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Abstract

Minimizing the operating clearance between rotating bladed-disks and station-
ary surrounding casings is a primary concern in the design of modern turboma-
chines since it may advantageously affect their energy efficiency. This technical
choice possibly leads to interactions between elastic structural components through
direct unilateral contact and dry friction, events which are now accepted as normal
operating conditions. Subsequent nonlinear dynamical behaviors of such systems
are commonly investigated with simplified academic models mainly due to theoret-
ical difficulties and numerical challenges involved in non-smooth large-scale real-
istic models. In this context, the present paper introduces an adaptation of a full
three-dimensional contact strategy for the prediction of potentially damaging mo-
tions that would imply highly demanding computational efforts for the targeted
aerospace application in an industrial context. It combines a smoothing procedure
including bicubic B-spline patches together with a Lagrange multiplier based con-
tact strategy within an explicit time-marching integration procedure preferred for
its versatility.

The proposed algorithm is first compared on a benchmark configuration against
the more elaborated bi-potential formulation and the commercial software Ansys.
The consistency of the provided results and the low energy fluctuations of the intro-
duced approach underlines its reliable numerical properties. A case study featuring
blade-tip/casing contact on industrial finite element models is then proposed: it in-
corporates component mode synthesis and the developed 3D contact algorithm for
investigating structural interactions occurring within a turbomachine compressor
stage. Both time results and frequency-domain analysis emphasize the practical
use of such a numerical tool: detection of severe operating conditions and critical
rotational velocities, time-dependent maps of stresses acting within the structures,
parameter studies and blade design tests.

Keywords: Contact dynamics; nonlinear dynamics; Lagrange multipliers; surface
B-spline; modal synthesis; time-marching techniques
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1 Introduction

With the endlessly growing contribution of full three-dimensional nonlinear analyses
in structural components design, aircraft engine manufacturers strongly depend on the
development and use of modern numerical tools. Related computational strategies tra-
ditionally based on the standard Finite Element Method routinely address structural
configurations involving nonlinear kinematic descriptions, finite strains, constitutive
laws with plasticity, crack propagation, nonlinear temperature gradients or unilateral
contact constraints together with friction conditions, all within commercial software
packages. Nevertheless, investigations requiring the enforcement of non-penetration
constraints are still prone to numerical robustness issues that often necessitate in-house
tools dedicated to very limited classes of problems.

In this context, the present study focuses on the development, validation and use
of a 3D contact algorithm devoted to the examination of blade tips/casing structural
contact interactions in modern turbomachines. These structural contacts are conse-
quences of the implementation of improved energy efficient technologies affecting the
operating clearances between the rotor and the surrounding stationary casing compo-
nents potentially yielding severe damages [36, 17, 37]. Exploration of these phenomena
demands meticulous attention on the considered solution method and related assump-
tions. Among the commonly used approaches in nonlinear dynamics (harmonic balance
and shooting methods, analytical derivations and perturbation techniques, nonlinear
modal analysis to name a few), time integration is given preference in the present work
for its versatility and due to the complexity of the investigated phenomenon. As shown
in previous studies involving 2D models [28], the forward increment Lagrange mul-
tiplier approach within an explicit time-marching technique [12] stands as a reliable
strategy for this class of problems and is here extended to full 3D configurations [6].
Special consideration is given to large sliding and high tangential relative velocities be-
tween blade-tips and surrounding casings.

The novelty of the suggested approach lies in the efficient combination of several
ingredients which have been already proposed for other matters:

1. construction of reduced-order models of large scale systems embedding centrifu-
gal stiffening, i.e. dependence to a rotational velocity [41],

2. explicit time-stepping technique dedicated to unilateral contact and dry friction
conditions,

3. contact interface smoothing procedure.

For a given blade design, the introduced numerical tool is able to provide a full car-
tography of its nonlinear frequency response (displacements, strains, stresses, contact
forces) over a user-defined range of rotational velocities, in no more than few hours on
a standard computer. By contrast, in commercial codes, centrifugal stiffening first ne-
cessitates a static pre-calculation for each investigated rotational velocity. This static
computation requires a full, often very large (up to 1.5 million degrees of freedom),
finite element model. The construction of reduced-order models directly embedding
centrifugal stiffening significantly improves the numerical efficiency of the proposed
strategy with respect to commercial softwares. The introduced tool is also versatile in
such a way that existing meshing procedures implemented in industrial frameworks do
not have to be modified. In this regard, consideration has been given to B-spline [10, 4,
35, 32] surface patches.
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Contact problems are inherently nonlinear since the contact area is a priori unknown
and the respective hybrid contact pressure/displacement boundary conditions are part
of the sought solution. The main difficulty lies in the constitutive laws of contact and
friction expressed by non-smooth multivalued force-displacement relationships. From
a mechanical engineering viewpoint, three groups of methods are usually preferred
for the numerical treatment of such laws since they directly provide a physical sense
to the quantities of interest: (1) the penalty method [3, 24], (2) the Lagrange multi-
plier method [5, 21] and (3) the augmented Lagrangian method [39]. While the penalty
method depends on a parameter that allows a loosely controlled violation of the con-
straints between the structures, the Lagrange multipliers, which represent the contact
reaction forces when convergence is reached, exactly enforce the non penetration condi-
tions.

In a FEM context, unilateral contact and friction conditions are especially challeng-
ing due to the constant switches in the state of the constraints stemming from the spa-
tial discretization. The contact zone is represented by a surface which is only piecewise
differentiable, and most commonly of low order of continuity. As a consequence, nu-
merical jumps in contact forces are typically encountered. These non-physical jumps
can cause serious errors in the resulting simulated stresses and forces and smoothing
methods are often required. A higher order of continuity can be prescribed by di-
rectly using Cn compatible and geometrically curved elements. Unfortunately, these
elements are known to feature numerical difficulties [15] that may be overcome in an
original fashion. Among possible strategies that have revealed themselves useful over
the past few years [29], Bézier curves, Hermite and Bernstein patches [45], Overhauser
segments [1], the diffuse approximation approach [13], the B-splines [10, 4, 35, 32] and
the non-uniform rational B-splines (NURBS) [42, 20] stimulated a number of interest-
ing investigations. While preserving the original meshes, they remove the facetization
issues, ease the contact transition and then increase the convergence rates of the ded-
icated contact algorithms. Industrial environments may greatly benefit from such im-
plementations since they simplify meshing procedures by allowing the use of a broader
class a finite elements. All these mathematical objects are characterized by their own
specific advantages and drawbacks (control points interpolation, refinement, knots in-
sertion, internal subdivision) and the Bézier and B-spline curves are the most popular
forms to date. In the present study, the cubic B-spline approach is adopted since it can
easily be adapted to finite element meshes where the current positions of the nodes only
are required.

For reliability and validation purposes, the proposed approach is first compared
against the bi-potential method [18] and the Ansys commercial package. The formula-
tion combining augmented Lagrange multipliers with the bi-potential method is capa-
ble of treating frictional contact constraints in a reduced system bymeans of a predictor-
corrector solution algorithm. In addition, the bi-potential method leads to a single dis-
placement variational principle and a unique inequality in which unilateral contact
and friction are coupled via a contact bi-potential. Ansys commercial software allows
for several types of contact treatment. The choice essentially involves the definition
of contact areas (node-to-node, node-to-surface, line-to-surface, surface-to-surface. . . )
and the solution algorithm (multipoint constraint, penalty, Lagrange multiplier or aug-
mented Lagrangian methods). Each contact simulation is customizable with a large
number of parameters. In our study, CONTA175 and TARGE170 [2] are used to define
node-to-surface 3D contact areas and the solution is computed with the augmented La-
grangian procedure. The targeted application case, depicted in Fig. 1, is presented in
the last section.
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Figure 1: Surface-spline description for treatment of contact conditions
between blade-tips and surrounding casing in turbomachinery

2 Contact dynamics

2.1 General theory

The contact pressure acting between the blade tips and the casing is of particular inter-
est in this study. Equations of motion are derived using the Principle of Virtual Work
within the kinematically linear framework following reference [27]. The infinitesimal
strain theory is assumed and the reference frame is attached to the rotating blade.

