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Abstract

Statman’s finite completeness theorem says that for every pair of non-equivalent
terms of simply-typed lamda-calculus there is a model that separates them. A
direct method of constructing this model is provided using a simple induction
on the Böhm tree of the term.

Keywords: Simply typed lambda calculus, formal semantics, theory of
computation

1. Introduction

Statman’s finite completeness theorem [5, 6] shows that standard models
are strong enough to separate terms, upto βη reductions. It states that given a
simply typed lambda term M , there exists a finite standard model [1] such that
for every term N that is not βη-equivalent to M there is a variable assignement
separating the two terms: making their values in the model different. At the
time of publication of this work, a crucial corollary of this theorem, again proved
in [5, 6], was that the λ-definability conjecture implies the higher order matching
conjecture [5, 6, 7]. However, λ-definability was shown to be undecidable later
by Loader in [2].

The first proof of this theorem appeared in [5]. It was explained in more
detail in [6] since the previous proof was considered “not accessible to readers
not familiar with this subject” [6]. The proof proceeds by definining a suitable
syntactic equivalence over the lambda terms. The required model is then the
set of lambda terms quotient with respect to this equivalence.

Salvati in [4] proves that singleton sets, that is sets of the form {N |N =βη M}
can be characterized by suitable intersection types. In another paper [3], Salvati
gives a notion of recognizability of languages of lambda terms based on these
intersection types. Additionally, another definition of recognizability is also
provided using finite standard models in the same work, and it is shown to be
equivalent to the recognizability in terms of intersection types. This provides
an alternate proof to Statman’s finite completeness theorem.

In this paper, we give yet another proof of this theorem. Our proof carries
a semantic flavour, constructing the required model for a term M step-by-step,
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by performing an induction on the Böhm tree of the η-long β normal form of
M . The Böhm trees are the only syntactic tools used. This proof is very direct,
especially in comparison to the existing proofs mentioned above. The proof
also gives a slightly stronger result: for every term M there is a model and a
valuation such that if N evaluates to the same value as M then M =βη N .

In Section 2, we give the necessary preliminaries. In Section 3, we define the
notion of an extended model, and explain the relation between the elements of
the initial model and the extended model. Section 4 contains our proof of the
finite completeness theorem.

2. Simply typed λ-calculus

The set of types T is constructed from a unique basic type 0 using a binary
operator →. Thus 0 is the unique basic type, and if α, β are types, then
α → β is also a type. The order of a type is defined by: order(0) = 1, and
order(α→ β) = max(1 + order(α), order(β)).

The set of simply typed λ terms is defined inductively as follows. For each
type α, there is a countable set of variables xα, yα, . . . which are also terms of
type α. If M is a term of type β and x is a variable of type α, then λxα.M is
a term of type α→ β. Such a term is called a λ-abstraction. If M is a term of
type α→ β and N is a term of type α then MN is a term of type β. Terms of
this kind are called applications.

A standard finite model D is a family of finite sets (Dα)α∈T indexed by the
set of types. D is determined by D0 which is a finite set of elements of type 0.
For types α,β, the set Dα→β is the set of functions from Dα to Dβ .

A variable assignment is a function assigning to every variable xα an element
of Dα. If d is an element of Dα and xα is a variable of type α, v[d/xα] denotes
the variable assignment which assigns d to xα and is identical to v otherwise.

The interpretation of a simply typed λ-term M in the model D and variable
assignment v is defined inductively:

• [[xα]]
v
D = v(xα)

• [[MN ]]
v
D = [[M ]]

v
D[[N ]]

v
D

• [[λxα.M ]]
v
D is a function mapping d ∈ Dα to [[M ]]

v[d/xα]
D

We recall the two types of reduction over simply typed λ terms.

β-reduction (λx.M)N →β M [N/x]

η-reduction (λx.Mx)→η M , provided x is not free in M .

A lambda term in long normal form is of the shape λ~x.zM1 . . .Mk where
M1, . . . ,Mk are in long normal form, z is a variable, the term zM1 . . .Mk is of
type 0 and the sequence λ~x might be empty.

For a lambda term M in long normal form, its Böhm tree, BT (M) is defined
inductively as follows. If M = λ~x.zM1 . . .Mk, with z being a variable, then the
root of BT (M) is labeled λ~x.z and it has BT (M1) to BT (Mk) as its children.
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M is said to be uniquely determined in a model D with a variable assignment
v if for all lambda terms N , [[N ]]

v
D = [[M ]]

v
D iff N =βη M .

