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Abstract
This paper presents a 3D-mesh segmentation algorithm based on a learning approach. A large database of man-
ually segmented 3D-meshes is used to learn a boundary edge function. The function is learned using a classifier
which automatically selects from a pool of geometric features the most relevant ones to detect candidate bound-
ary edges. We propose a processing pipeline that produces smooth closed boundaries using this edge function.
This pipeline successively selects a set of candidate boundary contours, closes them and optimizes them using a
snake movement. Our algorithm was evaluated quantitatively using two different segmentation benchmarks and
was shown to outperform most recent algorithms from the state-of-the-art.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations—Boundary representations

1. Introduction

3D-mesh segmentation is a key ingredient for many applica-
tions such as indexing, compression, deformation, etc.

The recent creation of ground-truth databases for the seg-
mentation of 3D-meshes [BVLD09, CGF09], has given to
the computer graphics community the opportunity to quanti-
tatively analyze and learn mesh segmentation. A very recent
work based on learning has been proposed by Kalogerakis et
al. [KHS10] and has demonstrated its efficiency through the
improvement of the results over the state-of-the-art of mesh
segmentation.

In this paper, we present a new fully automatic 3D-mesh
segmentation algorithm based on boundary edge learning.
Our algorithm is carried out using two main steps: an off-line
step in which an objective boundary edge function is learned
from a set of segmented training meshes, and an on-line step
in which the learned function is used to segment any input
3D-mesh. The boundary function is learned using the Ad-
aBoost classifier [FS97], which automatically selects from
a set of geometric features the most relevant ones to detect
candidate boundary edges. In the on-line step, the learned
edge function is used successively to select a set of candi-
date boundary contours, to close them and to optimize them
using a snake movement to produce the final segmentation.

The best results are obtained when the learning is performed
on objects from the same category as the object to segment.
However, the results remain excellent even when we gener-
alize the learning on different categories. Hence, we do not
need to know the category of the input model to segment it.

Our algorithm provides very similar segmentations to
those created by humans (see figure 1), and has been eval-
uated using the existing benchmarking systems [BVLD09,
CGF09]. Our results outperform the best segmentation al-
gorithms from the state-of-the-art in term of similarity
to human segmentations. For instance, we achieved 8.8%
Rand Index error on the Princeton segmentation bench-
mark [CGF09], while the last best result achieved on this
database is 14.9% Rand Index error obtained by [GF08] (al-
gorithm without learning), and 9.5% Rand Index error ob-
tained by [KHS10] (algorithm with learning). This latter
algorithm needs a consistent labeling of the training data,
which may requires some manual interactions. However, it
provides semantic labeling which allows for instance to re-
trieve a part of interest across a data-base of labeled 3D-
models without additional processing.

Our main contributions are the following:

• The edge function determination based on multiple fea-
ture calculations and Adaboost learning.
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2 H. Benhabiles et al. / Learning boundary edges for 3D-mesh segmentation

Figure 1: For each pair of model: on the left, manual boundaries from the Princeton segmentation benchmark [CGF09] (the
darkness degree of contours indicates that people have selected the same edges in their cuts); on the right, automatic boundaries
from our algorithm.

• The processing pipeline which produces smooth closed
boundaries using the edge function. This pipeline includes
the following stages: thinning, closing contours, and a
snake movement. More details are provided on each stage
in section 3.

2. Related work

During the last decade, a significant attention has been paid,
by the computer graphics community, to 3D-mesh segmen-
tation [Sha08, AKM∗06]. Although some supervised meth-
ods exist [LHMR08,JLCW06], most existing techniques are
fully automatic. They either concentrate on the definition
of contours and then extract regions limited by these con-
tours [GF08, LLS∗05], or use clustering of similar mesh
elements to define regions [SNKS09, LW08, SSCO08]. In
both cases, they focus on analyzing either low level geo-
metric information, or topological information of the input
mesh. For instance, the use of geometric criterion includes
curvature [LDB05], geodesic distances [KT03], dihedral an-
gles [ZTS02], shape diameter function [SSCO08], planarity
and normal directions [AFS06], etc. The use of topological

criterion includes mainly Reeb-graphs [TVD07] and spec-
tral analysis [ZvKD07]. Such criteria suffer either from sen-
sitivity to local surface features and to pose changes or from
the deterioration of the topology when connecting or dis-
connecting parts of the mesh. As raised by Kalogerakis et
al. [KHS10], the main drawback of this kind of algorithms
is the fact that they are limited to a single generic rule (e.g.
skeleton topology) or a single feature (e.g. curvature tensor).
Indeed, such algorithm cannot be suited to segment an in-
put 3D-mesh which requires a combination of these criteria.
Our algorithm does not suffer from this drawback since it
is based on a learning approach which determines an edge
function using multiple criteria.

