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Abstract. We explore in this paper cubature formulas over the space
of functions having a first continuous derivative, i.e., C*. We show that
known cubature formulas are not optimal in this case and explain what
is the origin of the loss of optimality and how to construct optimal ones;
to illustrate we give cubature formulas up to (including) order 9.
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1. Introduction

We counsider the following controlled ordinary differential equation (ODE)

dx(t) = f(x(t),u(t))dt, z(0) = xo. (1.1)
where f is supposed as smooth as required with respect to all variables and
u(t) a C! control that acts on x(t) with u(0) = u/(0) = 0. Let T be some final
time (which will be set to 1 in all that follows) and denote by C2([0,T]; R)
the space of u. In order to explicitly mark the dependence of x on u we will
also write z,,(t) for the solution of (1.1).

We place ourselves in a situation where many u(t) can be chosen and
the average (or any aggregate quantity such as higher order moments, etc.)
of some functional of x(T') over all such u(¢) is to be computed. Typical
frameworks where this is relevant is in inverse problems where one can chose
several controls u, measure the output on the system depending on x(7T") and
want to identify some parts of the function f by doing this (see [4, 9, 10] for
examples).

We need to make precise what average means. Since our primary space
for u(t) is C}([0,T]; R) a possible way to formalize this average is to consider
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a one dimensional Brownian motion W; (we write sometimes, as is usual, the
time as index instead of W (¢) but this means the same thing) and write the
following 3-dimensional SDE:

da(t) = f(x(t), u(t))dt, z(0) =z (1.2)
du(t) = w(t)dt, u(0)=0 (1.3)
dw(t) = 1dW, = 10 dW;, w(0) = Wy = 0. (1.4)

where the last equality means of course w(t) = W;. The third equality is there
only in order to give a formal 3D SDE; the term odW; signals a Stratonovich
formulation (which is the one well adapted to cubature framework because
of the Wong-Zakai theorem [15]).

We can now make precise the quantity of interest which is

EF(x(T)), (1.5)
where F' is some (smooth enough) real function.

The justification of this formal writing is the following: the Brownian
motion selects paths on the (Wiener) space of continuous functions null at
the origin on [0,7] denoted C§([0,T];R). Any C}([0,T];R) is the definite
primitive of a function in the Wiener space. Thus as realizations of W span
the Wiener space, u(t) will span the required space.

Following works on infinite dimensional cubature formulas on Wiener
space by [7, 8, 11] (see also [12, 14] for an application of cubature to finance
and [3] to SPDE; many other works appeared in the literature on these sub-
jects) we want to approximate the mean in (1.5) by a finite sum

EF(2(T)) 2> AP (20, (T)). (1.6)
k=1

where each uy corresponds to a given realization wy, of the Brownian motion
W and the corresponding ug(t) is given as above

uk(t)—/o wi(s)ds. (1.7)

Such an approximation is called a cubature formula. The question is
what weights A; and paths wy are best for some given n and how good are
the approximation properties of such a cubature formula.

A first thought is to use cubature formulas that work on the Wiener
space CQ([0,T);R) (cf. cited references for the details). As it will be seen in
the following this is not necessarily the most efficient choice because of the
specific structure of the problem. The purpose of this work is to find optimal
cubature formulas for the space C}([0,T];R) up to (including) fourth order.

The plan of the paper is the following: further motivating remarks are
the object of Section 2 while a quick introduction to cubature formulas on
Wiener space is presented in Section 3. Preliminary computations are given
in Section 4 while the actual cubature formulas are given in Section 5.
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2. Further remarks and motivation

x
Denote Y = [ u | and note that our equation can be written as
w
fla(t),u(t)) 0
dY = w dt+ | 0] odW;. (2.1)
0 1

We note that a different circumstance where the term EF (z(T)) appears
is in the forward Kolmogorov (or Fokker-Planck) PDE associated to the time
evolution of the density of the SDE (2.1). If we denote by p(t, x, u, w) the 3D
density it satisfies the following degenerate 3-dimensional, time-dependent
PDE [6, 13]:

0 0 0
a—tp(t,x,u, w) + a—(f(a:, w)p(t, T, u,w)) + a—(wp(t,x,u, w))

