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Abstract. We explore in this paper cubature formulas over the space of
functions having a �rst continuous derivative, i.e., C1. We show that the
classical Lyons-Victoir formulas are not optimal in this case and explain
what is the origin of the loss of optimality and how to construct optimal
ones; to illustrate we give cubature formulas up to (including) order 4.
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1. Introduction

We consider the following controlled ordinary di�erential equation (ODE)

dx(t) = f(t, x(t), u(t))dt, x(0) = x0. (1.1)

where f is supposed as smooth as required with respect to all variables and
u(t) a C1 control that acts on x(t) with u(0) = u′(0) = 0. Let T be some �nal
time (which will be set to 1 in all that follows) and denote by C1

0 ([0, T ];R)
the space of u. In order to explicitly mark the dependence of x on u we will
also write xu(t) for the solution of (1.1).

We place ourselves in a situation where many u(t) can be chosen and
the average (or any aggregate quantity such as higher order moments, etc.)
of some functional of x(T ) over all such u(t) is to be computed. Typical
frameworks where this is relevant is in inverse problems where one can chose
several controls u, measure the output on the system depending on x(T ) and
want to identify some parts of the function f by doing this (see [2, 6, 7] for
examples).

We need to make precise what average means. Since our primary space
for u(t) is C1

0 ([0, T ];R) a possible way to formalize this average is to consider
a one dimensional brownian motion Wt (we write sometimes, as is usual, the
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time as index instead of W (t) but this means the same thing) and write the
following 3-dimensional SDE:

dx(t) = f(t, x(t), u(t))dt, x(0) = x0 (1.2)

du(t) = w(t)dt, u(0) = 0 (1.3)

dw(t) = dWt, w(0) =W0 = 0. (1.4)

where the last equality means of course w(t) =Wt; the third equality is there
only in order to give a formal 3D SDE.

We can now make precise the quantity of interest which is

EF (x(T )) (1.5)

where F is some (smooth enough) real function.

The justi�cation of this formal writing is the following: the Brownian
motion selects paths on the (Wiener) space of continuous functions null at
the origin on [0, T ] denoted C0

0 ([0, T ];R). Any C1
0 ([0, T ];R) is the de�nite

primitive of a function in the Wiener space. Thus as realizations of W span
the Wiener space, u(t) will span the required space.

Following works on in�nite dimensional cubature formulas on Wiener
space by [8, 4, 5] (see also [9, 11] for an application of cubature to �nance
and [1] to SPDE; many other works appeared in the literature on these sub-
jects) we want to approximate the mean in (1.5) by a �nite sum

EF (x(T )) '
n∑
k=1

λkF (xuk
(T )). (1.6)

where each uk corresponds to a given realization ωk of the Brownian motion
W and the corresponding uk(t) is given as above

uk(t) =

∫ t

0

ωk(s)ds. (1.7)

Such an approximation is called a cubature formula. The question is
what weights λk and paths ωk are best for some given n and how good are
the approximation properties of such a cubature formula.

A �rst thought is to use cubature formulas that work on the Wiener
space C0

0 ([0, T ];R) (cf. cited references for the details). As it will be seen in
the following this is not necessary the most e�cient choice because of the
speci�c structure of the problem. The purpose of this work is to �nd optimal
cubature formulas for the space C1

0 ([0, T ];R) up to (including) fourth order.

The plan of the paper is the following: further motivating remarks are
the object of Section 2 while a quick introduction to cubature formulas on
Wiener space is presented in Section 3. Preliminary computations are given
in Section 4 while the actual cubature formulas are given in Section 5.
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2. Further remarks and motivation

Denote Y =

xu
w

 and note that our equation can be written as

dY =

fw
0

 dt+

0
0
1

 ◦ dWt (2.1)

where ◦dWt signals a Stratonovich formulation (which is the one well adapted
to cubature framework because of the Wong-Zakai theorem [12]).

