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iAbstra
t. We explore in this paper 
ubature formulas over the spa
eof fun
tions having a �rst 
ontinuous derivative, i.e., C1. We show thatknown 
ubature formulas are not optimal in this 
ase and explain whatis the origin of the loss of optimality and how to 
onstru
t optimal ones;to illustrate we give 
ubature formulas up to (in
luding) order 9.Mathemati
s Subje
t Classi�
ation (2010). Primary 60H35, 65D32, 91G60;Se
ondary: 65C30, 65C05.Keywords. Cubature Formulas; Sto
hasti
 Analysis; Chen signature;Chen Series; 
ubature on in�nite dimensional spa
e; Cubature Wiener;Cubature �nan
e.1. Introdu
tionWe 
onsider the following 
ontrolled ordinary di�erential equation (ODE)
dx(t) = f(x(t), u(t))dt, x(0) = x0. (1.1)where f is supposed as smooth as required with respe
t to all variables and

u(t) a C1 
ontrol that a
ts on x(t) with u(0) = u′(0) = 0. Let T be some �naltime (whi
h will be set to 1 in all that follows) and denote by C1
0 ([0, T ];R)the spa
e of u. In order to expli
itly mark the dependen
e of x on u we willalso write xu(t) for the solution of (1.1).We pla
e ourselves in a situation where many u(t) 
an be 
hosen andthe average (or any aggregate quantity su
h as higher order moments, et
.)of some fun
tional of x(T ) over all su
h u(t) is to be 
omputed. Typi
alframeworks where this is relevant is in inverse problems where one 
an 
hoseseveral 
ontrols u, measure the output on the system depending on x(T ) andwant to identify some parts of the fun
tion f by doing this (see [4, 9, 10℄ forexamples).We need to make pre
ise what average means. Sin
e our primary spa
efor u(t) is C1

0 ([0, T ];R) a possible way to formalize this average is to 
onsiderThis work was funded by ANR proje
ts EMAQS number ANR-2011-BS01-017-01 andISOTACE.
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ia one dimensional Brownian motion Wt (we write sometimes, as is usual, thetime as index instead of W (t) but this means the same thing) and write thefollowing 3-dimensional SDE:
dx(t) = f(x(t), u(t))dt, x(0) = x0 (1.2)
du(t) = w(t)dt, u(0) = 0 (1.3)
dw(t) = 1dWt = 1 ◦ dWt, w(0) = W0 = 0. (1.4)where the last equality means of 
ourse w(t) = Wt. The third equality is thereonly in order to give a formal 3D SDE; the term ◦dWt signals a Stratonovi
hformulation (whi
h is the one well adapted to 
ubature framework be
auseof the Wong-Zakai theorem [15℄).We 
an now make pre
ise the quantity of interest whi
h is

EF (x(T )), (1.5)where F is some (smooth enough) real fun
tion.The justi�
ation of this formal writing is the following: the Brownianmotion sele
ts paths on the (Wiener) spa
e of 
ontinuous fun
tions null atthe origin on [0, T ] denoted C0
0 ([0, T ];R). Any C1

0 ([0, T ];R) is the de�niteprimitive of a fun
tion in the Wiener spa
e. Thus as realizations of W spanthe Wiener spa
e, u(t) will span the required spa
e.Following works on in�nite dimensional 
ubature formulas on Wienerspa
e by [7, 8, 11℄ (see also [12, 14℄ for an appli
ation of 
ubature to �nan
eand [3℄ to SPDE; many other works appeared in the literature on these sub-je
ts) we want to approximate the mean in (1.5) by a �nite sum
EF (x(T )) ≃

n
∑

k=1

λkF (xuk
(T )). (1.6)where ea
h uk 
orresponds to a given realization ωk of the Brownian motion

W and the 
orresponding uk(t) is given as above
uk(t) =

∫ t

0

ωk(s)ds. (1.7)Su
h an approximation is 
alled a 
ubature formula. The question iswhat weights λk and paths ωk are best for some given n and how good arethe approximation properties of su
h a 
ubature formula.A �rst thought is to use 
ubature formulas that work on the Wienerspa
e C0
0 ([0, T ];R) (
f. 
ited referen
es for the details). As it will be seen inthe following this is not ne
essarily the most e�
ient 
hoi
e be
ause of thespe
i�
 stru
ture of the problem. The purpose of this work is to �nd optimal
ubature formulas for the spa
e C1