—%%p(f, z,u,w) =0, (2.2)
p(0, z, U, W) = Op—y,. (2.3)
Then since
EF(z(T)) = /11&3 F(x)p(T, x, u, w)dzdudw (24)
T

the method presented here also applies to the evaluation of the right hand
side of the equation above. An equivalent formulation, that does not require
to work with a Dirac mass, involves a degenerate backward (in time) PDE
and can be invoked through the Feynman-Kac formula [6, 13]:

EF(2(T)) = F(0,z0,0,0) (2.5)

where

2.7’-'(1%, x,u,w) + f(zx, u)ﬁ}'(t,x,u, w) + wﬁ}'(t,x,u, w)

8t az 8u

102
—|—§%]:(t,x,u,w) =0 (2.6)
F(T,z,u,w) = F(x). (2.7)

Thus the method presented here can be used to solve degenerate PDEs
of type (2.6).

3. Background on cubature formulas

We follow [7, 11] and introduce below the principle of computing cubature
formulas on the Wiener space. Suppose we want to compute Eg(Z(T)) with
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g a regular function where Z(t) = (Zo(t), ..., Za(t))T € R¥*! solves the SDE

d+1

dz = Z@ ) o dBy(t), (3.1)

where B1(t),...B4(t) are components of a d-dimensional Brownian motion, ¢;
are (generic) smooth functions and we denote By(t) = t and set (o(-) = 1
(which ensures Zy(t) = t).

If a path w(t) = (wo(?), ..., wa(t)) € R with wy(t) = t is given and has
some regularity one can define &, () as the solution of the following ODE

d+1

dé(t Z@ (& (t))dee (£). (3.2)

Use now stochastic Taylor formulas [6, 13] to write

Eg(Z(T)) = 9(2(0)) + Z a;(9,Co, - Ca)E(P;) + R (3.3)

where R is a remainder of order higher than a predefined order N, a;(g, Co, .., Ca)
is a real (known) functional depending on g, (o, ..., {4 and P; are stochastic
polynomials, i.e. integrals of the type

/OT /0Sl /052 .../Osm1 0dB,, (t)...0dBy, (t) (3.4)

with «, € {0,1,...,d} for each p. The order of a stochastic polynomial is
defined adding 1 for each integral involving a; > 0 and 2 for each a;; = 0.

If the function g is smooth enough and the remainder R does not contain
terms of order < N a cubature formula of order NV

7))~ Ml (T) (3.5)
k=1

is obtained by requiring that cubature paths w* and weights \;, satisfy for
each polynomial P; as in (3.4):

</// / dut dw(>> (3.6)
:E</O /0/0 /0 odBam(t)...odBal(t)>. (3.7)

Remark 3.1. We use here the same naming conventions for the order of the
cubature scheme as in [11] which is somehow different from the standard

numerical analysis practice. As such, a cubature of order “N” will have error
of order O(TN+1)/2),
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4. Stochastic Taylor expansion for averages of deterministic
functionals over the class C}([0,T]; R)

We will use the following convention: for any function G(-) we denote by 9y G
the partial derivative of function G with respect to its k-th argument. We
write the stochastic Taylor formula [13] and iterate:

T
EF(z(T)) = EF(x(0)) + E/O N F(x(s1))f(x(s1),u(s1))dsy (4.1)

T
= F(z(0)) + IE/O O F(x(s1))f(x(s1),u(s1))ds. (4.2)

We obtain by iterating :

T
EF(z(T)) = F(2(0)) + 91 F((0)) f (2(0), u(0)) - E </0 d81>

+E /OT /Osl alF($(52))(alf($(82),U(Sg))f(;[;(32),u(82)) +

Do f(x(s2), U(Sz))W(Sz)) + (01)°F(2(s2)) f (x(s2), u(s2) ) dsads (4.3)

The first conclusion that can be drawn from this initial computation is that
no first order terms appear and the only second order term in 7" is E ( fOT dsl) ;

thus a second order cubature formula (in the sense of the Remark 3.1) has
only to satisfy the requirement:

n T T
Z/\k/ ds; =K / ds; | =T, (4.4)
k=1 70 0
i.e.
> =1 (4.5)
k=1

The important remark here is that many terms are missing among which (we
only write terms up to order 3 because the others are more cumbersome to
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write):

E OdW51> ) (4.6)

(f

( / / odWS2odWsl>, (4.7)
E( / / dSQodWsl>, (48)
( / / odWSQdm), (4.9)
( [ /jodwsaod%od%), (410)

terms of order 4 involving Stratonovich integrals (4.11)

&=

E

It follows that classical cubature formulas derived for fully general equa-
tions on Wiener space lose optimality here. The purpose of this work is to
explain what are the constraints that optimal cubature formulas satisfy and
give examples of optimal weights and paths up to (including) order 9.