It is first convenient to arbitrary choose a master surface, subjected to contact, with
respect to which a second one, commonly called the slave surface, can be parameterized.

It is then possible to find for any material point x belonging to the master surface Γ
(m)
c ,

its closest counterpart ȳ on the slave surface Γ(s)c :

ȳ(x) = argmin
y∈Γ

(s)
c

‖x− y‖ (1)

According to these notations, the gap function between the two structures can be ex-
pressed:

g(x) = g0(x) +
(

u(m)(x)−u(s)(ȳ(x))
)

·n (2)

where g0(x) represents the initial positive gap between the two structures, n, the out-

ward normal to Γ
(s)
c , and u, the displacement of the master (m) and slave (s) structures.

The contact conditions, referred to as the Kuhn-Tucker optimality conditions are such

that for all x∈ Γ
(m)
c :

tN ≥ 0, g ≥ 0, tN g = 0 (3)

where tN stands for the positive contact pressure acting on Γ
(m)
c . These conditions are
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complemented by the Coulomb friction law:

‖tT‖ ≤ µtN

‖tT‖ < µtN ⇒ vT = 0

‖tT‖ = µtN ⇒∃α > 0 such as vT = α
tT
‖tT‖

(4)

for which µ is the coefficient of friction, vT, the tangential slip and tT, the tangential
stress vector. The weak form of the contact problem can be then written in the following
manner:

find the displacement field u such as for all admissible virtual displacement δu:
∫

Ω
ρü · δudV +

∫

Ω

¯̄σ : δ ¯̄εdV =
∫

Γσ

td · δudS +
∫

Γ
(s)
c

(tNδg + tT · δuT)dS

+
∫

Ω
fd · δudV

(5)

where tN and tT should satisfy conditions (3) and (4), respectively. The virtual work

of the contact forces is calculated on the slave surface Γ
(s)
c , in other words, the surface

spline attached to the casing. It means that the gap functions are evaluated using the sur-
face spline — and not the original casing mesh — and that the virtual displacements of
the interface nodes due to the contact forces acting on the surface spline are calculated
using the shape functions of the surface spline together with the inversion procedure
between data and control point detailed in Eqs (23) and (25).

2.2 Solution algorithm for interaction

Many different time-marching procedures dealing with contact have been developed
in the past few years depending on the type of correction used (displacement or veloc-
ity) [43]. Because of its simplicity, the Forward Increment LagrangeMultiplierMethod [12]
is used in our study. The matrix form of (5) is discretized in time using the explicit cen-
tral differences scheme. The algorithm is then divided into three steps:

1. prediction at time step n + 1 of the displacements u of the structures without
considering any contact. This predicted displacement, denoted with a superscript
p, is analytically expressed as:

un+1,p =
[

M

h2
+

D

2h

]−1 ((2M
h2
−K

)

un +
(

D

2h
−
M

h2

)

un−1 +Fn
)

(6)

where h is the time-step size of the explicit time marching procedure. Previous
displacements un and un−1 and external forcing Fn are known.

2. determination of the gap function vector gp between the two structures using
Eq. (2). Each gap function where a penetration has been detected is kept in gp, all
other coordinates of the latter being zero.

3. correction of the displacements through the calculation of the Lagrange multipli-
ers. This step implies that the gap functions (linearized when necessary) vanish:

gn+1 =CN
tun+1,c + gp = 0 (7)

where the superscript c means that the correction of the displacements is being
calculated. CN is the contact constraint matrix in the normal direction where su-
perscript t stands for transpose. The new equations of motion taking the Lagrange
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multipliers (i.e. contact forces) into account and the contact constraints have to
be solved simultaneously. To this end, a new contact matrix CNT containing the
normal and tangential constraints is built by considering that, because of high
relative velocities between the two structures, only sliding occurs:































λ =

(

CN
t
[

M

h2
+

D

2h

]−1
CNT

)−1

gp

un+1 = un+1,p +
[

M

h2
+

D

2h

]−1
CNTλ

(8)

4. time increment t← t + h and go back to 1.

3 Smoothing procedure

The usual mathematical inconsistencies in contact treatment due to the finite element
mesh approximation — i.e. exact distances between the two structures and continu-
ous definition of the outward normal direction — is overcome through the implemen-
tation of a functional smoothing procedure of the contact surface involving bi-cubic
B-splines [4], as pictured in Fig. 1.

3.1 B-spline curves

3.1.1 Uniform B-spline curve

B-spline bases [11] allow the construction of complex parametric spatial curves c(t) by
multiplying a spline basis functions Bni(t) and a set of control points Qi

1:

c(t) =
N−1
∑

i=0

QiBni (t) (9)

They result by mapping a dimension t defined along a knot sequence ti=0,N−1 into a
Cartesian space through control points and are completely specified by the curve’s con-
trol points, the curve’s polynomial degree and the B-spline basis functions as detailed
in Eq. (9).

Two-dimensional splines will be later employed to enrich the contact surface func-
tional properties. This surface will be characterized by its degree n and the knot se-
quence characterized by the following considerations:

• Choosing n = 3 provides a C1 continuity to the normal of the contact surface,
which is of primary importance to correctly calculate the distance between the
structures and to avoid numerical jumps in the estimation of the contact forces.
Lower degree polynomials do not provide sufficient control of the surface’s shape
and higher degree polynomials are computationally more expensive.

• The knot sequence can be either uniform or nonuniform. A curve is uniform if the
spacing between the knots of the intrinsic parameter t is constant, ti+1 = ti+1. This
method is not always suitable and chord length parametrization may be preferred

1In a three-dimensional Cartesian space, the parametric curve is a vector-valued function of parameter
t such as c(t) = [cx(t), cy (t), cz (t)]. The control points are stored accordingly along the three directions such
as Qi = [Qxi ,Qyi ,Qzi ].
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because it more precisely reflects the geometry of the data points by proportion-
ally spacing the knot sequence to the distance between the data points. However,
the contact interface nodes of the casing supporting the surface spline are (almost)
equally spaced along the circumferential and axial directions (see Fig. 1). More-
over, a uniform parametrization greatly simplifies the implementation.

Consequently, cubic uniform B-spline curves are used in the present study. Each segment
p of the curve2 can be then written in a matrix form:

cp(t) = TMQp (10)

where T = (t3,t2,t,1), Qt
p = (Qp−1,Qp ,Qp+1,Qp+2) and:

M =
1
6



























−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0



























(11)

3.1.2 Interpolation

By definition, a B-spline does not pass through its control points. The inversionmethod
addresses this issue by finding the N + 2 control points Qi , given a set of N data points
Pi to be interpolated. N linear equations are generated based on the fact that c(t) has
to pass through the data points. This generates a spline which will (almost) perfectly
match the geometry of the supporting casing.

In the case of a uniform parametrization, segment p of the spline curve reaches its
extremal points Pp and Pp+1 for extremal values of parameter t, respectively t = 0 and
t = 1. Accordingly, it yields for p = 0, . . . ,N − 2:

Pp = cp(0) =
1
6

(

Qp−1 +4Qp +Qp+1

)

Pp+1 = cp(1) =
1
6

(

Qp +4Qp+1 +Qp+2

)

(12)

where cp(1) = cp+1(0). System (12) can be recast in a matrix form such as:











































































end 1
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PN−2
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end 2











































































=
1
6











































































e n d c o n d i t i o n s 1
1 4 1 0 · · · 0
0 1 4 1 0 · · · 0

...
. . .

...

0 · · · 0 1 4 1 0
0 · · · 0 1 4 1
e n d c o n d i t i o n s 2





















































































































































Q−1
Q0
Q1

...

QN−2
QN−1
QN











































































(13)

or, in a contracted way:

P =AQ (14)

where the two end-conditions required to uniquely solve the problem have to be speci-
fied.

