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Control of Discrete Event Systems with Respect

to Strict Duration: Supervision of an Industrial

Manufacturing Plant

Abdourrahmane M. ATTO ∗ Claude MARTINEZ †

Säıd AMARI ‡

Abstract

In this paper, we propose a (max,+)-based method for the supervi-
sion of discrete event systems subject to tight time constraints. Systems
under consideration are those modelled as timed event graphs and repre-
sented with linear (max,+) state equations. The supervision is addressed
by looking for solutions of constrained state equations associated with
timed event graph models. These constrained state equations are derived
by reducing duration constraints to elementary constraints whose con-
tributions are injected in the system’s state equations. An example for
supervisor synthesis is given for an industrial manufacturing plant subject
to a strict temporal constraint, the thermal treatment of rubber parts for
the automotive industries. Supervisors are calculated and classified ac-
cording to their performance, considering their impact on the production
throughput.

Keywords: Discrete event systems, (max,+) algebra, dioids, time con-
straints, supervisor, control.

1 Introduction

Discrete Event Systems (DES) are of great interest in research activities dedi-
cated to industrial production systems. Many approaches have been proposed
for the analysis of DES these last few decades (see [6] among others). Some are
related to computational simulations [22], and others are based on the (max,+)-
algebra [4, 14]. Under some assumptions, DES can be modelled as Timed Event
Graphs (TEGs) [14, 25] and thus, the analysis of the system can be described
with linear equations in (max,+)-algebra.

This work concerns the supervision of DES, modelled as TEGs, and assumed
to respect strict temporal constraints for specific processing. The supervision
is aimed at guaranteeing the respect of temporal constraints without impact-
ing significantly the dynamic behaviour of the system. Similar problems of
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meeting time constraints have been recently addressed via different approaches
[27, 21, 3, 26, 20]. We propose solutions based on a constrained (max,+) state
equation for the TEG model of the DES. Constrained state equations are ob-
tained by reducing temporal constraints to elementary constraints and by in-
jecting contributions of these elementary constraints in the state equation of the
TEG models. These elementary constraint equations derive from a simplified
representation of the TEG under consideration, representation which consists
in decomposing a place with a number m of tokens into m places, each one
containing only one token.

The method proposed in this paper is used to synthesize supervisors for an
industrial manufacturing plant subject to a strict temporal constraint. Super-
visors are calculated and classified according to their performance. The perfor-
mance evaluation is of great interest in the literature on the topic of (max,+)
algebra [4, 14, 11]. The performance of a supervisor is measured according to
the maximum throughput of the plant. According to this particular perfor-
mance measure, we can classify the supervisors between those which slow down
the production throughput and those which preserve this production rate. The
cycle time of such a plant modelled as a TEG corresponds to the eigenvalue of
the matrix associated with its graph [4, 9, 15]; the production throughput is the
inverse of the cycle time.

This work is organised as follows. Section 2 provides basics on (max,+)
theory. Then a description is given for the dynamic behaviour of TEGs ac-
cording to linear (max,+) models (section 3), and the integration of temporal
constraints is discussed for this linear model. Section 4 addresses the supervi-
sion problem and provides a method to synthesise supervisors. A first example
is given for the supervision of a constrained system. Section 5 illustrates the
proposed method for the control a single armed robot in a cluster-tool for the
semiconductor industry. Section 6 discusses the supervision of an industrial
plant. The supervision is aimed at guaranteeing the respect of a strict duration
constraint for a heating process without impacting significantly the production
rate of the manufacturing unit. In section 6, we show that the supervision can
be performed thanks to the analytical technique described in section 4 and pro-
vide supervisors that allow for preserving the production rate of the industrial
plant. Finally, section 7 gives a conclusion and addresses perspectives to extend
this work.

2 (max,+) algebra

This section briefly recalls the fundamentals of (max,+) algebra, which is largely
used for the analysis of DES. Further details about this theory can be found
in [16, 10, 14, 8, 23] among others. Some specific results that are essentials to
state on the existence of a solution to the problem tackled here are therefore
given at the end of the section. In what follows, D denotes a set.

Definition 1 (Monoid) A monoid is an algebraic set with an associative in-
ternal operation and an identity element.

Definition 2 (Semiring) (D,⊕,⊗) is a semiring if:

• (D,⊕) is a commutative monoid. Its identity element is denoted by ǫ (null
element).
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• (D,⊗) is a monoid. Its identity element is denoted by e (unit element).

• Multiplication ⊗ distributes over addition and ǫ annihilates D (every x ∈
D is such that x⊗ ǫ = ǫ⊗ x = ǫ).

Definition 3 (Dioid) A dioid (D,⊕,⊗) is an idempotent semiring (every x ∈
D is such that x⊕ x = x).

Hereafter, the product a ⊗ b will be denoted a.b or ab when there is no
possible confusion.

Example 1 (Examples of dioids)

• Let R be the set of real numbers. (R ∪ {−∞},max,+) is a commutative
dioid for which ǫ = −∞ and e = 0. This dioid is denoted by Rmax and is
called (max,+) algebra.

• Let (D,⊕,⊗) be a dioid and Dn×n the set of square matrices of order
n over D. (Dn×n,⊕,⊗) is a dioid called a matrix dioid. The sum and
the matrix product are defined as follows: if A = (Aij), B = (Bij), then
(A⊕B)ij = Aij⊕Bij and (A⊗B)ij =

⊕n

k=1 Aik⊗Bkj. The null element
of the matrix dioid is the matrix composed of ǫ. The unit matrix is the
matrix with e on the main diagonal and ǫ elsewhere.

Definition 4 (Moduloid) Let D be a dioid. A moduloid M over D is a
monoid (M,⊕), endowed with an external operation “ .” D ×M → M, such
that for all λ, µ ∈ D and for all u, v ∈ M :

1. (λ⊕ µ).u = λ.u ⊕ µ.v

2. (λ.µ).u = λ.(µ.u)

3. λ(u⊕ v) = λ.u ⊕ λ.v

4. ǫ.u = ǫ

5. e.u = u

Example 2 (Examples of moduloids) The set Dn of n dimensional vectors
over a dioid D is a moduloid over D. In the same way, the set of Dn×m matrices
over a dioid D is a moduloid over D.

