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Statman's finite completeness theorem says that for every pair of non-equivalent terms of simply-typed lamda-calculus there is a model that separates them. A direct method of constructing this model is provided using a simple induction on the Böhm tree of the term.

Introduction

Statman's finite completeness theorem [START_REF] Statman | Completeness, invariance and λ-definability[END_REF][START_REF] Statman | On Statman's Finite Completeness Theorem[END_REF] shows that standard models are strong enough to separate terms, upto βη reductions. It states that given a simply typed lambda term M , there exists a finite standard model [START_REF] Henkin | Completeness in the theory of types[END_REF] such that for every term N that is not βη-equivalent to M there is a variable assignement separating the two terms: making their values in the model different. At the time of publication of this work, a crucial corollary of this theorem, again proved in [START_REF] Statman | Completeness, invariance and λ-definability[END_REF][START_REF] Statman | On Statman's Finite Completeness Theorem[END_REF], was that the λ-definability conjecture implies the higher order matching conjecture [START_REF] Statman | Completeness, invariance and λ-definability[END_REF][START_REF] Statman | On Statman's Finite Completeness Theorem[END_REF][START_REF] Da | The clausal theory of types[END_REF]. However, λ-definability was shown to be undecidable later by Loader in [START_REF] Loader | The undecidability of-definability. Logic, meaning, and computation: essays in memory of Alonzo Church[END_REF].

The first proof of this theorem appeared in [START_REF] Statman | Completeness, invariance and λ-definability[END_REF]. It was explained in more detail in [START_REF] Statman | On Statman's Finite Completeness Theorem[END_REF] since the previous proof was considered "not accessible to readers not familiar with this subject" [START_REF] Statman | On Statman's Finite Completeness Theorem[END_REF]. The proof proceeds by definining a suitable syntactic equivalence over the lambda terms. The required model is then the set of lambda terms quotient with respect to this equivalence.

Salvati in [START_REF] Salvati | On the membership problem for non-linear Abstract Categorial Grammars[END_REF] proves that singleton sets, that is sets of the form {N |N = βη M } can be characterized by suitable intersection types. In another paper [START_REF] Salvati | Recognizability in the simply typed lambda-calculus[END_REF], Salvati gives a notion of recognizability of languages of lambda terms based on these intersection types. Additionally, another definition of recognizability is also provided using finite standard models in the same work, and it is shown to be equivalent to the recognizability in terms of intersection types. This provides an alternate proof to Statman's finite completeness theorem.

In this paper, we give yet another proof of this theorem. Our proof carries a semantic flavour, constructing the required model for a term M step-by-step, by performing an induction on the Böhm tree of the η-long β normal form of M . The Böhm trees are the only syntactic tools used. This proof is very direct, especially in comparison to the existing proofs mentioned above. The proof also gives a slightly stronger result: for every term M there is a model and a valuation such that if N evaluates to the same value as M then M = βη N .

In Section 2, we give the necessary preliminaries. In Section 3, we define the notion of an extended model, and explain the relation between the elements of the initial model and the extended model. Section 4 contains our proof of the finite completeness theorem.

Simply typed λ-calculus

The set of types T is constructed from a unique basic type 0 using a binary operator →. Thus 0 is the unique basic type, and if α, β are types, then α → β is also a type. The order of a type is defined by: order(0) = 1, and order(α → β) = max(1 + order(α), order(β)).

The set of simply typed λ terms is defined inductively as follows. For each type α, there is a countable set of variables x α , y α , . . . which are also terms of type α. If M is a term of type β and x is a variable of type α, then λx α .M is a term of type α → β. Such a term is called a λ-abstraction. If M is a term of type α → β and N is a term of type α then M N is a term of type β. Terms of this kind are called applications.

A standard finite model D is a family of finite sets (D α ) α∈T indexed by the set of types. D is determined by D 0 which is a finite set of elements of type 0. For types α,β, the set D α→β is the set of functions from D α to D β .

A variable assignment is a function assigning to every variable x α an element of D α . If d is an element of D α and x α is a variable of type α, v[d/x α ] denotes the variable assignment which assigns d to x α and is identical to v otherwise.

The interpretation of a simply typed λ-term M in the model D and variable assignment v is defined inductively:

• [[x α ]] v D = v(x α ) • [[M N ]] v D = [[M ]] v D [[N ]] v D • [[λx α .M ]] v D is a function mapping d ∈ D α to [[M ]] v[d/x α ] D
We recall the two types of reduction over simply typed λ terms.

