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Abstract—In this paper, the problem of joint Carrier Fre-
quency Offset (CFO) and channel estimation for OFDM systems
over the fast time-varying frequency-selective channel is expted
within the framework of the expectation-maximization (EM)
algorithm and parametric channel model. Assuming that the path
delays are known, a novel iterative pilot-aided algorithm for joint
estimation of the multi-path Rayleigh channel Complex Gains
(CG) and the Carrier Frequency Offset (CFO) is introduced.
Each CG time-variation, within one OFDM symbol, is approx-
imated by a Basis Expansion Model (BEM) representation. An
auto-regressive (AR) model is built to statistically characterize
the variations of the BEM coefficients across the OFDM blocks.
In addition to the algorithm, the derivation of the Hybrid
Cramér-Rao Bound (HCRB) for CFO and CGs estimation in
our context of very high mobility is provided. We show that the
proposed EM has a lower computational complexity than the
optimum maximum a posteriori estimator and yet incurs only
an insignificant loss in performance.

. INTRODUCTION

RTHOGONAL frequency division
(OFDM) has become a standard

Expectation-Maximization (EM) algorithm. The EM algorith
provides actually an iterative method to find the maximum
likelihood (ML) estimates, as presented in [4] for the peohl
of speech recognition system parameters estimation wisite a
providing the state estimates. Recently, the EM algoritlas h
been applied to a lot of problems including channel estiomati
[5] [6][71[8]- In [6], the authors proposed a joint CFO and
channel estimator based on EM algorithm @FDM - single
input-single output (SISO) systems, and in [7] the authors
extended this work to th©FDM - multiple input-multiple
output (MIMO) context. However, these studies have been
derived for quasi-static channels. We propose to address th
problem of joint CFO and channel estimation via the EM
algorithm in the context oOFDM systems withvery high
mobility. Note that there are other approaches for estimati
both CFO and channel, like the extended Kalman filter used
in [9].

In the context of very high mobility, it is generally prefer-

multiplexing able to directly estimate the physical channel paramefd [
technique fdndeed, as the channel delay spread increases, the number of

broadband high speed communication systems, mainly ttleannel taps also increases, thus leading to a large nurfber o
Mobile Worldwide Interoperability Microwave Systems forBEM coefficients, and consequently more pilot symbols are
Next-Generation Wireless Communication Systems (WiMAX)eeded. Estimating the physical propagation parametesgsne
and the Third-Generation Partnership Project (3GPP) in thstimating multi-path delays and multi-path CGisis well

form of its Long-Term Evolution (LTE) project. However, # i

known that in Radio-Frequency transmissions, the path delays

well known that small carrier frequency offsets (CFOs) ¢ielare quasi-invariant over several OFDM blocks [11](Sec.llI
severe degradation in OFDM modulation since it producéy, [12], [13] (whereas the CGs may change significantly,
inter-carrier interference (ICI) and attenuates the e@esireven within one OFDM block). In this work, the delays are

signal. These effects reduce the effective signal-toencésio

assumed perfectly estimated and quasi-invariant. It shbal

(SNR) in OFDM reception resulting in degraded systemoted that an initial, and generally accurate estimatiothef
performance [1] [2]. Accurate CFO recovery is thus esskentiaumber of paths and delays can be obtained by using the
to make an OFDM system practically viable. In additionMDL (minimum description length) and ESPRIT (estimation

the coherent detection of signals is generally performed

by signal parameters by rotational invariance techniqoesth-

means of an equalization task which requires the chanmels, respectively [14][10][15]. The CFO and channel estima
knowledge. Therefore the channel estimation is also essentlerivations are presented for this approach. Additionally

for practical systems.