In the rest of the paper (especially in section 4), we consider the moduloid R
n×m
max

defined over the dioid Rmax.
Let (D,⊕,⊗) be a dioid. The idempotency of the operation ⊕ induces over

D, an order structure denoted � and defined by: x � y ⇔ x⊕y = y. This order
relation is compatible with the operations ⊕ and ⊗ (proof in [4]). In (max,+)
algebra, this order coincides with usual order 6. The lower (∧) and upper (∨)
bounds are defined by: x � y ⇔ x⊕ y = y ⇔ x ∧ y = x ⇔ x ∨ y = y = x⊕ y.
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Definition 5 (Completeness in dioids) A dioid (D,⊕,⊗) is complete if

∀c ∈ D, ∀A ⊆ D, c⊗ (
⊕

x∈A

x) =
⊕

x∈A

c⊗ x,

that is if it is closed for infinite sums and if the operation ⊗ distributes over
infinite sums.

A complete dioid D is upper bounded by an element, denoted T , defined by:

T =
⊕

x∈D

x.

This element annihilates (D,⊕), that is T ⊕ x = T for all x ∈ D, and this
element also verifies: T ⊗ ǫ = ǫ.

Note that dioid Rmax is not complete. Rmax ∪ {+∞} with the convention:
(−∞)⊗ (+∞) = (+∞)⊗ (−∞) = −∞ is a complete dioid denoted by Rmax.

Theorem 1 Let D be a complete dioid. The least solution in x of x � ax ⊕ b
is x = a∗b, where a∗ =

⊕

k≥0 a
k is the Kleene star of a.

The proof of this theorem is given in [14].

The problem of multivariable control tackled in this article involves solving
an inequality of the form A ⊗ x > B ⊗ x . In this problem, it is often usefull
to address the existence of solutions that makes synthesis of controller possible.
In this respect, the following lemma is actually a specific case of the results
presented in Allamigeon et al [1]. Earlier works on resolution of this type of
inequality can be found in Butkovič et al [17, 13, 5], in [28] from Walkup et al
and in Cechlárová [7].

Lemma 1 Let v ,u ∈ R
1×n
max be given row vectors and x ∈ R

n
max. The inequality

v ⊗ x > u ⊗ x admits a non-trivial solution if the following necessary and
sufficient condition holds: ∃k ∈ n | vk > uk.

Let us call such index k a critical index. Let Ki be the set containing all
critical indices in a row i of a matrix H . Cechlárová gives in [7] a necessary
and sufficient condition for the existence of a solution for equation of the form
H ⊗ x = Q ⊗ x with H > Q . This condition is expressed in the following
theorem. The proof of this theorem is given in [7]. In this theorem, p denotes
the set of row indices {1, 2, . . . , p} and n is the set of column indices {1, 2, . . . ,m}
of matrices H and Q .

Theorem 2 A system H ⊗ x = Q ⊗ x with H ∈ R
p×n

max , H > Q , is soluble if
and only if

1. each Ki is nonempty,

2. there exist a function j : p → n, with j(i) ∈ Ki for all i ∈ p and satisfying:
for every subset {i1, i2, . . . , ik} of p such that the indices j(i1), j(i2), . . . , j(ik)
are pairwise different, then we have,

hi1j(i1) + hi2j(i2) + · · ·+ hikj(ik) > hi1j(i2) + hi2j(i3) + · · ·+ hikj(i1).
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3 TEG and linear (max,+) models

This section recalls modelling tools for describing the dynamic behaviour of
TEGs (in subsection 3.1) and provides a natural way of integrating the time
constraint in TEGs (subsection 3.2).

3.1 Dynamic behaviour

A Petri net consists of places, directed arcs, and transitions. Directed arcs
connect places and transitions (there is no direct connection between two places
or between two transitions). TEGs are a subclass of Petri Nets in which every
place is connected to only one input and one output transition. According to
the nature of the problem tackled in this paper, we focus on the particular case
where crossing transitions is instantaneous. In such cases, temporisations are set
only over places [25]. The temporisation associated with each place corresponds
to the minimum duration of a specific process running in this place and marked
by a token. A place with temporisation e = 0.0 is simply represented without
its temporisation. Each transition xj is associated with a function xj(k) that
gives the earlier firing time for the kth occurrence of event j. An example of a
TEG is given in figure 1. The dynamic behaviour of this graph is described by

u y

x

3

Figure 1: TEG example.

the system (firing times)

{

x(k + 1) = 3x(k)⊕ u(k + 1),
y(k) = x(k).

A TEG being a directed graph, its dynamic behaviour can be described
thanks to matrices associated with connected components of the graph. Gener-
ally, this dynamic behaviour is represented by a system:

{

x (k + 1) = Ax (k)⊕Bv (k + 1),
y(k) = Cx (k),

(1)

where v denotes the input vector, x the state vector, and y the output vector.
The first equation of (1) is the state equation (all TEGs can be modeled by a
state equation of this form [18]), while the second one is the output equation of
the TEG. For a TEG featuring N transitions, given an initial vector x 0 the set
{xi(k) | 1 6 i 6 N : k = 1, 2, . . . ,K} denotes a firing schedule [21].
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3.2 Maximal duration constraints

On one hand, the minimum duration of tokens in places is expressed by tempo-
risations of these places. On the other hand, if we wish to express a maximum
duration in a place, we must then add an additional constraint.

A maximum duration constraint is defined as a critical time that should not
be exceeded for a given process. Let τmax be a maximum duration constraint for
a certain process and τ be the normal duration of this process. We have τmax > τ
since otherwise, the process will be stopped before being fully completed. Thus
maximum constraints consist in setting upper-bounds in order to avoid, for
sensitive processes, too long or even excessive processing times which can occur
when strong disturbances occur in the system.