According to our knowledge, only one work has been
proposed that involves learning for 3D-mesh segmenta-
tion [KHS10]. It allows to simultaneously segment and label
the input mesh, and is expressed as an optimization prob-
lem. The problem consists in optimizing a Conditional Ran-
dom Field (CRF) of which an objective function is learned
from a collection of labeled training meshes. We differ from
this latter work in that instead of determining the suited label
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of each mesh facet and then implicitly defining a segmenta-
tion resulting from this labeling, we explicitly determine the
boundary edges that allow then to obtain smooth closed con-
tours that define the segmentation. Moreover, even complex
boundaries can be captured (see section 3), while in the pre-
vious work, the method rather aims to find compact regions.

Before these recent works for 3D-mesh segmentation,
several advanced works have already been introduced for
2D-image segmentation based on learning approaches. Like
for the 3D case, these algorithms use a model learned from
a database of segmented 2D-images. These 2D-image seg-
mentation algorithms based on learning can be grouped into
two categories.

The first category covers algorithms that learn an optimal
affinity function between each pixel of the input image and
a set of prior defined labels [SWRC09,HZCp04]. A ground-
truth (segmented and labeled images) is employed to train
the classifier that allows to affect the proper label to each
pixel.

The second category covers algorithms that use an objec-
tive function to classify edges [MFM04,KH04]. Each edge is
classified as a boundary or a non-boundary using a classifier
trained on the ground truth (segmented images), resulting in
an edge image estimating human designated boundaries.

Our algorithm is inspired by the second category since it
classifies edges as boundary or not, while the previous 3D-
work [KHS10] is inspired by the first category.

3. Our segmentation approach

In this section, we describe our approach. We provide de-
tails on the two main steps of our algorithm: the off-line step
in which the objective boundary function is learned using a
set of segmented models, and the on-line step in which the
learned function is used to segment the input mesh.

3.1. Off-line (learning) step

We formulate the problem of learning the boundary edges as
a classification problem. The classification model is learned
on a corpus of 3D-meshes accompanied by their manual
segmentations using the AdaBoost classifier. The classifier
takes as input a training data set and generates a function.
The training data set is composed of a set of feature vec-
tors FE computed for each edge of the ground-truth corpus
meshes. A feature vector FE of a given edge contains a set of
geometric criteria and is associated with its proper class la-
bel L so that L =+1 if the edge is a boundary (according to
the manual segmentations of the mesh containing this edge)
and L =−1 if the edge is not a boundary. Once the learning
is done, the classifier produces a function (the boundary edge
function). This function takes as input a feature vector from
any given edge and outputs a signed scalar value whose sign

will provide the estimated classification of the edge (positive
for boundary and negative for non-boundary).

Now we briefly summarize, the set of geometric criteria
that we use to characterize edges (and which compose the
feature vector), and the AdaBoost classifier.

3.1.1. Feature vector

We compute a 33 dimensional feature vector for each edge.
It includes a set of geometric criteria which are as follows:

• Dihedral Angle. The angle between two adjacent facets.
• Curvature. We compute different curvatures using the

VTK library (http://www.vtk.org/). Let K1, K2 be
the principal curvatures, we include: K1, K2, K1 × K2
(Gaussian curvature), (K1 + K2)/2 (Mean curvature),
2/π ∗ arctan[(K1 + K2)/(K1 − K2)] (Shape index), and√
(K2

1 +K2
2 )/2 (Curvedness).

• Global curvature. We compute the mean curvature inte-
grated over a large geodesic radius (10% of the bounding
box lentgh) as in [LW08].

• Shape diameter. The shape diameter function [SSCO08]
is computed using the default parameters: a cone with an
opening angle of 120◦, 30 rays, and a normalizing param-
eter α = 4.

Note that we do not propose new geometric criteria, but
we only employ existing ones used in previous segmentation
algorithms. As stated in the introduction, the idea is to com-
bine these criteria, then automatically select relevant ones
with the appropriate weights using the classifier.