2As already mentioned, a curve is generally vector-valued but is written here along a single direction of
the Cartesian space for the sake of simplicity.
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3.1.3 End Conditions

Various methods are available for the definition of the boundary and end-conditions —
both a 2D and a 3D representation of two possible end-conditions are given in Figs. 2,
3(a), and 3(b) — of an interpolating spline patch. In the perspective of the casing prob-
lem, two types of end-condition should be explored: free edges along the axial direction
of the structure as well as continuity and closure conditions along the circumferential
direction. The first one is dealt with the double vertice approach [7, 4]:

Q−1 =Q0 and QN =QN−1 (15)

which assumes that the curvature of the spline curve at each end is zero. The second
one requires the position of the spline c(t), its first c(t)′, and second c(t)′′ spatial deriva-
tives to be equal at extremities in order to enforce closure and functional smoothness,
mathematically leading to:

c0(0) = cN−2(1)⇔ P0 = PN−1

c′0(0) = c′N−2(1)⇔−Q−1 +Q1 = −QN−2 +QN

c′′0 (0) = c′′N−2(1)⇔Q−1 − 2Q0 +Q1 =QN−2 − 2QN−1 +QN

(16)

Finally, in Eq. (13), free edge boundary conditions in the axial direction read:

(a) free-edge (b) continuity and closure

Figure 2: two types of end condition: spline ( ), data points P ( b ) and
control points Q ( b )

end conditions 1 = [1 − 1 0 . . . 0]

end conditions 2 = [0 . . . 0 − 1 1]
(17)

and continuity boundary conditions in the circumferential direction are:

end conditions 1 = [−1 0 1 0 . . . 0 1 0 − 1]

end conditions 2 = [1 − 2 1 0 . . . 0 − 1 2 − 1]
(18)

3.2 Bicubic uniform B-spline surfaces

3.2.1 Construction

B-spline surfaces are an extension of B-spline curves and are most commonly defined
as the tensor product of B-spline curves:

S(s, t) =
M−1
∑

i=0

N−1
∑

j=0

QijBni (s)Bnj(t) (19)
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involving two parametric values s and t defined on two knot vectors (si) and (tj ), and
a set of control points Qij , organized in a grid and thus, not of arbitrary topology. Ac-
cordingly, the surface basis functions are products of two univariate bases. Similar to
the uniform cubic B-spline curve, S(s, t) is a vector-valued function and each patch3 pq
of a bicubic uniform B-spline surface can be described in a matrix form by:

Spq(s, t) = SMQpqM
tTt (20)

with S = (1,s,s2,s3), T = (1,t,t2,t3) and:

Qpq =



























Qp−1,q−1 Qp−1,q Qp−1,q+1 Qp−1,q+2
Qp,q−1 Qp,q Qp,q+1 Qp,q+2
Qp+1,q−1 Qp+1,q Qp+1,q+1 Qp+1,q+2
Qp+2,q−1 Qp+2,q Qp+2,q+1 Qp+2,q+2



























(21)

where matrix M is defined in Eq. (11). As shown in Eqs. (20) and (21), each bicubic
uniform B-spline patch is locally affected by sixteen control points.

3.2.2 Interpolation

For the sake of simplicityQ (respectively P) now denotes a reorganization of matrixQpq

given in Eq. (21) (respectively Ppq) for p = −1, . . . ,M and q = −1, . . . ,N in a vector form
such as:

Qt = (Q−1−1,Q0−1, . . . ,QM−1,Q−10,Q00, . . . ,QMN )

Pt = (P−1−1,P0−1, . . . ,PM−1,P−10,Q00, . . . ,PMN )
(22)

The two dimensional counterpart of Eq. (14) together with notations (22) and the appro-
priate end-conditions into Eq. (19) (see Fig. 3(b)) leads to the following relation between
data and control points:

P =AQ (23)

where matrix A, of size
(

(N + 2) × (M + 2)
)2
, is defined as the Kronecker product of

matrices As and At, counterparts of matrix A of Eq. (14) with the appropriate end-
conditions, respectively in s and t:

A = As ⊗At (24)

whose inversion is:

A
−1 = As

−1 ⊗At
−1 (25)

In the validation example as well as in the application case, matrix P contains the actual
nodes of the finite element mesh on the contact surface. This means that every time the
B-spline surface is created, control points Q are computed so that nodes in P belong to
the B-spline surface.

3two-dimensional counterpart of a segment, written here in one direction of the Cartesian space
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(a) free-edge end-conditions and com-
patibility in displacement (closure)

(b) continuity conditions (first and
second spatial derivatives) and com-
patibility in displacement (closure)

Figure 3: Surface spline versus end-conditions along the circumferen-
tial direction. Free-edge end-conditions in the axial direction.
Black dots • are the data points of the deformed casing. The
control points and vertices are not shown.

4 General algorithm validation

As explained in the introduction, exploration of blade-to-casing interactions involves
numerical difficulties due to unilateral contact conditions and high relative velocities.
Accordingly, it is important to validate the developed in-house numerical tool by com-
paring results to the existing software packages and other academic codes on specific
configurations designed to asymptotically approximate a blade-to-casing interaction.
The comparison is addressed with the bi-potential method [18] combined with an im-
plicit time integration procedure and the Ansys commercial software. The respective
contact example is presented in Fig. 4 and a summary of the considered solution meth-
ods is provided in Tab. 1.

Solution method Time integration Contact Contact surface
method algorithm interpolation

Proposed algorithm explicit Lagrange multiplier B-splines
Bi-potential implicit Augmented Lagrangian Linear

Ansys implicit Augmented Lagrangian Linear

Table 1: Solution methods

4.1 Benchmark configuration

A flexible cubic hexahedron is launched between two flexible partial rings clamped on
their tip boundaries. The initial velocity of the hexahedron vc is directed along the y

axis. Positions Cl and Cr define the centers of the left partial ring (x < 0) and right
partial ring (x > 0).

In the sequel, subscripts r and h respectively refer to the rings and the hexahedron.
The mechanical parameters common to all subsequent numerical simulations are as
follows: Young’s modulii Er = 2.1 · 1011 N/m2 and Eh = 2.1 · 109 N/m2, mass per unit
volume ρr = ρh = 7,800 kg/m3 and Poisson coefficients νr = νh = 0.3. Structural damping
and gravity are neglected. Structures are meshed with 8-node linear brick elements.
The cube is discretized with 125 identical elements (5 elements on each length) and
the rings are regularly meshed with 5 elements along their thickness, 8 elements along
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x
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z
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80 mm
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120◦
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85

90

31
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96

Figure 4: Benchmark configuration

their width and 40 elements along their length, so that each ring is discretized in 1,600
elements.

Within the linear kinematic framework, it seems legitimate to restrict the contact
conditions to two faces of the hexahedron, respectively delimited by nodes 1, 85, 90
and 6 and by nodes 31, 91, 96 and 36, as pictured in Fig. 4.

Finally, for each ring, a B-spline surface is attached to the nodes of the outer surface
of the ring as detailed in section 3. Free edge conditions only are considered and the
B-spline surface matches the outer surface of each ring mesh.

4.2 Displacements and contact forces

The investigated design is symmetric with respect to planes (Oyz) and (Oyx) and it is
expected to observe symmetric displacements and contact forces. This is verified by
comparing ux, uy and uz for nodes 1, 6, 85 and 90 with their respective symmetric
counterparts on nodes 31, 36, 91 and 96 as pictured in Fig. 4.

Figs. 5(a), 5(b), 5(c) and 5(d) show perfect symmetry for both displacements and
contact forces with indistinguishable superimposition.