demonstrate that the results for the non-parametric aphroa

The best performance is obtained when the CFO and tben be simply deduced from those derivations. Hence, this
channel are estimated jointly [3]. This problem can be régdr work can be applied to both approaches.
as an estimation problem of one given parameter (here theThe Crangr-Rao bound (CRB) is a well known benchmark
CFO) in the presence of unobserved state (here CGs tofwhich the mean-square errors of estimators are compared.
the channel). Then, an interesting approach is to use tine[16], the authors derived the CRB for the joint estimation



of CFO and channel response in a static context. In [17], tdenotedr = AF NTy. After transmission over a multi-path
authors derived the CRB of path CGs in the presence of higayleigh channel, the subcarrierof the kth received OFDM
mobility. We propose to extend this bound to the case of joisymbolyy[n] is given in the frequency domain (after removing
CFO and CGs estimation. Depending on the prior knowledggclic prefix and taking DFT) by [13] [18]:

available on parameters, the CRB has different expressions

The hybrid CRB (HCRB) is considered in the case of a hybrid Vi = Hik X 4 W @

vector containing deterministic and random parameters. \Werex, = [r[— 5] ze[- 5 + 1], ..., 2[5 — 1HT_ y, and

provide the derivation of the HCRB for joint estimation oi,\,,C are defined in a similar way as.. w;, is a white complex
CFO and the fast time'Varying CGs in the OFDM context. TGaussian noise vector of covariance mathdN and Hk is
sum up, the main contributions for the work presented in thife ' x N channel matrix. The elements Hf, can be written
paper are the following: in terms of equivalent channel taps [1%)@17;9(qu) = q(kT+
o Unlike existing methods, the proposed algorithm uses

a parametric channel model to estimate the CFO anHTs)}:

the channel in a highly mobile environment. Using para-

metric channel models is of interest in the case of high Hilnm =

mobility, since less coefficients are to be estimated. p L=t im0 N1 N
« To reduce estimation complexity, the proposed method 4 > {6_] TRDEN" gk (qT) TR q} . (@
uses the BEM approach (to reduce the number of co- 1=0 q=0

efficients to estimate), a multivariate AR(1) model (tQy in terms of physical channel parameters [15] (del&ys
describe the statistical variations of the BEM coefficients

across the blocks), and the EM method to avoid batdyd CGS{al’k(qu) - al(kT+qT5)})’ yielding:
processing. Simulations have shown that the proposed al-
gorithm has almost the same performance as the optimuniH’“]"”” -
maximum a posteriori (MAP) estimator which requires 1 %= jan(m_ 1) = Pp——
handling and inverting large matrices. N > [e Foom Y anp(Ta)e : } )
« A closed-form expression of the HCRB is provided. =0 =0
The notations adopted are as follows: Upper (lower) bold fade < Vg is the number of channel taps afdthe number of
letters denote matrices (column vectofs), denotes theth element  Paths. The delays are normalized By and not necessarily
of the vectorx, and[X],. .. denotes thén, m|th element of the matrix integers {; < N,). The L elements of ozhk(qu)} are un-
X. It is noteworthy that vector and matrix indices start frorand not
from 1. We will use the matlab notatioX[n,:n,,m1:m] t0 extract a
submatrix withinX from row n; to row no and from columnm; to

correlated. However, thé’ elements off g, x(¢7s) ¢ are cor-

related, unless the delays are multiplelgfas often assumed

columnims. | is aN x N identity matrix andy is a N x N matrix in the literature. These channel taps and CGs are W|de—se_nse
stationary (WSS), narrow-band zero-mean complex Gaussian

of zeros. diagx} is a diagonal matrix withx on its main diagonal, ; 9 5 : .
. . rocesses of variances,” and o,,”, respectively, and with
diag{X} is a vector whose elements are the elements of the m H’]

diagonal of X and blkdiag X, Y} is a block diagonal matrix with € so-called Jakes' power spectrum of maximum Doppler

the matricesX andY on its main diagonal. The Hadamard productrequency fa [20]. The /a\llerage energy of the chanriel

L'— L-1
for two matrlgesx ?rndY of E?e same dlmen_slons is denot¥a® Y. 5 rmalized to onej.c., 20912 — 1 and Zaa12 — 1. Let
The superscript$-)” and (-)** stand respectively for transpose and =0 =0

Hermitian operators|.- |, and TH{-} are respectively the determinantus define theV x 1 vector:

and trace operations. R¢, Im(-) and (-)* are respectively the real B T

part, imaginary part and conjugate of a complex number or matrix. Gk = [al’k(o)’ o al’k((N B 1)Ts)} )
E. [ is the expectation over andy, Jo(-) is the zeroth-order The correlation matrix ofay; for the time-lagp, RY) =
Bessel function of the first kind and}, ., is the Kronecker symbol. [Oéz k'al.k—pH}a is given by:

