that for any U ∈ X the matrix (1 -U ) is invertible and one can then consider the self-adjoint operator

T (U ) = i 1 -U 1 + U .
By setting λ j =: e iϕ j with ϕ 1 ∈ (-π, 0) and ϕ 2 ∈ (0, π), and then r i = tan ϕ i 2 we get

T (U ) = ρ 2 r 1 + (1 -ρ 2 )r 2 ρ(1 -ρ 2 ) 1/2 e iφ (r 1 -r 2 ) ρ(1 -ρ 2 ) 1/2 e -iφ (r 1 -r 2 ) (1 -ρ 2 )r 1 + ρ 2 r 2
for some ρ ∈ [0, 1] and φ ∈ [0, 2π) given by [START_REF] Pimsner | Exact sequences for K-groups of certain cross-products of C * -algebras[END_REF]. Thus, by using the parametrization of U and z in terms of (ρ, φ) one obtains that the bundle E is isomorphic to the bundle G defined by

G = ker G(ρ, φ) | ρ ∈ [0, 1] and φ ∈ [0, 2π) . with G(ρ, φ) := M 11 z(ρ, φ) + ρ 2 r 1 + (1 -ρ 2 )r 2 ρ(1 -ρ 2 ) 1/2 e iφ (r 1 -r 2 ) ρ(1 -ρ 2 ) 1/2 e -iφ (r 1 -r 2 ) M 22 (z(ρ, φ)) + (1 -ρ 2 )r 1 + ρ 2 r 2 .
Recall that z(ρ, φ) is defined by the condition det G(ρ, φ) = 0, i.e.

M 11 z(ρ, φ) +ρ 2 r 1 +(1-ρ 2 )r 2 • M 22 (z(ρ, φ))+(1-ρ 2 )r 1 +ρ 2 r 2 = (r 1 -r 2 ) 2 (1-ρ 2 )ρ 2 . ( 23 
)
Finally, since M (z) is self-adjoint for z ∈ R -, the matrix G(ρ, φ) is self-adjoint, and hence ker G(ρ, φ) = im G(ρ, φ) ⊥ . In particular, if one defines the bundle

H = im G(ρ, φ) | ρ ∈ [0, 1] and φ ∈ [0, 2π) (24) 
one obviously has G + H = X × C 2 , and then ch(G) = -ch(H) as the Chern number of the trivial bundle X × C 2 is zero. In summary, ch(E) = -ch(H), which we are going to calculate after the following remark. For x ∈ X \ V one can consider the vector

ψ(x) = A 1 (x) A 1 (x)
and by a direct calculation, one obtains tr P d

X P ∧ d X P = d X ψ ∧ d X ψ. Since the differential form d X ψ ∧ d X ψ is exact, then d X ψ ∧ d X ψ = d X ( ψ d X ψ) and by Stokes' theorem, one obtains ch(B) = 1 2πi lim →0 ∂V ψ d X ψ.
Let us apply the above constructions to the bundle [START_REF] Rørdam | An introduction to K-theory for C * -algebras[END_REF]. Since (r 1 -r 2 ) = 0 the first column G 1 (ρ, φ) of the matrix G(ρ, φ) can potentially vanish only for ρ = 0 or for ρ = 1. As already mentioned, these two points are the coordinate singularities of the parametrization. But by a local change of parametrization, one easily get rid of this pathology. Thus, we first consider ρ = 1 and let (θ 1 , θ 2 ) ∈ (-1, 1) 2 be a local parametrization of a neighbourhood of the point ρ = 1 which coincides with (θ 1 , θ 2 ) = (0, 0). Let G be the expression of the function G in the coordinates (θ 1 , θ 2 ) and in a neighbourhood of the point ρ = 1. For this function one has

G 1 (0, 0) = M 11 z(0, 0) + r 1 0 
Now, note that under our assumptions one has r 1 < 0 and r 2 > 0. As seen from the explicit expressions for M , the entries of M (z) are negative for z < 0. Then the term M 11 z(0, 0) + r 1 can not be equal to 0 and this also holds for the first coefficient of G 1 (0, 0).