Continuing in the same way the enumeration of orders as they appear
iterating the integral form of the stochastic Taylor formula we obtain that
the following integrals appear

1. order 2: term E (fOT d31>. The constraint is, as seen above,

zn:/\k =1 (4.13)

k=1

2. (unique) term of order 4: E ( fo dszdsl) There is no new require-
ment brought by this term.

3. (unique) term of order 5: E (fo LS odW, d52dsl). The requirement
is

T S1 S2
(/ / / dwy,(s3 d52d51> =FE </ / / OdW53d82d51> = 0.
o Jo Jo

(4.14)
We recall that the integral fos ? dwy(s3) is a Riemann-Stieltjes integral.

4. (unique) term of order 6: E (fOT Osl 052 d53d52d51). There is no new
requirement brought by this term.
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5. only two terms of order 7:

T S1 S2 S3
E / / / / OdW54d83d82d81 =0 (415)
0 0 0 0
T S1 S2 S3
E / / / / dsy o dWs,dsadsy | = 0. (4.16)
0 0 0 0

6. order 8 and higher: all the terms beginning by the terms of order 7 and
higher.

5. Cubature formulas

5.1. Cubature formulas or order 6

As seen above cubature formulas up to order 4 (included) are somehow trivial.
We thus start our list of cubature formulas from order 5. Note that a formula
of order 5 is automatically of order 6 too since terms of order 6 do not bring
any new requirement (other that the one implied already by the term at order
2).

There are two equations: (4.13) and (4.14). We will use two paths and
thus two weights. A natural choice is to use some path w; and wy = —w;
and Ay = Ay = 1/2. Then the constraints are both satisfied. We obtain for
instance a formula of order 6:

)\1 = )\2 = 1/2, wl(t) = t,wz(t) = —t. (51)

Note that this is the same as the third order (dimension one) formula from [11].

5.2. Cubature formulas or order 7

There are two new constraints of order 7. But there constraints are again sat-
isfied if one uses n =2 A\; = Ay = 1/2 and wy = —w;. Thus e.g. formula (5.1)
is also of order 7.

5.3. Cubature formulas or order 8: a first approach

Two new terms appear that bring new constraints:

T ps1 s2 53 En T4
E / / / / / odWs, o dW,dssdsadsy | = Ty (5.2)
o Jo Jo Jo Jo
T S1 S2 S3 Sa
E </ / / / / odWs, dsy o dW53d82d81> =0. (5.3
o Jo Jo Jo Jo
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-0.8

FiGURE 1. The four functions uy for a order 9 quadrature formula.

We do not enter here into the specifics of the calculation above(see [1]). In
terms of the cubature paths and weights the two new constraints read:

n T S1 S2 s3 S4 .
Z Ak / / / / / dwy, (s5)dwy (s4)dssdsads) | = %5.4)
k=1 0 Jo o Jo Jo 1

n T S1 So s3 S4
Z Ak / / / / / dwy(s5)dssdwy(s3)dsadsy | =0.(5.5)
k=1 0 Jo 0 0 0

Note that the choice n = 2, \y = A2 = 1/2 and wy = —w; = —t does
not satisfy these constraints. A first idea is to add two more functions and
look for a n = 4 cubature formula of order 8. In order to build on conclusions
from previous lower order we further choose to set

/\2 = /\17 )\3 = )\4,&)2 = —W1, W3 = —W4. (56)