β-reduction (λx.M )N → β M [N/x] η-reduction (λx.M x) → η M , provided x is not free in M .
A lambda term in long normal form is of the shape λ x.zM 1 . . . M k where M 1 , . . . , M k are in long normal form, z is a variable, the term zM 1 . . . M k is of type 0 and the sequence λ x might be empty.

For a lambda term M in long normal form, its Böhm tree, BT (M ) is defined inductively as follows. If M = λ x.zM 1 . . . M k , with z being a variable, then the root of BT (M ) is labeled λ x.z and it has BT (M 1 ) to BT (M k ) as its children.

M is said to be uniquely determined in a model D with a variable assignment v if for all lambda terms N ,

[[N ]] v D = [[M ]] v D iff N = βη M .
In the following sections, we prove Statman's finite completeness theorem in a slighlty stronger form:

Theorem 1 For every λ-term M , there exists a finite model D and a variable assignment v such that M is uniquely determined in D and v.

To prove this theorem, we consider a lambda term in long normal form. We construct a model in which all its subterms are uniquely determined. An additional element is added and the interpretations then altered to make the lambda term interpret uniquely to this newly added element.

Extended model

Consider a lambda term M of type 0. Let D be a standard finite model and v a variable assignment, so that [[M ]] v D = e, with e ∈ D 0 . In general, there exist many lambda terms that interpret to e. Our objective is to add a new element to D 0 and make M interpret to this new element. In addition, the other lambda terms of type 0 should interpret as before. This would ensure that M interprets uniquely to this new element. Intuitively, the other lambda terms should not "notice" a difference between e and this new element. We call this new element e clone . Given a model D = (D α ) α∈T and an element e ∈ D 0 , the extended model D e = (D e α ) α∈T is the model determined by D e 0 = D 0 {e clone }. As a consequence of adding this extra element, many new higher order functions are generated. Hence we force the λ-terms to interpret to those functions that behave identically on e clone and on e. In the subsequent sections, we study this new extended model and furnish a variable assignment so that M gets uniquely interpreted to e clone .

Relating the models

Consider the function f ∈ D 0→0 shown in Figure 1. The same figure shows some functions in the extended model D e . The function f 1 acts the same way as f on all the common elements. However, f 1 (e clone ) is not equal to f 1 (e) which is undesirable. Hence we would like to ignore such a function. The function f 2 on the other hand acts the same way as f on all the common elements and in addition f 2 (e clone ) is equal to f 2 (e). We consider f 2 as the representative of f in D e . An interesting case is given by f 3 that instead of mapping the element to e maps it to e clone . By the intuition that e clone is equivalent to e, we wish to say that f 3 is equivalent to f 2 .

We define two notions to relate the elements of the extended model D e to elements of the original model D: • an equivalence relation ↔ α over D e α that groups e and e clone at type 0 and propagates this basic equivalence to higher order functions.

In general, we would like to visualize each set D e α as shown in Figure 2. Before formally defining these notions we designate a null element for every type. -↔ 0 is the smallest equivalence containing e ↔ 0 e clone .

• in α→β

For an element

f ∈ D α→β , in α→β (f ) is a function f ∈ D e α→β such that for all elements d ∈ D e α , f (d ) = in β (f (d)) if d ∈ [in α (d)] ∆ β otherwise • sim α→β For f ∈ D α→β , f ∈ D e α→β , we say f simulates f , written as sim(f , f ), if for all d ∈ D α , for all d ∈ [in α (d)]: f (d ) ↔ β in β (f (d)). • ↔ α→β For f , g ∈ D e α→β , f ↔ α→β g if for all h ∈ D α→β , sim(f , h) ⇔ sim(g , h).
Remark 4 Subsequently, we drop the type subscript in in α , sim α and ↔ α since it is the same as the type of the elements associated.

Lemma 5 For every d ∈ D, in(d) simulates d.

Proof

The lemma is direct for type 0. For a higher order function f ∈ D α→β , it follows from the definitions. 

[inα(d)] in β (f (d)) D e α D e β in α→β (f ), f Figure 3: f , in α→β (f ), sim(f , f ) 2. sim(d , d) ⇔ d ↔ in(d), 3. d 1 = d 2 ⇒ in(d 1 ) in(d 1 )
.