For ρ = 0 let (ϑ 1 , ϑ 2 ) ∈ (-1, 1) 2 be a local parametrization of a neighbourhood of the point ρ = 0 which coincides with (ϑ 1 , ϑ 2 ) = (0, 0). Let again G be the expression of the function G in the coordinates (ϑ 1 , ϑ 2 ) and in a neighbourhood of the point ρ = 0. Then one has

G 1 (0, 0) = M 11 z(0, 0) + r 2 0 .
In that case, since M 22 (z) + r 1 is strictly negative for any z ∈ R -one must have M 11 z(0, 0) + r 2 = 0 in order to satisfy Equation [START_REF] Richard | New formulae for the wave operators for a rank one interaction[END_REF]. Therefore, the corresponding point ρ = 0 belongs to Y , as introduced in Remark 16. Therefore, in our case Y consists in a single point y corresponding to ρ = 0. Now, for > 0 consider the set

V = ρ 2 λ 1 + (1 -ρ 2 )λ 2 ρ(1 -ρ 2 ) 1/2 e iφ (λ 1 -λ 2 ) ρ(1 -ρ 2 ) 1/2 e -iφ (λ 1 -λ 2 ) (1 -ρ 2 )λ 1 + ρ 2 λ 2 | ρ ∈ [0, ) and φ ∈ [0, 2π) .
Obviously, this set satisfies the conditions of Remark 16. We can then represent

G 1 (ρ, φ) = M 11 z(ρ, φ) + ρ 2 r 1 + (1 -ρ 2 )r 2 ρ(1 -ρ 2 ) 1/2 e -iφ (r 1 -r 2 ) =: g(ρ, φ) f (ρ)e -iφ
with f, g real, and set

ψ(ρ, φ) := G 1 (ρ, φ) G 1 (ρ, φ) =     g(ρ, φ) f 2 (ρ) + g 2 (ρ, φ) f (ρ)e -iφ f 2 (ρ) + g 2 (ρ, φ)     .
Then one has

∂V (y) ψ d X ψ = 2π 0 g f 2 + g 2 ∂ φ g f 2 + g 2 + f e i• f 2 + g 2 ∂ φ f e -i• f 2 + g 2 ( , φ) dφ = -i 2π 0 f 2 f 2 + g 2 ( , φ)dφ Thus, one has obtained that ch(H) = - 1 2π lim →0 2π 0 f 2 ( ) f 2 ( ) + g 2 ( , φ) dφ. (25) 
Furthermore, note that Equation ( 23) can be rewritten as g

(ρ, φ)h(ρ, φ) = f 2 (ρ), where h(ρ, φ) = M 22 (z(ρ, φ)) + (1 -ρ 2 )r 1 + ρ 2 r 2
does not vanish in a sufficiently small neighbourhood of the point ρ = 0. Then one has g(ρ, φ) = o f (ρ) uniformly in φ as r tends to 0. By substituting this observation into (25) one obtains

ch(H) = - 1 2π 2π 0 lim →0 f 2 ( ) f 2 ( ) + g 2 ( , φ) dφ = - 1 2π 2π 0 dφ = -1.
As a consequence, by returning to the original bundle E, one has obtained ch(E) = -ch(H) = 1.

As a corollary, one easily prove:

Proposition 17. Let λ 1 , λ 2 be two complex numbers of modulus 1 with λ 1 < 0 < λ 2 and consider the set X ⊂ U (2) defined by [START_REF] Pimsner | Exact sequences for K-groups of certain cross-products of C * -algebras[END_REF]. Then the map Ω : X → E is continuous and the following equality holds:

1 24π 2 X× tr Γ * d X× Γ ∧ d X× Γ * ∧ d X× Γ = 1 Proof. Continuity of X U → Ω -(H U α , H 0 ) ∈ E is proved in Appendix C.
The equation is an application of Theorem 15 with n = 2 with η X defined by the first Chern character over X: η X , [P] 0 = 1 2πi X Tr P d X P ∧ d X P = ch(E).

