
Cubature on C1 spaeGabriel TuriniiAbstrat. We explore in this paper ubature formulas over the spaeof funtions having a �rst ontinuous derivative, i.e., C1. We show thatknown ubature formulas are not optimal in this ase and explain whatis the origin of the loss of optimality and how to onstrut optimal ones;to illustrate we give ubature formulas up to (inluding) order 9.Mathematis Subjet Classi�ation (2010). Primary 60H35, 65D32, 91G60;Seondary: 65C30, 65C05.Keywords. Cubature Formulas; Stohasti Analysis; Chen signature;Chen Series; ubature on in�nite dimensional spae; Cubature Wiener;Cubature �nane.1. IntrodutionWe onsider the following ontrolled ordinary di�erential equation (ODE)
dx(t) = f(x(t), u(t))dt, x(0) = x0. (1.1)where f is supposed as smooth as required with respet to all variables and

u(t) a C1 ontrol that ats on x(t) with u(0) = u′(0) = 0. Let T be some �naltime (whih will be set to 1 in all that follows) and denote by C1
0 ([0, T ];R)the spae of u. In order to expliitly mark the dependene of x on u we willalso write xu(t) for the solution of (1.1).We plae ourselves in a situation where many u(t) an be hosen andthe average (or any aggregate quantity suh as higher order moments, et.)of some funtional of x(T ) over all suh u(t) is to be omputed. Typialframeworks where this is relevant is in inverse problems where one an hoseseveral ontrols u, measure the output on the system depending on x(T ) andwant to identify some parts of the funtion f by doing this (see [4, 9, 10℄ forexamples).We need to make preise what average means. Sine our primary spaefor u(t) is C1

0 ([0, T ];R) a possible way to formalize this average is to onsiderThis work was funded by ANR projets EMAQS number ANR-2011-BS01-017-01 andISOTACE.



2 Gabriel Turiniia one dimensional Brownian motion Wt (we write sometimes, as is usual, thetime as index instead of W (t) but this means the same thing) and write thefollowing 3-dimensional SDE:
dx(t) = f(x(t), u(t))dt, x(0) = x0 (1.2)
du(t) = w(t)dt, u(0) = 0 (1.3)
dw(t) = 1dWt = 1 ◦ dWt, w(0) = W0 = 0. (1.4)where the last equality means of ourse w(t) = Wt. The third equality is thereonly in order to give a formal 3D SDE; the term ◦dWt signals a Stratonovihformulation (whih is the one well adapted to ubature framework beauseof the Wong-Zakai theorem [15℄).We an now make preise the quantity of interest whih is

EF (x(T )), (1.5)where F is some (smooth enough) real funtion.The justi�ation of this formal writing is the following: the Brownianmotion selets paths on the (Wiener) spae of ontinuous funtions null atthe origin on [0, T ] denoted C0
0 ([0, T ];R). Any C1

0 ([0, T ];R) is the de�niteprimitive of a funtion in the Wiener spae. Thus as realizations of W spanthe Wiener spae, u(t) will span the required spae.Following works on in�nite dimensional ubature formulas on Wienerspae by [7, 8, 11℄ (see also [12, 14℄ for an appliation of ubature to �naneand [3℄ to SPDE; many other works appeared in the literature on these sub-jets) we want to approximate the mean in (1.5) by a �nite sum
EF (x(T )) ≃

n
∑

k=1

λkF (xuk
(T )). (1.6)where eah uk orresponds to a given realization ωk of the Brownian motion

W and the orresponding uk(t) is given as above
uk(t) =

∫ t

0

ωk(s)ds. (1.7)Suh an approximation is alled a ubature formula. The question iswhat weights λk and paths ωk are best for some given n and how good arethe approximation properties of suh a ubature formula.A �rst thought is to use ubature formulas that work on the Wienerspae C0
0 ([0, T ];R) (f. ited referenes for the details). As it will be seen inthe following this is not neessarily the most e�ient hoie beause of thespei� struture of the problem. The purpose of this work is to �nd optimalubature formulas for the spae C1

0 ([0, T ];R) up to (inluding) fourth order.The plan of the paper is the following: further motivating remarks arethe objet of Setion 2 while a quik introdution to ubature formulas onWiener spae is presented in Setion 3. Preliminary omputations are givenin Setion 4 while the atual ubature formulas are given in Setion 5.