Except the dihedral angle which is computed for each
edge, the other criteria (8 criteria) are computed for each
vertex of the mesh. As illustrated in figure 2, to derive the
criteria for each edge (the red one for instance), we consider
its two opposite vertices (blue points in figure 2(a)). Then,
considering that C1 and C2 are the values of a certain crite-
rion computed respectively on these two vertices, we derive
two feature values for the edge: C1 +C2 and C1−C2. The
idea is that, according to the nature of the criterion, in certain
cases the sum can be relevant while in others the difference
can carry a better information.

In order to bring a certain robustness to noise or sampling
and to integrate a kind of multi-resolution behavior we also
consider, in a second step, the 1-level neighborhood from
each side of the edge (see green points in figure 2(b)). In that
case C1 and C2 are respectively the means of the criterion
from vertices at each side of the edge. This yields 32 features
(16 in each case) to which we add the angle feature.

3.1.2. Adaboost classifier

AdaBoost is a machine-learning method that builds a strong
classifier by combining weaker ones [FS97]. The algorithm
takes as input a set of training samples (x1,y1), ..,(xN ,yN);
each xi (i = 1, ...,N) represents a feature vector (a vector
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4 H. Benhabiles et al. / Learning boundary edges for 3D-mesh segmentation

(a) (b)

Figure 2: Example of edge criterion computation with one
vertex on each side (a), and with a set of vertices (b).

FE in our case), and each yi represents the class label of
the sample xi (yi belongs to the domain Y = {−1,+1} in
our case). A large number of weak classifiers, hi : X −→ Y ,
are generated, each one being a decision stump associated
with a single dimension of the feature vector. Then, along
a finite number of iterations (t = 1,2, ...,T ), the algorithm
iteratively selects the weak classifier which minimizes the
current classification error. At the end a strong classifier H
is produced as the combination of the weak ones weighted
with αt : H(x) = ∑

T
t=1 αtht(x).

As stated at the beginning of subsection 3.1, the generated
function H(x) is now able to produce a signed scalar for each
edge of an input 3D-mesh, whose sign gives its class label
(positive sign for boundary edges and negative sign other-
wise).

Note that we tested some other existing classifiers from
the literature including non-parametric and parametric mod-
els such as Density estimation, HME (Hierarchical Mixtures
of Experts), and SVM (Support Vector Machine). The per-
formance was always nearly the same. We favor the Ad-
aBoost since it yields a slight improvement over the other
classifiers, and has the best running time.

3.2. On-line (segmentation) step

Figure 3 shows examples of edge classification results of
some 3D-meshes. On the top, the result of the binary deci-
sion: boundary (H(x)> 0), non-boundary (H(x)< 0) is dis-
played (for visualization quality reason, we colored incident
vertices of edges instead of coloring the edges themselves);
while in the bottom, the edge function scalar values H(x)
are displayed using a color map. One can notice that the
boundary edges from the binary decision (in red) are, neither
smooth, nor closed. This result is expected since our classifi-
cation model is learned on different objects (even if they be-
long to the same category), and uses multiple ground-truths
per model which are not necessarily the same (boundaries
are defined in a subjective way by humans, see figure 1).
Hence it is not possible to directly consider this classifier
output as a segmentation result.

To overcome this problem we propose a processing
pipeline that transforms these non-connected fuzzy regions

Figure 3: Edge classification results for some 3D-meshes;
(top: boundary edges after binary decision in red color; bot-
tom: edge function scalar field).

into thin, closed and smooth contours, by using the edge
function. This processing pipeline comprises four stages. In
the first stage of the process, given an input 3D-mesh, the
edge function is computed (see figure 4(a)), and all edges
having positive function values are selected. Theses edges
constitute a set of interest regions (see figure 4(b)). Then,
for each interest region (connected set of edges), a thinning
algorithm [HG01] is applied. This latter algorithm gives as
output a set of open linear contours (see figure 4(c)). Next,
each open contour is completed using an improved version
of the algorithm proposed by [LLS∗05] based on the edge
function (see figure 4(d)). At this step we have created a set
of closed contours which represent a first version of the seg-
mentation boundaries. However, these boundaries are often
not smooth nor precise since in the thinning stage we do not
consider any geometric information. To overcome this draw-
back, we apply an improved version of the snake movement
algorithm proposed by [JK04] based also on the learned edge
function. The snake movement allows to improve the quality
of the boundaries in term of smoothness and precision with-
out changing the mesh connectivity (see figure 4(e)). This
set of improved boundaries defines the final segmentation
(see figure 4(f)). These steps are detailed in the following
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(a) Edge function (b) Interest region extraction (c) Region thinning

(d) Contour completion (e) Snake movement (f) Final segmentation

Figure 4: Overview of the processing pipeline.

subsections. Material illustrating the different steps of the
algorithm is available at the third author’s home page.