0 ([0, T ];R) up to (in
luding) fourth order.The plan of the paper is the following: further motivating remarks arethe obje
t of Se
tion 2 while a qui
k introdu
tion to 
ubature formulas onWiener spa
e is presented in Se
tion 3. Preliminary 
omputations are givenin Se
tion 4 while the a
tual 
ubature formulas are given in Se
tion 5.
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e 32. Further remarks and motivationDenote Y =





x
u
w



 and note that our equation 
an be written as
dY =





f(x(t), u(t))
w
0



 dt+





0
0
1



 ◦ dWt. (2.1)We note that a di�erent 
ir
umstan
e where the term EF (x(T )) appearsis in the forward Kolmogorov (or Fokker-Plan
k) PDE asso
iated to the timeevolution of the density of the SDE (2.1). If we denote by ρ(t, x, u, w) the 3Ddensity it satis�es the following degenerate 3-dimensional, time-dependentPDE [6, 13℄:
∂

∂t
ρ(t, x, u, w) +

∂

∂x
(f(x, u)ρ(t, x, u, w)) +

∂

∂u
(wρ(t, x, u, w))

−1

2

∂2

∂2
w

ρ(t, x, u, w) = 0, (2.2)
ρ(0, x, u, w) = δx=x0

. (2.3)Then sin
e
EF (x(T )) =

∫

R
3
+

F (x)ρ(T, x, u, w)dxdudw (2.4)the method presented here also applies to the evaluation of the right handside of the equation above. An equivalent formulation, that does not requireto work with a Dira
 mass, involves a degenerate ba
kward (in time) PDEand 
an be invoked through the Feynman-Ka
 formula [6, 13℄:
EF (x(T )) = F(0, x0, 0, 0) (2.5)where

∂

∂t
F(t, x, u, w) + f(x, u)

∂

∂x
F(t, x, u, w) + w

∂

∂u
F(t, x, u, w)

+
1

2

∂2

∂2
w

F(t, x, u, w) = 0 (2.6)
F(T, x, u, w) = F (x). (2.7)Thus the method presented here 
an be used to solve degenerate PDEsof type (2.6).3. Ba
kground on 
ubature formulasWe follow [7, 11℄ and introdu
e below the prin
iple of 
omputing 
ubatureformulas on the Wiener spa
e. Suppose we want to 
ompute Eg(Z(T )) with
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i
g a regular fun
tion where Z(t) = (Z0(t), ..., Zd(t))

T ∈ R
d+1 solves the SDE

dZ =

d+1
∑

ℓ=0

ζℓ(Z(t)) ◦ dBℓ(t), (3.1)where B1(t),...Bd(t) are 
omponents of a d-dimensional Brownian motion, ζlare (generi
) smooth fun
tions and we denote B0(t) = t and set ζ0(·) = 1(whi
h ensures Z0(t) = t).If a path ω(t) = (ω0(t), ..., ωd(t)) ∈ R
d+1 with ω0(t) = t is given and hassome regularity one 
an de�ne ξω(t) as the solution of the following ODE

dξω(t) =

d+1
∑

ℓ=0

ζℓ(ξω(t))dωℓ(t). (3.2)Use now sto
hasti
 Taylor formulas [6, 13℄ to write
Eg(Z(T )) = g(Z(0)) +

∑

j

aj(g, ζ0, ..., ζd)E(Pj) +R (3.3)whereR is a remainder of order higher than a prede�ned orderN , aj(g, ζ0, ..., ζd)is a real (known) fun
tional depending on g, ζ0, ..., ζd and Pj are sto
hasti
polynomials, i.e. integrals of the type
∫ T

0

∫ s1

0

∫ s2

0

...

∫ sm−1

0

◦dBαm
(t)... ◦ dBα1

(t) (3.4)with αp ∈ {0, 1, ..., d} for ea
h p. The order of a sto
hasti
 polynomial isde�ned adding 1 for ea
h integral involving αj > 0 and 2 for ea
h αj = 0.If the fun
tion g is smooth enough and the remainder R does not 
ontainterms of order ≤ N a 
ubature formula of order N
Eg(X(T )) ≃

n
∑

k=1

λkξωk(T ) (3.5)is obtained by requiring that 
ubature paths ωk and weights λk satisfy forea
h polynomial Pj as in (3.4):
n
∑

k=1

λk

(

∫ T

0

∫ s1

0

∫ s2

0

...

