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Abstract

In this paper, we propose mechanisms to improve instantiation heuristics by incorporating

weighted factors on variables. The proposed weight-based heuristics are evaluated on several

tree search methods such as chronological backtracking and discrepancy-based search for

both constraint satisfaction and optimization problems. Experiments are carried out on

random constraint satisfaction problems, car sequencing problems, and jobshop scheduling

with time-lags, considering various parameter settings and variants of the methods. The

results show that weighting mechanisms reduce the tree size and then speed up the solving

time, especially for the discrepancy-based search method.

Keywords: Weight-based heuristics, tree search, constraint satisfaction, scheduling.

1 Introduction

This paper deals with the solving of combinatorial problems expressed in the Constraint Satisfac-

tion Problem (CSP) formalism. A CSP is defined by a triple (X,D,C) where X = {X1, . . . , Xn}

is a finite set of variables, D = {D1, . . . , Dn} is the set of domains for each variable, each Di

being the set of discrete values for variable Xi, and C = {C1, . . . , Cm} is a set of constraints

[8, 32]. For optimization problems, an objective function f is added to the problem definition

and we talk about a Constraint Satisfaction Optimization Problem (CSOP). An instantiation

of a subset of variables corresponds to an assignment of these variables by a value taken from

their domain. An instantiation is said to be complete when it concerns all the variables of X.

Otherwise, it is called a partial instantiation. A solution is a complete instantiation satisfying

the constraints. An inconsistency in the problem is raised as soon as a partial instantiation
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cannot be extended to a complete one. For a CSOP, a solution s∗ is optimal if its cost f(s∗) is

lower than or equal to the cost of all other solutions (for a minimization problem).

Following this definition, it is clear that CSPs can model a broad spectrum of decision

problems, from satisfiability problems to optimization problems. Solving CSPs is a general

research domain based on tree search methods embedding three main components: search tree

expansion strategy, constraint propagation mechanisms, and variable/value ordering heuristics.

CSPs are known to be NP-complete problems and each component has a strong impact on the

quality of the search method. CSPs appear in various domains and many search algorithms have

been developed to solve them. In this paper, we are concerned with complete methods that have

the advantage of finding at least a solution to a problem, if such a solution exists. A widely

studied class of complete algorithms relies to depth first search and backtracking mechanisms.

More particularly, the purpose of this paper is to propose improving techniques for tree

search. The method that we privileged here is discrepancy search, an alternative to depth first

search (the principles and references are given in the next section on the scientific background).

We then propose to analyze the causes of failures in the search tree and derive variables weighting

for ordering heuristics. In the first part of the paper, we use these techniques for constraint

satisfaction problems, in particular randomly generated CSPs and car-sequencing instances.

A variant, named as YIELDS, of the seminal limited discrepancy search (LDS) method serves

as a support for developing the search tree. In the second part, the techniques are adapted for

handling combinatorial optimization problems. A climbing discrepancy search (CDS) variant with

weighted factors is proposed for jobshop scheduling with time-lags. We selected this particular

scheduling problem for its intrinsic genericity, as well as its practical relevance in the process

industry.

The paper is organized as follows: The next section provides a brief overview and background

on search methods and ordering heuristics. Section 3 describes a heuristic based on variable

weighting and its integration in a discrepancy-based search method to solve different constraint

satisfaction problems, namely random CSPs and car-sequencing benchmarks. Section 4 adapts

the previous mechanisms for an optimization context (shop scheduling with makespan minimiza-

tion). It reports computational results on jobshop scheduling problems with time-lags. The last

section concludes this study and gives some ideas for further works in this area.
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2 Background

In a tree search method, at each step, a partial solution is extended by assigning a value to an

extra variable. When none of the values of a variable are consistent with the partial solution

(dead-end), backtracking takes place. This kind of methods is usually stopped either as soon

as a solution is obtained or when the complete tree has been explored. In the worst case, it

needs an exponential time in the number of variables. Improvements of backtracking algorithm

have focused on the three phases of the algorithm [8]: ordering heuristics, moving forward

(look-ahead schemes), and backtracking (look-back schemes). The most common principle for

performing systematic search traverses the space of partial solutions in a depth-first manner.

Chronological Backtracking (CB) is a well-known method based on the depth-first search

principle for solving combinatorial problems. The method CB extends a partial instantiation by

assigning to a new variable a value, which is consistent with the previous instantiated variables.

When a dead-end appears, it goes back to the latest instantiated variable trying another value.

Forward-Checking (FC) and Arc-Consistency (AC) are two inference method types, which

can be associated with (CB) (or any tree search methods), respectively denoted hereafter by

CB-FC, and CB-AC a.k.a. MAC (Maintaining Arc-Consistency). For CB-FC, propagations are

limited to variables in the neighborhood of the latest instantiation. MAC suppresses inconsistent

values in the domain of all uninstantiated variables. Although CB-FC was considered as the best

instantiation algorithm for a long time [29], MAC is now recognized as one of the most performing

existing method [36].

Variable and value ordering heuristics may have a great impact for solving decision problems.

They were studied in many various fields like SAT, CSP, or combinatorial optimization [18, 24].

They aim to provide an order on variables and values to speed up the search for obtaining a

solution (possibly having good quality). The proposed order for the selection of the next variable

or the next value for a variable instantiation can be static (i.e., the orders are definitively chosen

at the beginning of the search) or dynamic (i.e., the orders may change during the search).

Variable and value ordering heuristics are generally based on opposite principles. Variable

ordering heuristics exploit the fail-first principle [2, 13]. It aims to reduce the tree size by

selecting firstly most constrained variables, which can prune quickly some inconsistent branches.

On the contrary, value ordering heuristics commonly use the succeed-first principle for selecting

values that can belong to a solution so as to restrict backtracks. Some generic (dynamic)

variable ordering heuristics consider the concept of degree of a variable, defined as the number

of constraints involving it. For example:
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• dom/ddeg [3]: it selects first the variable having the minimal ratio between domain size

and degree. The degree can be computed dynamically by the number of constraints linking

a given variable to uninstantiate variables;

• dom/wdeg [4]: it selects first the variable having the minimal ratio between domain size

and weighted degree. A weight factor is associated to each constraint. When a dead-

end occurs, the weight of inconsistent constraints is increased. For a given variable, its

weighted degree (wdeg) is the sum of weights of constraints involving this variable and not

yet instantiated variables.