We realize that a di�erent circumstance where the term EF (x(T )) ap-
pears is in the forward Kolmogorov (or Fokker-Planck) PDE associated to the
time evolution of the density of the SDE (2.1). If we denote by ρ(t, x, u, w) the
3D density it satis�es the following degenerate 3-dimensional, time-dependent
PDE:

∂

∂t
ρ(t, x, u, w) +

∂

∂x
(fρ) +

∂

∂u
ρ− 1∂2

2∂2w
ρ = 0, (2.2)

ρ(0) = δx=x0 . (2.3)

Then since

EF (x(T )) =
∫
R3

+

F (x)ρ(T, x, u, w)dxdudw (2.4)

the method presented here also applies to the evaluation of the right hand
side of the equation above. An equivalent formulation involving a degenerate
backward (in time) PDE can also be invoked:

EF (x(T )) = F(0, x0, 0, 0) (2.5)

where

∂

∂t
F(t, x, u, w) + f(t, x, u)

∂

∂x
F +

∂

∂u
F +

1∂2

2∂2w
F = 0 (2.6)

F(T, x, u, w) = F (x). (2.7)

Thus the method presented here can be used to solve degenerate PDEs
of type (2.6).

3. Background on cubature formulas

We follow [8, 4] and introduce below the principle of computing cubature
formulas on the Wiener space. Suppose we want to compute Eg(Z(T )) with
g a regular function where Z(t) = (Z0(t), ..., Zd(t))

T ∈ Rd+1 solves the SDE

dZ =

d+1∑
`=0

ζ`(Z(t))dB`(t), (3.1)

where B1(t),...Bd(t) are components of a d-dimensional Brownian motion and
we denote B0(t) = t and set ζ0(·) = 1 (which ensures Z0(t) = t).
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If a path ω(t) = (ω0(t), ..., ωd(t)) ∈ Rd+1 with ω0(t) = t is given and has
some regularity one can de�ne ξω(t) as the solution of the following ODE

dξω(t) =

d+1∑
`=0

ζ`(ξω(t))dω`(t). (3.2)

Use now stochastic Taylor formulas [10, 3] to write

Eg(Z(T )) = g(Z(0)) +
∑
j

aj(g, ζ0, ..., ζd)E(Pj) +R (3.3)

whereR is a remainder of order higher than a prede�ned orderN , aj(g, ζ0, ..., ζd)
is a real (known) functional depending on g, ζ0, ..., ζd and Pj are stochastic
polynomials, i.e. integrals of the type∫ T

0

∫ s1

0

∫ s2

0

...

∫ sm−1

0

◦dBαm
(t)... ◦ dBα1

(t) (3.4)

with αp ∈ {0, 1, ..., d} for each p. The order of a stochastic polynomial is
computed adding 1/2 for each integral involving αj > 0 and 1 for each αj = 0.

If the function g is smooth enough and the remainder R does not contain
terms of order ≤ N a cubature formula of order N

Eg(X(T )) '
n∑
k=1

λkξωk(T ) (3.5)

is obtained by requiring that cubature paths ωk and weights λk satisfy for
each polynomial Pj as in (3.4):

n∑
k=1

λk

(∫ T

0

∫ s1

0

∫ s2

0

...

∫ sm−1

0

dωkαm
(t)...dωkα1

(t)

)
(3.6)

= E

(∫ T

0

∫ s1

0

∫ s2

0

...