Denoting

T 3 S4
/ / / / / dwy, (s5)dwy(s4)dszdsadsy (5.7)
o Jo Jo Jo Jo
T
/ / / / wi(84)dw (s4)dssdsadsy (5.8)
o Jo Jo Jo
T S2 w?
/ / / k d53d32d31 (5.9)
o Jo Jo
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T S1 S2 s3 Sa
B = / / / / / dwi(s5)dsadwy,(s3)ds2ds;  (5.10)
0 0 0 0 0
T S1 52 s3
:/ / / / wi(84)dsadwy (s3)dsadsy (5.11)
0 0 0 0

we obtain that the following requirements are to be satisfied (for 7' = 1):

and

1 1
)\16!1 + (5 — )\1) a3 = % (512)
1
)\lﬁl + (5 - )\1) ﬁ3 =0. (5.13)
Let us introduce the parameter § € R and choose wy = 0t = —wq; we compute

and obtain o = g = (1. It suffices now to choose a family of functions where
to look for ws and its opposite w,. Instead of piecewise linear functions as
in [11] we propose here oscillatory functions ws(t) = sin(2f) = —ws. The

unknowns are now ¢ and A;. Note that ws is such that fol ws(t)dt = 0.
For this choice of w3 we obtain (for T'=1)

8m2 —3 872 —21
= — = .14
= Jogpz 0 96 72 (5.14)
Replacing and solving for § and A; one obtains:
5(2n2 — 21)
Al = —————== ~0.39712223492734 5.15
"7 6(2r2 — 15) ’ (5.15)
872 —21
0 = ———— ~ 1.378974145172718. 5.16
Var2 -9 (5.16)

Note that the natural constraints 2 > 0 and \; € [0, 1/2] are satisfied.
This is not necessarily the case for other (arbitrary chosen) pairs of functions.

We obtain thus the following integration formula for C} functions (see
also Figure 1):

5(2n% — 21) 1 8§72 21
A2 = A 6272 — 15)’ Ag =M =5 = A, T (5.17)
2 1 — cos(2mt
un(t) = 05 = —us(t), us(t) = # = —uy(t).  (5.18)

5.4. Minimalistic cubature formulas of order 8 and 9

Another approach to construct a formula of order 8 is to start with n = 2
paths and weights but adapt them to satisfy the constraints. We note that
any choice:

7’L=2, )\1 :)\221/2, Wy = —W1 (519)
(now wy is not necessarily ¢) will automatically satisfy all constraints of odd
orders, i.e. involving an odd number of integrations with respect to the paths.
The reason is that all such terms have to be zero and are obviously so because
are the sum of two contributions, one coming from w; and another, that will
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have same modulus but opposite sign, from wo = —wy. In particular, if we
find a cubature formula of order 8 with two paths that satisfy (5.19) it will
also be of order 9.

Thus all that remains to do is to find a function w; which satisfies
equations (5.4) and (5.5) (for £ = 1). A parametric search as a fractional
order polynomial reveals that a suitable solution is:

wi(z) = ﬁ((\/ﬁ; 6)o-3) (5.20)

A solution can be also found as a piecewise linear function. The function
has two linear parts with slope a1 from 0 to 1/2 and as from 1/2 to 1:

(CLQ —al) |2t— 1| + (2(12 +2&1)t— as + ay

wi(t) = 1 (5.21)
V161 + 17 VTV23 417 (V161 — 15)
a= e = xS .(5.22)
2 2

We have thus proved

Theorem 5.1. The following choice is a formula of order 9 for T = 1 (see
also Figure 2):

VE((VI146)t—3)

A1:A2:1/27 wl(t): ) 3

Wy = —Wi. (523)
or, in terms of the control u:

t2 (V11 +6)t — 5)

)\12)\2:1/2, ul(t)z 5

Same holds for:
(a2 —a1) |2t — 1| + (2a2 + 2a1) t — a2 + a1

Cun(t) = —ui(t).  (5.24)

wi(t) = 0 : (5.25)
V161 +17 V723 +17 (V161 — 15)
g =————5——, ap=— - , (5.26)
22 22
)\1 = )\2 = 1/2, Wy = —W1. (527)

or, in terms of the control u:
((20,2 — 20,1) t— as + CLl) |2t — 1| + (4&2 + 4&1) t2
u(t) =

16
da; — 4ag)t -
(4aq a2i6 + as alj A= o =1/2, us(t) = —uy (t)(5.28)

Remark 5.2. This methodology to find a cubature formula can be extended
to the situation of a multi-dimensional state x(¢) and even multi-dimensional
control u(t) but the cubature formulas will be different.