The heuristic dom/wdeg was embedded into a MAC algorithm and has proved its efficiency

on a large range of both random and real problems [4]. This method was improved by Grimes

and Wallace [12] including restarts to the original method. The authors of MAC associated with

dom/wdeg explain its efficiency by the fact that weights on constraints allow the search to be

guided towards difficult parts of the problem and limit the redundancy during solving.

Another way to improve tree search methods was proposed with Last-Conflict (LC) analy-

sis [23]. LC aims to backtrack on the variable having produced the last failure. For that purpose,

this variable tends to be instantiated first whatever is the selection made by the ordering heuris-

tics on variables. This analysis can be generalized to k last conflicts. The LC analysis has

been proven to be efficient with classical ordering heuristics (such as dom/ddeg) but it is less

interesting with heuristics using the weighted degree principle.

Limited Discrepancy Search (LDS) [14] proposes an alternative way to backtrack when a

dead-end occurs. Since a good value ordering heuristic cannot avoid bad guesses (i.e., choosing,

for a given variable, a value that does not participate in any solution), LDS tackles this problem

by gradually increasing the number of allowed discrepancies, where a discrepancy is associated

with any decision point in a search tree when the choice goes against a value ordering heuristic.

This method stops when a solution is found or when the maximum number of discrepancies is

reached (in case of inconsistency).

Several variants of discrepancy-based methods were proposed. These methods differ by the

manner discrepancies are applied: either first at the top of the search tree, or first at the end; and

by the fact that redundancies are allowed or not during the search tree expansion. For instance,

LDS applies discrepancies at the top first and has redundancy since a partial instantiation is

visited more than once in successive iterations. Improved LDS (ILDS) [21] is a non-redundant

variant applying discrepancy at the end first. Depth-bounded Discrepancy Search (DDS) [33]

first favors discrepancies at the top of the search tree authorizing the discrepancies only in the
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first levels of a given depth; it is non-redundant. Another variant is the method YIELDS [20],

which is based on LDS and includes a mechanism to limit the exploration when the problem is

inconsistent, even if the total number of discrepancies has not been used.

3 Weight-based heuristic for Constraint Satisfaction Problems

3.1 Variable weighting ordering heuristic

Let (X,D,C) be a binary CSP of n variables. Wvar(i) denotes the weight associated with each

variable Xi. The variable weight vector Wvar is the vector composed of weights of all variables

of the problem: Wvar = [Wvar(i)]n.

The proposed heuristic Wvar consists in associating a weight with each variable. This weight

is increased whenever the corresponding variable is involved in a dead-end during search. The

variable having the most important weight is selected for instantiation.

To illustrate this mechanism, we consider a CSP with three variables (X0, X1, X2), all

with domain {0,1,2,3,4}. The set of contraints C is represented by the following set of incom-

patible tuples: {(X0, 0), (X1, 4)} ∪ {(X0, 0), (X2, 4)} ∪ {(X0, 1), (X1, 4)} ∪ {(X0, 1), (X2, 4)} ∪

{(X0, 2), (X1, 4)} ∪ {(X0, 2), (X2, 4)} ∪ {(X0, 3), (X1, 4)} ∪ {(X0, 3), (X2, 4)} ∪ {(X0, 4), (X2, 2)}

∪ {(X0, 4), (X2, 3)} ∪ {(X1, 0), (X2, 0)} ∪ {(X1, 0), (X2, 1)} ∪ {(X1, 0), (X2, 2)} ∪ {(X1, 0), (X2, 3)}

∪ {(X1, 1), (X2, 0)} ∪ {(X1, 1), (X2, 1)} ∪ {(X1, 1), (X2, 2)} ∪ {(X1, 1), (X2, 3)} ∪ {(X1, 2), (X2, 0)}

∪ {(X1, 2), (X2, 1)} ∪ {(X1, 2), (X2, 2)} ∪ {(X1, 2), (X2, 3)} ∪ {(X1, 3), (X2, 0)} ∪ {(X1, 3), (X2, 1)}

∪ {(X1, 3), (X2, 2)} ∪ {(X1, 3), (X2, 3)}.

In Figure 1, we represent the iterations of a discrepancy-based method using a weighting

variable heuristic, for instance Wvar⊕Lexico, that is a heuristic based on vector Wvar and on

the lexicographical order to break the ties. Table 1 gives the value of the weights of each variable

after each iteration. Initially, Wvar(i) = 0, ∀i ∈ {0, 1, 2}. After iteration LDS(0) (i.e., the LDS

method at hand with 0 discrepancy), Wvar(2) = 1 due to the dead-end on X2. The method

then restarts with 1 discrepancy and a new ordering heuristic based on Wvar. Atfer iteration

LDS(1), Wvar(1) = 3 due to three failures on X1. During the iteration LDS(2), based on the

new ordering between variables, the method gets a solution.

5



1

LDS(1) LDS(2)LDS(0)

: dead-end
: solution

X0

X1

X2

X2

X0

X1 X0

X2

X1

0

0

0

4

0

4

0 1 0

Figure 1: LDS search tree with the Wvar heuristic

Table 1: Variable weighting

Wvar after LDS(0) after LDS(1)

Wvar(X0) 0 0

Wvar(X1) 0 +3

Wvar(X2) +1 1

3.2 Integration in tree search methods

The heuristic presented previously can be grafted into tree search methods, such as discrepancy

search or chronological backtracking. For discrepancy search and non-binary trees, two modes

can be used to count discrepancies [10, 27]. First, the binary way: exploring the branch associ-

ated with the best value, according to a value ordering heuristic, involves no discrepancy, while

exploring the remaining branches implies a single discrepancy. Second, the non-binary way: the

values are ranked according to a value ordering heuristic such that the best value has rank 1;

exploring the branch associated with a value of rank k > 1 leads to make k− 1 discrepancies. In

the following of this section, the heuristic is integrated into the YIELDS method proposed in [20]

with a binary counting of discrepancies. In the YIELDS method, the Wvar_YIELDS_Probe algo-

rithm (see Algorithm 1) is iterated either until a solution is found or until CurrentMaxDiscr

reached the maximum number of allowed discrepancies or until an inconsistency is detected.