Note that in all our experiments (more than 350 mod-
els), we never encountered any topological problem (e.g.,
broken regions representing the same boundary) like in the
work from Lee et al. [LLS∗05]. The main reason is prob-
ably that our regions of interest come from a learning pro-
cessed on different models associated with different manual
segmentations; hence it introduces a kind of fuzziness which
smooth/filter the results. Thus, we create one closed bound-
ary for each connected region, even if two regions are close
to each other. We do not process any contour filtering or con-
tour merging.

3.2.1. Region thinning

In this stage, we transform a set of interest regions into a
set of thin contours; this set of contours will be further used
as the initial set of boundaries. Each interest region is rep-
resented by a set of connected edges. The algorithm from
Hubeli and Gross [HG01] allows to thin a given interest re-
gion to a piecewise linear contour by deleting the edges from
the border of the patch toward the inside. Initially, the algo-
rithm inserts all border edges into a list. A border edge is an
edge of which at least one of the four edges of its two op-
posite triangles does not belong to the interest region. Then,
each border edge is deleted from the interest region if it does
not disconnect this latter one. The deleting operation pro-

duces new border edges which are added to the list. The al-
gorithm is performed until there is no removable edge. This
leads to produce a connected skeleton of the interest region.
Moreover, the algorithm allows to obtain a directly closed
contour if the interest region forms a loop. Note that this al-
gorithm does not contain any parameter setting.

However, it is possible to obtain a branching skeleton.
Figure 5 illustrates an example in which a model has an in-
terest region that leads to the creation of a branching skeleton
after undergoing a thinning algorithm. This skeleton is com-
posed of external and internal branches. An external branch
is limited by one endpoint and one junction point while an
internal branch is limited by two junction points. We con-
sider that only two external branches are correct regarding
the real boundary and we consider others like noise; to se-
lect these two relevant branches we compute a weight for
each external branch by summing the learned function val-
ues of their edges, and we keep the two branches that have
the highest weights together with the internal branches that
connect them (in the case where they do not share the same
junction point). We precise here that according to our exper-
iments, such branching skeletons appear mostly when the
corresponding interest region is very large, which almost
never happens.

3.2.2. Contour Completion

In this stage, each open contour is completed to form a
closed boundary around a specific part of the input mesh.
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Figure 5: From left to right: the interest region, the branch-
ing skeleton after thinning, the open boundary after remov-
ing the noisy branches for the horse model.

To this end, we propose a modified version of the comple-
tion algorithm from Lee et al. [LLS∗05]. The principle is to
find the weighted shortest path between the two endpoints of
the contour.

Let ζ be an open contour composed of a set of mesh ver-
tices v. To close the open contour, we search the shortest
path between the two end points of ζ by selecting among
candidate edges using the following edge cost function:

cost(e) = ηd(e)
wd .ηn(e)wn .ηe(e)we

where ηd(e) and ηn(e) are defined as the average of val-
ues of the two incident vertices of the edge e.

ηd is the distance function. It measures the distance from
ζ to a given vertex v as:

ηd(v) = ∑
vi∈ζ

1
d(v,vi)

where d(v,vi) is the Euclidean distance. The function is
high in the neighborhood of the contour ζ and decreases oth-
erwise.

ηn is the normal function. It helps to go over the other side
of the mesh, and is defined for a given vertex v as:

ηn(v) =

{
1, if nζ.nv ≥ cos(α)
nζ.nv+1

cos(α)+1 , else

nζ is the average normal vector of ζ, nv is the normal vec-
tor of vertex v, and α is the angle between the normals of the
two endpoints of ζ.

ηe is the feature function; in the original work from Lee et
al. [LLS∗05] the feature function includes minimum curva-
ture and centricity. The centricity of a vertex is defined as the
average geodesic distance from the given vertex to all other
vertices of the mesh. As stated by the authors, the original
algorithm sometimes failed to correctly close the open con-
tours. In our modified version, we replace the feature func-
tion by our learned edge function; it guides the path towards
the regions learned as boundaries according to the results of

the classifier. The results are significantly improved (see an
example in figure 6).

(a) (b) (c)

Figure 6: Example of completing a contour on a 3D-mesh
(a) using: the original version of the algorithm from Lee et
al. [LLS∗05] based on their feature function (b), and the im-
proved version based on our learned edge function (c).