In the following sections, we prove Statman’s finite completeness theorem in
a slighlty stronger form:

Theorem 1 For every λ-term M , there exists a finite model D and a variable
assignment v such that M is uniquely determined in D and v.

To prove this theorem, we consider a lambda term in long normal form.
We construct a model in which all its subterms are uniquely determined. An
additional element is added and the interpretations then altered to make the
lambda term interpret uniquely to this newly added element.

3. Extended model

Consider a lambda term M of type 0. Let D be a standard finite model
and v a variable assignment, so that [[M ]]

v
D = e, with e ∈ D0. In general, there

exist many lambda terms that interpret to e. Our objective is to add a new
element to D0 and make M interpret to this new element. In addition, the other
lambda terms of type 0 should interpret as before. This would ensure that M
interprets uniquely to this new element. Intuitively, the other lambda terms
should not “notice” a difference between e and this new element. We call this
new element eclone. Given a model D = (Dα)α∈T and an element e ∈ D0, the
extended model De = (De

α)α∈T is the model determined by De
0 = D0 ]{eclone}.

As a consequence of adding this extra element, many new higher order functions
are generated. Hence we force the λ-terms to interpret to those functions that
behave identically on eclone and on e. In the subsequent sections, we study this
new extended model and furnish a variable assignment so that M gets uniquely
interpreted to eclone.

3.1. Relating the models

Consider the function f ∈ D0→0 shown in Figure 1. The same figure shows
some functions in the extended model De. The function f ′1 acts the same way as
f on all the common elements. However, f ′1(eclone) is not equal to f ′1(e) which
is undesirable. Hence we would like to ignore such a function. The function f ′2
on the other hand acts the same way as f on all the common elements and in
addition f ′2(eclone) is equal to f ′2(e). We consider f ′2 as the representative of f
in De. An interesting case is given by f ′3 that instead of mapping the element
to e maps it to eclone. By the intuition that eclone is equivalent to e, we wish to
say that f ′3 is equivalent to f ′2.

We define two notions to relate the elements of the extended model De to
elements of the original model D:

• an injection function inαα→ De
α that for every element f ∈ Dα gives its

representative f ′ ∈ De
α,
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Figure 1: Higher order functions in the extended model De

• an equivalence relation ↔α over De
α that groups e and eclone at type 0

and propagates this basic equivalence to higher order functions.

In general, we would like to visualize each set De
α as shown in Figure 2.

Before formally defining these notions we designate a null element for every
type.

Definition 2 The null element ∆0 is any arbitrary element of De
0 different from

eclone. For a type α→ β, element ∆α→β is the constant function mapping every
element to ∆β .

The definitions of inα and ↔α are mutually dependent. For an element
d′ in De

α, let [d′] denote the equivalence class of d′ with respect to ↔α. For
a higher order type α → β and for a function f ∈ Dα→β , inα→β(f) maps
every element d′ in [inα(d)] to inβ(f(d)). We say that a function f ′ ∈ De

α→β

simulates a function f ∈ Dα→β , written as sim(f ′, f) if f ′ maps every element in
an equivalence class [inα(d)] to an element in the equivalence class [inβ(f(d))].
These notions are pictorially represented in Figure 3. The equivalence relation
↔α→β groups functions of De that simulate the same function of D. The formal
definitions follow.

Definition 3 inα, simα, ↔α
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Figure 2: Visualizing a set in the extended model

• in0, sim0, ↔0

– in0 : D0 → De
0 is the identity.

– sim0(d, d) for every element d ∈ D0.

– ↔0 is the smallest equivalence containing e↔0 eclone.

• inα→β

For an element f ∈ Dα→β , inα→β(f) is a function f ′ ∈ De
α→β such that

for all elements d′ ∈ De
α,

f ′(d′) =

{
inβ(f(d)) if d′ ∈ [inα(d)]

∆β otherwise

• simα→β

For f ∈ Dα→β , f ′ ∈ De
α→β , we say f ′ simulates f , written as sim(f ′, f),

if for all d ∈ Dα, for all d′ ∈ [inα(d)]: f ′(d′)↔β inβ(f(d)).