4.3 Sensitivity to friction

With the same boundary and initial conditions, three configurations are investigated for
various friction coefficients µ and initial velocities ||vc || in order to assess the sensitivity
to assumptions listed in section 2.2. Constant time step is h = 10−7 s in the proposed
technique and h = 10−5 s, in the bi-potential method.
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Figure 5: Displacements and contact force for nodes 1, 6, 85 and 90 ( )
and their respective symmetric: nodes 31, 36, 91 and 96 ( )

4.3.1 µ = 0

The initial speed of the cube is −50 m/s for the first two configurations. With its initial
velocity, the hexahedron stores a sufficiently high kinetic energy to distort itself as well
as the two flexible rings, and thus entirely moves through the existing clearance.

A comparison between the proposed algorithm and the bi-potential method is con-
ducted for displacements and contact forces. For the sake of brevity, the results are only
presented for node 1 of the hexahedron. As shown in Fig. 4, the maximum relative dis-
placement of node 1 is about 2 mm, equivalent to a 4%-strain ratio compatible with the
linear kinematic assumption. Displacements u1x, u1y, and u1z of node 1 are displayed
in Figs. 6(a), 6(b), and 6(c), respectively. The contact force acting on this node is de-
picted in Fig. 6(d). Each figure shows a good agreement between the two methods, both
in displacement and force amplitudes even though a phase shift is noticeable for u1x
and u1z. The latter arises when the hexahedron leaves the rings behind and is strongly
dependent on the initial displacement conditions of this stage. Moreover, both meth-
ods feature a decay of u1y as pictured in Fig. 6(b), caused by the contact with the rings
and consequence of the partial transformation of the initial kinetic energy into strain
energy.

4.3.2 µ = 0.15

The friction coefficient is now set to a value corresponding to experimental blade/casing
set-ups. Respective displacements u1x, u1y, and u1z are displayed in Figs. 7(a), 7(b),
and 7(c). The contact force acting on this node is illustrated in Fig. 7(d). Due to dry fric-
tion during the contact phase, the velocity of the moving hexahedron decreases until the
structure reaches a static position with final adherence to the surrounding rings. This
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Figure 6: Frictionless low speed configuration; proposed algorithm ( )
and bi-potential method ( )

is indicated in Fig. 7(b) where the y-displacement becomes constant after the transient
response. While Figs. 7(a) and 7(c) match very well, Fig. 7(b) shows that the hexahe-
dron penetrates further between the rings according to the bi-potential method. This is
a consequence of the contact treatment in the proposed approach only accounting for
sliding (see Eq.(8)) as follows:

‖tT‖ = µtN (26)

When the relative tangential velocity between themechanical components is sufficiently
low to allow a sticking state, the proposed method overestimates tangential contact
forces.

4.4 Sensitivity to relative tangential velocity

The velocity of the hexahedron is now sufficiently high to ensure a complete sliding
motion between the two rings followed by a final release. This configuration is intended
to reflect the contact conditions of the blade-to-casing interaction.

Comparison for displacement of node 1 is provided in Figs. 8(a), 8(b), and 8(c). Re-
spective contact force comparison is displayed in Fig. 8(d). In Fig. 8(b), identical be-
haviours in the y direction can be observed and the two methods predict the same cube
velocity after the contact phase with the surrounding rings. Also, high frequency vibra-
tions of significant but similar amplitude are noticeable for u1x and u1z in Figs. 8(a) and
8(c) due to the absence of damping.
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Figure 7: Low speed configuration with friction; proposed algo-
rithm ( ) and bi-potential method ( )
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Figure 8: High speed configuration with friction; proposed algo-
rithm ( ) and bi-potential method ( )
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4.5 Comparison to Ansys

Comparison to Ansys is introduced for the third configuration involving friction and
high relative velocity.

Ansys instructions CONTA175 and TARGE170 [2] are used to define node-to-surface
3D contact interface4. Elements TARGE170 model the contact surface of each ring and
elements CONTA175 describe the cube as pictured in Fig. 9. Ansys offers the aug-

right ringcube

n

CONTA175

TARGE170

Figure 9: Ansys elements used for contact simulation, partial representa-
tion of the contact case
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Figure 10: High speed with friction, comparisons between the proposed
algorithm ( ) and Ansys ( )

4CONTA175 and TARGE170 elements essentially define the contact nodes and respective contact sur-
faces in the context of a usual master/slave approach with node-to-surface contact algorithm.
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mented Lagrangian method within an implicit time integration procedure with New-
mark parameters γ = 1

2 and β = 1
4 . Time step may vary during the numerical simulation

from hmin = 10−6 s to hmax = 10−5 s.
Similarly to the comparison with the bi-potential method, results match very well

during the contact phase (see Fig. 10); contact forces pictured in Fig. 10(d) emphasize
this statement. Once contact is released between the hexahedron and the two flexible
rings (for t > 0.6 s), high frequency vibrations arise as displayed in Figs. 10(a) and 10(c)
where both approaches lead to comparable mean amplitudes. As mentioned earlier, a
phase shift is also noticeable. On the contrary, the superimposition of u1x from Ansys
and the bi-potential method plotted in Fig. 11 highlights a better agreement between
the two strategies. There is a known delay between implicit and explicit time integra-
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Figure 11: Displacement u1x with high relative velocity and friction; An-
sys ( ) and bi-potential method ( )

tion procedures [19] that may be responsible for a phase shift between the respective
responses. Second— and this is a critical point in our study—while the contact surface
is exactly the same for simulations carried out with Ansys and the bi-potential method,
a bicubic B-spline is used for interpolating the contact surface of the rings. Accordingly,
the time range for which contact is released may not be exactly identical.

4.6 Energy conservation

Explicit time-stepping procedures are known to be conditionally stable with a critical
time step. Such integration schemes should satisfy stability, convergence, and consis-
tency properties as well as preserve system invariants such as linear momentum and
total energy balance [27, 22]. The design of nonlinear stable algorithms satisfying con-
servative laws has already been widely studied on a variety of configurations [40, 34,
46, 33] and energy conserving algorithms have been developed for different applica-
tions [23, 30, 18]. The explicit central difference method ensures the conservation of the
linear momentum [26] and we now focus on energy preserving properties of the pro-
posed solution method. Since the configuration of interest is conservative when µ = 0,
the total energy of the system ET should be constant. When µ > 0, friction induces dissi-
pation and the total energy of the system decreases during the sliding contact phases of
the predicted motion. The energy balances the two low relative speed cases are depicted
in Fig. 12(a) and 12(b). The total energy of the system is computed as the sum of the
kinetic energy and the strain energy of the cube and the rings. The system total energy
fluctuations are found to be very small, from 1,218.75 J to 1,216.83 J, or equivalently
a 0.16 % decrease. On the contrary, the kinetic energy, and subsequently, the total en-
ergy of the system are clearly affected by friction. Accordingly, the method possesses
reliable energy conservation properties which makes it well suited for long time runs of
non-linear regimes.
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Figure 12: Total ( ), kinetic ( ), and strain ( ) energies versus
time

The good agreement on displacements and contact forces between the three inves-
tigated approaches together with the offered energy conserving properties validate the
proposed approach. Accordingly, the introduced numerical proved to be relevant for
the numerical exploration of blade-tip/casing interaction in aircraft engines.

5 Analysis of a practical example

Note: in this section, numerical values are normalized. Stresses in section 5.6 are given as a
percentage of the elastic limit of the blade material.

5.1 Structural models and strategy

The compressor stage of interest is partially depicted in Fig. 1. Its total diameter is 500 mm and
it is constituted of 56 sectors. The bladed disk is perfectly balanced and tuned and gyroscopic
effects are neglected. The green circumferences in Fig. 1 show where zero-displacement bound-
ary conditions are prescribed. The bladed disk is supported by a perfectly rigid shaft, i.e. its
axis of rotation does not move. For illustration purposes, a single blade only is considered with
an associated 70,000 degree-of-freedom finite element model. The blade foot is clamped which
means that the disk dynamics are neglected in this example.

It was experimentally shown that the casing is structurally insensitive to the interaction
with the rotating blade which features much higher vibratory levels. Accordingly, the casing
is considered as a rigid body statically distorted to initiate contact and interaction. Structural
damping is introduced in the bladed disk through a modal damping ratio ξ = 0.005.

