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Abstract

The issue of detecting abnormal vibrations is addressed in this article, when
little is known both on the mechanical behavior of the system, and on the
characteristic patterns of potential faults.

With data from a bearing test rig and from an aircraft engine, we show
that when only a small learning set is available, Bayesian inference has several
advantages in order to compute a model of healthy vibrations, and thus
ensure fault detection.

To do so, we compute the wavelet transform of many log-periodograms,
and show that their probability density can be easily modelled. This allows
us to compute a likelihood index when a new log-periodogram is presented,
thanks to marginal likelihood approximation. A by-product of this compu-
tation is the ability to generate random log-periodograms according to the
learning dataset probability density.

Finally, we first detect the degradation of a bearing on a test rig; then we
generate random samples of aircraft engine log-periodograms.

Keywords: fault detection, vibration, rotating machine, bearing, aircraft
engine, bayesian inference, periodogram, wavelet, probabilistic model

1. Introduction

We tackle the issue of prognosis and health monitoring for rotating ma-
chine. Our goal application is vibration monitoring in aircraft engines, but
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simpler test cases are also dealt with, for example bearing test rig. The
following hypotheses are made:

e small learning set: no more than a dozen of short time-series are avail-
able, as a reflect of industrial constraints. More specifically, faulty data
are scarce, if any.

e model-free: no specific mechanical model of the system, nor model of
faults that might occur are used in the following.

e constant target rotation speed: the rotating machines studied in this
article have a fixed speed. On short time intervals, the signal will be
supposed stationary, so that periodograms are meaningful.

e nonparametric estimation: no specific functional form is assumed con-
cerning periodograms, which will be decomposed in a wavelet basis.

In the spirit of many works in Novelty Detection (Markou and Singh,
2003a) where information on faulty data is limited, our aim is: first to come
up with a nonparametric model of a healthy signal, using a small learning
set; secondly to compare any new signal with this model; lastly to detect
unusual behavior.

To build this model of healthy vibration signals, we consider the wavelet
transform of periodograms, which offers enough freedom in the perspective
of function approximation. The wavelet transform of periodograms has been
the subject of many works in statistical estimation and signal processing, as a
means to denoise periodograms (see 2). In this litterature, a bayesian point
of view is adopted, such that all learnt coefficients (and therefore the full
periodogram) have a probabilistic description. This feature will be useful for
detection, as we will see in the following: section 2 links our work to related
articles in various fields, sec. 3 presents the main algorithms we use, which
results are summarized in sec. 4. Sec. 5 concludes this article and discusses
its perspectives.

2. Related work

Vibratory Health monitoring applied to rotating machines often focusses
on specific faults, such as rotor/stator contact (Peng et al., 2005), rotor
unbalance, blade defects (Kharyton, 2009), bearing (Orsagh et al., 2003)
and gearings defects (Wang et al., 2001).



However, unexpected problems can occur, whose fault patterns are un-
known. Such preoccupations are germane to those developped in the area of
novelty detection, where the importance of data not seen during the learn-
ing phase is stressed. Facing this problem, the best solution found by many
authors was to build a model of normality, for example with neural networks
such as Self-Organising Maps (Ypma and Duin, 1997; Tarassenko et al., 1999;
Markou and Singh, 2003b). More probabilistic approaches exist (Markou and
Singh, 2003a), where a probabilistic model of normality is rather built. This
articles will adopt this point of view.

For condition monitoring, signals may be studied in various domains: time
domain, the Fourier basis via STFT, the wavelet domain (Peng and Chu,
2004), or other time-frequency distributions such as Wigner-Ville (Antoni
et al., 2004).

More specifically, we propose to build a probabilistic model of normal-
ity of log-periodograms in the wavelet domain. This is justified by the fact
that such models were developped in statistical time series analysis and sig-
nal processing, for spectrum denoising purposes (Moulin (1994), Percival and
Walden (2000, 10.6), Vidakovic (1999, 9.3), Pensky et al. (2007)), via wavelet
thresholding or shrinking. The motivation of researchers in this area concern
mainly the statistical properties of estimators (such fixed or variable band-
with smoothing), which we will not discuss here. However we propose to take
advantage of the model of normality that is provided by their analysis.