• ↔α→β

For f ′, g′ ∈ De
α→β , f ′ ↔α→β g

′ if for all h ∈ Dα→β , sim(f ′, h)⇔ sim(g′, h).

Remark 4 Subsequently, we drop the type subscript in inα, simα and↔α since
it is the same as the type of the elements associated.

Lemma 5 For every d ∈ D, in(d) simulates d.

Proof
The lemma is direct for type 0. For a higher order function f ∈ Dα→β , it follows
from the definitions. �

Lemma 6 For d, d1, d2 ∈ Dα and d′ ∈ De
α,

1. sim(d′, d1) and sim(d′, d2) implies d1 = d2,
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Figure 3: f , inα→β(f), sim(f ′, f)

2. sim(d′, d)⇔ d′ ↔ in(d),

3. d1 6= d2 ⇒ in(d1) = in(d1).

Proof
The proof proceeds by induction on the types. The lemma is clear for type 0.
We prove the lemma for a higher order type α→ β. Consider f, f1, f2 ∈ Dα→β

and f ′ ∈ De
α→β .

1. Suppose sim(f ′, f1) and sim(f ′, f2). Take d ∈ Dα and d′ ∈ [in(d)]. By
definition of sim, f ′(d′) ↔ in(f1(d)) and f ′(d′) ↔ in(f2(d)). Hence
in(f1(d)) ↔ in(f2(d)) and by 3), f1(d) = f2(d). Since d is arbitrary,
f1 = f2.

2. Suppose sim(f ′, f). By 1) if sim(f ′, h) then h = f . Since from Lemma 5,
sim(in(f), f), the same holds for in(f). Therefore, for all h, sim(f ′, h)⇔
sim(in(f), h) and hence by definition of ↔, f ′ ↔ in(f).
Suppose f ′ ↔ in(f). By Lemma 5, sim(in(f), f) and by definition of
sim, sim(f ′, f).

3. Suppose f1 6= f2. From Lemma 5, sim(in(f1), f1). Hence by 1), not
sim(in(f1), f2). But since sim(in(f2), f2), we get in(f1) = in(f2).

�

3.2. Interpreting the lambda terms in the extended model

To interpret the lambda terms in De, we need to define the variable as-
signment ve that interprets the variables. We intend to pick one from a set of
variable assignments that simulate v.
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Definition 7 A variable assignment v′ on De simulates a variable assignment
v on D if for all variables x: sim(v′(x), v(x)).

Lemma 8 If v′ simulates v then for every lambda term M :

sim(JMKv
′

De , JMKvD)

Proof
We proceed by induction on the structure of the lambda term.

1. For variables, the lemma follows from the hypothesis.

2. Consider an application MN , with M of type α → β and N of type

α. By induction, sim([[N ]]
v′

De , [[N ]]
v
D) and hence from 2) of Lemma 6,

[[N ]]
v′

De ↔ in([[N ]]
v
D). Also by induction, sim([[M ]]

v′

De , [[M ]]
v
D) and hence

from definition, [[M ]]
v′

De([[N ]]
v′

De) ↔ in([[M ]]
v
D([[N ]]

v
D)). Therefore by 2) of

Lemma 6, sim([[MN ]]
v′

De , [[MN ]]
v
D).

3. Consider a lambda abstraction λxα.M . Take d ∈ Dα and d′ ∈ [in(d)].
Since sim(v′, v), we have sim(v′[d′/xα], v[d/xα]) and hence by induc-

tion sim([[M ]]
v′[d′/xα]
De , [[M ]]

v[d/xα]
D ). From 2) of Lemma 6, [[M ]]

v′[d′/xα]
De ↔

[[M ]]
v[d/xα]
D . This is true for all d ∈ Dα. Hence, by definition sim([[λxα.M ]]

v′

De ,
[[λxα.M ]]

v
D).

�

Corollary 9 If v′ simulates v, then every term uniquely determined in (D, v)
is uniquely determined in (De, v′).