Note that the state equation of a TEG involves a representation where each
place contains either zero or one token (any TEG can be modeled by a state
equation of the form Eq. (1), see [18] among others). Thus, a set of constraints
can also be decomposed so as for the contraints to apply on the simplified
representation of the TEG. In this sense, a set of constraints can be expressed as
a function of x (k+1) and x (k). In what follows, we are interested in contraints
that have the following form:

C 0x (k + 1)⊕C 1x (k) 6 Cmaxx (k + 1), (2)

where Cmax contains a set of critical durations that must not be exceeded and
C 0, C 1 describe how these maximal duration constrain the TEG.

Let us consider the TEG represented in figure 2.

Figure 2: Temporal constraint

Let pij be the place linking transition xj to transition xi. The marking
(number of tokens) of place pij is r. If we want to enforce a maximum time du-
ration τmax (with τmax > τ) to tokens in place pij , then the following inequality
must be satisfied:

xi(k) 6 τmaxxj(k − r). (3)

In addition, according to the graph of figure 2, transition xi firing is governed
by

xi(k) = τxj(k − r)⊕ βxg(k − s)⊕ ηxl(k − w). (4)

The above Eqs. (3) and (4) can be rewritten in terms of x (k + 1) and x (k)
by decomposing any place with more than one token in places having only one
token. Such a decomposition have been performed in the application given by
Section 6.1. Concerning this example, we simply consider the special case where
r = 0 and s = w = 1. By taking into account Eqs. (3) and (4), we derive the
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(necessary and sufficient) condition under which a token will not exceed the
duration constraint τmax in place pij :

βxg(k)⊕ ηxl(k) 6 τmaxxj(k + 1). (5)

This constraint is of the form: C 0x (k + 1)⊕C 1x (k) 6 Cmaxx (k + 1), with

x =
(

xg xi xj xl

)′
,

C 0 =
(

ǫ ǫ τ η
)

, C 1 =
(

β ǫ ǫ ǫ
)

,

Cmax =
(

ǫ ǫ τmax ǫ
)

,

and ≪ ′ ≫ denoting matrix transposition. Note that C 0 and C 1 are obtained
from matrices A0 and A1 and Cmax depends on the maximum time duration.
The next example involves two duration constraints.

3

1

2

x1

x2x3

x4

τmax
1

τmax
2

Figure 3: TEG with two duration constraints.

Example 3 Consider the TEG given in figure 3. Durations τ1 = τmax
1 and

τ2 = τmax
2 are the normal duration of tokens in corresponding places and these

durations should not be exceeded. The constraints are:

(a) x1(k) 6 τmax
1 x4(k),

and

(b) x2(k) 6 τmax
2 x1(k).

These constraints are respected if:

(a) true if 3x2(k − 1) 6 τmax
1 x4(k),

(b) true if x3(k − 1) 6 τmax
2 x1(k),

that is, if
(

τ2 ǫ e ǫ
ǫ 3 ǫ τ1

)

x(k) 6

(

τmax
2 ǫ ǫ ǫ
ǫ ǫ ǫ τmax

1

)

x(k + 1),

with x = (x1 x2 x3 x4)
′
.
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A set of constraint equations does not always admit a solution that makes
supervisor synthesis possible. Indeed, the set of state equation and constraint
equation can lead to an ill posed problem. In this respect, we will say that a set of
maximum duration constraints fits the normal behaviour (described by the state
equation) of a TEG if the set of state and constraint equations admit a solution.
We will also say that the firing schedule {xi(k) | 1 6 i 6 N : k = 1, 2, . . . ,K}
is consistant if all constraints are satisfied. As an example, imposing τmax < 8
(resp. τmax < 3) for the TEG # 1 (resp. TEG # 2) of figure 4 does not fit the
normal behaviour of the system since the normal duration of the process (resp.
the synchronization) involved in TEG # 1 (resp. TEG # 2) is greater than or
equal to 8 (resp. 3) time units. Therefore no consistant schedule exist, given
these constraints on those TEG.

TEG # 1

3 5

τmax

TEG # 2

3

τmax

x1

x2

x3

Figure 4: Imposing a constraint τmax < 8 (resp. τmax < 3) for TEG # 1 (resp.
TEG # 2) does not fit the normal behaviour of the system since the TEG state
equations impose a processing time τmax > 8 (resp. τmax > 3) for TEG # 1
(resp. TEG # 2).

4 Supervisor synthesis

This section provides a method for synthesising supervisors of TEGs subject to
a maximum temporal constraint. We assume that transitions of the TEG are
all controllable, that is, firing of each transition can be disabled by a supervisor.
We propose to add a supervisor for the TEG in order to guarantee respect of
the duration constraint for every input v. The supervision is justified by the
following result.

Theorem 3 Consider a linear (max,+) system governed by the state equation

x (k + 1) = Ax (k)⊕Bv (k + 1), (6)

where A and B are matrices with dimensions n× n and n×m, n and m being
the number of state transitions and the number of input transitions respectively.

Assume that this system is subject to maximum duration constraints:

C 0x (k + 1)⊕C 1x (k) 6 C 2x (k + 1), (7)

where C 0,C 1 and C 2 are matrices with dimensions ℓ× n, ℓ being the number
of constraints.
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A controller that allows the duration constraints to be satisfied can be ob-
tained by modifying the state equation in the form (constrained state equation):

x (k + 1) = (A⊕M )x (k)⊕Bv(k + 1), (8)

via a modification matrix M , which is such that:

C 0(A⊕M )⊕C 1 6 C 2M . (9)

Proof : If x (k + 1) = Ax (k)⊕Mx (k)⊕Bv(k + 1), then

C 2x (k + 1) = C 2Ax (k)⊕C 2Mx (k)⊕C 2Bv(k + 1).