∫ sm−1

0

dωk
αm

(t)...dωk
α1
(t)

) (3.6)
= E

(

∫ T

0

∫ s1

0

∫ s2

0

...

∫ sm−1

0

◦dBαm
(t)... ◦ dBα1

(t)

)

. (3.7)Remark 3.1. We use here the same naming 
onventions for the order of the
ubature s
heme as in [11℄ whi
h is somehow di�erent from the standardnumeri
al analysis pra
ti
e. As su
h, a 
ubature of order �N � will have errorof order O(T (N+1)/2).
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e 54. Sto
hasti
 Taylor expansion for averages of deterministi
fun
tionals over the 
lass C1

0
([0, T ];R)We will use the following 
onvention: for any fun
tion G(·) we denote by ∂kGthe partial derivative of fun
tion G with respe
t to its k-th argument. Wewrite the sto
hasti
 Taylor formula [13℄ and iterate:

EF (x(T )) = EF (x(0)) + E

∫ T

0

∂1F (x(s1))f(x(s1), u(s1))ds1 (4.1)
= F (x(0)) + E

∫ T

0

∂1F (x(s1))f(x(s1), u(s1))ds1. (4.2)We obtain by iterating :
EF (x(T )) = F (x(0)) + ∂1F (x(0))f(x(0), u(0)) · E

(

∫ T

0

ds1

)

+E

∫ T

0

∫ s1

0

∂1F (x(s2))
(

∂1f(x(s2), u(s2))f(x(s2), u(s2)) +

∂2f(x(s2), u(s2))W (s2)
)

+ (∂1)
2F (x(s2))f(x(s2), u(s2))ds2ds1.(4.3)The �rst 
on
lusion that 
an be drawn from this initial 
omputation is thatno �rst order terms appear and the only se
ond order term in T is E(∫ T

0 ds1

);thus a se
ond order 
ubature formula (in the sense of the Remark 3.1) hasonly to satisfy the requirement:
n
∑

k=1

λk

∫ T

0

ds1 = E

(

∫ T

0

ds1

)

= T, (4.4)i.e.
n
∑

k=1

λk = 1. (4.5)The important remark here is that many terms are missing among whi
h (weonly write terms up to order 3 be
ause the others are more 
umbersome to
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iwrite):
E

(

∫ T

0

◦dWs1

)

, (4.6)
E

(

∫ T

0

∫ s1

0

◦dWs2 ◦ dWs1

)

, (4.7)
E

(

∫ T

0

∫ s1

0

ds2 ◦ dWs1

)

, (4.8)
E

(

∫ T

0

∫ s1

0

◦dWs2ds1

)

, (4.9)
E

(

∫ T

0

∫ s1

0

∫ s2

0

◦dWs3 ◦ dWs2 ◦ dWs1

)

, (4.10)terms of order 4 involving Stratonovi
h integrals (4.11)
... (4.12)It follows that 
lassi
al 
ubature formulas derived for fully general equa-tions on Wiener spa
e lose optimality here. The purpose of this work is toexplain what are the 
onstraints that optimal 
ubature formulas satisfy andgive examples of optimal weights and paths up to (in
luding) order 9.Continuing in the same way the enumeration of orders as they appeariterating the integral form of the sto
hasti
 Taylor formula we obtain thatthe following integrals appear1. order 2: term E

(

∫ T

0
ds1

). The 
onstraint is, as seen above,
n
∑

k=1

λk = 1. (4.13)2. (unique) term of order 4: E(∫ T

0

∫ s1
0

ds2ds1

). There is no new require-ment brought by this term.3. (unique) term of order 5: E(∫ T

0

∫ s1
0

∫ s2
0 ◦dWs3ds2ds1

). The requirementis
n
∑

k=1

λk

(

∫ T

0

∫ s1

0

∫ s2

0

dωk(s3)ds2ds1

)