In a similar spirit, a Bayesian approach to normality modelling in jet
engine health monitoring has been developped (Clifton, 2006; Clifton et al.,
2008; Clifton and Tarassenko, 2009), but so far only a restricted number of
shaft order amplitudes are considered, and not the whole spectrum. These
works are very interesting because they use Extreme Value Theory to model
the maxima of order amplitudes, and set thresholds that are more robust.

Before continuing, we now briefly discuss two objections that the reader
might formulate:

e why not working directly with the wavelet transform of the time-
domain signals, without computing its periodogram ? Because we
would have no simple probabilistic model of the coefficients.

e why not working directly with the probabilistic models of the log-
periodograms ? Indeed, as we will see in sec. 3, such a probabilistic
model is available, under stationarity assumptions. However, the noise



distribution is not standard (see 3.2), which complicates subsequent
computations.

In sec. 3, we discuss the various algorithms that aim at inferring a nor-
mality model, then exploiting it to detect faults.

3. Algorithms: Bayesian Detection and random spectra generation
in a wavelet basis

Basic familiarities with the wavelet transform, and its discrete implemen-
tation is assumed in this section. Theorical foundations, principles of fast
computation, as well as practical illustrations may be found in (Mallat, 2009).

3.1. Probabilistic model of the wavelet transform of a periodogram

What follows is standard material, available from (Moulin, 1994). We
adopt the notations of (Pensky et al., 2007).

Let I(w;) be the periodogram at Fourier frequency w; = 2% associated
with vibration signals X, ..., X7 _1:
=
T(w: — X —iw;t |2 1
@) = gl DX (1)

I(wj) is an estimator of power spectrum density (PSD) which probability
density function can be approximated under mild stationarity assumptions
(Brillinger, 1981), as a function of the true PSD, f(w;):

) & i) )

where wy is distinct from the extremities. Taking the log, a regression formula
can be proposed :

2 = 1I1f(wl)+€l (3)

where z; = In I(w;) 4+, and «y is Euler’s constant. Let u the density of g;. It
can be shown that:

p(r) = 7 exp(z —7"e”) (4)
Els] = 0 (5)
Vil = % (6)
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where v* = ¢e77.
Taking the discrete wavelet transform of eq. (3):

d = 0+9¢ (7)
where:
d = W[Zl, oo ,ZT] (8)
0 = W[lnf(wl)v ce 71nf(wT)] (9>
0 = W[Sl,...,ZET] (10)

and W is an orthogonal matrix given by the discrete wavelet transform. d, 6
and § may also be indexed by (j, k), where j is the scale and & the position.

By Central Limit Theorem arguments, the density of coefficients of vector
0 can be approximated by a normal law, except for small scales where a
correction must be applied.

3.2. Bayesian inference of a logperiodogram, in the wavelet domain

Assuming the model of sec. 3.1, what can be learnt from measurements
on the distribution of wavelet coefficients 6 7

Here we assume a Bayesian inference scheme, since it ensures that 6 keeps
a probabilistic description when data are available. Prior for the wavelet
coeflicient 6 of the following form may be found in the litterature (Pensky
et al., 2007):

i ~ m;0(0) + (1 — ;) 7;8(750;1) (11)

where ¢ is symmetric (such as a normal law A (0, 1)), and 7;, 7; are hyperpa-
rameters. They can be learnt independently, taking advantage or theoretical
arguments. In this article, we simply use a centered normal prior with vari-
ance obeying the following model (Abramovich et al., 1998):

o = (027 (12)

where C' and « are constats learnt from the data.
A posterior can be computed by the classical Bayes formula:

P(OirldSy) - A} o< L, (03) Pr(B) (13)



Standard calculus shows that the posterior has the following form:

' . 1 Ao 12
V(R P(0ld . d™ ) o e (= 5o |0 - 2] ) (4)
0 o2

where c/l\]k is the mean wavelet coefficient of the sample periodograms, and
09,01, 09 are standard deviations whose formula are given in Appendix A.