∫ sm−1

0

◦dBαm(t)... ◦ dBα1(t)

)
. (3.7)

4. Stochastic Taylor expansion for averages of deterministic

functionals over the class C1
0([0, T ];R)

We will use the following convention: for any function G(·) we denote by ∂kG
the partial derivative of function G with respect to its k-th argument. We
write the stochatic Taylor formula [10] and iterate:

EF (x(T )) = EF (x(0)) + E
∫ T

0

∂1F (x(s1))f(s1, x(s1), u(s1))ds1(4.1)

= F (x(0)) + E
∫ T

0

∂1F (x(s1))f(s1, x(s1), u(s1))ds1. (4.2)
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To simplify the notations from now on we will only write in formula above
(∂1Ff)(s1) instead of ∂1F (x(s1))f(s1, x(s1), u(s1)). We obtain by iterating :

(4.3)

EF (x(T )) = F (x(0)) + (∂1Ff)(0) · E

(∫ T

0

ds1

)
(4.4)

+E
∫ T

0

∫ s1

0

(∂1F (∂1f + ∂2ff + ∂3fW ))(s2)ds2ds1 (4.5)

The �rst conclusion that can be drawn from this initial computation is that

the only �rst order term in T is E
(∫ T

0
ds1

)
; thus a �rst order cubature

formula (in the sense of [8] for instance) has only to satisfy the requirement:

n∑
k=1

λk

∫ T

0

ds1 = E

(∫ T

0

ds1

)
= 1, (4.6)

i.e.
n∑
k=1

λk = 1. (4.7)

The important remark here is that many terms are missing among which
(we only write terms up to order 3/2 because the others are more cumbersome
to write):

E

(∫ T

0

dWs1

)
, (4.8)

E

(∫ T

0

∫ s1

0

◦dWs2 ◦ dWs1

)
, (4.9)

E

(∫ T

0

∫ s1

0

ds2 ◦ dWs1

)
, (4.10)

E

(∫ T

0

∫ s1

0

◦dWs2ds1

)
, (4.11)

E

(∫ T

0

∫ s1

0

∫ s2

0

◦dWs3 ◦ dWs2 ◦ dWs1

)
, (4.12)

terms of order 4 involving Stratonovich integrals (4.13)

... (4.14)

It follows that classical cubature formulas derived for fully general equa-
tions on Wiener space lose optimality here. The purpose of this work is to
explain what are the constraints that optimal cubature formulas satisfy and
give examples of optimal weights and paths up to (including) fourth order.
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Continuing in the same way the enumeration of orders as they appear
iterating the integral form of the stochastic Taylor formula we obtain that
the following integrals appear

1. order 1: term E
(∫ T

0
ds1

)
. The constraint is, as seen above,

n∑
k=1

λk = 1. (4.15)

2. (unique) term of order 2: E
(∫ T

0

∫ s1
0
ds2ds1

)
. There is no new require-

ment brought by this term.

3. (unique) term of order 5/2: E
(∫ T

0

∫ s1
0

∫ s2
0
◦dWs3ds2ds1

)
. The require-

ment is

n∑
k=1

λk

(∫ T

0

∫ s1

0

∫ s2

0

dωk(s3)ds2ds1

)
= E

(∫ T

0

∫ s1

0

∫ s2

0

◦dWs3ds2ds1

)
= 0.

(4.16)
We recall that the integral

∫ s2
0
dωk(s3) is a Riemann-Stiltjes integral.

4. (unique) term of order 3: E
(∫ T

0

∫ s1
0

∫ s2
0
ds3ds2ds1

)
. There is no new

requirement brought by this term.
5. only two terms of order 7/2:

E

(∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

◦dWs4ds3ds2ds1

)
= 0 (4.17)

E

(∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

ds4 ◦ dWs3ds2ds1

)
= 0. (4.18)

6. order 4 and higher: all the terms beginning by the terms of order 3.5
and higher.

5. Cubature formulas

5.1. Cubature formulas or order 3

As seen above cubature formulas up to order 2 (included) are somehow trivial.
We thus start our list of cubature formulas from order 5/2. Note that a
formula of order 5/2 is automatically of order 3 too since terms of order 3 do
not bring any new requirement (other that the one implied already by the
term at order 1).