If : C 1 6 C 2M , then

C 2x (k + 1) > C 2Ax (k)⊕C 1x (k)⊕C 2Bv(k + 1).

Thus,
C 1x (k) 6 C 2x (k + 1).

And if :C 0(A⊕M ) 6 C 2M , then

C 2x (k + 1) > C 2Ax (k)⊕C 0(A⊕M )x (k)⊕C 2Bv(k + 1).

Thus,
C 0(A⊕M )x (k) 6 C 2x (k + 1),

and the result follows.

Remark 1 We have:

• Supervisors guaranteeing respect of the duration constraints correspond
to M -solutions (when they exist) of the inequality C 0(A ⊕M ) ⊕C 1 6

C 2M . Note that in the case where C 0A ⊕ C 1 6 C 2A, the maximal
duration constraints are satisfied without any supervision.

• As mentioned in section 3.2 above, C 0 and C 1 still depend on matrices
A0 and A1 whereas C 2 depends only on maximum time durations.

• The existence of a modification matrix M depends on the constraints we
want to impose. For a single constraint, ℓ = 1, equation 7 reduces to an
inequality of the form u ⊗ y ⊕ y0 6 v ⊗ y for each column of M and
Lemma 1 can be applied. For a set of constraints (ℓ > 2), Theorem 2,
applied to the columns of M , makes it possible to seek for the existence
of solutions in M for the constrained system.

Example 4 By considering again Example 3, condition given by Eq. (9)
reduces to C 1 6 C 2M and a modification matrix M can easily be determined.
Indeed, we are concerned with the two conditions:

e 6 τmax
2 m1,3, and 3 6 τmax

1 m4,2.

A corresponding supervisor is thus a set of two places {p1,3, p4,2}, each one
containing one token. The temporisations of the places are: null (e) for place
p1,3 and (3− τmax

1 ⊕ e) for place p4,2. The graph of figure 3, provided with this
supervisor is represented in figure 5.
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s 3

2

1

x1

x2x3

x4

(3− τmax
1 ⊕ e)

τmax
1

τmax
2

Figure 5: Supervision of the TEG given in figure 3, with respect to the strict
duration constraints τmax

1 and τmax
2 .

5 Example: control of robots in cluster-tools

The scheduling a control of robots in cluster-tools dedicated to the semicon-
ductor industry has been deeply studied in the last decade [21, 29]. The TEG
considered in this example, see Figure 6, is a simplifyed instance of a model
given by Wu et al [29] that represents the behaviour of a single armed robot
in a (2,1) schedule of a cluster-tool. Briefly, a cluster-tool dedicated to semi-
conductor industry is a set of processing modules (PM) where a chemeical or a
thermal treatment is applied to a waffer. A robot unloads the waffers one by
one and aligns them from a load-lock and serves the different PM. The robot
also unloads the waffer from a PM and transports it to the next PM or to the
load-lock when the complete process has completed. A waffer is generally pro-
cessed in several steps. In this example, the cluster-tool has three PMs, two are
dedicated to the first step, and the third to the second step. The durations of
these elementary tasks are: unloading from the load-lock and aligning a waffer,
λ0 time units, unloading from a PM or loadind to a PM or to the load-lock (no
aligning is necessary), λ time units, a robot move, µ time units, process step
one, τ1, process step two, τ2. Additional durations d1 and d2 are tolerated to
step one and two.

The dynamic behaviour of this TEG is governed by x (k + 1)=A0

∗A1x (k),

and duration constraints are given by C 0x (k + 1)6C 2x (k + 1), with the fol-
lowing matrices where ǫ has again been replaced by a dot,

A0 =









































· · · · · · · · · · · ·

e · · · · · · · · · · ·

· τ1 · · · · · · · · · λ2µ2

· · λ2µ· · · · · · · · ·

· · · · · · · · · · · ·

µ · · ·τ2 · · · · · · ·

· · · · · · · · · µ2λλ0 · ·

· · · · · · · · · · · ·

· · · · · λ2µ2
· τ1 · · · ·

· · · · · · · · λ2µ · · ·

· · · · · · · · · · e ·

· · · · · · µ · · · τ2 ·









































,A1 =









































··· µ2λλ0· · · ·····

··· · · · · ·····

··· · · · · ·····

··· · · · · ·····

··· e · · · ·····

··· · · · · ·····

··· · · · · ·····

··· · · · e ·····

··· · · · · ·····

··· · · · · ·····

··· · · · · ·····

··· · · · · ·····









































,

10



τ1

τ1

τ2

τ2

µ

µ

λ2µ

λ2µ

λ2µ2

λ2µ2

µ2λλ0

µ2λλ0

x1

x2 x3 x4 x5 x6

x7

x8 x9 x10 x11 x12

Figure 6: A model of a single armed cluster-tool in a (2,1) schedule (Supervision
discussed in Section 5), the strict duration constraints are τmax

1 = τ1d1 and
τmax
2 = τ2d2.

C 0 =









· τ1·· · · · · ·· · λ2µ2

µ · ··τ2 · · · ·· · ·

· · ·· · λ2µ2
· τ1·· · ·

· · ·· · · µ · ··τ2 ·









,C 2 =









·τ1d1·· · ·· · ·· · ·

· · ··τ2d2·· · ·· · ·

· · ·· · ··τ1d1·· · ·

· · ·· · ·· · ··τ2d2·









.

The above constraint can be written in the form C 0A
∗
0A1⊕C 0M 6 C 2M ,

which is also equivalent to the system of inequalities:







C 0A
∗
0A1 6 C 2M

and
C 0M 6 C 2M .

(10)

Let us check for the existence of solutions in M that satisfies inequality
C 0M 6 C 2M . This can be performed either by using Theorem 2 or by trying
to solve directly, the inequalities involves.

• Method 1 : from Theorem 2.