Remark 5.3. The point of the paper is that taking into account the special
structure of the equation can help to obtain faster cubature formulas. Up to
this point f is not depending explicitly on time; if one needs to work with
a non-autonomous version of f, the standard treatment is to introduce time



Cubature on C' space 11

as additional variable, but its SDE is very particular (dt = 1dt), this may be
combined with the above technique (or not ...) to propose adapted cubature
formulas.

We recall that cubature formulas for arbitrary 7T are simply obtained
by rescaling wy,(t) to vTwy(t/T) and uy(t) to VT3wy(t/T).

t

FIGURE 2. The functions uy for a 9-th order quadrature
formula (5.23)-(5.24).

6. Numerical results

6.1. Linear setting

To test our implementation against trivial errors we considered first
flz,u) =ax +u, a €R, 2(0) =0, F(z) ==. (6.1)

One can show analytically that E(F(«(T)) = 0. The cubature will approxi-
mate 0 with F(I“I(T));F@”(T)). But, by linearity F(z,,(T)) = —F (a4, (T))
so the approximation is in fact (analytically) exact. The numerical imple-

mentation for « = 0 and « = 1 (results not given here) showed indeed that
F(zuy (T)+F (@, (T))
2

this is the case i.e. was of the order of the roundoff error

which in our setting is about 10715,

6.2. Nonlinear setting

A nonlinear setting was tested next:

f(z,u) =z +u? z(0) =0, F(z) = 2. (6.2)
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The advantage of this example is that using stochastic expansion we know
that

EF(z,(T)) = Iz + 50 + 360 + .. (6.3)
We tested the cubature formulas of order 9 for different final times in the
range [1073,10%]. The range was chosen so that the error is not below the
roundoff. The results in Figure 3 confirm the theoretical results i.e. the error
behaves as O(T) for both order 9 formulas. We also tested the formula (5.1)
from the literature that uses also only n = 2 functions and found O(T?). As
expected, the formulas (5.23)-(5.24) and (5.25)-(5.28) converge faster.

T T T T T
Cubature formula of order 7 (from literature) =~ N
Cubature of order 9 (smooth) > 3
Cubature of order 9 (piecewise linear)

log1Q(error)
o

-
[¢,]

20, - ocle - -0.5 0
g10(T)

FiGURE 3. The error of the 9-th order cubature formu-
las (5.23)-(5.24) and (5.25)-(5.28) for test case (6.2) is plot-
ted in logl0-logl0 axis. The X axis is logl0(T") and the Y
axis is log10 of the error. The resulting plots are lines with
slope 5. The 7-th order formula (5.1) is also plotted, it ex-
hibits a slope of about 4.

6.3. Nonlinear setting out of the scope of the theoretical result

Finally, we tested a nonlinear setting taken from [5] which is not of the
form (1.1). It involves a 2-dimensional SDE z = (Y, A):

dY; = aYydt + bY; o dW; (6.4)
dA; = Yydt, a=0.1, b=10.2, (6.5)
F(z) = A3, (6.6)

Here too, we know the explicit solution of this 2-dimensional SDE Y; =
MW A, = fot e?s+ttWsds. The moment E(A(T)?) is not trivial to compute
and we will not give here its (cumbersome) formula (see instead [16, 17]
and also [2] for a elegant way to express it). We tested the same (three)
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cubature formulas for different final times in the range [1073, 10°]. The results
in Figure 4 show that for all cubature formulas the error behaves as O(T*)
which says that, from a numerical perspective, all cubatures are of order 7
for test case (6.4)-(6.6). This hints that formulas (5.23) and (5.25) behave
at least as well as (5.1) for situations not covered by the theoretical results;
recall that all cubatures have the same number of paths n = 2.

0 Cubaturé formula of order 7 (from literature) <
ubature of order 9 (smooth) I
o Cubature of order 9 (piecewise linear)

, log10(error)
o o) »

L
N

14 ! ! ! ! !
-3 25 -2 15 -1 0.5 0
log10(T)

FIGURE 4. The error of the 9-th order cubature formu-
las (5.23) and (5.25) and the order 7 formula (5.1) for test
case (6.4)-(6.6) is plotted in logl0-logl0 axis. The X axis is
logl0(T) and the Y axis is logl0 of the error. The resulting
plot is very close to a line of slope 4 for all cubature formu-

las, the lines coincide graphically (but numerical values are
different).
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