Proof
Let M be uniquely determined in (D, v) but not in (De, v′). Therefore, there

exists N 6=βη M such that [[N ]]
v′

De = [[M ]]
v′

De . From Lemma 8, this would mean

that sim([[M ]]
v′

De , [[M ]]
v
D) and sim([[M ]]

v′

De , [[N ]]
v
D). Hence by 1) of Lemma 6,

[[M ]]
v
D = [[N ]]

v
D. A contradiction. �

4. Proof of the theorem

The proof proceeds by an induction on the size of the Böhm tree BT (M)
of the lambda term M . Let BT (M) contain m nodes. Consider an ordering
s1 < · · · < sm of the nodes of BT (M) that satisfies the condition that if a node
si is a child of sj , then si < sj . Assume that Dk is a model and vk a variable
assignment such that all the lambda terms rooted in the nodes si with i ≤ k are
uniquely determined in (Dk, vk). We then construct (Dk+1, vk+1) where all the
lambda terms rooted in the nodes si with i ≤ k + 1 are uniquely determined.
Consequently M gets uniquely determined in (Dm, vm).
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Base case

The base case refers to (D1, v1) which uniquely determines a leaf of BT (M).
A leaf is variable z of type 0. Starting with the trivial model D0 which has a
singleton {⊥} in its basic set and the trivial variable assignment v0, we construct
the extended model De0 by adding a new element ⊥clone to the atomic set. The
new variable assignment ve0 assigns z to ⊥clone and the rest of the variables are
maintained with the same interpretation. Clearly, z is uniquely determined in
(De0, ve0). Set D1 as De0 and v1 as ve0.

Induction case

Let the lambda term rooted at sk be λ~x.yM1 . . .Mn and let [[yM1 . . .Mn]]
vk
Dk =

e. For notational simplicity let D = Dk and v = vk. By induction hypothesis,
M1, . . . ,Mn are uniquely determined in (D, v).

Construct the extended model De by adding an element eclone to the basic
set D0 of D. Consider the variable assignment ve defined below.

• ve(x) = in(v(x)), if x 6= y.

• For the variable y,

ve(y)(d′1, . . . , d
′
n) =


eclone if d′i ∈ [in(JMiKvD)],

for i ∈ {1, . . . , n}
in(v(y))(d′1, . . . , d

′
n) otherwise

Since eclone ↔ e, ve simulates v. Hence we infer the following.

1. From Lemma 8, for every lambda term N , [[N ]]
ve

De simulates [[N ]]
v
D, and

hence from Lemma 6
[[N ]]

ve

De ↔ in([[N ]]
v
D)

2. [[yM1 . . .Mn]]
ve

De = eclone.

We now prove that [[yM1 . . .Mn]]
ve

De is uniquely interpreted to eclone. Let

zN1 . . . Np be a lambda term such that [[zN1 . . . Np]]
ve

De = eclone. If z 6= y,
then ve(z) = in(v(z)). However, observe that there does not exist an element
d ∈ D0 such that in(d) = eclone. Also, note that ∆0 6= eclone. Hence by defini-
tion, in(v(z))(d′1, . . . , d

′
p) cannot be equal to eclone for any values of d′1, . . . , d

′
p

implying z = y.

Since z = y, p equals n. We show that Ni = Mi for all i. Now, if [[Ni]]
ve

De /∈
[in([[Mi]]

v
D)] for some i, by the same reasoning as above, [[zN1 . . . Np]]

ve

De cannot

be equal to eclone. Therefore, [[Ni]]
ve

De ↔ [[Mi]]
v
D for all i. In addition, from

Lemma 8, we know that [[Ni]]
ve

De ↔ [[Ni]]
v
D too. Hence from the third part of

Lemma 6, [[Ni]]
v
D = [[Mi]]

v
D. From the assumption that each Mi is uniquely

determined in (D, v), one can deduce that Ni = Mi for i ∈ {1, . . . , n}. We
hence infer that yM1 . . .Mk is uniquely determined in (De, ve).
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Note that this implies λ~x.yM1 . . .Mk is uniquely determined too in (De, ve)
since, for another lambda term λ~x.N , if [[λ~x.N ]]

ve

De = [[λ~x.yM1 . . .Mk]]
ve

De , then
N with ~x substituted by values from ve and yM1 . . .Mk with ~x substituted by
values from ve interpret to the same element of De, contradicting the fact that
yM1 . . .Mk is uniquely determined with the variable assignment ve.

Set Dk+1 = De and vk+1 = ve. Therefore, from the above argument and
from Corollary 9, the lambda terms rooted at nodes si with i ≤ k + 1 are
uniquely determined in (Dk+1, vk+1), thus proving the inductive step.
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