We have thatC 0M 6 C 2M is equivalent toC 0M⊕C 2M 6 C 2M , that
is, to (C 0⊕C 2)M 6 C 2M . Let us consider the equation (C 0⊕C 2)M =
C 2M . One can seek for a solution to this equation by checking the condi-
tions of Theorem 2, with H = C 0⊕C 2 and Q = C 2. Here, we have, with
the same notation as in Theorem 2, K1 = {2},K2 = {5},K3 = {8},K4 =
{11}. Furthermore, for the function j defined on the set {1, 2, 3, 4} by
j(1) = 2, j(2) = 5, j(3) = 8, j(4) = 11, one can verify that any sub-
set {i1, i2, . . . , ik} of {1, 2, 3, 4} is such that (C 0 ⊕ C 2)i1,j(i1) + (C 0 ⊕
C 2)i2,j(i2)+. . .+(C 0⊕C 2)ik,j(ik) > (C 0⊕C 2)i1,j(i2)+(C 0⊕C 2)i2,j(i3)+
. . .+ (C 0 ⊕C 2)ik,j(i1). It follows that (C 0 ⊕C 2)M = C 2M admits at
least one solution in M . Consequently, the existence of a solution for the
constraint C 0M 6 C 2M is guaranteed.

• Method 2: direct approach.
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By developping C 0M and C 2M , we have that: C 0M 6 C 2M is equiv-
alent to















λ2µ2 m12,ℓ 6 τ1d1 m2,ℓ

µ m1,ℓ 6 τ2d2 m5,ℓ

λ2µ2 m6,ℓ 6 τ1d1 m8,ℓ

λ2µ2 m7,ℓ 6 τ2d2 m11,ℓ

(11)

for ℓ = 1, 2, . . . , 12, where M = (mi,ℓ)16i612,16ℓ612. This system is solu-
ble since the variables involved in every row of Eq. (11) are independent
from those of other rows and for a fixed ℓ, every inequality is of the form
ax 6 by with x and y being independant variables.

Now, let us consider the first inequality involved in Eq. (10). The reader
can check that C 0A

∗
0A1 6 C 2M reduces to















τ1 a2,ℓ ⊕ λ2µ2 a12,ℓ 6 τ1 d1m2,ℓ

µ a1,ℓ ⊕ τ2 a5,ℓ 6 τ2 d2m5,ℓ

λ2µ2 a6,ℓ ⊕ τ1 a8,ℓ 6 τ1 d1m8,ℓ

µ a7,ℓ ⊕ τ2 a11,ℓ 6 τ2 d2m11,ℓ

(12)

for ℓ = 4 and ℓ = 7, where Aex = A∗
0A1 = (ai,ℓ)16i612,16ℓ612.

Finally, in order to solve Eq. (10), we can consider Eqs. (11), (12) and set
m12,ℓ = m1,ℓ = m6,ℓ = m7,ℓ = ǫ, so that the supervision reduces in solving Eq.
(12).

Let us consider a case where no consistant schedule can be achieved without
a controller. On one hand, with Aex = A∗

0A1 calculated for the following
numerical values, λ0 = 14, λ = 10, µ = 2, τ1 = 129, d1 = 20, τ2 = 79, d2 = 15,
the maximal durations are over not respected, see figure7. On the other hand,
the following modification matrix M ex,

Aex =









































··· 29 · · · ·····
··· 29 · · · ·····
··· 228 · · 254 ·····
··· 250 · · 276 ·····
··· e · · · ·····
··· 79 · · · ·····
··· 154 · · 180 ·····
··· · · · e ·····
··· 103 · · 129 ·····
··· 125 · · 151 ·····
··· 125 · · 151 ·····
··· 204 · · 230 ·····









































,M ex =









































··· · · · · ·····
··· 105 · · 105 ·····
··· 254 · · 254 ·····
··· 276 · · 276 ·····
··· e · · · ·····
··· 79 · · · ·····
··· 180 · · 180 ·····
··· e · · e ·····
··· 129 · · 129 ·····
··· 151 · · 151 ·····
··· 151 · · 151 ·····
··· 230 · · 230 ·····









































,

helps respecting all maximal durations constraints.

6 Application

A typical example of a system subject to a strict duration constraint is that
of a manufacturing unit which includes heat treatment. We are interested in
such a manufacturing unit, intended to produce rubber tubes for automobile
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◦ and + 7−→ Sojourn time for the kth wafer in p32

• and ⋄ 7−→ Sojourn time for the kth wafer in p98

Figure 7: Sojourn time in places p3,2, and p9,8. Without controller, sojourn
time exceeds the maximum admited value τ1d1, while for the modified system,
sojourn time in places p3,2, and p9,8 is always smaller than τ1d1

equipment. The sizing of this industrial plant has been solved and validated
via computational simulations in [24], and the resource optimization for the
manufacturing unit has been treated in [2]. The description of the industrial
manufacturing unit is given in the form of TEG in section 6.1. Then we pro-
pose three supervisors which allow of the maximum duration constraint to be
respected for the heating zone of the furnace (section 6.2).

6.1 TEG model for a manufacturing

The process of interest is an industrial plant specialising in the manufacturing
of rubber tubes for automobile equipment. The plant is represented in figure
8. This figure represents three conveyor belts connected in loops. Loops 1

Figure 8: Manufacturing unit.

and 2 are identical. Each one is composed of a loading station (A, on loop
2) where parts subject to heat treatment are fixed onto specific pallets, an
unloading station (E) where parts are dismounted, and a furnace (IO cells).
The furnace itself consists of two zones, a heating zone and a cooling zone.
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The parts are subjected to high temperatures during the time they spent in
the first zone of the furnace. Then, they are cooled in the second zone. After
cooling of parts, pallets are brought to the unloading station where an operator
dismounts the parts and dispatches them in batches towards another unit of
the production workshop. The transport device is not always available for the
evacuation of treated products and this could cause an accumulation of pallets
at the unloading station. In such cases, saturation may occur at the entry of
the unloading station, causing a blockage in the system. The pallets present
in the furnace then exceed their processing time and the embarked products
are burned and lost. Thus, for this application, the time spent in the heating
zone is critical: the maximum heating time should not be exceeded even when
non-evacuation of treated products occurs at the unloading station.