Comparatively to the YIELDS_Probe algorithm, in Wvar_YIELDS_Probe the integration of

the Wvar heuristic needs the function UpdateWeights to update weights of variables when a

dead-end occurs; and the selection of a successor of a node (function Successors) is based on

the variable weights.
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Algorithm 1: Wvar_YIELDS_Probe

Data: node, (X,D,C), Wvar, CurrentMaxDiscr

Result: Sol
begin

if Goal(node) then

return Sol
else

suc ← Successors(node, (X,D,C), Wvar)

if Failure(suc) then

UpdateWeights(node, Wvar)

return NIL
else

if CurrentMaxDiscr = 0 then

return Wvar YIELDS Probe(First(suc), (X,D,C), Wvar, 0)

else

Sol ← Wvar YIELDS Probe(Second(suc), (X,D,C), Wvar,

CurrentMaxDiscr − 1)

if Sol 6= NIL then

return Sol
else

UpdateWeights(suc, Wvar)

return Wvar YIELDS Probe(First(suc), (X,D,C), Wvar, CurrentMaxDiscr)

end

Based on the same principle, LDS, YIELDS with non-binary counting of discrepancies, and CB

can be adapted for the Wvar heuristic.

3.3 Computational results

We propose to test the impact of the proposed variable weighting heuristic both in backtrack

and in discrepancy search methods. The problems investigated in these experiments are car

sequencing problems and random binary CSPs. The evaluation criteria are the number of

expanded nodes and the CPU time. All algorithms were coded in C++. They were run on a

Linux Fedora Core Duo 2.33 GHz PC having 4 Go of RAM.

3.3.1 Car sequencing problems

The car sequencing problem treats the placement of n cars in production on an assembly line

that moves through various production units. Every production unit is responsible of installing
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on cars potential options like airbags, sunroofs, radios, etc. Each unit has a limited capacity

(constraint of the form r cars out of s, i.e., the unit is able to produce at most r cars with

a given option out of each sequence of s cars) and needs time to set up its associated option.

Every car does not require all options but leads to a class of cars, which correspond to a specific

list of options. A solution of the decision variant of the car sequencing problem (considered in

this paper) is to find an assignment of cars to the slot that satisfies both the demand and the

capacity constraints, which is NP-complete [11]. It was studied in many works [15, 17, 28, 30]

and an optimization variant was considered in the 2005 ROADEF challenge [31]. To model this

problem, we consider n class variables (one for each car), the domain of these variables is the set

of car classes. We do not use any global constraint propagation among those proposed in [17]

or in [28], but just FC propagation.

In these experiments, we consider the set of 70 satisfiable problems from the CSPLib [7] with

a timeout of 200 seconds for each of them. We will compare chronological backtrack method

vs. a discrepancy-based method following the various variable ordering heuristics proposed and

using the same kind of constraint propagations (FC). Since the method YIELDS differs from

the original method LDS by limiting the exploration for inconsistent problems (see Section 2),

note that both methods are equivalent here because the instances under consideration are all

satisfiable.

The first part of experiments consists in testing the impact of instantiation heuristics on CB

and LDS with binary and non-binary counting modes. We then compare CB and each variant of

LDS with two variable ordering heuristics: Lexico, which follows the lexicographical order, and

Wvar⊕Lexico,which chooses the variable Xi associated with the greatest weight Wvar(i) and,

in case of ties, follows the lexicographical order. The value ordering is MaxOpt⊕Lexico which

selects value corresponding to a car which requires the greatest number of options (MaxOpt) and,

to break the ties, uses the lexicographical order.

Table 2 presents for each method the number of solved problems out of 70 (#Solved), the

average CPU time (CPU) in seconds and the average number of expanded nodes (NEN) to solve

these problems. For each method, this table shows that the use of Wvar⊕Lexico as variable

ordering improves the number of solved problems. This improvement is very weak for CB and

comes along with a high increase in the average CPU time (4 times in more) and in the average

number of expanded nodes (2.8 times in more). However, for binary and non-binary LDS, this

improvement is more important (increasing the number of solved problems from 43% for binary

LDS up to 71% for non-binary LDS) and leads to a reduction of the average number of expanded

nodes (decreasing about 75% with binary LDS and for 42% for non-binary LDS). The CPU
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time increases very slightly with Wvar⊕Lexico in binary LDS (about 5%) and it decreases more

importantly with Wvar⊕Lexico in non-binary LDS (about 19%). Globally, the LDS method with

non-binary counting associated with the variable ordering Wvar⊕Lexico outperforms all the

other methods.

Table 2: Performance of CB vs. LDS (binary and non-binary variants) for car-sequencing instances

VarOrder Lexico Wvar⊕Lexico

CB

#Solved 36 37

CPU (s) 3.08 12.54

NEN 700164 1995906

Binary LDS

#Solved 41 59

CPU (s) 9.87 10.42

NEN 662301 165075

Non-binary LDS

#Solved 38 65

CPU (s) 11.81 9.61

NEN 541359 314350

In [17], a global constraint called regular is proposed and compared to the global sequencing

constraint (GSC) available in Ilog Solver. For the same set of considered experiments (instances

called carseq10 ... carseq78 in [17]), 37 instances are solved using GSC and 39 using GSC com-

bined with regular (with a timeout of 3600 seconds). In this paper, the ordering heuristics used

are the best between dom and the slack heuristic proposed in [28]. With the proposed heuristic

based on Wvar⊕Lexico, with just FC propagation, the best tree search method (Non-binary

LDS) is clearly very well performing since it solved 65 instances.

3.3.2 Random binary CSPs

To obtain random binary CSPs, we used the model B generator developed by Frost et al. [9].

According to [35], we started from densities that permit to avoid flawed instances. We consider

instances involving 30 and 40 variables having a uniform domain size of 25 and 20. The problem

density (i.e., the ratio of the number of constraints involved in the constraint graph over that

of all possible constraints), denoted by p1, varies. The constraint tightness (i.e., the ratio of the

number of disallowed tuples over that of all possible tuples), denoted by p2, varies so that we

obtain instances around the peak of complexity. The size of samples is 100 problem instances

for each tuple (n, d, p1, p2) where n is the number of variables and d the maximal domain size.