A Proof of Theorem 15

As already mentioned, we simply sketch the proof of the second equality of Theorem 15 mimicking the approach of the Appendix of [START_REF] Kellendonk | Edge current channels and Chern numbers in the integer quantum Hall effect[END_REF]. Note that this proof is based on the alternative description of the C * -algebras provided in Remark 12.

Proof of the second statement of Theorem 15. 1) Let us first observe that the short exact sequence [START_REF] Kellendonk | Edge current channels and Chern numbers in the integer quantum Hall effect[END_REF] illuminates better the K-theory associated with the relevant algebras. Indeed, the relations for û tell us immediately that 1-e 00 and 1 are Murray-von Neumann equivalent and hence define the same K 0 -element in E. It follows that the two maps K 0 (i) : K 0 (K) → K 0 C * (û) and K 1 (i) : K 1 (K) → K 1 C * (û) are the zero maps, so that the six-term exact sequence splits into two short exact sequences, see [START_REF] Rørdam | An introduction to K-theory for C * -algebras[END_REF]Chap. 12] for more information on the six-term exact sequence. From this one may conclude that the inclusion j : C 1 → 1 ∈ C * (û) induces an isomorphism in K-theory. The two exact sequences in K-theory therefore become for i = 0, 1 mod 2: 0 → K i (C)

K i (j)
-→ K i (C * (u))

δ i → K i-1 (K) → 0,
where δ i are the boundary maps, and in particular δ 1 = ind.

Let us now consider a smooth and compact orientable n-dimensional manifold X without boundary and the associated short exact sequence introduced in Section 5.3. The above description has the following generalisation: C(X, E) ∼ = C X, M 2 (C) ⊗ C * (û) and the map j : C X, M 2 (C) → C X, M 2 (C) ⊗ C * (û), f → j (f ) ≡ f ⊗ 1, induces an isomorphism in K-theory. Furthermore, the short exact sequence ( 19) is isomorphic to the following one:

0 → C X, M 2 (C) ⊗ K L 2 (R + ) → C X, M 2 (C) ⊗ C * (û) → C X, M 2 (C) ⊗ C * (u) → 0 . (26)
This exact sequence is the Toeplitz extension of the crossed product of the algebra C X, M 2 (C) by the trivial action of Z. Note that Pimsner and Voiculescu have considered the general case of an action of Z on a C * -algebra [START_REF] Pimsner | Exact sequences for K-groups of certain cross-products of C * -algebras[END_REF]. Our interest in (26) relies on the study of a more general short exact sequence performed in the Appendix of [START_REF] Kellendonk | Edge current channels and Chern numbers in the integer quantum Hall effect[END_REF] (in that reference, the action of Z is general) and on the corresponding dual boundary maps.

2) Once this framework is settled, the next part of the proof consists in constructing a right inverse for ind. The map j : C X, M 2 (C) → C X, M 2 (C) ⊗ K L 2 (R + ) , j(f ) = f ⊗ e 00 induces an isomorphism in K-theory [START_REF] Rørdam | An introduction to K-theory for C * -algebras[END_REF]. It is hence sufficient to construct a pre-image under ind of an element of the form [j(P )] 0 where P is a projection in C X, M 2 (C) ⊗ M k (C). Here k is arbitrary and in principle higher k are needed, but for simplicity of the notation we shall set k = 1, the more general case being a simple adaptation. Let U ∈ C X, M 2 (C) ⊗ C * (u) be given by U = 1 ⊗ u, and set U P := U j(P ) + 1 -j(P ) . Then one has to show that U P is a unitary in C X, M 2 (C) ⊗ C * (u) and that ind[U P ] 1 = [j(P )] 0 . However, this calculation is well-known and in particular is performed in [START_REF] Kellendonk | Edge current channels and Chern numbers in the integer quantum Hall effect[END_REF]Prop. A.1]) to which we refer. Note that since the action of Z is trivial, the expression of U P introduced here is even simpler than the formula presented in that reference.