Note that the three function values are normalized in the
range [0,1]. We set the weights wd ,wn to 1 and we to 0.4.

3.2.3. Snake movement

The snake movement is used to optimize the set of closed
contours resulting from the previous stage. Each contour is
used as the initial position of the snake. We propose a mod-
ified version of the snake movement algorithm from Jung et
al. [JK04]. The algorithm is based on an iterative process in
which the snake evolves (each vertex of the snake is moved
to one of its neighbor vertices on the mesh) by minimizing
an energy functional composed of internal and external parts
until it is adjusted (see figure 4(e)). In the original work from
Jung et al. [JK04], the internal energy controls the length and
the smoothness of the snake (i.e. the closed contour), and is
defined for a given vertex vi as:

Eint(vi) = α‖vi− vi−1‖+β‖vi+1−2vi + vi−1‖

where α and β are tuning parameters that affect respec-
tively the smoothness of the snake in term of distance and
curvature. We set the α to 0.2 and the β to 0.8. The exter-
nal energy controls the fitting of the snake to the desired
feature, and is defined in [JK04] by the maximum principal
curvature. In our modified version, we replace the maximum
curvature by the learned edge function again. The external
energy of a given vertex is then computed by averaging the
edge function values of its incident edges, and normalizing
them in the range [0,1] after reversing the sign since we aim
to minimize the energy. The modification of the external en-
ergy is justified by the fact that the original algorithm aims
to find features related to ridges and valleys based only on
a single geometric criterion (maximum curvature). Hence,
when replacing the maximum curvature by the edge func-
tion, the quality of boundaries is clearly improved (see ex-
periment 4.4), since this latter function is based on multiple
geometric criteria which are learned to detect boundaries.

submitted to COMPUTER GRAPHICS Forum (5/2011).



H. Benhabiles et al. / Learning boundary edges for 3D-mesh segmentation 7

4. Experiments

Our segmentation method was evaluated and com-
pared quantitatively to the most recent algorithms
from the state-of-the-art. To this end, we used two re-
cent benchmarks dedicated to 3D-mesh segmentation
evaluation, namely the Princeton benchmark [CGF09]
(http://segeval.cs.princeton.edu/), and the
LIFL/LIRIS benchmark [BVLD09] (http://www-rech.
telecom-lille1.eu/3dsegbenchmark/).

Note that we used the same control parameter values in
all our experiments, except when we explicitly modify the
threshold of the H function for the hierarchical segmentation
experiment (see section 4.5). The different parameters are set
as follows:

• H Function threshold: H(x)> 0.
• Thinning and branch-filtering: no parameter.
• Contour completion: wd ,wn to 1 and we to 0.4 of cost(e).
• Snake: α to 0.2 and β to 0.8 of Eint .

4.1. Segmentation results on the Princeton benchmark

The Princeton segmentation benchmark provides 19 cate-
gories of 3D-meshes, each one containing 20 3D-models ac-
companied with multiple ground-truth segmentations (man-
ual segmentations). Our segmentation method was trained
and tested on this benchmark, using different learning strate-
gies, namely categorical learning and global learning.

In the first type of learning (categorical), we train and test
our algorithm class by class. Similarly to [KHS10], we eval-
uate our method using leave-one-out cross-validation. For
each mesh i in each class, we learn the edge function on the
19 other meshes from that class using all ground-truths, and
then we use that function to segment the mesh i. In order to
analyze the effect of the training set size on the quality of the
results, we repeat the same experiment, using less meshes in
the training set: we learned the edge function on 6 meshes
randomly selected for each class.

In the second type of learning (global), we learn the
edge function in a generic way using a subset of the whole
database (6 models randomly selected from each category),
then we test on the remaining models (14*19 models). In
this generic (or global) learning scenario, we do not need to
know the category of the model to segment.

To evaluate the quality of the segmentation produced by
our algorithm, we follow the protocol defined in the Prince-
ton segmentation benchmark. Figure 7 shows the Rand In-
dex error averaged over all models of the corpus for our al-
gorithm, using the different learning strategies, and for the
most recent algorithms from the state-of-the-art. The first
point to make is that, when using a categorical learning with
a training set size of 19 models, our algorithm provides very
high quality results; indeed, our algorithm yields the smallest
Rand Index error (8.8%) among all the other algorithms. One

can notice also on the figure that when reducing the training
set size to 6 models, and keeping a categorical learning, our
algorithm still provides very good results with a slight drop
of performance (9.7% Rand Index Error). The second point
to make is that, our algorithm performs better than the algo-
rithm from Kalogerakis et al. [KHS10] which is also based
on learning (with the same training set sizes: 19 and 6 mod-
els).