Loops 1 and 2 being identical, we can restrict our attention to one loop
(2 in the sequel). This manufacturing unit shows synchronisations between
loops. Indeed, loading a pallet is possible only if an empty pallet and parts to
be supplied are present at the loading station A. In the same way, availability
of the transport device is necessary at the unloading station to take away the
treated parts (station E) and make available an empty pallet for forthcoming
use. This type of industrial plant that uses synchronisations can be modelled
as a TEG. The TEG model of this application is that of figure 9. In this graph,

y

4

1

3

10
10

3

2

u

q x1

x2

x3

x4

x5

x6

x7

Figure 9: TEG model for the loop 2 of the manufacturing unit represented by
figure 8.

transitions are associated with the following events:

• u: arrival of the parts;

• x1: beginning of the loading operation;

• x2: starting transport to the furnace;

• x3: entry to the heating zone of the furnace;
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• x4: entry to the cooling zone of the furnace;

• x5: starting transport to the evacuation zone;

• x6: beginning of the unloading operation;

• x7: part evacuation;

• q: unloading operator (may be present or absent).

• y: departure of the parts.

The input transition u models the arrival of parts to be treated and the
transition q models the transport device for evacuating finished parts. When the
transport device malfunctions, saturation can occur due to the non-evacuation
of treated products. The output transition y corresponds to actually treated
and evacuated parts. Crossing transition xi corresponds to the occurrence of
an event, for example, crossing x1 corresponds to the beginning of the loading
operation on a pallet, x2 to the end of this operation. Operation durations are
indicated close to places; for example, the transfer of a pallet from the loading
station to the entry of the furnace (station I) is about 3 time units.

Tokens (in places) model the resources of the manufacturing unit: pallets,
operators, capacity of conveyors . . . . For instance, the transfer time from un-
loading station E to loading station A is four time units. In addition, there are
actually seven free pallets and there remain two places available on the conveyor.

The state vector, x , of this TEG is composed of transitions x1, x2, · · · , x7;
and the input vector, v , is composed of transitions u and q. State and output
equations that describe the dynamic behaviour of the TEG of figure 9 are given
in (max,+)-algebra by

x1(k + 1)= x2(k) ⊕4x7(k − 6) ⊕u(k + 1),
x2(k + 1)=1 x1(k + 1)⊕ x3(k − 1),
x3(k + 1)=3 x2(k + 1)⊕ x4(k − 1),
x4(k + 1)=10x3(k + 1)⊕ x5(k − 1),
x5(k + 1)=10x4(k + 1)⊕ x6(k − 2),
x6(k + 1)=3 x5(k + 1)⊕ x7(k),
x7(k + 1)=2 x6(k + 1)⊕ x1(k − 1) ⊕q(k + 1),
y(k) = x7(k).

(13)

These equations yield a matrix representation where state x (k) at time k de-
pends on states x (k), x (k − 1), x (k − 2), x (k − 3), x (k − 7) and on input v (k).
However, there exists a simplified representation of the TEG state of the form:
x (k + 1) = Ax (k) ⊕ Bv(k + 1). Indeed, a place with m tokens and tempo-
risation α is equivalent to m places, each of them having only one token and
temporisation αi, with

∑

αi = α. According to this decomposition, the TEG
model of the manufacturing unit is that of figure 10 (reduction from depth 7 to
depth 1).

The dynamic behaviour of the simplified TEG obtained (figure 10) is de-
scribed by a system of the form:

{

x (k + 1) = H 0x (k + 1)⊕H 1x (k)⊕K 0v(k + 1),
y(k) = Sx (k),

(14)
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Figure 10: Decomposition of the TEG given in figure 9.

where matrices K 0, H 0, H 1 and S are given below. In these matrices, ǫ has
again been replaced by a dot.

K 0 =

(

e . . . . . . . . . . . . . . . . . .

. . . . . . e . . . . . . . . . . . .

)′

,

H 0 =





































































. . . . . . . . . . . . . . . . . . .

1 . . . . . . . . . . . . . . . . . .

. 3 . . . . . . . . . . . . . . . . .

. . 10 . . . . . . . . . . . . . . . .

. . . 10 . . . . . . . . . . . . . . .

. . . . 3 . . . . . . . . . . . . . .

. . . . . 2 . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . .





































































,
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H 1 =





































































. e . . . . . . . . . . . . . . . . e

. . . . . . . e . . . . . . . . . . .

. . . . . . . . e . . . . . . . . . .

. . . . . . . . . e . . . . . . . . .

. . . . . . . . . . e . . . . . . . .

. . . . . . e . . . . . . . . . . . .

. . . . . . . . . . . . e . . . . . .

. . e . . . . . . . . . . . . . . . .

. . . e . . . . . . . . . . . . . . .

. . . . e . . . . . . . . . . . . . .

. . . . . . . . . . . e . . . . . . .

. . . . . e . . . . . . . . . . . . .

e . . . . . . . . . . . . . . . . . .

. . . . . . 4 . . . . . . . . . . . .

. . . . . . . . . . . . . e . . . . .

. . . . . . . . . . . . . . e . . . .

. . . . . . . . . . . . . . . e . . .

. . . . . . . . . . . . . . . . e . .

. . . . . . . . . . . . . . . . . e .





































































,

and

S =
(

. . . . . . e . . . . . . . . . . . .
)

.

From theorem 1 and the first equation of (14), we are concerned with the
system:

{

x (k + 1) = H ∗
0H 1x (k)⊕H ∗

0K 0v(k + 1),
y(k) = Sx (k).

(15)

Let H = H ∗
0H 1 and K = H ∗

0K 0. We thus obtain the following system
{

x (k + 1) = Hx (k)⊕Kv(k + 1),
y(k) = Sx (k).