The casing internal radius is 501 mm. It is 150 mm wide in the axial direction with a 6 mm
thickness. It is clamped along its axial edges as pictured in Fig. 1. The mesh comprises 3D solid
elements for a total of 44,800 elements and 68,768 nodes.

The finite element model of the blade is not computationally efficient and a component
mode synthesis is required. Among all existing techniques, only a few offer direct access to
physical displacements in the reduced order space, in which contact constraints can be fully
treated, thus avoiding permanent backward and forward mappings to the physical space. The
Craig-Bampton [16] technique from the fixed interface component mode synthesis family, and
the Craig-Martinez [31] strategy, from the free interface component mode synthesis family are
two well-known methods that keep a few physical displacements within the reduced-order
space. While respective attractive features and shortcomings may be discussed, it has been
shown that the Craig-Martinez is well suited for rotor/stator interaction in a two-dimensional
framework [9]. However, when larger 3D models are involved, numerical stability becomes a
major concern and the Craig-Bampton method seems more robust and appropriate [8].

As a consequence, the following three assumptions are adopted:
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1. For the blade of interest, contact is anticipated on three nodes located in the leading edge,
middle of the chord, and trailing edge. This is a sensitive issue since it may strongly af-
fect the results. Simulations with an increasing number of nodes describing the contact
interface (1,3,8 and 15) showed that three nodes were a good compromise between compu-
tational efficiency and accuracy. A slave contact surface in the form of a spline connected
to the corresponding facing nodes is attached to the casing.

2. In the Craig-Bampton technique, the three spatial displacements of the nodes where con-
tact is anticipated are defined as interface dof, and all other displacements are internal
dof.

3. The contact matrix CNT in Eq. (8) is constructed by assuming that the direction of sliding
between the two structures is approximated by its circumferential component because of
the ratio between tangential and axial components of the relative velocity.

Moreover, each patch of the B-spline surface is affected by four nodes of the casing finite element
mesh. The choice is made to use three patches over the width of the casing (similarly to what is
depicted in Fig. 1) and a hundred patches along its circumference to reach a total of 400 nodes
supporting the B-spline surface.

5.2 Model reduction

Component mode synthesis procedures consist in subdividing a structure into non-overlapping
components called substructures for which the interface dof5 is preserved. Each substructure is
then represented by a set of specific structural shapes including vibration normal modes, rigid
body modes, static modes, and interface modes defining the change of variable used for the size
reduction of the original problem. The dynamics of the full system are accurately captured in
the low frequency spectrum, up to a precision controlled by the size of the truncated set.

5.2.1 Craig-Bampton procedure

Once the substructures are defined, the Craig-Bampton reduction basis of each substructure is
composed of a truncated set of component modes and a full set constraint modes [16]:

Component modes: they are normal modes of vibration of the structural component with all
interface dof constrained to feature zero-displacement. They are stored in matrix ΦL.

Constraintmodes: they are the sequential static responses of each component to a unit displace-
ment of interface dof i while all its interface counterparts are fixed. This set is denoted by
ΦR.

For each substructure (i), the original equations of motion are projected onto the new reduced-
order space such as the displacement vector u(i) becomes:

u(i) =Φ
(i)u

(i)
r

(

ub

ui

)(i)

=

[

I 0
ΦR ΦL

](i) (
ub

q

)(i) (27)

where the number of component modes (size of q) is substantially smaller than the number of
internal physical dof (size of ui).

In the present study, there is a single substructure, one blade, and the respective superscript
in Eq. (27) is now discarded for the sake of readability. The initial dynamic equation of the blade
in the physical space:

Mü+Du̇+Ku = F (28)

is transformed to:

Mrür +Dru̇r +Krur = Fr (29)

where Xr = t
ΦXΦ, X ≡M, D, K and Fr = t

ΦF.

5boundary or junction dof common to adjoined substructures
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5.2.2 Centrifugal stiffening

While dealing with relatively stiff and small blades, a linear approximation of centrifugal stiff-
ening may be accurate and the classical component mode synthesis techniques are convenient.
However, for longer blades, centrifugal effects induce highly nonlinear stiffening stresses as well
as significant variations in the geometry.

Consequently, centrifugal effects should be accounted for in the construction of the reduced-
order model. This is achieved by using the polynomial expansion of the stiffness matrix intro-
duced in [41] over a specific angular velocity range [0; Ωm] such as:

K(Ω ) =K0 +Ω2K1 +Ω4K2 (30)

where:

K0 =K(0)

K1 =
1

3Ω2
m

[

16K
(

Ωm

2

)

−K(Ωm)− 15K(0)
]

K2 =
3

4Ω4
m

[

K(Ωm)− 4K
(

Ωm

2

)

+3K(0)
]

(31)

Projection of matrix (30) through transformation (27) defined at rest is accurate for K(0) = K0

only. Since the computation of K1 and K2 demands the calculation of stiffness matrices atΩm/2
and Ωm, their projection in a reduced space requires the computation of component and con-
straint modes at Ωm/2 and Ωm as well. These three Craig-Bampton reduction bases defined at
Ω = 0, Ωm/2 and Ωm respectively are concatenated as follows:

Φ =

[

I I I 0 0 0

ΦR(0) ΦR

(

Ωm
2

)

ΦR(Ωm) ΦL(0) ΦL

(

Ωm
2

)

ΦL(Ωm)

]

(32)

Due to highly possible similarities in the static and component modeshapes calculated at Ω = 0,
Ωm/2 and Ωm, matrix (32) is prone to rank deficiencies and is first adjusted as follows:

Φ =

[

I 0 0 0 0 0

ΦR(0) ΦR

(

Ωm
2

)

−ΦR(0) ΦR(Ωm)−ΦR(0) ΦL(0) ΦL

(

Ωm
2

)

ΦL(Ωm)

]

(33)

This matrix is then orthonormalized through the Gram-Schmidt procedure by constructing a
new set of constraint modes Ψ such that the generalized Craig-Bampton transformation matrix
becomes:

Φ =

[

I 0
ΦR(0) Ψ

]

(34)

For each angular velocity, α component modes and n constraint modes are calculated yielding
a maximum6 of 3n + 3α columns in Φ, as reflected in Eq. (32). In the remainder, η denotes the
number of columns of Ψ and controls the size of the reduced-order model. The latter is thus
described with both physical degrees of freedom and modal coordinates similarly to the usual
Craig-Bampton reduction detailed in Eq. (27). The physical degrees of freedom are required for
the blade-tip contact treatment. The η modal coordinates correspond to an orthonormal basis
involving component and constraint modes obtained at different angular velocities as detailed
in Eq. (33). The Ω-dependent reduced-order model consistent with Ω ∈ [0;Ωm] is computed
accordingly:

K0
r =

t
ΦK0

Φ; K1
r =

t
ΦK1

Φ; K2
r =

t
ΦK2

Φ (35)

yielding the global reduced stiffness matrix:

Kr(Ω ) =K0
r +Ω2K1

r +Ω4K2
r (36)

6The Gram-Schmidt orthonormalization process may discard a few of them.
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and global reduced mass matrix7:

Mr =
t
ΦMΦ (37)

As a first approach, the geometry variation due to the centrifugal effects is not accounted for.
Only the centrifugal stiffening affecting the natural frequencies of the rotating bladed disk is
explicitly embedded in the proposed numerical tool.

The computation of the reduced-order model of the bladed disk requires a dedicated conver-
gence study. Component mode synthesis methods are restricted to a narrow frequency range of
interest. In the present study, this is limiting since contact events are frequency-wise wideband
phenomena. Nevertheless, in-depth analyses around the frequency of the first flexural mode
showed that asymptotic convergence is achieved for a suitable reduction parameter η. Consid-
ering the drastic gain in computational efficiency, the proposed strategy is fully justified.