However, categorical learning involves the fact that before
segmenting a model, you have to know its category hence it
is not really fair to compare these results with generic al-
gorithms [GF08, SSCO08, LHMR08, AFS06] which do not
need such knowledge of the data. When using Global learn-
ing, our algorithm does not need this prior knowledge and
thus can be compared with generic algorithms; the fact is
that it significantly outperforms them: its Rand Index Error
is 10.4% while the value of the second best [GF08] is 14%.

Figure 7: Rand Index Error averaged over all the Princeton
corpus models and sorted in increasing order for different
algorithms. Reference-type-size represent the Index Error of
algorithms based on learning with: learning type (categori-
cal or global), size of the used training set (19 and 6 models).

It is interesting to study which criteria are selected by the
classifier in the learning step. Figure 8 illustrates the per-
centage of each criterion selected by the AdaBoost classi-
fier for both types of learning (categorical for several cate-
gories such as bust, human, etc. and global). We can notice
that, whatever the learning strategy (categorical or global),
all the criteria are selected by the classifier, hence they all
contribute to the results. However, the distribution of the cri-
teria percentages differs from a category to another. For in-
stance, in the fourleg category, the most used criteria are the
shape diameter and minimum curvature, while in the table
category, the most used are the dihedral angle and maxi-
mum curvature. One can notice also a more isotropic dis-
tribution between the different criteria in the global learning
with comparison to the categorical learning. This is due to
the variety of 3D-meshes included in the training. All cat-
egories together may have different shapes and topologies,
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and then they do not share necessarily the same important
features. In this case one or two criteria are clearly not suffi-
cient to obtain a correct segmentation.

Figure 8: Percentage of criteria selected by AdaBoost: for
a categorical learning of size 19, and for a global learning
of size 6. Legend: An (Angle), MiC (Minimum Curvature),
MaC (Maximum Curvature), MeC (Mean Curvature), GaC
(Gaussian Curvature), Cved (Curvedness), SI (Shape Index),
GeC (Geodesic Curvature), SD (Shape Diameter).

Figure 9 shows a visual comparison between our segmen-
tation results (categorical learning - 19 training models) and
those from recent algorithms from the state-of-the-art on
some 3D-meshes from the Princeton benchmark; the average
of manual segmentations (ground-truths) is also included.
The quality of our algorithm is confirmed; indeed, our seg-
mentations appear better than those of the other methods in
term of similarity to the ground-truths, and particularly re-
garding boundary precision.

4.2. Genericity of the learning across databases

In a second experiment, we still have trained our edge func-
tion on the Princeton benchmark but we have launched the
segmentation on a different benchmark, the LIFL/LIRIS
benchmark which contains a different set of 3D-models.
Besides, the 3D-models are associated with vertex-based
manual segmentations, while those of the Princeton bench-
mark are associated with facet-based segmentations. The
LIFL/LIRIS benchmark contains 28 3D-models grouped in
five classes. Each 3D-model is associated with 4 ground-
truths. Similarly to the previous experiment, to evaluate
the segmentation produced by our algorithm, we have fol-
lowed the protocol defined in the benchmark. The edge func-
tion used to segment the models of this benchmark was
learned on the Princeton segmentation benchmark using the
global learning, with a training set size of 6 models. Fig-
ure 10 shows the NPRI (Normalized Probabilistic Rand in-
dex) averaged over all the corpus models for different al-
gorithms including ours. Contrary to the Rand Index Error,
the NPRI [BVLD10] gives an indication about the similarity

Figure 9: From left to right segmentations obtained by:
average of ground-truths of Princeton benchmark, our al-
gorithm trained on the Princeton benchmark, [KHS10],
[GF08], [SSCO08].

degree between the automatic segmentation and the manual
segmentations. It is in the range [-1,1]. A value of 1 indicates
a complete similarity, whereas a value of -1 indicates a max-
imum deviation between the segmentations being compared.
The figure clearly shows the significant improvement of the
results obtained by our method with comparison to the oth-
ers. More precisely, our method reaches 60% of similarity
rate, when the best result reached by the other methods on
the same corpus is 50%. We have to precise here that these
good results confirm the robustness and the genericity of our
learning since we have trained our edge function on a differ-
ent database containing different models.