3.3. Random generation of log-periodograms

Once the distribution of the posterior in eq. (14) is computed thanks to
log-periodogram samples, one can sample from this distribution. Computing
the inverse wavelet transform, we get a random log-periodogram sample.
Examples will be given in sec. 4.

Due to acquisition cost, such random samples can be of high interest to
test detection algorithms. The classical bayesian fault detection procedure is
highlighted in the following section.

3.4. Fault detection

So far we have chosen an estimation model (see eq .(7)), proposed a prior
and a posterior (see eq. (14)). We can now compute the marginal likelihood
(Bishop (2006, eq.(3.67-68)), Clifton et al. (2008, eq.(5))), which quantifies
the likelihood of a new sample, given the training set

d s p(dd®, . dm) = /p(d|9)p(6’]d(1),...,d(”))dG (15)

The integral may be approximated by Monte-Carlo sampling ((Robert and
Casella, 2010, 3.2). If p(d|d",...,d™) is below a given threshold, a fault is
suspected to occur.

4. Data and Results

4.1. Data: IMS bearing dataset
The IMS bearing dataset (Qiu et al., 2006) is a publicly available! set
of vibration signals. Four bearing are installed on a shaft that rotates at a

constant speed of 2000rpm. Progressive degradations are recorded from 8
accelerometers as the designed life time of the bearings is exceeded.
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Figure 1: Log-periodogram of bearing vibrations (top) at the beginning of the test; (bot-
tom) at the end of the test when bearing are damaged.

Log-periodograms are displayed by Fig. 1 at the beginning and at the
end of the test, when the bearing is damaged.

Two datasets are built from the IMS recordings: one learning dataset,
with snapshots taken at the start of the recording session, while all bearings
are healthy. Then, a test dataset is designed with new recordings taken at
the start, in the middle and at the end of the degradation test.

4.2. Data: Snecma turbofan engine

The recordings under study were provided by the Health Monitoring De-
partment of SNECMA? and correspond to a dual-shaft turbofan mounted
on a testbench, that undergoes a continuous acceleration during several min-
utes. They include raw vibration outputs of two embedded accelerometers,
sampled at 51kHz. Samples are collected while low-pressure shaft speed is
at 2000rpm. No failure dataset is available at the moment.

! http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
2 http://www.snecma.fr



4.8. Implementation details

Discrete wavelet transform is computed thanks to Wavelab®. In the fol-
lowing, the Haar wavelet is used.

4.4. Results: IMS bearing dataset

In agreement with the processing steps depicted in sec. 3.2, hyperpa-
rameters learning is first evoked. The model eq.(12) is fitted thanks to em-
pirical standard deviations of discrete wavelet coefficients. As outliers are
suppressed, a good fit is obtained except at extremities, as illustrated by
Fig. 2.
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Figure 2: Hyperparameters fit.

Now we proceed to fitting posterior distributions as announced in sec.
3.2, thanks to the IMS learning subset, depicted in sec. 4.1. Fig. 3(top)
represents the histograms of discrete wavelet coefficients of log-periodograms
for a selection of (j, k) indices, with j low. Because of the low number of
samples, which is part of the constraints mentionned in sec. 1, the shape
of the histograms is hardly distinguishable. This is why the theoretical ar-
guments evoked in sec. 3.1 in favour of normality, as well as the Bayesian
updating are helpful to get the posteriors represented by Fig. 3(bottom).

3 www-stat.stanford.edu/~wavelab/



We remark that, however incomplete the histograms, they do not display a
large number of zeros, as could be expected from the classical prior eq. (11).
This point will be discussed in sec. 5.
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Figure 3: (top) Histogram of discrete wavelet coefficients of log-periodograms; (bottom)
posterior densities, indexed by (3, k).

Sampling from this posterior as indicated in sec. 3.3, we obtain random
log-periodograms as shown by Fig.4. The general shape is correct, thanks to
coeffcients in low and intermediate scales. However, the spectrum is thicker,
because of high scale coefficients, whose variance is higher, as was expected
from the hyperparameters fitting step. This will be corrected in later works.