There are two equations: (4.15) and (4.16). We will thus need at least
two paths and thus two weights (except if one wants to use the null function,
but we will not consider this here). A natural choice is to use some path ω1

and ω2 = −ω1 and λ1 = λ2 = 1/2. Then the constraints are both satis�ed.
We obtain for instance a second order formula:

λ1 = λ2 = 1/2, ω1(t) = t, ω2(t) = −t. (5.1)
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5.2. Cubature formulas or order 7/2

There are two new constraints of order 7/2. But there constraints are again
satis�ed if one uses n = 2 λ1 = λ2 = 1/2 and ω2 = −ω1. Thus e.g. for-
mula (5.1) is also of order 7/2.

5.3. Cubature formulas or order 4

Figure 1. The four functions uk for a 4-order quadrature formula.

Two new terms appear that bring new constraints:

E

(∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

◦dWs5 ◦ dWs4ds3ds2ds1

)
=

1

48
(5.2)

E

(∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

◦dWs5ds4 ◦ dWs3ds2ds1

)
= 0. (5.3)

We do not enter here into the speci�cs of the calculation above(see cited
references for some hints). In terms of the cubature paths and weights the
two new constraints read:

n∑
k=1

λk

(∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

dωk(s5)dωk(s4)ds3ds2ds1

)
=

1

48
(5.4)

n∑
k=1

λk

(∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

dωk(s5)ds4dωk(s3)ds2ds1

)
= 0.(5.5)

Note that the choice n = 2, λ1 = λ2 = 1/2 and ω2 = −ω1 will certainly
not satisfy these constraints. We chose to add two more functions and look
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for a n = 4 fourth order cubature formula. In order to build on conclusions
from lower order we further choose to set

λ2 = λ1, λ3 = λ4, ω2 = −ω1, ω3 = −ω4. (5.6)

Denoting

αk =

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

dωk(s5)dωk(s4)ds3ds2ds1 (5.7)

=

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

ωk(s4)dωk(s4)ds3ds2ds1 (5.8)

=

∫ T

0

∫ s1

0

∫ s2

0

ω2
k(s3)

2
ds3ds2ds1 (5.9)

and

βk =

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

dωk(s5)ds4dωk(s3)ds2ds1 (5.10)

=

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

ωk(s4)ds4dωk(s3)ds2ds1 (5.11)

we obtain that the following requirements are to be satis�ed:

λ1α1 +

(
1

2
− λ1

)
α3 =

1

96
(5.12)

λ1β1 +

(
1

2
− λ1

)
β3 = 0. (5.13)

Let us introduce the parameter θ ∈ R and choose ω1 = θt = −ω2; we compute

and obtain α1 = θ2

5! = β1. It su�ces now to choose a family of functions where
to look for ω3 and its opposite ω4. Instead of piecewise linear functions as
in [8] we propose here oscillatory functions ω3(t) = sin( 2πtT ) = −ω4. The

unknowns are now θ and λ1. Note that ω3 is such
∫ 1

0
ω3(t)dt = 0.

For this choice of ω3 we obtain (for T = 1)

α3 =
8π2 − 3

192π2
, β3 = −8π2 − 21

96π2
. (5.14)

Replacing and solving for θ and λ1 one obtains:

λ1 =
5(2π2 − 21)

6(2π2 − 15)
' 0.39712223492734, (5.15)

θ =

√
8π2 − 21√
4π2 − 9

' 1.378974145172718. (5.16)

Note that the natural constraints θ2 > 0 and λ1 ∈ [0, 1/2] are satis�ed.
This is not necessarily the case for other (arbitrary chosen) pairs of functions.
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We obtain thus the following integration formula for C1
0 functions (see

also Figure 1):

λ2 = λ1 =
5(2π2 − 21)

6(2π2 − 15)
, λ3 = λ4 =

1

2
− λ1, θ =

√
8π2 − 21√
4π2 − 9

,(5.17)

u1(t) = θ
t2

2
= −u2(t), u3(t) =

1− cos(2πt)

2π
= −u4(t). (5.18)

Remark 5.1. Of course, the methodology presented here can be extended
easily to the situation of a multi-dimensional control u(t) of x(t).
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