5.3 Configuration of interest

initial profile

deformed casing

(a) case 1 (b) case 2 (c) case 3

Figure 13: Magnified distortion of the casing

Contact between the blade-tip and surrounding casing is initiated by pseudo-statically dis-
torting the latter on a chosen shape so that the initial clearance is absorbed.

Three different rigid profiles are investigated: (1) the casing is deformed along its first 2-
nodal diameter free vibration mode as depicted in Fig. 13(a), (2) the shape combines both the
first 2- and 5-nodal diameter free vibration modes as illustrated in Fig. 13(b), and (3) the de-
formation of the casing incorporates a contribution of five free vibration modes, displayed in
Fig. 13(c). These scenarios are motivated by experimental observations showing that thermal
gradient tend to distort the casing along a two-nodal diameter dominant shape.

For each configuration, 225 simulations are carried out over the operating range of the se-
lected blade fromΩ = 5 to Ω = 50. Every simulation covers twenty full revolutions of the rotor.

5.4 Time response and frequency-domain analysis

As mentioned above, a Lagrange multiplier-based method prevents possible residual penetra-
tions. Two quantities of interest may be exploited to examine the behavior of the proposed
numerical tool, namely, the distances separating the two components and the related contact
forces. Blade-tip/casing distances with respect to time of the three selected interface contact
nodes of the blade are depicted in Fig. 14(a) where it appears that residual penetrations cannot
be distinguished.

From the interacting motion shown in Fig. 14(a), it can be observed that only one interface
node comes into contact against the casing yielding the contact force displayed in Fig. 14(b)
and satisfying Signorini condition (3)1, positive as a convention. These results emanate from
the choice of the shape exerted on the casing along the axial direction which is constant in the
present study.

7Mr implicitly depends on Ωm through transformation matrixΦ.
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Figure 14: Blade-tip/casing contact simulation (case 1, Ω = 35)
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Figure 15: Radial displacement of the leading edge (case 1, Ω = 35)

For each rotational velocity Ω , the steady-state portion of time-domain displacements is
processed by the FFT for the detection of possible dangerous operating regimes involving large
vibratory amplitudes. As an example, the radial displacement of the leading edge node of the
blade is partially pictured in time domain in Fig. 15(a) and in frequency domain in Fig. 15(b).
Other results are pictured for the three selected configurations in Fig. 16, Fig. 17 and Fig. 18,
respectively, as three-dimensional frequency diagrams. For each velocity, the Fourier spectrum
is truncated to low frequencies around the first natural frequency of the blade. The constant
contribution in the spectrum is removed since it does not affect vibration-originated failures
and fatigue-related phenomena.

First of all, engine-order harmonics f = kfΩ are plotted for k = 1, . . . ,10. The intersections of
these harmonics with low natural frequencies f = fn of the blade classically define design critical
velocities for turbomachines as depicted in Campbell diagrams. These critical velocities are
based on linear considerations that should be generalized to nonlinear frameworks. Depending
on the nature of the nonlinearity involved, this may not be straightforward. Anyway, it is known
that unilateral contact conditions induce a mechanical stiffening of the contacting structures in
the form of slightly increased resonance frequencies [14]. This behavior is evidenced in Figs. 16,
17 and 18 where the resonance peaks are located just above the centrifugally stiffened natural
frequency of the blade that can be captured by the reduced-order model as shown by the Ω-
dependent red curve f = f1.

In Fig. 16, it is noteworthy to mention that significant vibratory amplitudes are detected for
peaks (roughly) satisfying the condition f = kfΩ for k even. As a matter of fact, since the casing
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Figure 16: Spectrum of the radial displacement of the the leading edge
node in configuration 1
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Figure 17: Spectrum of the radial displacement of the the leading edge
node in configuration 2

has a two-nodal diameter static modeshape, two contact areas per revolution are privileged then
yielding a synchronization of the blade response to an evenly distributed contact forcing. When
odd as well as even nodal-diameter shapes are involved in the distortion of the casing, such as
in Figs. 17 and. 18, resonance frequencies satisfy then f = kfΩ for any k.

Eventhough structural damping is not negligible, for both configurations (2) and (3) (respec-
tively depicted in Figs. 17 and 18) the system becomes mechanically unstable and divergence
is observed over a range of rotational velocities: these are displayed in light blue8. In configu-
ration (2), the system experiences a divergence for f1 ≃ 5fΩ (highlighted by point A in Fig. 17).
Similarly, a divergence is recognized in the third configuration for f1 ≃ 4fΩ (point B in Fig. 18).
Depending on the scenario of interaction, distinct critical velocities are predicted and nonlin-
ear superharmonic resonances involving lower critical rotational velocities of the blade may be
more problematic than previously expected.

8around fΩ = 4.8 in Fig. 17 and fΩ = 6.7 in Fig. 18
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Figure 18: Spectrum of the radial displacement of the the leading edge
node in configuration 3

5.5 Contact areas

It seems interesting to look at the areas where the blade impacts the casing since repeated con-
tact forces on confined areas of the casing can lead to a mechanical failure. Such areas for cases

0

10

20

0.79 7.9
rotation frequency fΩ

0

2π

an
gu

la
r
p
os
it
io
n

nu
m
be

r
of

im
p
ac
ts

(a) Case 1

0

10

20

0.79 7.9
rotation frequency fΩ

0

2π

an
gu

la
r
p
os
it
io
n

nu
m
be

r
of

im
p
ac
ts

(b) Case 3

Figure 19: Contact areas between the blade leading edge and the casing
over twenty revolutions

1 and 3 are pictured in Figs. 19(a) and 19(b), respectively. The evenly distributed contact areas
in Fig. 19(a) are consistent with the casing shape of Fig. 13(a) as well as with the frequency
domain-results pictured in Fig. 16. Sudden jumps in the number of impacted zones can be
observed versus the rotational velocity. These jumps are directly interrelated with the modal
signature of the blade. For fΩ ∈ [3.5; 7], the number of contact zones do not depend on the rota-
tional velocity even though the dimension of these areas is (almost) linearly-dependent on this
parameter. To the contrary, when the casing is not evenly distorted (see Fig. 13(c)), the pattern
of the contact zones is unclear as shown in Fig. 19(b) with the association of several different
harmonics and superharmonics as expected.

Accordingly, perfectly tuned casing profiles may lead to unfavorable high fatigue cycles
(and higher abradable wear levels which are not discussed in the present work) because of the
repeated contact events on localized areas over a wide range of rotational velocities.
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5.6 Stresses distribution

It is also possible to monitor strains and stresses within the blade during the interaction. The
identification of critical areas and the detection of structural integrity issues is a primary con-
cern for designers and the mechanical components lifespan. To this end, numerical simulations
carried out with a reduced-order model should be first transformed back into the original phys-
ical space using Eq. (27). Straightforward algebraic operations provide access to the correspond-
ing stress field at each time step. As an example, attention is brought to the blade displacement
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Figure 20: Displacement norm and σxx stress fields in one blade

and stress fields represented in Fig. 20 at times t = t1 and t = t2 in case 1 as depicted in Fig. 15(a).
Time t = t1 corresponds to the first contact of the blade and the casing while time t = t2 corre-
sponds to a low level of vibration over a significant period of time. One can notice in Fig. 20(a)
that the blade essentially bends in a direction opposite to the rotation of the blade, as expected,
motion that equally involves the contact interface nodes. This initial event induces displace-
ments higher on the trailing edge than the leading edge. After several contacts between the
blade and the casing, the blade deflects in a more complex fashion, as seen at time t = t2. In-
deed, the displacement and stress fields pictured in Fig. 20(b) illustrate that higher frequency
modes than the usual first flexural and torsional eigenmodes are involved.

The critical areas in terms of stress levels are located on both the trailing and the leading
edge predominantly around the blade root. This observation is consistent with several incident
reports or experimental studies [38, 25, 44].