Vx and A represent the first and the second-order partial derivatives ’

operatori.c., Vx = [50-, ..., go|" and A = Vi V(. R, = a2 (27deTS(n —m +pr)> (5)
[1. TIME-VARYING OFDM SYSTEM SUBJECT TOCFO In the next sections, we present the derivations for therskco
A. OFDM System Model approach (physical channel). The results of the first ambroa

(channel taps) can be easily deduced by repladingy L’

Consider an OFDM system wittV' sub-carriers, and a 2nd the set of delayér } by {1, 1=0:L' —1}.

cyclic prefix lengthN,. The duration of an OFDM block is
T = N,Ts, whereTy is the sampling time and/, = N + Nj.
Letzy[n], n = —&,..., X _1 be the transmitted data symbolB- BEM Channel Model

on the subcarrien of the kth OFDM symbol. The{x[n]} are In each OFDM block, there ar® samples to be estimated
normalized symbolsi(e., E [z;[n]z}[n]] = 1). The frequency for each path CG due to the fast time-variation of the channel
mismatch between the oscillators used in the radio tratersit yielding a total of LN samples for the whole channel and
and receivers causes a CROF. The normalized CFO is for each block. In order to reduce the number of parameters



to be estimated, we resort to the Basis Expansion Mod@R) process [23] [15] . A complex AR process of order

(BEM). In this section, our aim is to accurately model thedenotedc; ;,, can be generated as:

time-variation of«; ;(¢Ts) from ¢ = 0 to N — 1 by using a

BEM. The purpose of using a BEM is to approximaig;, as ~ D=

the weighted sum of just a few basis functibg, as follows: Gk = z;A( B + U (14)
ay = apem,, +&rx = B-Crt&ik (6) _ _

_ _ whereA . A are N, x N. matrices andy; ;, is a N, x 1

whereB = [bo, ..., by, 1] 15 @ N x N, matrix that collects ,mplex Gaussian vector with covariance matdx From

theTNc basis functions,. Vectorc, . = [e1x[0], ...,k [Ne = [15], it is sufficient to choosd = 1 to correctly capturethe

1]]" represents theV, BEM coefficients for thelth CG of coefficients dynamics. The matricad?) = A andU, are the

the kth OFDM symbol, and, ;. represents the correspondingAR model parameters. The standard chd28] to compute

BEM modeling error, which is assumed to be minimized in thiose parameters is to impose that the correlation matRgés

mean square error (MSE) sense [21]. Under this criteriam, thf the approximate process perfectly match the correlation

optimal BEM coefficients and the corresponding model err@,ﬁamceﬁ(p) of the true process for lgge {—1,0,1} in (13).

are given by: Imposing th|s correlation matching constraint, the par@nse
-1 of the AR process can be computed by the set of the Yule-
ar = (B7B) BY , i
Lk ( ) Xk ) Walker equations defined as:
&r = (In—9a
-1
whereS =B (BHB)f1 B is a N x N matrix. A = R (Ré?)) (15)

Various traditional BEM designs have been reported to
model the channel time-variations, e.g., the Complex Expo-
nential BEM (CE-BEM), the Polynomial BEM (P-BEM) or
the Karhuen-Loeve BEM (DKL-BEM) for instance [18][22].

U = R -AR(Y (16)

Using (14), we obtain the AR model of ordérfor C:

From now on, we can describe the OFDM system model & = A-Co+us (17)
derived previously in terms of the BEM. Substituting (6) in
(1) yields after some algebra: where A = blkdiag{A,...,A} is a LN. x LN, ma-
T
Ve = Kp(v) cp+er+w (8) trix and u, = {ug’k,...,uﬁfl’k} is a LN, x 1 zero-

mean complex Gaussian vector with covariance matrix

where theLN, x 1 vectorc, and theN x LN, matrix iCy, blkdiag{U Ur_1}
05y YL—-1J"