3) The last step consists in checking that the numerical equality #η X , [U P ] 1 = η X , [P ] 0 holds. Again this direct computation has already been performed in [START_REF] Kellendonk | Edge current channels and Chern numbers in the integer quantum Hall effect[END_REF]Thm. A.10] to which we refer for details. Note that the constants c 2k and c 2k+1 introduced in Section 4.2 follow from this computation. Since the above equality has been proved for arbitrary elements of the corresponding algebras, we can then apply the result to P ∈ C(X, J ) and recall that Γ ∈ C(X, Q) is a right inverse to -P for the map ind, i.e. Now, let us denote by ln the principal determination of the logarithm, i.e. ln(z) = ln(|z|) + iθ(z), where θ : C * → (-π, π] is the principal argument of z. We recall from [1, Eq. 6.1.37] that for z → ∞ with |θ(z)| < π: Γ(z) ∼ = e -z e (z-1/2) ln(z) (2π) 1/2 1 + O(z -1 ) .

For z = y + ix, the term e -z e (z-1/2) ln(z) can be rewritten as e -y e (y-1/2) ln( 

= i lim x→∞ (a -1 2 ) θ(a + ix) -θ(a -ix) + (b -1 2 ) θ(b -ix) -θ(b + ix) = i(a -1 2 ) π 2 --π 2 + i(b -1 2 ) -π 2 ) -π 2 = iπ(a -b) .

Γ 4 (

 4 C, D, α, κ) := 1. (8) Clearly, Γ 1 (C, D, α, •) and Γ 3 (C, D, α, •) are continuous functions on [-∞, ∞] with values in M 2 (C), and Γ 2 (C, D, α, •) and Γ 4 (C, D, α, •) are continuous functions on [0, ∞] with values in

Theorem 3 .

 3 one easily observes that Γ(C, D, α, •) is a continuous function on with values in U (2). Thus, since Γ(C, D, α, •) ∈ C , U (2) , we can define the winding number wind Γ(C, D, α, •) of the map ζ → det[Γ(C, D, α, ζ)] ∈ T with orientation of chosen clockwise. Here T denotes the set of complex numbers of modulus 1. The following statement is our Levinson's type theorem. For any α ∈ (0, 1) and any admissible pair (C, D) one has

Lemma 4 .

 4 Let a, b > 0. For ϕ a,b (x) := Γ(a+ix) Γ(a-ix) Γ(b-ix) Γ(b+ix) one has Var[ϕ a,b ] = 2π(a -b).

II. 1 )

 1 If tr(C) > 0 and det(C) > 0, then f < 0 and φ 2 (C, D, α) = 2π, II.2) If tr(C) > 0 and det(C) < 0, then f < 0 and φ 2 (C, D, α) = 0, II.3) If tr(C) < 0 and det(C) > 0, then f > 0 and φ 2 (C, D, α) = -2π, II.4) If tr(C) < 0 and det(C) < 0, then f > 0 and φ 2 (C, D, α) = 0, II.5) If c 11 = c 22 = 0 (automatically det(C) < 0), then f is real and non-vanishing, hence φ 2 (C, D, α) = 0.