Figure 11 shows segmentations obtained by our algo-
rithm for some 3D-meshes selected from INRIA (http://
www-roc.inria.fr/gamma/), TOSCA (http://tosca.
cs.technion.ac.il/), and Stanford (http://graphics.
stanford.edu/data/) databases. The edge function used
to segment the models was learned on the Princeton segmen-
tation benchmark (global learning, 6 models). Again, our al-
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Figure 10: Scores of NPRI (Normalized Probabilistic Rand
Index) averaged over all the LIFL/LIRIS corpus models and
sorted in decreasing order for different algorithms. Although
in this experiment, our method is based on a global learning,
performed on a different database, it outperforms the others.

gorithm correctly segments these meshes, and finds a set of
meaningful parts.

Figure 11: Segmentations results, obtained by our algorithm
trained on the Princeton benchmark, for a variety of meshes
from different databases.

4.3. Algorithm efficiency regarding the category of
models

In this third experiment, we want to study the behavior of
our algorithm regarding the different categories of models in
both benchmarks. For this reason we use the NPRI which
is a more discriminative metric than a simple Rand Index
(see [BVLD10] for more details). The NPRI is computed
for each model, then averaged by category. Figure 12 illus-
trates the results obtained by our algorithm for the Princeton
corpus models, and for the LIFL/LIRIS corpus models. Note

that for the first corpus, we use a categorical learning of size
19, while for the second corpus, we use a global learning of
size 6, both trained on the Princeton benchmark. Globally,
we can notice that for both corpuses, our algorithm gives
quite good results for each category since the scores are
much higher than zero. An interesting point is that the scores
of common categories among the two corpuses are consis-
tent, with a slight drop of performance for the LIFL/LIRIS
corpus which is due to the difference of learning strategy
(categorical vs global on a different database). The figure
illustrates also that the bust category seems to be the most
difficult one to segment (it is associated with the smallest
NPRI values for both benchmarks). The fact is that human
face images are well-known in subjective experiments as a
high-level factor attracting human attention, hence some fea-
tures not relevant from a geometrical point of view can be
considered highly relevant for human observers and thus can
influence the manual ground-truth segmentations.

4.4. Study of the performance of our improved snake
movement

In this experiment, we show how the use of the learned
boundary edge function improves the original snake move-
ment algorithm from Jung et al. [JK04]. To this end, we
compute the similarity between boundaries extracted by our
algorithm using both versions of the snake movement, and
the manual boundaries on the LIFL/LIRIS corpus models.
The most appropriate metric to compute this kind of simi-
larity is the CDI (Cut Discrepancy Index) [BVLD10], since
it allows to compute the mapping degree between the ex-
tracted boundaries of two segmentations of the same model.
The metric is in the range ]−∞;1], and a value of 1 in-
dicates a perfect matching between boundaries of the two
segmentations. Figure 13 illustrates the scores of CDI aver-
aged for each category of models and over all models of the
LIFL/LIRIS corpus for these cases. The results show clearly
that the new snake movement always improves the quality
of the boundaries, whatever the category of models.

4.5. User interaction and coarse to fine segmentation

One of the strong point of our algorithm is that it is fully
automatic; in particular the number of boundaries (and thus
the number of segments) is automatically determined within
our processing pipeline; it corresponds to the number of con-
nected interest regions from the edge classification step (see
figure 4(b)). However if needed, it is quite easy to introduce
human interactions in our process. This can be done by:

• Tuning the classification threshold applied on the edge
function. This threshold is set to 0 in our method; however
it is still possible to decrease (resp. increase) this thresh-
old to obtain more (resp. less) segments. Such a coarse to
fine segmentation is illustrated in figure 14. We have to
notice however that for a too low threshold (see the right
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Figure 12: From left to right, scores of NPRI averaged for each category and for all models from the Princeton bench-
mark [CGF09], and from the LIFL/LIRIS benchmark [BVLD09].

Figure 13: Scores of CDI averaged for each category and
over all models of the LIFL/LIRIS corpus with the origi-
nal [JK04] and our improved version of the snake movement.

hand in figure 14) some regions of interest may become
very large and thus may be abnormally merged leading to
merging some segments (like the bottom of the fingers).
However this kind of problems never happened in all our
experiments, with a threshold set to 0.
• Using a paintbrush, to directly select on the mesh a set

of edges representing a new interest region, similarly
to [LLS∗05]. The segmentation process is then completed
by performing the remaining steps.