The first part of experiments is devoted to testing the impact of two variable instantiation

heuristics (dom/Wvar and dom/wdeg) on both CB and YIELDS methods using the same level
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of constraint propagation (arc-consistency). The arc-consistency is obtained by the powerful

algorithm proposed by Zhang [36]. In the following, CB with arc-consistency is named MAC,

and YIELDS with arc-consistency is just denoted as YIELDS. For each method (MAC, YIELDS

with binary and non-binary counting modes), we compute the standard deviation as follows:

100 ∗ (dom/wdeg− dom/Wvar)/dom/wdeg. The value ordering heuristic is always minconflicts

undergoing a succeed-first principle.

Figure 2 compares the results obtained by MAC using the two variable ordering heuristics

dom/Wvar and dom/wdeg. The left part of the figure entitled by ‘30-25-0.16’ stands for CSPs

of 30 variables, 25 values, and a density p1 of 0.16. The right part of the figure, entitled by

‘40-20-0.8’ stands for CSPs with 40 variables, domain sizes of 20, and a density p1 of 0.8.

The X-axis corresponds to several values of p2. The top of the figure gives the CPU time in

milliseconds (CPU) for each method and the bottom of the figure gives the number of expanded

nodes (NEN).
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Figure 2: Random CSPs: Comparison of two weighting heuristics in MAC

This figure shows that MAC with the dom/Wvar variable ordering heuristic gives better results
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comparatively with dom/wdeg. For instances belonging to set 40-20-0.8, the CPU time is

reduced by about 13.5% in average (from 9.1% to 23.1%) and the number of expanded nodes

is reduced by about 11.3% (from 9.1% to 16.7%). For instances from the series 30-25-0.16,

the CPU time is reduced by about 10.6% (from 9.1% to 14.3%) and the number of expanded

nodes is reduced by about 9.7% (from 9.1% to 11.2%). In the next figures, the method MAC with

dom/Wvar is retained for comparison.

Figure 3 displays the results obtained by the method YIELDS with binary counting (denoted

by YIELDS-B) for both variable ordering heuristics: dom/Wvar and dom/wdeg.
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Figure 3: Random CSPs: Comparison of two weighting heuristics in binary YIELDS

The contribution of dom/Wvar towards YIELDS-B is less evident. Indeed, for the instances

from 40-20-0.8, the heuristic dom/Wvar causes reduction of 27.1% for the CPU time and of

57.9% for the number of expanded nodes. However, for the instances from 30-25-0.16, NEN

is still reduced (about 27.9%) but CPU is now increased (about 55.6%). Moreover, YIELDS-B

with either dom/Wvar or dom/wdeg never improves MAC with dom/Wvar both on CPU and NEN for

instances 40-20-0.8. It is just profitable in NEN for instances from 30-25-0.16.
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Figure 4 reports the results obtained by the method YIELDS with non-binary counting (de-

noted by YIELDS-NB) for both variable ordering heuristics: dom/Wvar, and dom/wdeg, and com-

pares these methods to MAC with dom/Wvar. YIELDS-NB with dom/Wvar clearly outperforms

YIELDS-NB with dom/wdeg. In average, for instances from 40-20-0.8, the CPU time is im-

proved by about 46.4% and the NEN is improved by about 13.5%. For the instances from

30-25-0.16, the CPU time is improved by about 34.1% and the NEN by about 21.1%.

Moreover, YIELDS-NB with dom/Wvar or dom/wdeg always improves MAC with dom/Wvar in

both CPU time and NEN. For the proposed weighted heuristic dom/Wvar, we evaluate the

average standard deviation between MAC and YIELDS-NB: 100 ∗ (MAC − YIELDS-NB)/MAC. For

CPU, the improvement of YIELDS-NB is around 80.2% and 78.9% for instances 40-20-0.8 and

30-25-0.16, respectively; for NEN this improvement is of 50.9% and 77.1%.
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Figure 4: Random CSPs: Comparison of two weighting heuristics in non-binary YIELDS

In the last part of experiments, three variants of YIELDS are compared, depending on the

way for discrepancy counting: binary, non-binary, and also mixed [10]. For mixed counting

we consider non-binary counting at the top and binary counting at the bottom, denoted by
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YIELDS-NB-B, and the opposite, named YIELDS-B-NB. To mix the two kinds of counting, we

use the depth for partitioning the search tree and change the counting modes. We test various

partitioning depths of 1/5, 1/3, and 2/3 (measured from the top). In Figure 5, we compare the

results obtained by YIELDS-B, YIELDS-NB, and a mixed counting mode with depth equals 1/5,

denoted by YIELDS-NB-B-1/5.
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Figure 5: Random CSPs: YIELDS with mixed counting

This figure shows that YIELDS-NB drastically improves YIELDS-B. In terms of average stan-

dard deviation, the improvement of YIELDS-NB is around 90.1% in CPU for instances 40-20-0.8

and around 78.1% for instances 30-25-0.16. Concerning NEN, this improvement is about 79.5%

and 86.4% for instances 40-20-0.8 and 30-25-0.16, respectively. Furthermore, YIELDS-NB-B-

1/5 again improves YIELDS-NB. The CPU time is improved by about 63.5% and 45.1% and NEN

is improved by about 69.9% and 57.3% for instances 40-20-0.8 and 30-25-0.16, respectively.

Note that these results are not steady for other values of the depth, which remains open the

right tuning for partitionning the search tree.
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3.3.3 Discussion

Previous figures and tables show that for solving car-sequencing and random CSPs, non-binary

variants of discrepancy-based methods are more efficient than binary variants or than MAC.

Moreover, for random CSPs, YIELDS-NB is less sensitive, than the other approaches, to the

variations of parameter p2, i.e., the constraint tightness. This tends to assume that YIELDS-NB

is a robust method.

In complement to the above presented results, we have conducted experiments on the per-

formance of the mixed counting mode to solve car-sequencing instances. We tested various par-

titioning depths but none improved the results obtained with the non-binary version of YIELDS.