are given by:
& = [ el 1"
" [10”“’ (L] l1l. EM ALGORITHM
K = —[Zok(V),....2ZL— 9 ) , .
2 N | O’k(l_/) z-14()] ©) First, we consider a block o OFDM received symbols.
Zik(v) = [Mo(v) diag{x} f;, ..., Lety = [yo7,....yx_17]7 andc = [c7,...,cx_17]T. The
My, —1(v) diag{x; } fi] (10) objective is to jointly estimate the CF®@ and the BEM

coefficientsc of the path CGs based on the set of the
FDM received signals. It is noteworthy thatufis known,
e BEM coefficientsc can be estimated by using a Kalman
filter [15]. In our specific context, both andc are unknown.
Flog = efj%(f")n (11) Therefore we propose to use the EM algorithm, which has
been extensively explained in [24]. The EM algorithm is an
Ma()],,,, = Z lg.d I2T R (12) iterative method to find the ML estimates of parameters in
' — the presence of unobserved data. The algorithm comprises tw

The second component in (8, represents the approxi-StePS : the expectation step (E-step) and the maximizatigm s

where vectolf; is thelth column of theN x L Fourier matrix
F that depends on the delays distribution (defined by [141
andM,(v) is a N x N matrix given by:

+V

mation error in the observation model (M-step). We describe an EM algorithm for our model.
We suppose that the transmitted symbqglsare known (this
C. The AR Mode for ¢, configuration is called Data Aided (DA), and corresponds to

the acquisition task). We consider the received dats in-

Yinplete data, and define the complete datadaefs[y CT]T
ce the state idescribed by first order Markov modehe

likelihood function of the complete data is given by:

From (7), we get that the optimal BEM coefficierjs, are
correlated complex Gaussian variables with zero-means ak
correlation matrix given by:

Réf’) = E[Clakcl,kfp]
1

K—-1 K—-1
- (8"B) 'B"RY)B(B"B)" (13) p(z;v) = p(co) [ pleklce—1) J] p(ysler;v)
k=1 k=0

Since the coefficients; ;, are correlated Gaussian variables,
their dynamics can be well approached by an auto-regressiieen, from (8) (the error terna; is neglected), we compute



the log-likelihood of the complete data: Backward recursion:

_ H (i)
1 Kol e = Sk: 1|k— A Sk|k 1
In (p(z;v) — — mi)™ (yy, — Mi) A(0) A(0) () ali)

o2 kz:o g Gliyx = Ck—l\k 1 +Jk( K| K Ck|k—1> (24)

K—-1 (1) (1) (1) (1) H

S - s J (s -s J

+Inp(co) + Zlnp(ck|ck,1) (18) k11K k1lk—1 Ik \ Sk k““—l) k

k=1 It is noteworthy that the EM is a computationally less

demanding technique than MAP [25], since it does not require
batch processing and the matrices to be inverted are only of
size LN. x LN.. The BEM-based MAP technique requires
batch processing and the inversion GKLN, x KLN,)
matrices. We show in Section V that the MSE performances
of the two methods are very close to each other.

where C' is a constant andn, () = Kp()C, is the mean
vector. Each iteration = 0,1,... of the EM algorithm for
estimatingr from y consists in two steps:

E-step: given the measuremenysand the latest estimate?)
from the previous iteration, we calculate:

' Eqys0 Inp(z; )] (19) IV. HYBRID CRAMER-RAO BOUNDS (HCRB)

A. Introduction

Qv,v1)

M-step : this step findg/ (‘1) the value of, which maximizes

Q(v, %)) over all possible values of: The CRB for the fast time-varying path CGs has been first

computed in [17] for the OFDM context. However, the calcu-

P — argmax,Q(v, »V) (20) lated CRB assumed a BEM model for the channels. Hence,
the CRB of the CGs derived in [17] cannot be considered as

This procedure is repeated until the sequent®, (1) ... the true CRBbut as a BEM-based CRBince it is based on
converges. the CRB of the BEM coefficients. The exact CRB for the CGs