Cubature on C1 spae 32. Further remarks and motivationDenote Y =





x
u
w



 and note that our equation an be written as
dY =





f(x(t), u(t))
w
0



 dt+





0
0
1



 ◦ dWt. (2.1)We note that a di�erent irumstane where the term EF (x(T )) appearsis in the forward Kolmogorov (or Fokker-Plank) PDE assoiated to the timeevolution of the density of the SDE (2.1). If we denote by ρ(t, x, u, w) the 3Ddensity it satis�es the following degenerate 3-dimensional, time-dependentPDE [6, 13℄:
∂

∂t
ρ(t, x, u, w) +

∂

∂x
(f(x, u)ρ(t, x, u, w)) +

∂

∂u
(wρ(t, x, u, w))

−1

2

∂2

∂2
w

ρ(t, x, u, w) = 0, (2.2)
ρ(0, x, u, w) = δx=x0

. (2.3)Then sine
EF (x(T )) =

∫

R
3
+

F (x)ρ(T, x, u, w)dxdudw (2.4)the method presented here also applies to the evaluation of the right handside of the equation above. An equivalent formulation, that does not requireto work with a Dira mass, involves a degenerate bakward (in time) PDEand an be invoked through the Feynman-Ka formula [6, 13℄:
EF (x(T )) = F(0, x0, 0, 0) (2.5)where

∂

∂t
F(t, x, u, w) + f(x, u)

∂

∂x
F(t, x, u, w) + w

∂

∂u
F(t, x, u, w)

+
1

2

∂2

∂2
w

F(t, x, u, w) = 0 (2.6)
F(T, x, u, w) = F (x). (2.7)Thus the method presented here an be used to solve degenerate PDEsof type (2.6).3. Bakground on ubature formulasWe follow [7, 11℄ and introdue below the priniple of omputing ubatureformulas on the Wiener spae. Suppose we want to ompute Eg(Z(T )) with



4 Gabriel Turinii
g a regular funtion where Z(t) = (Z0(t), ..., Zd(t))

T ∈ R
d+1 solves the SDE

dZ =

d+1
∑

ℓ=0

ζℓ(Z(t)) ◦ dBℓ(t), (3.1)where B1(t),...Bd(t) are omponents of a d-dimensional Brownian motion, ζlare (generi) smooth funtions and we denote B0(t) = t and set ζ0(·) = 1(whih ensures Z0(t) = t).If a path ω(t) = (ω0(t), ..., ωd(t)) ∈ R
d+1 with ω0(t) = t is given and hassome regularity one an de�ne ξω(t) as the solution of the following ODE

dξω(t) =

d+1
∑

ℓ=0

ζℓ(ξω(t))dωℓ(t). (3.2)Use now stohasti Taylor formulas [6, 13℄ to write
Eg(Z(T )) = g(Z(0)) +

∑

j

aj(g, ζ0, ..., ζd)E(Pj) +R (3.3)whereR is a remainder of order higher than a prede�ned orderN , aj(g, ζ0, ..., ζd)is a real (known) funtional depending on g, ζ0, ..., ζd and Pj are stohastipolynomials, i.e. integrals of the type
∫ T

0

∫ s1

0

∫ s2

0

...

∫ sm−1

0

◦dBαm
(t)... ◦ dBα1

(t) (3.4)with αp ∈ {0, 1, ..., d} for eah p. The order of a stohasti polynomial isde�ned adding 1 for eah integral involving αj > 0 and 2 for eah αj = 0.If the funtion g is smooth enough and the remainder R does not ontainterms of order ≤ N a ubature formula of order N
Eg(X(T )) ≃

n
∑

k=1

λkξωk(T ) (3.5)is obtained by requiring that ubature paths ωk and weights λk satisfy foreah polynomial Pj as in (3.4):
n
∑

k=1

λk

(

∫ T

0

∫ s1

0

∫ s2

0

...