Proof

The proof proceeds by induction on the types. The lemma is clear for type 0. We prove the lemma for a higher order type α → β. Consider f, f 1 , f 2 ∈ D α→β and f ∈ D e α→β .

1. Suppose sim(f , f 1 ) and sim(f , f 2 ). Take

d ∈ D α and d ∈ [in(d)]. By definition of sim, f (d ) ↔ in(f 1 (d)) and f (d ) ↔ in(f 2 (d)). Hence in(f 1 (d)) ↔ in(f 2 (d)) and by 3), f 1 (d) = f 2 (d). Since d is arbitrary, f 1 = f 2 . 2. Suppose sim(f , f ). By 1) if sim(f , h) then h = f . Since from Lemma 5,
sim(in(f ), f ), the same holds for in(f ). Therefore, for all h, sim(f , h) ⇔ sim(in(f ), h) and hence by definition of ↔, f ↔ in(f ). Suppose f ↔ in(f ). By Lemma 5, sim(in(f ), f ) and by definition of sim, sim(f , f ). 3. Suppose f 1 = f 2 . From Lemma 5, sim(in(f 1 ), f 1 ). Hence by 1), not sim(in(f 1 ), f 2 ). But since sim(in(f 2 ), f 2 ), we get in(f 1 ) in(f 2 ).

Interpreting the lambda terms in the extended model

To interpret the lambda terms in D e , we need to define the variable assignment v e that interprets the variables. We intend to pick one from a set of variable assignments that simulate v. Definition 7 A variable assignment v on D e simulates a variable assignment v on D if for all variables x: sim(v (x), v(x)).

Lemma 8 If v simulates v then for every lambda term M :

sim( M v D e , M v D )

Proof

We proceed by induction on the structure of the lambda term.

1. For variables, the lemma follows from the hypothesis. 2. Consider an application M N , with M of type α → β and N of type

α. By induction, sim([[N ]] v D e , [[N ]] v D ) and hence from 2) of Lemma 6, [[N ]] v D e ↔ in([[N ]] v D ). Also by induction, sim([[M ]] v D e , [[M ]] v D ) and hence from definition, [[M ]] v D e ([[N ]] v D e ) ↔ in([[M ]] v D ([[N ]] v D )). Therefore by 2) of Lemma 6, sim([[M N ]] v D e , [[M N ]] v D ). 3. Consider a lambda abstraction λx α .M . Take d ∈ D α and d ∈ [in(d)]. Since sim(v , v), we have sim(v [d /x α ], v[d/x α ]) and hence by induc- tion sim([[M ]] v [d /x α ] D e , [[M ]] v[d/x α ] D ). From 2) of Lemma 6, [[M ]] v [d /x α ] D e ↔ [[M ]] v[d/x α ] D . This is true for all d ∈ D α . Hence, by definition sim([[λx α .M ]] v D e , [[λx α .M ]] v D ).
Corollary 9 If v simulates v, then every term uniquely determined in (D, v) is uniquely determined in (D e , v ).

Proof

Let M be uniquely determined in (D, v) but not in (D e , v ). Therefore, there exists

N = βη M such that [[N ]] v D e = [[M ]] v D e . From Lemma 8, this would mean that sim([[M ]] v D e , [[M ]] v D ) and sim([[M ]] v D e , [[N ]] v D ). Hence by 1) of Lemma 6, [[M ]] v D = [[N ]] v D . A contradiction.

Proof of the theorem

The proof proceeds by an induction on the size of the Böhm tree BT (M ) of the lambda term M . Let BT (M ) contain m nodes. Consider an ordering s 1 < • • • < s m of the nodes of BT (M ) that satisfies the condition that if a node s i is a child of s j , then s i < s j . Assume that D k is a model and v k a variable assignment such that all the lambda terms rooted in the nodes s i with i ≤ k are uniquely determined in (D k , v k ). We then construct (D k+1 , v k+1 ) where all the lambda terms rooted in the nodes s i with i ≤ k + 1 are uniquely determined. Consequently M gets uniquely determined in (D m , v m ).