The interest of the mixed counting is thus still questionable for a discrepancy-based method.

Other weighting mechanisms were also tried. For instance, we have considered the integration

of weighting values in both MAC and YIELDS methods. We tested three value ordering heuristics,

each one being different from the other according to the mode to increment the weight of a

value. However, the associated experiments did not produce valuable results.

4 Discrepancy and learning for jobshop problems with time-lags

This section addresses a combinatorial optimization problem: the jobshop scheduling problem

with time-lags. A time-lag constraint is initially defined as a time-distance between the end

of an operation and the start of another. This extension of classical shop scheduling problems

(generally, they are already NP-hard in the strong sense) is of practical importance, as time-lag

constraints appear frequently in industrial processes such as chemical plants, pharmaceutical,

and food industry [26].

Few methods have been used to solve this type of problems. Wikum et al. [34] study single-

machine problems with minimum and/or maximum distances between jobs. The authors state

that some particular single-machine problems with time-lags are polynomially solvable, even if

the general case is NP-hard. Brucker et al. [5] show that many scheduling problems (such as

multi-processor tasks or multi-purpose machines) can be modeled as single-machine problems

with time-lags and propose a branch-and-bound method. A local search approach can be found

in [19]. A memetic algorithm is proposed in [6] and obtained good results on jobshop instances,

especially for those with null minimum and maximum time-lags (named as “no-wait problems”).

Branch-and-bound was proposed for single-machine problems with general time-lags [5]. The

problem is also studied in [1] by integrating generalized resource constraint propagation and
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branch-and-bound.

In this part, as in [1, 6], we only consider maximum time-lags between successive operations of

the same job. In this case, a trivial schedule can be obtained by a greedy constructive algorithm.

It consists in considering the jobs one after the other, and, for each job, all its operations are

scheduled at their earliest start time. The first operation of the next job starts at the end

of the partial schedule. However, this trivial schedule is of poor performance for makespan

minimization. The proposition of methods for solving the jobshop scheduling problem with

maximum time-lags is then relevant, even for just finding a non-trivial feasible solution.

4.1 Problem modeling and initial solution

In the jobshop problem, a set J of n jobs have to be scheduled on a set of m machines. Each

job Ji corresponds to a linear sequence of ni operations. Each operation must be processed on

a unique non-preemptive machine and each machine can process only one operation at a time.

Then, two operations that need the same machine cannot be processed at the same time. In

the jobshop problem with time-lags (JSPTL) under study, time-lag constraints represent the

distance between two operations belonging to the same job. The minimum distance (supposed

to be positive or null) corresponds to the minimum time-lag and the maximum distance to the

maximum time-lag. Maximum time-lags represent a specific difficulty since they can create

many impossibilities for the operations insertion on the machines. A trivial schedule consisting

in sequencing the entire jobs one after the other leads to poor makespan, and finding a non-trivial

feasible solution remains a difficult issue. Problems containing only minimum time-lags are less

difficult. In fact, minimum time-lags can be considered as a part of the previous operation. The

difference is that the resource is available over the time-lag.

Solving the JSPTL consists in sequencing all of the operations on the machines such that

the resource sharing constraints are satisfied and such that consecutive operations of each job

respect the time-lag constraints. The objective is to find a schedule that minimizes the makespan

(minCmax).

Assume that i = 1, . . . , n are job indexes and j = 1, . . . , ni operation indexes for job i.

. (i, j) stands for the jth operation of job i,

. mi,j corresponds to the machine allocated to operation (i, j),

. pi,j is the duration of operation (i, j),

. ti,j represents the start time of operation (i, j),
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. TLmin
i,j,j+1 and TLmax

i,j,j+1 correspond to the values of the minimum and maximum time lags,

respectively, between operations (i, j) and (i, j + 1).

Constraints of the problem are mathematically formulated as follows:

Cmax ≥ ti,j + pi,j ∀i = 1, . . . , n , j = 1, . . . , ni, (1)

ti,j+1 ≥ ti,j + pi,j + TLmin
i,j,j+1 ∀i = 1, . . . , n , j = 1, . . . , ni−1, (2)

ti,j+1 ≤ ti,j + pi,j + TLmax
i,j,j+1 ∀i = 1, . . . , n , j = 1, . . . , ni−1, (3)

ti,j ≥ tk,l + pk,l or tk,l ≥ ti,j + pi,j ∀(i, j), (k, l) mi,j = mk,l, (4)

ti,j ≥ 0 ∀i = 1, . . . , n , j = 1, . . . , ni. (5)

Constraints (1) establish the end times of the operations. Constraints (2) and (3) represent the

temporal constraints between two consecutive operations of the same job including minimum

and maximum time lags, respectively. Constraints (4) correspond to the resource sharing: two

operations competing for the same machine cannot be processed at the same time and must

then be sequenced.

In our modeling, the set of variables X correspond to job selection variables. The variable

Xi is then the selection of the ith job to be scheduled on the machines. For each i ∈ [1, . . . , n],

the domain Di of each Xi variable is {J1, . . . , Jn}. Thus, the values of these variables must be

all different. Once a job Ji is selected, the ni operations of this job have to be scheduled on the

machines by instantiating their start times from ti,1 to ti,ni
such that both resource sharing and

time-lag constraints are satisfied.

To solve the JSPTL under study, we use the job insertion heuristic proposed by [1]. It

consists in selecting a job Ji and in setting the start time of its first operation, ti,1, to its earliest

start time on the associated machine. Then, we go to the second operation and fix its start

time ti,2: if its earliest start time (for the required machine) does not match with the time-lag

constraints associated with the first operation, we go back to the first operation and shift it to

its next possibility. We proceed this way until we found a position where both operations are

scheduled on the machines and the time-lag constraints are satisfied. We reiterate until all the

operations of each job are scheduled. In the worst case, the jobs are scheduled in a single queue.