∫ sm−1

0

dωk
αm

(t)...dωk
α1
(t)

) (3.6)
= E

(

∫ T

0

∫ s1

0

∫ s2

0

...

∫ sm−1

0

◦dBαm
(t)... ◦ dBα1

(t)

)

. (3.7)Remark 3.1. We use here the same naming onventions for the order of theubature sheme as in [11℄ whih is somehow di�erent from the standardnumerial analysis pratie. As suh, a ubature of order �N � will have errorof order O(T (N+1)/2).



Cubature on C1 spae 54. Stohasti Taylor expansion for averages of deterministifuntionals over the lass C1

0
([0, T ];R)We will use the following onvention: for any funtion G(·) we denote by ∂kGthe partial derivative of funtion G with respet to its k-th argument. Wewrite the stohasti Taylor formula [13℄ and iterate:

EF (x(T )) = EF (x(0)) + E

∫ T

0

∂1F (x(s1))f(x(s1), u(s1))ds1 (4.1)
= F (x(0)) + E

∫ T

0

∂1F (x(s1))f(x(s1), u(s1))ds1. (4.2)We obtain by iterating :
EF (x(T )) = F (x(0)) + ∂1F (x(0))f(x(0), u(0)) · E

(

∫ T

0

ds1

)

+E

∫ T

0

∫ s1

0

∂1F (x(s2))
(

∂1f(x(s2), u(s2))f(x(s2), u(s2)) +

∂2f(x(s2), u(s2))W (s2)
)

+ (∂1)
2F (x(s2))f(x(s2), u(s2))ds2ds1.(4.3)The �rst onlusion that an be drawn from this initial omputation is thatno �rst order terms appear and the only seond order term in T is E(∫ T

0 ds1

);thus a seond order ubature formula (in the sense of the Remark 3.1) hasonly to satisfy the requirement:
n
∑

k=1

λk

∫ T

0

ds1 = E

(

∫ T

0

ds1

)

= T, (4.4)i.e.
n
∑

k=1

λk = 1. (4.5)The important remark here is that many terms are missing among whih (weonly write terms up to order 3 beause the others are more umbersome to



6 Gabriel Turiniiwrite):
E

(

∫ T

0

◦dWs1

)

, (4.6)
E

(

∫ T

0

∫ s1

0

◦dWs2 ◦ dWs1

)

, (4.7)
E

(

∫ T

0

∫ s1

0

ds2 ◦ dWs1

)

, (4.8)
E

(

∫ T

0

∫ s1

0

◦dWs2ds1

)

, (4.9)
E

(

∫ T

0

∫ s1

0

∫ s2

0

◦dWs3 ◦ dWs2 ◦ dWs1

)

, (4.10)terms of order 4 involving Stratonovih integrals (4.11)
... (4.12)It follows that lassial ubature formulas derived for fully general equa-tions on Wiener spae lose optimality here. The purpose of this work is toexplain what are the onstraints that optimal ubature formulas satisfy andgive examples of optimal weights and paths up to (inluding) order 9.Continuing in the same way the enumeration of orders as they appeariterating the integral form of the stohasti Taylor formula we obtain thatthe following integrals appear1. order 2: term E

(

∫ T

0
ds1

). The onstraint is, as seen above,
n
∑

k=1

λk = 1. (4.13)2. (unique) term of order 4: E(∫ T

0

∫ s1
0

ds2ds1

). There is no new require-ment brought by this term.3. (unique) term of order 5: E(∫ T

0

∫ s1
0

∫ s2
0 ◦dWs3ds2ds1

). The requirementis
n
∑

k=1

λk

(

∫ T

0

∫ s1

0

∫ s2

0

dωk(s3)ds2ds1

)

= E

(

∫ T

0

∫ s1

0

∫ s2

0

◦dWs3ds2ds1

)

= 0.(4.14)We reall that the integral ∫ s2
0

dωk(s3) is a Riemann-Stieltjes integral.4. (unique) term of order 6: E(∫ T

0

∫ s1
0

∫ s2
0 ds3ds2ds1

). There is no newrequirement brought by this term.