6 Concluding remarks

A three-dimensional contact algorithm dedicated to the study of turbomachinery structural in-
teraction based on the forward increment Lagrange multiplier method with explicit time inte-
gration is detailed. Large sliding motions are addressed through a smoothing procedure based
on a bicubic B-spline description of the contact surface that avoids the facetization phenomenon
exhibited when classical linear finite elements are considered. In an industrial context, this tech-
nique advantageously allows for the use of a broader class of finite elements for the numerical
analysis of the problem of interest.

In order to show the accuracy of the developed numerical tool, a comparison on a purposely
designed benchmark configuration is conducted with an academic contact code implementing
an implicit time-stepping solution method of the bi-potential formulation, and with a finite
element commercial software package. It is shown that the results compare favorably and that
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the algorithm properly preserves the energy of the whole system. This in-house code is then
deployed for the analysis of a practical example dealing with an aircraft-engine rotating bladed-
disk possibly in contact with a surrounding stationary casing.

A reduced-order model is first built through the use of a component mode synthesis method
capable to handle centrifugal stiffening. Frequency domain diagrams of the vibratory levels
emphasize the existence of numerous critical velocities to which attention should be paid. By
incorporating sophisticated formulations for engineering-like usage, this numerical tool seems
suitable and promising for future investigations, in the optimization discipline for instance, in
order to design blades more robust to contact conditions. It also provides access to quantities of
interest such as strain and stress fields within the blade as well as contact areas distribution.

Acknowledgement

Thanks go to Snecma for its technical and financial support. This work takes place in the
framework of the MAIA mechanical research and technology program sponsored by CNRS,
ONERA and SAFRAN Group.

[1] N. El-Abbasi, S. A. Meguid, and A. Czekanski. “On the modelling of smooth contact
surfaces using cubic splines”. International Journal for Numerical Methods in Engineering
50.4 (2001), p. 953–967.
doi: 10.1002/(SICI)1097-0207(19990920)46:2<275::AID-NME675>3.0.CO;2-W.

[2] ANSYS, Inc. Theory Reference. Ansys release 10.0. Aug. 2005.

[3] F. Armero and E. Petöcz. “Formulation and analysis of conserving algorithms for
dynamic contact/impact problems”. Computer Methods in Applied Mechanics and
Engineering 158 (1998), p. 269–300.
doi: 10.1016/S0045-7825(97)00256-9.

[4] E. Arnoult. “Modélisation numérique et approche expérimentale du contact en
dynamique: application au contact aubes/carter de turboréacteur”. Ph.D. thesis. Nantes,
France: Université de Nantes, 2000.

[5] J. S. Arora, A. I. Chahande, and J. K. Paeng. “Multiplier methods for engineering
optimization”. International Journal for Numerical Methods in Engineering 32 (1991),
p. 1485–1525.
doi: 10.1002/nme.1620320706.

[6] L. Baillet, D. Clair, H. Walter, and M. Brunet. “A 3D contact algorithm for explicit
dynamic Finite Element codes applied to the ironing process”. Metal Forming 2000.
NUMISHEET. Krakov, Poland, 2000, p. 141–147.

[7] B. A. Barsky. “End conditions and boundary conditions for uniform B-spline curve and
surface representations”. Computers in Industry 3.1-2 (1982), p. 17–29. issn: 0166-3615.
doi: 10.1016/0166-3615(82)90028-8.

[8] A. Batailly. “Simulation de l’interaction rotor/stator pour des turbomachines
aéronautiques en configuration non-accidentelle”. Ph.D. thesis. Nantes, France: École
Centrale de Nantes, 2008.
oai: tel.archives-ouvertes.fr:tel-00364945.

[9] A. Batailly, M. Legrand, P. Cartraud, and C. Pierre. “Assessment of reduced models for
the detection of modal interaction through rotor stator contacts”. Journal of Sound and
Vibration 329 (2010), p. 5546–5562.
doi: 10.1016/j.jsv.2010.07.018.

[10] Y. Bazilevs et al. “Isogeometric analysis using T-splines”. Comput. Methods Appl. Mech.
Engrg. 199 (2010), p. 229–263.
doi: 10.1016/j.cma.2009.02.036.

[11] C. de Boor. B(asic)-Spline Basics in Fundamental Developments of Computer-Aided
Geometric Modeling. Washington D.C.: (Piegl L., ed.) Academic Press, 1993, p. 27–49.

25

http://dx.doi.org/10.1002/(SICI)1097-0207(19990920)46:2<275::AID-NME675>3.0.CO;2-W
http://dx.doi.org/10.1016/S0045-7825(97)00256-9
http://dx.doi.org/10.1002/nme.1620320706
http://dx.doi.org/10.1016/0166-3615(82)90028-8
http://tel.archives-ouvertes.fr/tel-00364945
http://dx.doi.org/10.1016/j.jsv.2010.07.018
http://dx.doi.org/10.1016/j.cma.2009.02.036


[12] N. Carpenter, R. Taylor, and M. Katona. “Lagrange constraints for transcient finite
element surface contact”. International Journal for Numerical Methods in Engineering 32
(1991), p. 103–128.
doi: 10.1002/nme.1620320107.

[13] D. Chamoret, P. Saillard, A. Rassineux, and J.-M. Bergheau. “New smoothing procedures
in contact mechanics”. Journal of Computational and Applied Mathematics 168.1–2 (2004),
p. 107–116.
doi: 10.1016/j.cam.2003.06.007.

[14] F. Chu and W. Lu. “Stiffening effect of the rotor during the rotor-to-stator rub in a
rotating machine”. Journal of Sound and Vibration 308 (2007), p. 758–766.
doi: 10.1016/j.jsv.2007.03.059.

[15] P. G. Ciarlet. The finite element method for elliptic problems. North-Holland, 1978.

[16] R.R. Craig and M.C.C Bampton. “Coupling of substructures for dynamic analyses”.
AIAA Journal 6.7 (1968), p. 1313–1319.

[17] A.F. Emery, J. Wolak, S. Etemad, and S.R. Choi. “An Experimental Investigation of
Temperatures due to Rubbing at the Blade-Seal Interface in an Aircraft Compressor”.
Wear 91 (1983), p. 117–130.
doi: 10.1016/0043-1648(83)90248-X.

[18] Z. Q. Feng, P. Joli, M. Cros, and B. Magnain. “The bi-potential method applied for the
modeling of dynamic problems with friction”. Computational Mechanics 36 (2005),
p. 375–383.
doi: 10.1007/s00466-005-0663-8.

[19] M. Géradin and D. Rixen. Mechanical Vibrations. Wiley, 1997.

[20] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. “Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement”. Comput. Methods Appl. Mech. Engrg. 194
(2005), p. 4135–4195.
doi: 10.1016/j.cma.2004.10.008.

[21] T. J. R. Hughes, R. L. Taylor, J. L. Sackman, A. Curnier, and W. Kanoknukulchai. “A finite
element method for a class of contact-impact problems”. Computer Methods in Applied
Mechanics and Engineering 8 (1976), p. 149–276.
doi: 10.1016/0045-7825(76)90018-9.

[22] T. J. R. Hugues. “Stability, convergence and growth and decay of energy of the average
acceleration method in nonlinear structural dynamics”. Computers & Structures 6 (1976),
p. 313–324.
doi: 10.1016/0045-7949(76)90007-9.

[23] M. L. Kaplan and J. H. Heegaard. “Energy-conserving impact algorithm for the
heel-strike phase of gait”. Journal of Biomechanics 33 (2000), p. 771–775.

[24] N. Kikuchi. “Penalty/finite element approximations of a class of unilateral contact
problems”. Penalty Method and Finite Element Method (1982). ASME: New York.

[25] H. Kim. “Crack evaluation of the fourth stage blade in a low-pressure steam turbine”.
Engineering Failure Analysis 18 (3 2011), p. 907–913.
doi: 10.1016/j.engfailanal.2010.11.004.

[26] S. K. Lahiri, J. Bonet, and J. Peraire. “A variationally consistent mesh adaptation method
for explicit Lagrangian dynamics”. Int. J. Numer. Meth. Engng 82 (2007), p. 1073–1113.
doi: 10.1002/nme.2784.