  In summary, if det(C) = 0 and C = 0 one has obtained: II.7) If c 11 = 0 and tr(C) > 0, or if c 11 c 22 = 0, tr(C) > 0 and α < 1/2, then φ 2 (C, D, α) = 2π(1 -α), II.8) If c 11 = 0 and tr(C) < 0, or if c 11 c 22 = 0, tr(C) < 0 and α < 1/2, then φ 2 (C, D, α) = -2πα, II.9) If c 22 = 0 and tr(C) > 0, or if c 11 c 22 = 0, tr(C) > 0 and α > 1/2, then φ 2 (C, D, α) = 2πα, II.10) If c 22 = 0 and tr(C) < 0, or if c 11 c 22 = 0, tr(C) < 0 and α > 1/2, then φ 2 (C, D, α) = -2π(1 -α), II.11) If c 11 c 22 = 0, tr(C) > 0 and α = 1/2, then φ 2 (C, D, α) = π, II.12) If c 11 c 22 = 0, tr(C) < 0 and α = 1/2, then φ 2 (C, D, α) = -π. III) If C = 0, then S CD α is constant and φ 2 (C, D, α) = 0. IV) We shall now consider the situation det(D) = 0 but D = 0. Obviously, ker(D) is of dimension 1. So let p = (p 1 , p 2 ) be a vector in ker(D) with p = 1. Let us also introduce

  then g is pure imaginary, hence arg g(+∞) -arg g(0) = 0. In summary, for det(D) = 0 but D = 0, one has already obtained: IV.1) If > 0 and α = 1/2, then φ 2 (C, D, α) = π, IV.2) If = 0 and α = 1/2, then φ 2 (C, D, α) = 0, IV.3) If < 0 and α = 1/2, then φ 2 (C, D, α) = -π.

IV. 11 )

 11 if < 0 and p 2 = 0, then φ 2 (C, D, α) = -2πα, IV.12) if > 0 and p 2 = 0, then φ 2 (C, D, α) = 2πα, IV.13) if > 0 and p 2 = 0, then φ 2 (C, D, α) = 2π(1 -α), IV.14) if = 0, p 1 = 0 and p 2 = 0 then φ 2 (C, D, α) = -2π(1 -2α), IV.15) if = 0 and p 1 = 0 or if = 0 and p 2 = 0, then φ 2 (C, D, α) = 0.

Γ 1 (- 1 2π 4 j=1

 114 C, D, α, •) and the contribution of the operator Γ 3 (C, D, α, •) at +∞-energy are explicit. Here, Levinson's theorem corresponds to the equality between the number of bound states of H CD α and φ j (C, D, α). This is proved again by comparing the column 3 with the column 7 (the contribution of Γ 4 (C, D, α, •) defined in (8) is always trivial).

2 e 3 e

 23 Now, if det(D) = 0 and det(C) = 0, we set E := D -1 C =: (e jk ) and obtains: No Conditions #σ p (H) φ 1 φ 2 φ 3 j φ j II.1 e 11 e 22 ≥ 0, tr(E) > 0, det(E) 11 e 22 ≥ 0, tr(E) > 0, det(E) 11 e 22 ≥ 0, tr(E) < 0, det(E) > 0 2 0 -2π -2π -4π II.4 e 11 e 22 ≥ 0, tr(E) < 0, det(E) If det(D) = 0, det(C) = 0 and if we still set E := D -1 C one has: b e 11 e 22 = 0, tr(E) > 0, α < 1II.8.b e 11 e 22 = 0, tr(E) < 0, α < 1.b e 11 e 22 = 0, tr(E) > 0, α > 1/2 0 2π(1 -α) 2πα -2π 0 II.10.a e 22 = 0, tr(E) < 0 1 2π(1 -α) -2π(1 -α) -2π -2π II.10.b e 11 e 22 = 0, tr(E) < 0, α > 1/2 1 2π(1 -α) -2π(1 -α) -2π -2π II.11 e 11 e 22 = 0, tr(E) > 0, α = 1e 11 e 22 = 0, tr(

[ 7 ,

 7 Prop.III.1.4], the map η : B n+1 → C is a cyclic (n + 1)-linear functional on B satisfying bη = 0, i.e. η is a cyclic n-cocycle. Conversely, any cyclic n-cocycle arises as the character of a cycle of dimension n over B. Let us also mention that a third description of any cyclic n-cocycle is presented in [7, Sec. III.1.α] in terms of the universal differential algebra associated with B.