= E

(

∫ T

0

∫ s1

0

∫ s2

0

◦dWs3ds2ds1

)

= 0.(4.14)We re
all that the integral ∫ s2
0

dωk(s3) is a Riemann-Stieltjes integral.4. (unique) term of order 6: E(∫ T

0

∫ s1
0

∫ s2
0 ds3ds2ds1

). There is no newrequirement brought by this term.
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e 75. only two terms of order 7:
E

(

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

◦dWs4ds3ds2ds1

)

= 0 (4.15)
E

(

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

ds4 ◦ dWs3ds2ds1

)

= 0. (4.16)6. order 8 and higher: all the terms beginning by the terms of order 7 andhigher.5. Cubature formulas5.1. Cubature formulas or order 6As seen above 
ubature formulas up to order 4 (in
luded) are somehow trivial.We thus start our list of 
ubature formulas from order 5. Note that a formulaof order 5 is automati
ally of order 6 too sin
e terms of order 6 do not bringany new requirement (other that the one implied already by the term at order
2). There are two equations: (4.13) and (4.14). We will use two paths andthus two weights. A natural 
hoi
e is to use some path ω1 and ω2 = −ω1and λ1 = λ2 = 1/2. Then the 
onstraints are both satis�ed. We obtain forinstan
e a formula of order 6:

λ1 = λ2 = 1/2, ω1(t) = t, ω2(t) = −t. (5.1)Note that this is the same as the third order (dimension one) formula from [11℄.5.2. Cubature formulas or order 7There are two new 
onstraints of order 7. But there 
onstraints are again sat-is�ed if one uses n = 2 λ1 = λ2 = 1/2 and ω2 = −ω1. Thus e.g. formula (5.1)is also of order 7.5.3. Cubature formulas or order 8: a �rst approa
hTwo new terms appear that bring new 
onstraints:
E

(

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

◦dWs5 ◦ dWs4ds3ds2ds1

)

=
T 4

48
(5.2)

E

(

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

◦dWs5ds4 ◦ dWs3ds2ds1

)

= 0. (5.3)
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Figure 1. The four fun
tions uk for a order 9 quadrature formula.We do not enter here into the spe
i�
s of the 
al
ulation above(see [1℄). Interms of the 
ubature paths and weights the two new 
onstraints read:
n
∑

k=1

λk

(

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

dωk(s5)dωk(s4)ds3ds2ds1

)

=
T 4

48
(5.4)

n
∑

k=1

λk

(

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

dωk(s5)ds4dωk(s3)ds2ds1

)

= 0.(5.5)Note that the 
hoi
e n = 2, λ1 = λ2 = 1/2 and ω2 = −ω1 = −t doesnot satisfy these 
onstraints. A �rst idea is to add two more fun
tions andlook for a n = 4 
ubature formula of order 8. In order to build on 
on
lusionsfrom previous lower order we further 
hoose to set
λ2 = λ1, λ3 = λ4, ω2 = −ω1, ω3 = −ω4. (5.6)Denoting

αk =

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

dωk(s5)dωk(s4)ds3ds2ds1 (5.7)
=

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

ωk(s4)dωk(s4)ds3ds2ds1 (5.8)
=

∫ T

0

∫ s1

0

∫ s2

0

ω2
k(s3)

2
ds3ds2ds1 (5.9)
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e 9and
βk =

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

dωk(s5)ds4dωk(s3)ds2ds1 (5.10)
=

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

ωk(s4)ds4dωk(s3)ds2ds1 (5.11)we obtain that the following requirements are to be satis�ed (for T = 1):
λ1α1 +

(

1

2
− λ1

)

α3 =
1

96
(5.12)

λ1β1 +

(

1

2
− λ1

)

β3 = 0. (5.13)Let us introdu
e the parameter θ ∈ R and 
hoose ω1 = θt = −ω2; we 
omputeand obtain α1 = θ2

5! = β1. It su�
es now to 
hoose a family of fun
tions whereto look for ω3 and its opposite ω4. Instead of pie
ewise linear fun
tions asin [11℄ we propose here os
illatory fun
tions ω3(t) = sin(2πtT ) = −ω4. Theunknowns are now θ and λ1. Note that ω3 is su
h that ∫ 1