Cubature on C1 spae 75. only two terms of order 7:
E

(

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

◦dWs4ds3ds2ds1

)

= 0 (4.15)
E

(

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

ds4 ◦ dWs3ds2ds1

)

= 0. (4.16)6. order 8 and higher: all the terms beginning by the terms of order 7 andhigher.5. Cubature formulas5.1. Cubature formulas or order 6As seen above ubature formulas up to order 4 (inluded) are somehow trivial.We thus start our list of ubature formulas from order 5. Note that a formulaof order 5 is automatially of order 6 too sine terms of order 6 do not bringany new requirement (other that the one implied already by the term at order
2). There are two equations: (4.13) and (4.14). We will use two paths andthus two weights. A natural hoie is to use some path ω1 and ω2 = −ω1and λ1 = λ2 = 1/2. Then the onstraints are both satis�ed. We obtain forinstane a formula of order 6:

λ1 = λ2 = 1/2, ω1(t) = t, ω2(t) = −t. (5.1)Note that this is the same as the third order (dimension one) formula from [11℄.5.2. Cubature formulas or order 7There are two new onstraints of order 7. But there onstraints are again sat-is�ed if one uses n = 2 λ1 = λ2 = 1/2 and ω2 = −ω1. Thus e.g. formula (5.1)is also of order 7.5.3. Cubature formulas or order 8: a �rst approahTwo new terms appear that bring new onstraints:
E

(

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

◦dWs5 ◦ dWs4ds3ds2ds1

)

=
T 4

48
(5.2)

E

(

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

◦dWs5ds4 ◦ dWs3ds2ds1

)

= 0. (5.3)
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Figure 1. The four funtions uk for a order 9 quadrature formula.We do not enter here into the spei�s of the alulation above(see [1℄). Interms of the ubature paths and weights the two new onstraints read:
n
∑

k=1

λk

(

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

dωk(s5)dωk(s4)ds3ds2ds1

)

=
T 4

48
(5.4)

n
∑

k=1

λk

(

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

dωk(s5)ds4dωk(s3)ds2ds1

)

= 0.(5.5)Note that the hoie n = 2, λ1 = λ2 = 1/2 and ω2 = −ω1 = −t doesnot satisfy these onstraints. A �rst idea is to add two more funtions andlook for a n = 4 ubature formula of order 8. In order to build on onlusionsfrom previous lower order we further hoose to set
λ2 = λ1, λ3 = λ4, ω2 = −ω1, ω3 = −ω4. (5.6)Denoting

αk =

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

dωk(s5)dωk(s4)ds3ds2ds1 (5.7)
=

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

ωk(s4)dωk(s4)ds3ds2ds1 (5.8)
=

∫ T

0

∫ s1

0

∫ s2

0

ω2
k(s3)

2
ds3ds2ds1 (5.9)



Cubature on C1 spae 9and
βk =

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

∫ s4

0

dωk(s5)ds4dωk(s3)ds2ds1 (5.10)
=

∫ T

0

∫ s1

0

∫ s2

0

∫ s3

0

ωk(s4)ds4dωk(s3)ds2ds1 (5.11)we obtain that the following requirements are to be satis�ed (for T = 1):
λ1α1 +

(

1

2
− λ1

)

α3 =
1

96
(5.12)

λ1β1 +

(

1

2
− λ1

)

β3 = 0. (5.13)Let us introdue the parameter θ ∈ R and hoose ω1 = θt = −ω2; we omputeand obtain α1 = θ2

5! = β1. It su�es now to hoose a family of funtions whereto look for ω3 and its opposite ω4. Instead of pieewise linear funtions asin [11℄ we propose here osillatory funtions ω3(t) = sin(2πtT ) = −ω4. Theunknowns are now θ and λ1. Note that ω3 is suh that ∫ 1

0
ω3(t)dt = 0.For this hoie of ω3 we obtain (for T = 1)

α3 =
8 π2 − 3

192 π2
, β3 = −8 π2 − 21

96 π2
. (5.14)Replaing and solving for θ and λ1 one obtains:

λ1 =
5(2π2 − 21)