  ind[Γ] 1 = -[P] 0 .B Proof of Lemma 4Denote for brevity ϕ = ϕ a,b . We first observe thatϕ(x) -1 ϕ (x) = i Γ (a + ix) Γ(a + ix) + Γ (a -ix) Γ(a -ix) -Γ (b -ix) Γ(b -ix) -Γ (b + ix) Γ(b + ix) .Since the function Γ is real on the real positive axis, let us choose a continuous determination of the logarithm, denoted by log, such that log Γ(y + ix) | x=0 ∈ R for any y ∈ R * + . Then, one observes that ϕ(x) -1 ϕ (x) = d dx I(x, a, b) with I(x, a, b) := log Γ(a + ix) -log Γ(a -ix) + log Γ(b -ix) -log Γ(b + ix) .

√ x 2 x 2 ln a 2 + x 2 -2 ln b 2 + x 2

 2222 +y 2 ) e -xθ(y+ix) exp -i x -x ln x 2 + y 2 -(y -1/2)θ(y + ix) .It follows that for |x| large enough, one has log Γ(y + ix) ∼ = -y + (y -1/2) lnx 2 + y 2 -xθ(y + ix) + 1 2 ln(2π) -i x -x ln x 2 + y 2 -(y -1/2)θ(y + ix) .By taking this asymptotic development into account, one obtains:I(x, a, b) ∼ = -x θ(a + ix) + θ(a -ix) -θ(b -ix) -θ(b + ix) +ix 2 ln a 2 + x 2 -2 ln b 2 + x 2 +i(a -1 2 ) θ(a + ix) -θ(a -ix) + i(b -1 2 ) θ(b -ix) -θ(b + ix) . Clearly, for any x one has θ(a + ix) + θ(a -ix) -θ(b -ix) -θ(b + ix) = 0 .Furthermore, some calculations of asymptotic developments show that lim |x|→∞

  Recall that by Atkinson's theorem the image of any Fredholm operator F ∈ B(H int ) in the Calkin algebra B(H int )/K(H int ) is invertible. Then, since the wave operators Ω CD -| H int is an isometry and a Fredholm operator, it follows that each function Γ j (C, D, α, •) takes values in U

		and the following equality holds
		ind[Γ(C, D, α, •)] 1 = -[P CD α ] 0 ,
	where P CD α	is the orthogonal projection on the space spanned by the bound states of H CD α .
	Remark 14.

  Remark 16. Let A : X → M 2 (C) be a continuously differentiable map with A(x) of rank 1 for all x ∈ X. Let us recall how to calculate the Chern number of the bundle B = {im A(x) | x ∈ X}. Assume that the first column A 1 of A vanishes only on a finite set Y . If Y is empty, the bundle is trivial and ch(B) = 0. So let us assume that Y is non-empty. Let P (x) be the matrix of the orthogonal projection onto im A(x) in C 2 . By definition, one has Now, for > 0 consider an open set V ⊂ X with Y ⊂ V , having a C 1 boundary and such that vol X V → 0 as → 0. By continuity and compactness, the differential form tr P d X P ∧ d X P

	ch(B) = tr P d is bounded, and then 1 2πi X ch(B) = 1 2πi lim →0 X\V tr P d

X P ∧ d X P . X P ∧ d X P .
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Tr can be applied on the former term, cf. Example 9 of Section 4. On the other hand, since Γ(C, D, α, •) ∈ C , U (2) , we can define the winding number wind Γ(C, D, α, •) of the map

with orientation of chosen clockwise, cf. Example 10 of Section 4. Then, the already stated Theorem 3 essentially reformulates the fact that the 0-trace is mapped to the 1-trace by the dual of the index map. The first equality of Theorem 3 can then be found in Proposition 7 of [START_REF] Kellendonk | On the structure of the wave operators in one dimensional potential scattering[END_REF] and the equality between the cardinality of σ p (H CD α ) and the number of negative eigenvalues of the matrix CD * has been shown in [START_REF] Pankrashkin | Spectral and scattering theory for the Aharonov-Bohm operators[END_REF]Lem. 4].