0
ω3(t)dt = 0.For this 
hoi
e of ω3 we obtain (for T = 1)

α3 =
8 π2 − 3

192 π2
, β3 = −8 π2 − 21

96 π2
. (5.14)Repla
ing and solving for θ and λ1 one obtains:

λ1 =
5(2π2 − 21)

6(2π2 − 15)
≃ 0.39712223492734, (5.15)

θ =

√
8 π2 − 21√
4 π2 − 9

≃ 1.378974145172718. (5.16)Note that the natural 
onstraints θ2 > 0 and λ1 ∈ [0, 1/2] are satis�ed.This is not ne
essarily the 
ase for other (arbitrary 
hosen) pairs of fun
tions.We obtain thus the following integration formula for C1
0 fun
tions (seealso Figure 1):

λ2 = λ1 =
5(2π2 − 21)

6(2π2 − 15)
, λ3 = λ4 =

1

2
− λ1, θ =

√
8 π2 − 21√
4 π2 − 9

,(5.17)
u1(t) = θ

t2

2
= −u2(t), u3(t) =

1− cos(2πt)

2π
= −u4(t). (5.18)5.4. Minimalisti
 
ubature formulas of order 8 and 9Another approa
h to 
onstru
t a formula of order 8 is to start with n = 2paths and weights but adapt them to satisfy the 
onstraints. We note thatany 
hoi
e:

n = 2, λ1 = λ2 = 1/2, ω2 = −ω1 (5.19)(now ω1 is not ne
essarily t) will automati
ally satisfy all 
onstraints of oddorders, i.e. involving an odd number of integrations with respe
t to the paths.The reason is that all su
h terms have to be zero and are obviously so be
auseare the sum of two 
ontributions, one 
oming from ω1 and another, that will
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ihave same modulus but opposite sign, from ω2 = −ω1. In parti
ular, if we�nd a 
ubature formula of order 8 with two paths that satisfy (5.19) it willalso be of order 9.Thus all that remains to do is to �nd a fun
tion ω1 whi
h satis�esequations (5.4) and (5.5) (for k = 1). A parametri
 sear
h as a fra
tionalorder polynomial reveals that a suitable solution is:
ω1(x) =

√
x
((√

11 + 6
)

x− 3
)

2
. (5.20)A solution 
an be also found as a pie
ewise linear fun
tion. The fun
tionhas two linear parts with slope a1 from 0 to 1/2 and a2 from 1/2 to 1:

ω1(t) =
(a2 − a1) |2t− 1|+ (2a2 + 2a1) t− a2 + a1

4
, (5.21)

a1 = −
√√

161 + 17

2
3
2

, a2 = −
√√

7
√
23 + 17

(√
161− 15

)

2
5
2

.(5.22)We have thus provedTheorem 5.1. The following 
hoi
e is a formula of order 9 for T = 1 (seealso Figure 2):
λ1 = λ2 = 1/2, ω1(t) =

√
t
((√

11 + 6
)

t− 3
)

2
, ω2 = −ω1. (5.23)or, in terms of the 
ontrol u:

λ1 = λ2 = 1/2, u1(t) =
t
3
2

(

(
√
11 + 6)t− 5

)

5
, u2(t) = −u1(t). (5.24)Same holds for:

ω1(t) =
(a2 − a1) |2t− 1|+ (2a2 + 2a1) t− a2 + a1

4
, (5.25)

a1 = −
√√

161 + 17

2
3
2

, a2 = −
√√

7
√
23 + 17

(√
161− 15

)

2
5
2

, (5.26)
λ1 = λ2 = 1/2, ω2 = −ω1. (5.27)or, in terms of the 
ontrol u:
u1(t) =

((2a2 − 2a1) t− a2 + a1) |2t− 1|+ (4a2 + 4a1) t
2

16

+
(4a1 − 4a2) t+ a2 − a1

16
, λ1 = λ2 = 1/2, u2(t) = −u1(t).(5.28)Remark 5.2. This methodology to �nd a 
ubature formula 
an be extendedto the situation of a multi-dimensional state x(t) and even multi-dimensional
ontrol u(t) but the 
ubature formulas will be di�erent.Remark 5.3. The point of the paper is that taking into a

ount the spe
ialstru
ture of the equation 
an help to obtain faster 
ubature formulas. Up tothis point f is not depending expli
itly on time; if one needs to work witha non-autonomous version of f , the standard treatment is to introdu
e time
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e 11as additional variable, but its SDE is very parti
ular (dt = 1dt), this may be
ombined with the above te
hnique (or not ...) to propose adapted 
ubatureformulas.We re
all that 
ubature formulas for arbitrary T are simply obtainedby res
aling ωk(t) to √
Tωk(t/T ) and uk(t) to √