6(2π2 − 15)
≃ 0.39712223492734, (5.15)

θ =

√
8 π2 − 21√
4 π2 − 9

≃ 1.378974145172718. (5.16)Note that the natural onstraints θ2 > 0 and λ1 ∈ [0, 1/2] are satis�ed.This is not neessarily the ase for other (arbitrary hosen) pairs of funtions.We obtain thus the following integration formula for C1
0 funtions (seealso Figure 1):

λ2 = λ1 =
5(2π2 − 21)

6(2π2 − 15)
, λ3 = λ4 =

1

2
− λ1, θ =

√
8 π2 − 21√
4 π2 − 9

,(5.17)
u1(t) = θ

t2

2
= −u2(t), u3(t) =

1− cos(2πt)

2π
= −u4(t). (5.18)5.4. Minimalisti ubature formulas of order 8 and 9Another approah to onstrut a formula of order 8 is to start with n = 2paths and weights but adapt them to satisfy the onstraints. We note thatany hoie:

n = 2, λ1 = λ2 = 1/2, ω2 = −ω1 (5.19)(now ω1 is not neessarily t) will automatially satisfy all onstraints of oddorders, i.e. involving an odd number of integrations with respet to the paths.The reason is that all suh terms have to be zero and are obviously so beauseare the sum of two ontributions, one oming from ω1 and another, that will



10 Gabriel Turiniihave same modulus but opposite sign, from ω2 = −ω1. In partiular, if we�nd a ubature formula of order 8 with two paths that satisfy (5.19) it willalso be of order 9.Thus all that remains to do is to �nd a funtion ω1 whih satis�esequations (5.4) and (5.5) (for k = 1). A parametri searh as a frationalorder polynomial reveals that a suitable solution is:
ω1(x) =

√
x
((√

11 + 6
)

x− 3
)

2
. (5.20)A solution an be also found as a pieewise linear funtion. The funtionhas two linear parts with slope a1 from 0 to 1/2 and a2 from 1/2 to 1:

ω1(t) =
(a2 − a1) |2t− 1|+ (2a2 + 2a1) t− a2 + a1

4
, (5.21)

a1 = −
√√

161 + 17

2
3
2

, a2 = −
√√

7
√
23 + 17

(√
161− 15

)

2
5
2

.(5.22)We have thus provedTheorem 5.1. The following hoie is a formula of order 9 for T = 1 (seealso Figure 2):
λ1 = λ2 = 1/2, ω1(t) =

√
t
((√

11 + 6
)

t− 3
)

2
, ω2 = −ω1. (5.23)or, in terms of the ontrol u:

λ1 = λ2 = 1/2, u1(t) =
t
3
2

(

(
√
11 + 6)t− 5

)

5
, u2(t) = −u1(t). (5.24)Same holds for:

ω1(t) =
(a2 − a1) |2t− 1|+ (2a2 + 2a1) t− a2 + a1

4
, (5.25)

a1 = −
√√

161 + 17

2
3
2

, a2 = −
√√

7
√
23 + 17

(√
161− 15

)

2
5
2

, (5.26)
λ1 = λ2 = 1/2, ω2 = −ω1. (5.27)or, in terms of the ontrol u:
u1(t) =

((2a2 − 2a1) t− a2 + a1) |2t− 1|+ (4a2 + 4a1) t
2

16

+
(4a1 − 4a2) t+ a2 − a1

16
, λ1 = λ2 = 1/2, u2(t) = −u1(t).(5.28)Remark 5.2. This methodology to �nd a ubature formula an be extendedto the situation of a multi-dimensional state x(t) and even multi-dimensionalontrol u(t) but the ubature formulas will be di�erent.Remark 5.3. The point of the paper is that taking into aount the speialstruture of the equation an help to obtain faster ubature formulas. Up tothis point f is not depending expliitly on time; if one needs to work witha non-autonomous version of f , the standard treatment is to introdue time



Cubature on C1 spae 11as additional variable, but its SDE is very partiular (dt = 1dt), this may beombined with the above tehnique (or not ...) to propose adapted ubatureformulas.We reall that ubature formulas for arbitrary T are simply obtainedby resaling ωk(t) to √
Tωk(t/T ) and uk(t) to √