Due to theGauss-Markowature of the problem, the com-is the one that does not assume a BEM.
putation of the@ function can be expressed as (see Appendix In this Section, we propose to derive the true CRB for the
A): estimation of the CGs together with the CFO, in the presence
of very high mobility. The CFO being deterministic, this lgie
1 @) H to calculate a Hybrid CRB. The CRBs provide a lower bound
Q(M T2 Z Tr{’ck Sk|K’C (v) on the Mean Square Error (MSE) achievable by any unbiased
estimator. We give the general expression of the Hybrid
i) Cranér-Rao Bound (HCRB). The HCRB is particularly suited
(y Kk(y)ck”» <yk Kilv )Cle) } 1) for problems where the parameters to be estimated encompass
both deterministic (here) and random (herex) components,

(%) def (7) def . . L. L . .
where €% = Egysm [c] and S = with availability of the a priori information{(cx)). An off-line
By o0 [(Ck ;(€|)K)(Ck _ C}(q)K) } The required termsl(c|)K scenario is considered, i.e. the receiver waits until thelah

and s observation frame of{ OFDM symbolsy = [yZ, ...,y% 17

¢ kr|1K fcandactuallyl Eelcomputed fr(])r all =0 .h K =1 phas been received to perform parameter estimation.
rom the fixed interval Kalman smoother (usmgt e parametery .- o is defined as follows:

estimate at iteration), since our model (8 in neglecting the

error terme;) becomes a so-called Gaussian linear model for a = [aOT, . ,af(_l]T (25)

the estimation of;, assuming previous knowledge of The }T (26)

E-step is thus an Estimation-step for the BEM coefficients

vector. The smoother consists of a backward pass that fellowhere the vectory; ;. is defined in (4).

the standard Kalman filter Forward recursion given by: Let u = [T, v]T be the hybrid vector to be estimated. The
HCRB has been initially proposed in [26] as:

_ T T
ak — [aovk,...,aLil’k

Forward recursion:

Time Update Equations (TUE): Ey ol [(ﬁ,(y) — ) (Aly) — H)H@ > HCRB
c§§|)k . = A@S) k=1 (22) whereX > Y is interpreted as meaning that the maix- Y
(1) _ H is positive semi-definite. We partition the HCRB matrix as
Sik_1 = Asy! 1A U PoST P
follows:
Measurement Update Equations (MUE): HCRB, HCRB;,
HCRB = [ HCRB,; HCRB, ] 27)

1
_ ) gecH (50 gD jeH ()
K Siik—1/Ck (7 )(’Ck( See—1 K (0) + 07 IN) where the KLN x KLN matrix HCRB,, and the scalar
s al) 5(0) MO RB, are the minimal bounds on the MSE of and v
Gk = Cipor F (0D (v — K (09)e (BRB, :
klk klk—1 ( g N Kl 1) respectively, and the vectoldCRB;, and HCRB,; are the
Si‘k = Si‘k 1= Kklck(ﬁ(z))s,(jk_l cross-terms. Note that for notational convenience, we titep



[ Path number| Relative Power (dB)| Delay (nsec)|

dependence of these submatrices :onThe HCRE is the

inverse of the Hybrid Information Matrix (HIM), which can 2 _01 320
be written as: 2 9 710
. . 3 -10 1,090
Hi(v) = Ea[Fi(co,v)] +Eqp[— A% In (p(alv))],] 4 15 1,730
. . o . _ 5 -20 2,510

where p(a|v) is the prior distribution andFi(a,v) is the TABLE |

Fisher Information Matrix (FIM) defined as:

Fi(a71/) = Ey\a,u[_Aﬁ In (p(yla’y))‘l’]

wherep(y|a, v) is the conditional probability density function
of y given a andv. Since the deterministic and the randonDoppler frequencies have been selectéd = 0.05, f,T =
parts of the hybrid vector are statistically independént, 0.1 and f;7 = 0.15, corresponding to a mobile terminal
p(a|v) = p(a), then after some algebraic manipulations, theoving at speeds of 130 Km/h, 270 Km/h and 400 Km/h,
second component of the HIM can be written as [27]: respectively. The BEM model used for the simulation is the
“ [_ AR ln( (O‘\V))| ] _ polynomial BEM. The normalized CF@has been set to 0.35,
aly K p v corresponding to an oscillator tolerance of 1 ppm. The mean

ITU MULTIPATH CHANNEL MODEL - CHANNEL A [28]