[27] T.A. Laursen. Computational contact and impact mechanics. Springer, 2002.

[28] M. Legrand, C. Pierre, P. Cartraud, and J. P. Lombard. “Two-dimensional modeling of an
aircraft engine structural bladed disk-casing modal interaction”. Journal of Sound and
Vibration 319.1-2 (2009), p. 366–391.
doi: 10.1016/j.jsv.2008.06.019.
oai: hal.archives-ouvertes.fr:hal-00328186.

26

http://dx.doi.org/10.1002/nme.1620320107
http://dx.doi.org/10.1016/j.cam.2003.06.007
http://dx.doi.org/10.1016/j.jsv.2007.03.059
http://dx.doi.org/10.1016/0043-1648(83)90248-X
http://dx.doi.org/10.1007/s00466-005-0663-8
http://dx.doi.org/10.1016/j.cma.2004.10.008
http://dx.doi.org/10.1016/0045-7825(76)90018-9
http://dx.doi.org/10.1016/0045-7949(76)90007-9
http://dx.doi.org/10.1016/j.engfailanal.2010.11.004
http://dx.doi.org/10.1002/nme.2784
http://dx.doi.org/10.1016/j.jsv.2008.06.019
http://hal.archives-ouvertes.fr/hal-00328186


[29] W. N. Liu, G. Meschke, and H. A. Mang. “Algorithmic stabilization of FE analyses of 2D
frictional contact problems with large slip”. Computer Methods in Applied Mechanics and
Engineering 192.16-18 (2003), p. 2099–2124.
doi: 10.1016/S0045-7825(03)00252-4.

[30] B. Magnain. “Développement d’algorithmes et d’un code de calcul pour l’étude des
problèmes de l’impact et du choc”. Ph.D. thesis. Évry, France: Université d’Évry-Val
d’Essonne, 2006.
oai: tel.archives-ouvertes.fr:tel-00369905.

[31] D. R. Martinez, T. G. Carne, D. L. Gregory, and A. K. Miller. “Combined
experimental/analytical modeling using component mode synthesis”. 25th Structures,
Structural Dynamics and Material Conference. AIAA/ASME/ASCE/AHS. 1984,
p. 140–152.

[32] J.J. Muñoz. “Modelling unilateral frictionless contact using the null-space method and
cubic B-Spline interpolation”. Computer Methods in Applied Mechanics and Engineering
197.9-12 (2008), p. 979–993. issn: 0045-7825.
doi: 10.1016/j.cma.2007.09.022.

[33] L. Noels, L. Stainier, and J. P. Ponthot. “Simulation of crashworthiness problems with
improved contact algorithms for implicit time integration”. International Journal of
Impact Engineering 21 (2006), p. 799–825.
doi: 10.1016/j.ijimpeng.2005.04.010.

[34] M. Ortiz. “A note on energy conservation and stability of nonlinear time-stepping
algorithms”. Computers & Structures 24 (1986), p. 167–168.
doi: 10.1016/0045-7949(86)90346-9.

[35] V. Padmanabhan and T. A. Laursen. “A framework for development of surface
smoothing procedures in large deformation frictional contact analysis”. Finite Elements
in Analysis and Design 37 (2001), p. 173–198.
doi: 10.1016/S0168-874X(00)00029-9.

[36] C. Padova, J. Barton, M.G. Dunn, and S. Manwaring. “Experimental Results From
Controlled Blade Tip/Shroud Rubs at Engine Speed”. Journal of Turbomachinery 129
(2007), p. 713–723.
doi: 10.1115/1.2720869.

[37] M. Park, Y.H. Hwang, Y.S. Choi, and T.G. Kim. “Analysis of a J69-T-25 engine turbine
blade fracture”. Engineering Failure Analysis 9 (2002), p. 593–601.
doi: 10.1016/S1350-6307(02)00003-1.

[38] E. Poursaeidi and M. Salavatian. “Fatigue crack growth simulation in a generator fan
blade”. Engineering Failure Analysis 16 (2009), p. 888–898.
doi: 10.1016/j.engfailanal.2008.08.016.

[39] J. C. Simo and T. A. Laursen. “An augmented lagrangian treatment of contact problems
involving friction”. Computers & Structures 42.1 (1992), p. 97–116.
doi: 10.1016/0045-7949(92)90540-G.

[40] J. C. Simo, N. Tarnow, and K. K. Wong. “Exact energy-momentum conserving algorithms
and sympletic schemes for nonlinear dynamics”. Computer Methods in Applied Mechanics
and Engineering 100 (1992), p. 63–116.
doi: 10.1016/0045-7825(92)90115-Z.

[41] A. Sternchüss and E. Balmès. “On the reduction of quasi-cyclic disks with variable
rotation speeds”. Proceedings of the International Conference on Advanced Acoustics and
Vibration Engineering (ISMA) (2006), p. 3925–3939.

[42] I. Temizer, P. Wriggers, and T.J.R. Hughes. “Contact treatment in isogeometric analysis
with NURBS”. Comput. Methods Appl. Mech. Engrg. 200 (2011), p. 1100–1112.
doi: 10.1016/j.cma.2010.11.020.

27

http://dx.doi.org/10.1016/S0045-7825(03)00252-4
http://tel.archives-ouvertes.fr/tel-00369905
http://dx.doi.org/10.1016/j.cma.2007.09.022
http://dx.doi.org/10.1016/j.ijimpeng.2005.04.010
http://dx.doi.org/10.1016/0045-7949(86)90346-9
http://dx.doi.org/10.1016/S0168-874X(00)00029-9
http://dx.doi.org/10.1115/1.2720869
http://dx.doi.org/10.1016/S1350-6307(02)00003-1
http://dx.doi.org/10.1016/j.engfailanal.2008.08.016
http://dx.doi.org/10.1016/0045-7949(92)90540-G
http://dx.doi.org/10.1016/0045-7825(92)90115-Z
http://dx.doi.org/10.1016/j.cma.2010.11.020


[43] D. Vola, E. Pratt, M. Raous, and M. Jean. “Consistent time discretization for a dynamical
contact problem and complementarity techniques”. Revue Européenne des Éléments Finis
7 (1998), p. 149–162.

[44] L. Witek, M. Wierzbińska, and A. Poznańska. “Fracture analysis of compressor blade of a
helicopter engine”. Engineering Failure Analysis 16 (2009), p. 1616–1622.
doi: 10.1016/j.engfailanal.2008.10.022.

[45] P. Wriggers, L. Krstulovic-Opara, and J. Korelc. “Smooth C1-interpolations for
two-dimensional frictional contact problems”. International Journal for Numerical
Methods in Engineering 51.12 (2001), p. 1469–1495.
doi: 10.1002/nme.227.

[46] J. P. Wright. “Analysis of an energy-conserving time integration algorithm”. Computers &
Structures 31 (1989), p. 531–533.
doi: 10.1016/0045-7949(89)90329-5.

28

http://dx.doi.org/10.1016/j.engfailanal.2008.10.022
http://dx.doi.org/10.1002/nme.227
http://dx.doi.org/10.1016/0045-7949(89)90329-5

	Introduction
	Contact dynamics
	General theory
	Solution algorithm for interaction

	Smoothing procedure
	B-spline curves
	Uniform B-spline curve
	Interpolation
	End Conditions

	Bicubic uniform B-spline surfaces
	Construction
	Interpolation


	General algorithm validation
	Benchmark configuration
	Displacements and contact forces
	Sensitivity to friction
	=0
	=0.15

	Sensitivity to relative tangential velocity
	Comparison to Ansys
	Energy conservation

	Analysis of a practical example
	Structural models and strategy
	Model reduction
	Craig-Bampton procedure
	Centrifugal stiffening

	Configuration of interest
	Time response and frequency-domain analysis
	Contact areas
	Stresses distribution

	Concluding remarks