Higher degree Levinson's theorem

The previous theorem is a pointwise 0-degree Levinson's theorem. More precisely, it was obtained for fixed C, D and α. However, it clearly calls for making these parameters degrees of freedom and thus to include them into the description of the algebras. In the context of our physical model this amounts to considering families of self-adjoint extensions of H α . For that purpose we use the one-to-one parametrization of these extensions with elements U ∈ U (2) introduced in Remark 1. We denote the self-adjoint extension corresponding to U ∈ U (2) by H U α . So, let us consider a smooth and compact orientable n-dimensional manifold X without boundary. Subsequently, we will choose for X a two-dimensional submanifold of U (2) × (0, 1). Taking continuous functions over X we get a new short exact sequence

Furthermore, recall that J is endowed with a 0-trace and the algebra Q with a 1-trace. There is a standard construction in cyclic cohomology, the cup product, which provides us with a suitable n-trace on the algebra C(X, J ) and a corresponding n + 1-trace on the algebra C(X, Q), see [7, Sec. III.1.α]. We describe it here in terms of cycles.

Recall that any smooth and compact manifold Y of dimension d naturally defines a structure of a graded differential algebra (A Y , d Y ), the algebra of its smooth differential k-forms. If we assume in addition that Y is orientable so that we can choose a global volume form, then the linear form Y can be defined by integrating the d-forms over Y . In that case, the algebra C(Y ) is naturally endowed with the d-trace defined by the character of the cycle

For the algebra C(X, J ), let us recall that J is equal to the algebra K(H int ) and that the 0-trace on J was simply the usual trace Tr. So, let K 1 denote the trace class elements of K(H int ). Then, the natural graded differential algebra associated with C ∞ (X, K 1 ) is given by (A X ⊗ K 1 , d X ). The resulting n-trace on C(X, J ) is then defined by the character of the cycle (A X ⊗ K 1 , d X , X ⊗Tr) over the dense subalgebra C ∞ (X, K 1 ) of C(X, J ). We denote it by η X .

For the algebra C(X, Q), let us recall that Q = C , M 2 (C) with ∼ = S 1 , and thus

is a compact orientable manifold without boundary, the above construction applies also to C X × S 1 , M 2 (C) . More precisely, the exterior derivation on X × S 1 is the sum of d X and d S 1 (the latter was denoted simply by d in Example 10). Furthermore, we consider the natural volume form on X ×S 1 . Note because of the factor M 2 (C) the graded trace of the cycle involves the usual matrix trace tr. Thus the resulting n+1-trace is the character of the cycle (

We denote it by #η X .

C Continuity of the wave operator

In this section we show that the map X U → Ω -(H U α , H 0 ) ∈ E is continuous under the assumptions of Proposition 17. In view of the representations (3) and (4) for the wave operators it is sufficient to show the continuity of the map X U → S U ∈ B, where B is the space of bounded continuous matrix-valued functions S : [0, +∞] → M 2 (C) endowed with the norm 

and use again the representation (10):

2 1-α κ (1-α) , Φ := e -iπα/2 0 0 e -iπ(1-α)/2 , J := 1 0 0 -1 .

Then by observing that the map X U → L(U ) ∈ M 2 (C) is continuous in the usual matrix norm, it follows that the map L(X) × [0, ∞] (L, κ) → B(κ) -1 L B(κ) -1 + cos(πα)J + i sin(πα) B(κ) -1 L B(κ) -1 + cos(πα)J -i sin(πα) ∈ M 2 (C).

is also continuous. This implies the required continuity of the map X U → S U ∈ B.