Eo[ - A% In(p(a))] Oxrna MSE of the estimations ofe and the MSE of the estimation
OLrxLn 0 of v aredefinedas follows:
In the DA context, the transmitted data symbolsre known eg  def 1 N H o~
at the receiver and then no averaging over the data is refjuire MSE. = KNLIE {(a —a) (@-a) (30)

Hence, the probability density function dependsxprand so MSE, def r Uﬁ _ V|2} (31)
do the bound.
Finally, the mean MSE of the estimation of is lower- where the expectation is estimated via monte-carlo sinomst

bounded by: in the following
—_ 1
HCRB. = KLNTr{HCRB"‘} (28) A. Acquisition algorithm
The HCRB associated with the estimation af HCRB,, is First, the impact of the number of EM iterations on CFO
given by (27). estimation has been investigated for different speeds. Fig
shows the meamver 100 realizations of the CFO recursive
B. Expression of the HCRB estimate (V) versus the number of EM iterations for

The closed-form exact expression for the HCRB related @J/NO = 20 dB andK ~ 2. The normallzed CFQ@ has been
the estimations ofx and v in the Data Aided (DA) mode set to 0.35, corresponding to an oscillator tolerance ofrh.pp

of OFDM systems is presented hereafter. The details of thiliS figure shows that the estimated CFO converges to the
derivation are given in Appendix B, yielding: true value faster when the Doppler is lowEor f;7 = 0.05,

faT = 0.1, f4T = 0.15, the algorithm converges after about
HCRB = (blkdiag{Jo(v), ..., T x-1(v), 30, 50, 100 iterations respectiveliience, the convergence

i ) . -1 time strongly depends on the mobile speed. Fig. 2 illusrate

Eo [Fizz(en)]} + blkdiag{R,", 0}) (29)  this convergence with the)-function as a function of for

whereJ . (v) is given by (42)E, [Fisz(a.)] is given by (44) different values of iteration number and for f;7" = 0.1

andR,, is given by (45). (always for a true value = 0.35). It is worthwhile to observe
that the function does not present local maximas
V. SIMULATION RESULTS Next, the acquisition range for the CFO has been investi-

For all our simulations the channel autocorrelation fumcti gated for the most critical casg T’ = 0.15. Fig. 3 showsthe

. ) \ ) O estimate curves/(")) versus the number of EM iterations

is assumed to be given by the widely accepted Jakes’ mo . : .
. . or different values ofs selected in the range-1.2, 1.3] with

as stated in Section II.

. . . ) n increment of 0.1 (each curve corresponding to a given
System parameters in our simulations follow the WMA)@ is averaged over 100 realizationd) is shown that the

mobile standard [28], withV' = 128 and 1/T; = 1.25 MHz, algorithm is able to acquire the normalized CF@ the range
yielding a subcarrier spacing of 10.94KHz which is the valu g 9 9
F—l.l, 1.2], corresponding to about3.4 ppm

imposed by WIMAX (section 2.3 WIMAX Physical layer in Fig. 4 shows the HCRB for the CG estimation (28) and CFO

[28]). The carrer frequency is se.t to 3.5GHz. stimation (27) versus the block siZe for different values
The Rayleigh channgl model is the channel A from [Zij E,/No, again with f,T — 0.1 and N, = 3. K varies from
I()L :h?—:' p:;?; 2”2]&1) Tl;(lr;ruem dcriz\lxvar?n?fon:"n iégr%{alsif: dTik(ng,eAl\% to 50. As expected, it is observed that both bounds rapidly
cc.)nstellations \)//Ve seV. — N Three different normalized decreasavhen K varies from 2 to 10, and then decrease with
' g 8" a smoother slopeHence, the gain in performance is important