4.2 Weight-based heuristics for improving climbing discrepancy search

To solve problems with time-lags, we consider a variant of Climbing Discrepancy Search (CDS),

a tree search method based on discrepancy devoted to optimization. CDS [25] starts from an

initial solution proposed by a given heuristic and tries to improve it by increasing step by step
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the number of discrepancies. It then builds a neighborhood around this initial solution. The

leaves with a number of discrepancy equal to 1 are first explored, then those having a discrepancy

number equal to 2, and so on. As soon as a leaf with an improved value of the objective function

is found, the reference solution is updated, the number of discrepancy is reset to 0, and the

process for exploring the neighborhood is restarted. To limit the search tree expansion, we fix a

stop condition as a timeout on the CPU time.

We propose to integrate learning mechanisms based on weights in the CDS method. For the

JSPTL, we then associate a weight Wi with each job Ji. During the search, if some operations

of a given job Ji cannot be scheduled at their earliest start time on the associated machine, Wi

is increased. In our problem, the weights {Wj}j=1..n (initially equal for all j) can be increased

in three ways:

• Increment per operation (Op): The job weight is increased every time one of its operations

cannot be inserted in some slack period and then must be postponed until the next slack

period. The number of moves is cumulated to give the increase in the job weight.

• Increment per machine (Mach): The job weight is increased every time one of its operations

is not inserted in the first slack period on one of its associated machine. We increment

the weight at most once per machine (or operation). The maximum factor to get on a

considered operation is equal to the number of machines (or operations).

• Unary increment per job (Job): The job weight is increased every time one or more

operations of this job are not placed in their first slack periods on the associated machine.

The weight is increased at most once for the same job.

In a given iteration of the CDS method, several branches are developed and a same job may

have several weight increases. Thus, in addition of the manner to increase weights, we must

choose a way to count them after a given iteration of the CDS method. We propose to consider

either the sum of all weights obtained by the job during the incumbent iteration (denoted in the

following by Sum), or the maximum of all its weights (denoted by Max ). In the next iterations

of CDS, the weights obtained are integrated in the instantiation heuristic to select the job to be

scheduled.

Moreover, in our experiments we consider various discrepancy positions in the CDS method

(see Section 2): we test to diverge alternatively, first at the top of the search tree, or first at

its bottom. We try also to diverge only in a part of the tree, for example at the top limited

by a given depth, and to visit the other part without discrepancies at all. We use the binary
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discrepancy counting (it was experimentally proved better than the non-binary mode for the

problem under study): the heuristic choice corresponds to 0 discrepancy, all the other choices

correspond to one discrepancy.

Algorithm 2 summarizes the proposed improved CDS method principle. This algorithm is the

same than CDS algorithm except in Line 6 where various parameter settings (in bold characters)

offer several choices. Div pos denotes the discrepancy position chosen to diverge first: either

first at the top or first at the bottom. W Increment denotes the case chosen to increment the

discrepancies (Op, Mach, Job, or 0 when no weights are associated with the jobs). W integration

denotes the mode for weight integration after a given iteration (Max or Sum).

Algorithm 2: Improved_CDS_Probe

Data: X,D,C % Variables, Domains of values, and Constraints

Result: Sol
begin

% k is the discrepancy number ;

1 k ← 0 ;

% n is the variable number ;

2 kmax ← n ;

% Sinit is the initial solution ;

3 Sinit ← initial solution(X,D,C) ;

4 while k ≤ kmax do

5 k ← k + 1 ;

% Generate k-discrepancy branches from Sinit ;

6 S′

init
← Generate(Sinit, k,Div pos,W increment,W integration) ;

7 if Best(S′

init
, Sinit) then

% Update the initial solution ;

8 Sinit ← S′

init
;

9 k ← 0 ;

10 return Sol ;

end

Example

We consider a jobshop with three jobs J1, J2, and J3, and three machines m1, m2, and m3.

Every job has three operations. Table 3 gives the associated machine and duration for each

operation of each job and the time-lag constraints between each pair of consecutive operations.

For the solving method CDS with weighted values, we consider, in this example, the lexico-

graphical order for the job selection and, for the sake of simplicity, we use a non-binary counting
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Table 3: Example of jobshop problem with time-lags

Ji Oi1 time-lags (min, max) Oi2 time-lags (min, max) Oi3

J1 m2, 3 0, 1 m1, 5 0, 0 m3, 4

J2 m1, 2 0, 1 m2, 8 0, 1 m3, 8

J3 m3, 9 0, 0 m1, 5 0, 0 m2, 5

of discrepancies. The Gantt chart of Figure 6 depicts the solution obtained by the presented

heuristic where the job selection is J1, J2, and then J3. This solution has a makespan of 39.
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Figure 6: Gantt chart of the initial solution (0 discrepancy)
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Figure 7: Iterations of the CDS method

Figure 7 presents several iterations of the proposed CDS method with weighted values. Based

on the initial solution (iteration 0), the method develops 1-discrepancy solutions (iteration 1).

The first one selects J1J3J2 and leads to a makespan of 47, the second one selects J2J1J3 with

a makespan of 41. Figure 8 displays the Gantt charts of these two solutions.

Operations in dotted lines were shifted to respect both resource and time-lag constraints.

Table 4 gives the new weights for these jobs and the end of iteration 1 for the three ways of
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Figure 8: Gantt charts of 1-discrepancy solutions

Table 4: Weights of jobs after iteration 1 according to three counting modes

W1 W2 W3

Op Mach Job Op Mach Job Op Mach Job

J1J2J3 - - - - - - - - -

J1J3J2 - - - 6 3 1 - - -

J2J1J3 - - - - - - 2 2 1

counting. At iteration 0, there is no shift on operations and the job weights are not modified.