4.6. Algorithm robustness regarding geometric
transformations

We assessed the robustness of our method against two kinds
of transformations, namely pose-variation and noise.

(a) H(x) > 0.3 (b) H(x) > 0 (c) H(x) >−0.2

Figure 14: Example of coarse to fine segmentation obtained
by tunning the classification threshold applied on H(x).

• Pose-variation: figure 15 shows the segmentations ob-
tained by our algorithm for the armadillo and human
models with different poses. These models are available
in the Princeton segmentation benchmark. The edge func-
tion used to segment the models is based on a global learn-
ing, with a training set size of 6× 19 models (6 models
selected from each category). Globally, the segmentation
of the models is quite stable, which underlines the pose
robustness of our algorithm.

• Noise: we applied on the vertices of the test models two
random displacements in the direction of x−, y−, and
z−axis (3% and 5% of the bounding box length). Fig-
ure 16 shows the boundaries extracted by our algorithm
for the noisy versions of the ant model. On the top, the
boundaries are generated using an edge function based on
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Figure 15: Algorithm robustness against pose-variation.

a categorical learning, with a training set size of 19 models
(all the training models belong to the ant category); while
in the bottom, the edge function is based on a global learn-
ing, with a training set size of 6× 19 (6 models selected
from each category). When applying a noise of 3%, the
results remain very good for the categorical learning and
correct for the global learning. However when applying
a strong noise (5%) the quality of the boundaries is seri-
ously degraded particularly when using the global learn-
ing. We have conducted tests on 19 models (one model
randomly selected from each category of the Princeton
segmentation benchmark) for 3% and 5% of noise, the
quality of segmentation decreases respectively of 1% and
12% when using the categorical learning, and of 10% and
50% when using the global learning. The quality is mea-
sured by computing the NPRI for each test model. This
moderate robustness is due to the fact that the learning
step is performed on clean data; hence the learned func-
tion fails to extract the right boundaries in the noisy mod-
els since the edges composing them do not share the same
geometric properties as in the clean ones. A solution could
be to artificially add noise on the segmented training data,
before the feature extraction and learning.

4.7. Running time

All the previous experiments were carried out on a 2.99 GHz
Intel(R) Core(TM) 2 Duo CPU with 3.25 Gb memory. Glob-
ally, the running time for the learning step is less than 10

(a) original (b) 3% of noise (c) 5% of noise

(d) original (e) 3% of noise (f) 5% of noise

Figure 16: Algorithm robustness against noise; (top: bound-
ary extraction based on categorical learning, bottom:
boundary extraction based on global learning).

minutes for most of the categories. The process is longer,
around 40 minutes, for some categories of which the size of
models is important such as the armadillo category. The on-
line step (segmentation) runs at an interactive time (around
one minute), except for the armadillo category for which the
running time is more important (around 9 minutes). This is
due to the size of mesh and the number of extracted bound-
aries which are both important (24k vertices and 16 bound-
aries on average). More precisely, the average running time
in seconds for the thinning, contour completion, and snake
movement steps is respectively 0.58, 3.81, and 45.95.

5. Conclusion

In this paper we have presented a framework for segmenta-
tion based on a learning approach. A boundary edge func-
tion is learned from a set of ground-truths using AdaBoost
classifier, and then is used to segment any input 3D-mesh
through different processing steps. Our framework is the first
to address the problem of learning boundary edges for 3D-
mesh segmentation. We have shown the possibility to make a
generic (or global) learning that can lead to segment a model
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without having a prior information about its category. Our
algorithm outperforms the most recent algorithms from the
state-of-the-art, and produces segmentations which are very
similar to those created by humans.

Although these results are accurate, some limitations re-
main and require a thorough analysis and future work. First,
the number of geometric criteria used for classification could
be more important. In particular, adding some rich features
from 3D shape retrieval research fields would certainly im-
prove the results and the sensitivity regarding to noise. The
bust models are difficult to segment even with a training set
of size 19, and our algorithm rather produces a coarse seg-
mentation for this kind of models. This is probably due to
the high semantic aspect carried by a face. This semantic as-
pect influences the manual segmentations, and is difficult to
capture using simple local geometric criteria. Perhaps the so-
lution is to include more global features such as topological
ones; another solution would be to learn a whole structure
of the segmentation per category (a prior graphical model
from the manual segmentations), instead of a simple binary
classification model.
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