1We recall that, for a deterministic parameter, Standard @réRao Bound Only for small values off’, then the gain becomes negI|g|bIe.
(SCRB) would be directly the inverse of the Fisher Informatiatrix (FIM). A good trade off would be to chood€ = 10, but the value of
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K depends on the standard. A typical valugiis= 2. In the N N
sequel, we will perform simulations with" = 2 and K = 5. 0% e 100} N
Fig. 5 shows the MSE performance of the path CG e Vi
timation for the forward step and the backward step. Fi T
reference, the HCRB has been plotted. The parameters val 10‘7O = 00 10‘90 = 100
arev = 0.35, N, = 3 and f;7 = 0.1. Simulations have block size K block size K

been performed for botl = 2 and K’ = 5. As expected the

backward step Cc_m_SiStemly outperfprms the performandeeof Fig. 4. HCRB versug« for (a) the CG estimation, (b) the CFO estimation
forward step. This is understood since the backward step us@h f,7 = 0.1 andN. = 3
the whole received sequence. Note also that the backwagrd ste
reaches the HCRB. On the other hand, the improvement given

by the backward step is more important with= 5 than with

K = 2. The gain in performance as a function of the blochuasi the same as the MSE of CFO EM estimate. Since we
size can also be observed with the HCRB in Fig. 4. The MSke the expectation of the hybrid FIM with respect to the
for the MAP algorithm [25] has also been plotted. It is similachannel statistics, the HCRB is not necessarily tight fa th
to that obtained with the proposed EM algorithm. CFO estimation. This is similar to what is observed with the

Fig. 6 shows the MSE performance of the CFO estimationodified CRB for the CFO in the case of non-data aided
for the proposed EM algorithm and the MAP algorithm. Theystems where the expectation of the FIM is taken with raspec
MSE of CFO MAP estimate is far from the bound, and i the unknown data before taking the inverse.
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Fig. 7. BER of the proposed tracking algorithm fbr =8, Ly = 16 and

107° . @ — 107 . ®) . N =128, N =512
4 EM
O MAP
— o —HCRB .
vl value. It should be noted that we use the estimated CFO to

remove its effect on the received symbols. The switch betwee
our acquisition algorithm and this tracking algorithm msake
sense since both algorithms rely on an AR(1) dynamical model
of the BEM representation of the CG variations, used for the
Kalman filter.
Fig. 7 shows the obtained BER fof = 128 and N = 512.
For the sake of comparison, the performance of the algorithm
) obtained with perfect channel state information (CSI) moal
given. As expected, the BER is closer to the one obtained
with perfect CSI when using a higher number of pilots. Also,
5 s 10 s the BER withN = 512 is more favorable than witlv = 128
0 5 10 15 20 25 o 5 10 15 20 25 (note thatthe bandwidth is larger wiffi = 512, the subcarrier
Eb/No (dB) Eb/No (dB) . L.
spacing remaining constant). Hence, to test the robustness
_ o of the algorithm in the sequel, we will choose the most
29:62 (b’)\AIS(E:pgr;f(;{:;I?n:C%.tl),f ]t\r;ce:C?I)ZO estimation verdus/ Ny for (a) unfavorable cas&V — 128.

MSE
MSE

107} EEEEEPER
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_ _ C. Robustness of the tracking algorithm to imperfect delay
B. Tracking algorithm and Doppler frequency knowledge

The proposed EM algorithm is used as an acquisition Fig. 8 measures the effect of an imperfect delay knowledge
algorithm on the firstk’ OFDM symbols of the frame, as-on the BER performance of our proposed tracking algorithm.
suming the knowledge of all the transmitted symbqgls £ = SD denotes the standard deviation of the time delay errors
0...K — 1. In order to propose a complete algorithm ablémodeled as zero mean Gaussian variables). As expected
to perform detection, we propose using the tracking algéeommon drawback to any parametric channel estimator), the
rithm of [15]. This tracking algorithm proceeds in orderlgorithm performance decreases with respect to the delay
to jointly make CG estimation and data detection, basedror. However, the algorithm is not very sensitive to a gela
on pilots symbols evenly inserted in each OFDM symboérror SD < 0.27 in low SNR, andSD < 0.17; in high
The pilot positions are given by the set of pilot indiceSNR, for both/V, = 8 andN,, = 16. And when increasing the
P = {nLs n=0...N, -1}, where L; is the distance number of pilot subcarriers t&V, = 16, sensibility to delay
between two adjacent pilots and, is the number of pilots. error decreases. These required performance for the delays
The algorithm is an on-line algorithm, i.e. it operates onhea acquisition can well be obtained when using high resolution
OFDM symbol. The CG tracking is based on Kalman filteglgorithms [14], thanks to the quasi invariance of the delay
using the CG estimated in the acquisition phase as an initfalith respect to the scale of the sampling tirhg during a
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result is similar to the result obtained in [15]. However B5][
by using a robust method like the minimum description length
(MDL) to estimateL, we can make our algorithm correctly

0% performs without a priori knowledge df.