At iteration 1, two sequences are then considered: J1J3J2 and J2J1J3 (see Figure 7). For the

first sequence, i.e., when attempting to place J1 then J3 then J2, only operations of job J2 are

shifted to satisfy time-lag constraints (Figure 8). Therefore, job J2 is the only job to increment

its weight (column W2 in Table 4). The same thing happens for job J3 when searching for a

solution with the order J2J1J3 (column W3 of the table). At the end of this iteration, J2 has

the highest priority, whatever the way for weight integration is (lexicographical order can be

used to break the tie for mode Job), then J3 and finally J1, and there is no improvement of

the initial solution with one discrepancy. Therefore, the proposed CDS method restarts with

two discrepancies and selects jobs with the new defined order: J2J3J1 (iteration 2). The first

solution produced by this iteration has a makespan of 23 (see Figure 9). This leads to a lower

makespan than the current best solution. The search is then interrupted and restarts with this

solution as the new reference solution and search for 1-discrepancy solutions (iteration 3).
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Figure 9: Gantt chart for the new reference solution of iteration 2

4.3 Computational results

Our experiments were conducted on instances presented in [6, 22]. These instances have been

obtained from classical jobshop benchmarks where only maximum time-lags have been added

(Lawrence’s instances {laX}X=1..20, and Fisher & Thompson’s instances, ft06 and ft10). The

maximum time-lags generated are associated with a coefficient α equal to 0, 0.25, 0.5, 1, 2, 3,

5, and 10 (note that, in the available instances, there are not all values of α for each instance).

Maximum time-lags are calculated for each job Ji with these coefficients α and the durations

{pij}j=1..ni
of the operations of the job.

To generate the initial solution, we tested different orders to sort the jobs. Considered orders

are decreasing or increasing orders for job duration (D) or for job time-lags (TL); decreasing order

of some combinations (D⊕TL and D/TL); lexicographical order (Lexico). The tests about the

heuristic to generate the initial solution show that decreasing D gives the best results. Indeed in

Table 5, one can observe the number of instances on which every heuristic is the best. It is also

worth remarking that decreasing D⊕TL gives the same result (in bold). This is explained by the

strong correlation between D and the value of the generated time-lags in these instances. For

this first test, experiments concern a set of 126 instances (ft06, la01..la20) with only the values

of α proposed by [6]. There is a timeout of 200 seconds for the various CDS methods.

Table 5: Comparison of heuristics to generate an initial solution (number of best solutions)

Order D TL D⊕TL D/TL Lexico

Decreasing 55 51 55 29 20

Increasing 5 12 5 22

For the second part of experiments, we tested many combinations of parameters: counting

weights using cases Op, Mach, Job, or 0 if we do not use weights, and integrating weights after an

iteration using Max or Sum. If weights are not used, the variant is named 0. A discrepancy may

be applied at the top first or at the bottom first. In this experimental study, the case top-first
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always leads to better solutions. Table 6 then compares several parameter settings for the CDS

method, considering that top-first strategy is always selected to do discrepancies. It gives the

number of times each combination of parameters obtained the best result for each given set of

instances. We consider in these experiments the same set of 126 instances and the timeout of

the CDS method is still limited to 200 seconds.

Table 6: Comparison of proposed CDS variants (number of best solutions)

Variant ft06 la01-05 la06-10 la11-15 la16-20 Total

0 1 21 19 19 16 76

Op-Sum 5 6 3 4 6 24

Op-Max 2 4 1 5 6 18

Mach-Sum 3 6 5 5 8 27

Mach-Max 5 8 0 7 7 27

Job-Sum 3 8 0 6 7 24

Job-Max 3 10 1 6 7 27

Surprisingly, the CDS method with no weights (0) is very well performing. It gives the best

results (in bold) in average over all sets of instances but also over all Lawrence’s instances.

Fisher & Thompson’s instances are better solved with weighted variants of the method. For

these weighted CDS methods, the counting modes based on Mach and Job outperform in aver-

age the Op mode. Actually, the method based on Mach generally beats that based on Op (values

in italic). Thus, the variants 0, Mach-Sum and Mach-Max are retained in the sequel to go further

in the experiments.

Then we tested a variant of the weighted CDS method with depth-bounded discrepancies

(denoted by CDDS in [16]) to limit discrepancies at the top of the search tree. In Table 7 we

give the results obtained for two depth limits (1/2 and 1/3) and the weighted mechanism is

either Mach-Sum or Mach-Max. The comparisons are provided in terms of number of times each

method obtained the best result and in terms of number of times each method improves the

best-known value for the makespan (in parenthesis). For these experiments, we consider a set

of 149 instances (ft06, ft10, la01..la20 with various values for α: 0, 0.25, 0.5, 1, 2, 3, 5, and 10)

and the timeout of the CDS method is still limited to 200 seconds.

Table 7 shows that the benefit of weighted mechanisms is not steady for all variants. Indeed,

including weights damages the results of CDS (columns 2 and 3 vs. column 1) while it improves

the results for climbing depth-bounded discrepancy search (columns 2 and 3 of CDSS-1/2 and
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Table 7: Comparison of variants with depth-bounded discrepancies (number of best solutions

and number of benefits)

CDS CDDS-1/2 CDDS-1/3

0 Mach-Sum Mach-Max 0 Mach-Sum Mach-Max 0 Mach-Sum Mach-Max

ft06-ft10 9 (0) 10 (0) 12 (0) 8 (0) 13 (0) 14 (0) 5 (0) 13 (0) 12 (0)

la01-05 23 (0) 10 (0) 15 (0) 7 (0) 20 (0) 23 (0) 7 (0 23 (0) 22 (0)

la06-10 22 (0) 9 (0) 7 (0) 16 (1) 11 (0) 15 (0) 16 (1) 11 (0) 15 (0)

la11-15 13 (11) 18 (10) 20 (10) 9 (9) 24 (12) 25 (12) 9 (9) 24 (12) 25 (12)

la16-20 23 (2) 10 (1) 9 (0) 12 (2) 19 (1) 16 (0) 12 (2) 19 (1) 16 (0)

Total 90 (13) 57 (11) 63 (10) 52 (12) 67 (13) 93 (12) 49 (12) 90 (13) 90 (12)

CDDS-1/3 vs. their respective column 1). Table 7 also illustrates that the CDS method with

weighted mechanisms is more efficient when the depth in the tree for doing discrepancies is

bounded (columns 2 and 3 of CDDS-1/2 and CDDS-1/3 vs. columns 2 and 3 of CDS). Conversely,

CDS without weights does not take benefit from this bound on discrepancies (column 1 of all

variants). In terms of deviation on the makespan (not presented in the table), the results are

quite similar since it is about 1.16 for CDS without weights and no limit on discrepancies, about

1.19 for CDS without weights and when discrepancies are bounded, and about 1.17 for CDS

with weights and whatever the limit on discrepancies is.