(16)

which is of the form Eq. (1). Matrices H ∗
0, H and K are given below.

H ∗
0 =





































































e . . . . . . . . . . . . . . . . . .

1 e . . . . . . . . . . . . . . . . .

4 3 e . . . . . . . . . . . . . . . .

14 13 10 e . . . . . . . . . . . . . . .

24 23 20 10 e . . . . . . . . . . . . . .

27 26 23 13 3 e . . . . . . . . . . . . .

29 28 25 15 5 2 e . . . . . . . . . . . .

. . . . . . . e . . . . . . . . . . .

. . . . . . . . e . . . . . . . . . .

. . . . . . . . . e . . . . . . . . .

. . . . . . . . . . e . . . . . . . .

. . . . . . . . . . . e . . . . . . .

. . . . . . . . . . . . e . . . . . .

. . . . . . . . . . . . . e . . . . .

. . . . . . . . . . . . . . e . . . .

. . . . . . . . . . . . . . . e . . .

. . . . . . . . . . . . . . . . e . .

. . . . . . . . . . . . . . . . . e .

. . . . . . . . . . . . . . . . . . e





































































,
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H =





































































. e . . . . . . . . . . . . . . . . e

. 1 . . . . . e . . . . . . . . . . 1

. 4 . . . . . 3 e . . . . . . . . . 4

. 14 . . . . . 13 10 e . . . . . . . . 14

. 24 . . . . . 23 20 10 e . . . . . . . 24

. 27 . . . . e 26 23 13 3 . . . . . . . 27

. 29 . . . . 2 28 25 15 5 . e . . . . . 29

. . e . . . . . . . . . . . . . . . .

. . . e . . . . . . . . . . . . . . .

. . . . e . . . . . . . . . . . . . .

. . . . . . . . . . . e . . . . . . .

. . . . . e . . . . . . . . . . . . .

e . . . . . . . . . . . . . . . . . .

. . . . . . 4 . . . . . . . . . . . .

. . . . . . . . . . . . . e . . . . .

. . . . . . . . . . . . . . e . . . .

. . . . . . . . . . . . . . . e . . .

. . . . . . . . . . . . . . . . e . .

. . . . . . . . . . . . . . . . . e .





































































,

and

K =

(

e 1 4 14 24 27 29 . . . . . . . . . . . .

. . . . . . e . . . . . . . . . . . .

)′

.

6.2 Supervision of the industrial plant

6.2.1 Constraint expression

The supervision is aimed at preventing parts being lost because of possible
failure in the transport device. The (max,+)-equation that governs the time
spent by a part in the heating zone of the furnace is derived from the dynamic
behaviour of the simplified TEG of figure 10 and is:

x4(k + 1) = 10x3(k + 1)⊕ x10(k). (17)

To avoid losing parts, a product should not exceed 10 time units in the heating
zone of the furnace (place that links transition x3 to transition x4 in figures 9
and 10). Thus, this constraint will be respected by forcing

x4(k + 1) 6 10x3(k + 1), (18)

Taking Eq. (17) into account, condition Eq. (18) will be satisfied iff:

x10(k) 6 10x3(k + 1). (19)

Denoting

Q1 =
(

. . . . . . . . . e . . . . . . . . .
)

,

and

Q2 =
(

. . 10 . . . . . . . . . . . . . . . .
)

,

the constraint condition Eq. (19) is thus of the form Eq. (7): Q1x (k) 6

Q2x (k + 1).
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6.2.2 Supervision of the manufacturing unit

The dynamic behaviour of the manufacturing unit is described with the (max,+)
system Eq. (16). The maximum duration constraint imposes

Q1x (k) 6 Q2x (k + 1).

From theorem 3, a supervisor guaranteeing respect of the duration constraint
can be calculated by applying a state modification of the form

x (k + 1) = (H ⊕M 0)x (k)⊕Kv(k + 1), (20)

where M0 (supervision matrix) is a matrix satisfying

Q1 6 Q2M 0. (21)

The only non null element of Q1 being (Q1)1,10 = e, it is sufficient to consider
the solutions of:

e 6

19
⊕

j=1

(Q2)1,j(M 0)j,10, (22)

that is,
e 6 10(M 0)3,10. (23)

The smallest positive solution of the latter equation is (M 0)3,10 = e. The
supervision obtained from this solution involves adding to the graph of figure 10,
a place having a single token (with no temporisation because (M 0)3,10 = e ≡ 0)
from transition x10 to transition x3.

Let mx3 be the state of transition x3 after supervision. The firing of transi-
tion mx3 is then subject to

mx3(k + 1) = x3(k + 1)⊕ x10(k). (24)

Transition x10 being an auxiliary variable derived from the expansion of the
original model of the manufacturing unit (represented by the graph of figure 9),
we do not have access to this transition in practice: it is neither controllable,
nor observable [12]. But from Eq. (16) we derive that x10(k) = x5(k − 1), and
equation Eq. (24) becomes

mx3(k + 1) = x3(k + 1)⊕ x5(k − 1). (25)

The resulting graph modification involves adding a single place with two tokens
from transition x5 to transition x3. State modification driven by Eq. (25) leads
to the supervisor represented in figure 11. This supervision involves imposing
only two tokens in the cycle x3 → x5 → x3 which corresponds to IO cells of
the plant (figure 8), that is, the whole furnace (heating and cooling zone). It
is easy to check that if we do this, no product will remain more than 10 time
units in the heating zone of the furnace because there will be a free place in
the cooling zone. This supervision guarantees that parts (a maximum of two
parts) entering the furnace cannot be lost even when saturation occurs at the
evacuation station.

In a similar way, we can obtain other supervisors from Eq. (25), and by
taking into account other equations of Eq. (13) (for controllability reasons).
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Figure 11: First supervision.