T 3ωk(t/T ).
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Figure 2. The funtions uk for a 9-th order quadratureformula (5.23)-(5.24).6. Numerial results6.1. Linear settingTo test our implementation against trivial errors we onsidered �rst
f(x, u) = αx+ u, α ∈ R, x(0) = 0, F (x) = x. (6.1)One an show analytially that E(F (x(T )) = 0. The ubature will approxi-mate 0 with F (xu1

(T ))+F (xu2
(T ))

2 . But, by linearity F (xu2
(T )) = −F (xu1

(T ))so the approximation is in fat (analytially) exat. The numerial imple-mentation for α = 0 and α = 1 (results not given here) showed indeed thatthis is the ase i.e. F (xu1
(T ))+F (xu2

(T ))

2 was of the order of the roundo� errorwhih in our setting is about 10−15.6.2. Nonlinear settingA nonlinear setting was tested next:
f(x, u) = x+ u2, x(0) = 0, F (x) = x. (6.2)



12 Gabriel TuriniiThe advantage of this example is that using stohasti expansion we knowthat
EF (xu(T )) =

T 4

12
+

T 5

60
+

T 6

360
+ ... (6.3)We tested the ubature formulas of order 9 for di�erent �nal times in therange [10−3, 100]. The range was hosen so that the error is not below theroundo�. The results in Figure 3 on�rm the theoretial results i.e. the errorbehaves as O(T 5) for both order 9 formulas. We also tested the formula (5.1)from the literature that uses also only n = 2 funtions and found O(T 4). Asexpeted, the formulas (5.23)-(5.24) and (5.25)-(5.28) onverge faster.

Figure 3. The error of the 9-th order ubature formu-las (5.23)-(5.24) and (5.25)-(5.28) for test ase (6.2) is plot-ted in log10-log10 axis. The X axis is log10(T ) and the Yaxis is log10 of the error. The resulting plots are lines withslope 5. The 7-th order formula (5.1) is also plotted, it ex-hibits a slope of about 4.6.3. Nonlinear setting out of the sope of the theoretial resultFinally, we tested a nonlinear setting taken from [5℄ whih is not of theform (1.1). It involves a 2-dimensional SDE x = (Y,A):
dYt = aYtdt+ bYt ◦ dWt (6.4)
dAt = Ytdt, a = 0.1, b = 0.2, (6.5)
F (x) = A3. (6.6)Here too, we know the expliit solution of this 2-dimensional SDE Yt =

eat+bWt , At =
∫ t

0
eas+bWsds. The moment E(A(T )3) is not trivial to omputeand we will not give here its (umbersome) formula (see instead [16, 17℄and also [2℄ for a elegant way to express it). We tested the same (three)



Cubature on C1 spae 13ubature formulas for di�erent �nal times in the range [10−3, 100]. The resultsin Figure 4 show that for all ubature formulas the error behaves as O(T 4)whih says that, from a numerial perspetive, all ubatures are of order 7for test ase (6.4)-(6.6). This hints that formulas (5.23) and (5.25) behaveat least as well as (5.1) for situations not overed by the theoretial results;reall that all ubatures have the same number of paths n = 2.

Figure 4. The error of the 9-th order ubature formu-las (5.23) and (5.25) and the order 7 formula (5.1) for testase (6.4)-(6.6) is plotted in log10-log10 axis. The X axis is
log10(T ) and the Y axis is log10 of the error. The resultingplot is very lose to a line of slope 4 for all ubature formu-las, the lines oinide graphially (but numerial values aredi�erent).AknowledgmentLively and fruitful disussions with Gefry Barad on the topi of the paperare warmly aknowledged.Referenes[1℄ Fabrie Baudoin, Stohasti Taylor expansions and heat kernel asymptotis,ESAIM: Probability and Statistis FirstView (2011).[2℄ B.J.C. Baxter and R. Brummelhuis, Funtionals of exponential Brownian mo-tion and divided di�erenes., J. Comput. Appl. Math. 236 (2011), no. 4, 424�433 (English).
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