Considering that CDDS with weighted mechanisms obtains the overall greatest number of

best solutions and almost the greatest number of improvements (93(12) for CDSS-1/2 and Mach-

Max ), we can conclude that using a weight-based heuristics is a promising approach to solve the

JSPTL.

In the last part of experiments, we compare for all the 149 instances the proposed meth-

ods with the best-known results provided either by the memetic algorithm of [6] or by ILOG-

Scheduler. For the 17 instances referred in Table 8 (instance name associated with its maximum

time-lag), our methods found some improvements of the best-known results. In column ‘BK’,

ILOG-Scheduler provides the best results for all the instances except for the two last no-wait

instances (‘la18 - 0’ and ‘la19 - 0’) where the memetic algorithm is the best approach. On these

instances, the CDDS methods with a depth limit of 1/2 or 1/3 obtain the same results; thus, we

only report one on these results. In bold, we note the best obtained value on the makespan for a

given instance over all the methods; the makespan is in italic if it corresponds to an improvement

of the previous best-known results.
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Table 8: Improved results on JSPTL benchmarks (makespan)

CDS CDDS BK

Instance 0 Mach-Sum Mach-Max 0 Mach-Sum Mach-Max

la06 - 0.25 1456 1496 1469 1413 1496 1469 1435

la11 - 0.25 1861 1965 1965 1965 1965 1965 2058

la11 - 0.5 1874 1874 1874 1874 1874 1874 1945

la12 - 0.25 1682 1671 1656 1682 1682 1682 1710

la12 - 0.5 1664 1605 1605 1775 1398 1398 1602

la12 - 1 1578 1558 1558 1586 1397 1397 1411

la13 - 0.25 1897 1892 1892 2052 1892 1892 1906

la13 - 0.5 1787 1808 1808 1888 1808 1808 1804

la14 - 0.25 1823 2042 2042 2042 2042 2042 2143

la14 - 0.5 1964 1953 1953 1945 1953 1953 2067

la14 - 1 1772 1762 1762 1864 1762 1762 1976

la14 - 3 1576 1542 1542 1594 1542 1542 1695

la15 - 0.25 2048 2043 2043 2064 2043 2043 2371

la15 - 0.5 2118 1910 1910 2062 1922 1922 2217

la17 - 0.25 1410 1427 1460 1449 1427 1460 1455

la18 - 0 1733 1973 1973 1823 1973 1973 1790

la19 - 0 1916 1965 1965 1830 1965 1965 1831

Table 8 illustrates that discrepancy search (CDS and CDDS methods) improves the results

for some instances with tight time-lags (α generally lower than 1), that are hard instances.

Focusing on the instances improved by the weighted mechanisms, it is interesting to remark

that the way for weight integration (Max or Sum) has practically no impact (there is little

difference only for ‘la12 - 0.25’ and ‘la17 - 0.25’ instances). Considering all the variants, the

results are very tight; the global improvement from BK is of about 6.3%. Furthermore, as

previously discussed, the results also show the interest of combining both weighted mechanisms

and bounds on discrepancies, since CDDS based on the counting mode Mach participates in

improving two of the instances (‘la12 - 0.5’ and ‘la12 - 1’), which had not been improved by

other methods.

Finally, it is worth noticeable that our discrepancy-based search methods (without weights,

however) improves two no-wait instances for which the memetic algorithm proposed in [6] is

generally the best performing.

24



5 Conclusion and further works

This paper presents various weighting mechanisms to improve instantiation heuristics, backtrack,

and discrepancy search. These mechanisms are associated with different parameters to solve

constraint satisfaction and combinatorial optimization problems.

In the satisfaction context, an experimental study was carried out on numerous binary CSPs

and car sequencing benchmarks. The results showed that the proposed heuristic based on

variable weighting is efficient for the studied tree search methods (based on chronological back-

tracking or on discrepancies). Furthermore, this study showed that variable ordering heuristics

using weights on variables are the best suited heuristics when combined with discrepancy search;

especially with non-binary counting mode. Finally, non-binary discrepancy search outperforms

others methods (binary discrepancy search or chronological backtracking) on these experiments.

The second part of this work addresses the jobshop scheduling problem with time-lags. To

solve it, a variant of Climbing Discrepancy Search (CDS) using weighting mechanisms is pro-

posed. We studied various parameter settings for the proposed method, such as discrepancy

positions, heuristics to generate the initial solution, and learning mechanisms based on weights

associated with jobs. The proposed variants were tested on known benchmarks from the liter-

ature. Tests show that the proposed methods help to improve the makespan for some jobshop

instances and that the combination of weights and bounds for discrepancies is promising.

A natural extension of this work is to consider other weighting mechanisms for both variable

and value ordering to better understand the impact of weights for both satisfaction and opti-

mization problems. Another extension should be to realize a more substantial computational

experience. Hence, we would aim to increase the size and the number of considered instances

for car-sequencing, random CSPs, or jobshop with time-lags. Other objectives are to study the

impact of the variable weighting principle on other known heuristics and to study the impact

counting modes for satisfaction or optimization problems. Some work is also to be done for

increasing the efficiency of CDS with weights for jobshop with time-lags. In particular, the

interaction between heuristic and weights will be studied. Finally, the introduction of extended

resource constraint propagation rules taking account of time-lag constraints and the integration

of upper bounds during the search could greatly improve the efficiency.
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1996. http://www.lirmm.fr/~bessiere/generator.html.

[10] B. Gacias, C. Artigues, and P. Lopez. Parallel machine scheduling with precedence con-

straints and setup times. Computers and Operations Research, 37(12):2141–2151, 2010.

[11] I. P. Gent. Two results on car-sequencing problems. Research report 02-1998, APES,

University of Strathclyde, UK, 1998.

[12] D. Grimes and R. J. Wallace. Learning from failure in constraint satisfaction search. AAAI

Workshop on Learning for Search, Boston, Massachusetts, USA, July 2006.

26



[13] R. Haralick and G. Elliot. Increasing tree search efficiency for constraint satisfaction prob-

lems. Artificial Intelligence, 14:263–313, 1980.

[14] W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proceedings of the

14th International Joint Conference on Artificial Intelligence (IJCAI’95), volume 1, pages
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