Indeed, from the fifth equation of Eq. (13), we have x5(k − 1) = 10x4(k − 1)⊕
x6(k−4). In this equation, 10x4(k−1) represents the normal incrementation of
the process due to the dynamic behaviour of the TEG, and x6(k− 4) represents
availability of a resource (conveying to the unloading station). Non-evacuation
of treated parts affects the availability of the resource: there is no more place at
the unloading station to receive new parts and the treated parts accumulate in
the conveyor. It follows that x5(k − 1) = x6(k − 4). From this latter equation
and Eq. (25), we thus obtain the state modification:

mx3(k + 1) = x3(k + 1)⊕ x6(k − 4). (26)

This new supervision involves adding a single place with five tokens from tran-
sition x6 to transition x3. This leads to the supervision presented in figure 12.
The supervisor imposes a maximum of five tokens in cycle x3 → x6 → x3. It
is also easy to see that imposing five tokens in this cycle makes it possible to
ensure that no parts will remain more than 10 time units in the heating zone of
the furnace: five place are available in the cycle x4 → x6 → x4. This supervision
is represented in figure 12.

Finally, and in a similar way, a third supervisor is calculated from Eq. (26)
and the sixth equation of Eq. (13). Indeed, we have x6(k − 4) = 3x5(k − 4) ⊕
x7(k − 5), where 3x5(k − 4) represents the normal incrementation of a process
due to the dynamic behaviour of the TEG and x7(k− 5) represents availability
of a resource (unloading operator). Non-evacuation of treated parts only affects
resource availability and it follows that x6(k − 4) = x7(k − 5). We thus obtain
from this equation and Eq. (26) the corresponding state modification:

mx3(k + 1) = x3(k + 1)⊕ x7(k − 5). (27)
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Figure 12: Second supervision.

By proceeding in this way, the supervision involves imposing six tokens in cycle
x3 → x7 → x3. The supervision obtained is given in figure 13.

6.2.3 Classification of supervisors

This section discusses the classification of supervisors synthesised in section
6.2.2. Classification is addressed by comparing the production rate yielded
by “TEG+supervisor” systems, in comparison with the production rate of the
non-supervised manufacturing unit. For this purpose, we compute cycle times
associated with the TEGs of figures 9, 11, 12 and 13. The cycle time is the
inverse of the production throughput.

Let λ be the cycle time of the non-supervised manufacturing unit (figure 9).
The following procedure (see [9, 19]) makes it easy to determine λ: for every
cycle i (sequence of vertices and arcs which allows a direct connection from i to
i) of the graph, determine the ratio

λi =
Sum of cycle temporisations

Number of tokens in the cycle
. (28)

Then, λ is the maximum of λi.
From the above procedure, the cycle time of the non-supervised unit is:

λ = max{
33

7
,
1

1
,
3

2
,
10

2
,
10

2
,
3

3
,
2

1
,
0

13
} = 5, (29)

and the cycle times λ′, λ′′ and λ′′′ of the unit supervised according to figures
11, 12 and 13 respectively, are:

λ′ = max{λ,
20

2
} = 10, (30)
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Figure 13: Third supervision.

λ′′ = max{λ,
23

5
} = 5, (31)

λ′′′ = max{λ,
25

6
} = 5. (32)

The cycle time λ′ of the supervised TEG of figure 11 is greater than λ. Thus,
the supervision represented in figure 11 affects the production throughput of the
industrial plant. In contrast, λ′′ = λ′′′ = λ: supervisors represented in figures
12 and 13 preserve the initial production throughput of the industrial plant.
Now, between the TEGs in figures 12 and 13, the last one has the smallest
supervisor’s cycle time (cycle time yielded by adding the supervisor’s place)
since 23/5 is greater than 25/6. As a matter of fact, both supervisors lead to
the same resulting throughput for the plant and they are therefore equivalent
according to production throughput criteria.

To illustrate the plant functioning with and without supervision, assume
that the unloading operator may not be present unless there are 100 time units.
If input u is free of control, then figure 14 displays firing of transitions u, x3, x4,
and y for the non-supervised plant and figure 15 shows the firing times of these
transitions for the supervised graph given by figure 13. We observe that the de-
lay of firing between x3(6) and x4(6) is 86 for the non-supervised plant: products
are lost, while supervision ensures respect of the time constraint which is 10 time
units in the place that links transitions x3(k) to x4(k).

7 Conclusion

The work presented in this paper tackles the problem of the synthesis of super-
visors aimed at guaranteeing maximum duration constraints in TEGs. Results
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Figure 14: Unsupervised graph.

are given by considering solutions of constrained state equations. The approach
proposed leads to the derivation of a whole class of supervisors. A classifica-
tion method is then needed to evaluate their performance. In the application
treated, we propose the cycle time as the performance criterion. We observe
that two supervisors obtained from our method preserve the original cycle time
of the production unit, that is, they impose respect of the maximum duration
constraint without impacting the production throughput of the industrial unit.

The approach used in this work can be extended to other cases involving
more stringent constraints and this can probably lead to less direct synthesis
of supervisors. In future work, we plan to investigate the interesting problem
of being able to directly integrate performance parameters into the constraint
expression, in order that the derived supervisors do not affect the production
throughput of the original system.
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Technical Report 191, INRIA, 1983.

[10] G. Cohen, D. Dubois, J.P. Quadrat, and M. Viot. A linear system theoretic
view of discrete event processes and its use for performance evaluation in
manufacturing. IEEE Trans. on Automatic Control, 30:pp 210–220, 1985.

[11] G. Cohen, P. Moller, J.P. Quadrat, and M. Viot. Algebraic tools for the
performance evaluation of discrete event systems. 1985.

[12] C. Commault. Feedback stabilisation of some event graph models. IEEE
Trans. on Automatic Control, 1998.

[13] R. A. Cuninghame-Green and P. Butkovic̆. The equation a⊗x = b⊗y over
(max, +). Theor. Comput. Sci., 293(1):3–12, 2003.
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Mathématiques Informatique, 1977.
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événements discrets. PhD thesis, ECN - Université de Nantes, 1996.
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