Base case

The base case refers to (D 1 , v 1 ) which uniquely determines a leaf of BT (M ). A leaf is variable z of type 0. Starting with the trivial model D 0 which has a singleton {⊥} in its basic set and the trivial variable assignment v 0 , we construct the extended model D e 0 by adding a new element ⊥ clone to the atomic set. The new variable assignment v e 0 assigns z to ⊥ clone and the rest of the variables are maintained with the same interpretation. Clearly, z is uniquely determined in (D e 0 , v e 0 ). Set D 1 as D e 0 and v 1 as v e 0 .

Induction case

Let the lambda term rooted at s k be λ x. Construct the extended model D e by adding an element e clone to the basic set D 0 of D. Consider the variable assignment v e defined below. Set D k+1 = D e and v k+1 = v e . Therefore, from the above argument and from Corollary 9, the lambda terms rooted at nodes s i with i ≤ k + 1 are uniquely determined in (D k+1 , v k+1 ), thus proving the inductive step.

• v e (x) = in(v(x)), if x = y. • For the variable y, v e (y)(d 1 , . . . , d n ) =      e clone if d i ∈ [in( M i v D )], for i ∈ {1, . . . , n} in(v(y))(d 1 , . . . , d n ) otherwise

• 3 Figure 1 :

 31 Figure 1: Higher order functions in the extended model D e

Definition 2

 2 The null element ∆ 0 is any arbitrary element of D e 0 different from e clone . For a type α → β, element ∆ α→β is the constant function mapping every element to ∆ β . The definitions of in α and ↔ α are mutually dependent. For an element d in D e α , let [d ] denote the equivalence class of d with respect to ↔ α . For a higher order type α → β and for a function f ∈ D α→β , in α→β (f ) maps every element d in [in α (d)] to in β (f (d)). We say that a function f ∈ D e α→β simulates a function f ∈ D α→β , written as sim(f , f ) if f maps every element in an equivalence class [in α (d)] to an element in the equivalence class [in β (f (d))]. These notions are pictorially represented in Figure 3. The equivalence relation ↔ α→β groups functions of D e that simulate the same function of D. The formal definitions follow. Definition 3 in α , sim α , ↔ α
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 2 Figure 2: Visualizing a set in the extended model

Lemma 6

 6 For d, d 1 , d 2 ∈ D α and d ∈ D e α , 1. sim(d , d 1 ) and sim(d , d 2 ) implies d 1 = d 2 ,

  yM 1 . . . M n and let [[yM 1 . . . M n ]] v k D k = e. For notational simplicity let D = D k and v = v k . By induction hypothesis, M 1 , . . . , M n are uniquely determined in (D, v).

  Since e clone ↔ e, v e simulates v. Hence we infer the following. 1. From Lemma 8, for every lambda term N , [[N ]] [yM 1 . . . M n ]] v e D e = e clone . We now prove that [[yM 1 . . . M n ]] v e D e is uniquely interpreted to e clone . Let zN 1 . . . N p be a lambda term such that [[zN 1 . . . N p ]] v e D e = e clone . If z = y, then v e (z) = in(v(z)). However, observe that there does not exist an element d ∈ D 0 such that in(d) = e clone . Also, note that ∆ 0 = e clone . Hence by definition, in(v(z))(d 1 , . . . , d p ) cannot be equal to e clone for any values of d 1 , . . . , d p implying z = y.Since z = y, p equals n. We show thatN i = M i for all i. Now, if [[N i ]] v e De / ∈ [in([[M i ]]v D )] for some i, by the same reasoning as above, [[zN 1 . . . N p ]] v e D e cannot be equal to e clone . Therefore, [[N i ]] v e De ↔ [[M i ]] v D for all i. In addition, from Lemma 8, we know that [[N i ]] v e De ↔ [[N i ]] v D too. Hence from the third part of Lemma 6, [[N i ]] v D = [[M i ]] v D .From the assumption that each M i is uniquely determined in (D, v), one can deduce that N i = M i for i ∈ {1, . . . , n}. We hence infer that yM 1 . . . M k is uniquely determined in (D e , v e ).Note that this implies λ x.yM 1 . . . M k is uniquely determined too in (D e , v e ) since, for another lambda term λx.N , if [[λ x.N ]] v e D e = [[λ x.yM 1 . . . M k ]] v eD e , then N with x substituted by values from v e and yM 1 . . . M k with x substituted by values from v e interpret to the same element of D e , contradicting the fact that yM 1 . . . M k is uniquely determined with the variable assignment v e .