T 3ωk(t/T ).
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Figure 2. The fun
tions uk for a 9-th order quadratureformula (5.23)-(5.24).6. Numeri
al results6.1. Linear settingTo test our implementation against trivial errors we 
onsidered �rst
f(x, u) = αx+ u, α ∈ R, x(0) = 0, F (x) = x. (6.1)One 
an show analyti
ally that E(F (x(T )) = 0. The 
ubature will approxi-mate 0 with F (xu1

(T ))+F (xu2
(T ))

2 . But, by linearity F (xu2
(T )) = −F (xu1

(T ))so the approximation is in fa
t (analyti
ally) exa
t. The numeri
al imple-mentation for α = 0 and α = 1 (results not given here) showed indeed thatthis is the 
ase i.e. F (xu1
(T ))+F (xu2

(T ))

2 was of the order of the roundo� errorwhi
h in our setting is about 10−15.6.2. Nonlinear settingA nonlinear setting was tested next:
f(x, u) = x+ u2, x(0) = 0, F (x) = x. (6.2)
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iThe advantage of this example is that using sto
hasti
 expansion we knowthat
EF (xu(T )) =

T 4

12
+

T 5

60
+

T 6

360
+ ... (6.3)We tested the 
ubature formulas of order 9 for di�erent �nal times in therange [10−3, 100]. The range was 
hosen so that the error is not below theroundo�. The results in Figure 3 
on�rm the theoreti
al results i.e. the errorbehaves as O(T 5) for both order 9 formulas. We also tested the formula (5.1)from the literature that uses also only n = 2 fun
tions and found O(T 4). Asexpe
ted, the formulas (5.23)-(5.24) and (5.25)-(5.28) 
onverge faster.

Figure 3. The error of the 9-th order 
ubature formu-las (5.23)-(5.24) and (5.25)-(5.28) for test 
ase (6.2) is plot-ted in log10-log10 axis. The X axis is log10(T ) and the Yaxis is log10 of the error. The resulting plots are lines withslope 5. The 7-th order formula (5.1) is also plotted, it ex-hibits a slope of about 4.6.3. Nonlinear setting out of the s
ope of the theoreti
al resultFinally, we tested a nonlinear setting taken from [5℄ whi
h is not of theform (1.1). It involves a 2-dimensional SDE x = (Y,A):
dYt = aYtdt+ bYt ◦ dWt (6.4)
dAt = Ytdt, a = 0.1, b = 0.2, (6.5)
F (x) = A3. (6.6)Here too, we know the expli
it solution of this 2-dimensional SDE Yt =

eat+bWt , At =
∫ t

0
eas+bWsds. The moment E(A(T )3) is not trivial to 
omputeand we will not give here its (
umbersome) formula (see instead [16, 17℄and also [2℄ for a elegant way to express it). We tested the same (three)
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ubature formulas for di�erent �nal times in the range [10−3, 100]. The resultsin Figure 4 show that for all 
ubature formulas the error behaves as O(T 4)whi
h says that, from a numeri
al perspe
tive, all 
ubatures are of order 7for test 
ase (6.4)-(6.6). This hints that formulas (5.23) and (5.25) behaveat least as well as (5.1) for situations not 
overed by the theoreti
al results;re
all that all 
ubatures have the same number of paths n = 2.

Figure 4. The error of the 9-th order 
ubature formu-las (5.23) and (5.25) and the order 7 formula (5.1) for test
ase (6.4)-(6.6) is plotted in log10-log10 axis. The X axis is
log10(T ) and the Y axis is log10 of the error. The resultingplot is very 
lose to a line of slope 4 for all 
ubature formu-las, the lines 
oin
ide graphi
ally (but numeri
al values aredi�erent).A
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