Finally we compute the marginal likelihood, which was proposed in sec.
3.4 to detect faults. To do so we use the test IMS subset described in sec. 4.1
which contains healthy recordings different from learning ones, and snapshots
at partly then severely deteriorated bearings. We expect different values of
marginal likelihood to be displayed as time passes.

Fig. 5 summarizes the results, that indeed reveal a clear distinction be-
tween the several stages of degradation. This validates our approach, accord-
ing to which bayesian modelling of the wavelet transform of log-periodograms
can detect degradation of the condition of bearings. Further experiments,
and extensive comparison with state-of the art methods will be addressed in

9
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Figure 4: Randomly generated log-periodogram, conditionally on IMS bearing learning
dataset.

following articles.

4.5. Results: Snecma turbofan engine

Results with the Snecma dataset are limited to random log-periodogram
generation, since no failure data is available at the moment. Fig. 6 shows
a good agreement between the learning set and random periodograms. This
by-product of Bayesian analysis will be of great importance to test other
algorithms by Monte-Carlo methods.

5. Conclusion and perspectives

The aim of this article was to show that in the domain of vibration health
monitoring, when small datasets only are available because of industrial con-
straints, even with no mechanical knowledge, Bayesian modelling of healthy
log-periodograms in the wavelet domain was a good strategy that ensures
fault detection.

We have presented several algorithms inspired by statistical novelty de-
tection, and by signal processing, in order to model healthy vibrations, to
generate random spectra, then to detect failures.

10
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Figure 5: Marginal likelihood of log-periodograms (left) in healthy condition; (middle)
partly deteriorated and (right) deteriorated.

We have presented real illustrations of these algorithms, with deteriorated
bearings recordings, and aircraft engines. This proves that Bayesian mod-
elling of healthy periodograms in the wavelet domain ensures failure detection
even with heavy constraints.

However, we faced several unexpected findings while running our experi-
ments:

e the sparsity model widely used in the litterature for wavelet denoising
may not be adapted when data are successive time series. If a given
coefficient has a high value across several successive snapshots, it is very
unlikely that the histogram of the measured coefficient is a mixture with
a Dirac mass centered in zero.

e the updating scheme for the variance of posterior gives poor results in
high scales.

e the use of marginal likelihood is questionnable if the model we obtain
is not very accurate.

The following perspectives will be dealt with in future articles:

e a comparaison with state-of-the art methods will be established.

11



10+ 1
i !
H”‘ '\\: il .5 ' | i1
Lid 1 AR | LAl |
° ," M\w“ | ‘ )
o ' ‘ﬂ f \" \“ J‘ | I ~ |l ul “ “1 “1\“ “1 I
i i i1
3B 1 ;‘ "? ‘ ‘:i “lW “t M \ij .‘i it l'J‘ wl‘\
= ! ! \ i e il | i
0 ! I e \y:g ) \'\‘nw i ‘N}‘A MQ ‘ m
! K "f‘“"%awu ,"\"“"‘w
| | 7; | 5‘ | ‘l
t " | \':“‘\VI;IA‘H"\“\W \ ;
- ; ":‘\' “:\‘ WI; ! \vlu
‘ “ I |
0 100 200 300 400 500
f

Figure 6: Randomly generated log-periodograms, conditionally on SNECMA aircraft en-
gine learning dataset, at various zoom levels.
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e in the spirit of Clifton et al. (2008) that apply Bayesian novelty detec-
tion to low-rank multiples of shaft speed, we plan to model the max of
wavelet coefficients for the whole log-periodogram.

e hyperparameters may be learnt in a full bayesian way, i.e. with priors
set on the fitted model.

e thresholding theory may be used to simplify the wavelet coefficients
models.

Appendix A. Posterior

Here we give the expressions of the standard deviations that appear in the
posterior eq.(14). o9 is the variance of the prior of the wavelet coefficient,
which value is set according to eq. (12), which depends on j. We omit j
subscripts for clarity:

1 /=2
= /= Al
1 1 1
- = 4= (A.2)
(o) 01 02

where n is the number of samples.
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