10°F
D. Performance comparison

BER

107} In this section, we compare our proposed algorithm with

O sp=0 the algorithm of [9]. This algorithm is based on the extended
ol - - _zgzggﬂ Kalman filtering to carry out channel taps and CFO estimation
SD=0.05/T together with data detection. Note that it operates on edgriv
- ® - perfect CSl discrete channel model only, and not on the parametric @iann
10° ; ; 1078 ; ; model. The simulations presented in [9] have been carriéd ou
0 10 20 30 0 10 20 30 in Decision-Directed (DD) mode only (after the acquisition
Eb/No (dB) Eb/No (dB)

step), i.e. only decoded data symbols are used to perform

the filtering. However, when introducing their algorithrhet

authors also stated that in case of high mobility, pilot algn

are also needed [9][29]. So to compare both algorithms, we

insert pilots in the algorithm following the pilot schemeair

large number of OFDM symbols (see also performance in [1BRcking algorithm [15]. We use the same parameters as in [9]

obtained by the ESPRIT method [14]). to perform the simulations, i.e. a 4-taps discrete chaniitdl w
Robustness to imperfect Doppler frequency is investigate@wer lossi0, —1, —3, —9][dB] and delay profil0, 1,2, 3]us

in Fig. 9. The algorithm is not sensitive to a Doppler frequen , (which corresponds to a urban type of scenario), a carrier

error SD < 0.01/T for both N, = 8 and N,, = 16. Similarly ~frequency of2.4 GHz and a bandwidth /T = 1 MHz.

to the delay error, increasing the number of pilots increase Simulations for three different speeds, 30 km/h, 150 km/h

the robustness to Doppler frequency errors. and 300 km/h have been performed for an SNR equal to 20 dB
We now study the effect of the wrong estimatelof= 6 on (see Fig. 11). For reference, the performance of the alguorit

our algorithm withV,, = 16. A study on this issue was madeis given by using the ideal channel state information (CI5i3.

in [15] for time-varying channels estimation (without CFO)observed that our algorithm is far more robust to mobilitgrth

Le stands for the estimate di. In case of an overestimatedthe literature algorithm proposed in [9]. This is logicahse

(Le = 7 and Le = 8), it is shown that such a mismatchour algorithm has been devised to handle the high mobility,

ends up in slight degrades of performance as shown in 1thich is not the case of [9]. But to the best of our knowledge,

However, in case of underestimatetk(= 5 and Le = 4), the we do not know an algorithm which performs channel and

performance of our algorithm suffers from this disappearinCFO estimation together with data detection in the presence

of paths especially at moderate and hifgh/ Ny region. This of very high mobility.

Fig. 9. BER of the proposed tracking algorithm for imperfeabWledge of
the Doppler frequency for (aN, = 16, (b) N, = 8



From (32), we find:

10° .

] K-1
existing algo ] ~ (i 1 } : H (1) H
= © = existing algo - perfect CSI 1 Q(V7 V(l)> =T 3 T {ykyk T sz(y)Pk‘K’Ck @)
proposed algo : J g k=0

= © = proposed algo - perfect CSI

] Vi Kt ) = Kk} (33)

def def
WherePl(cl)K = Eqy o0 [cecl?] and & ck‘K = Eqy, o0 [Ck]. Let

BER

| us define:
. ] S§c|)K def Egpy o) {(Ck —C;(:\)K)(Ck A;d)K) }
= Pl Gkt 59
=============s========“....T Then, by using (34) in (33), we find (21).
107 5 ‘ 300 APPENDIX B

d (km/h
speed (km/h) COMPUTATION OF THEHCRB

Fig. 11. BER performance ak,/No = 20 dB - comparison with the In this _appendlx, we prowde the main steps leading to the
algorithm of [9] for different speeds computation of the HCRB. First, we rearrange the system

model given in (1) as follows:

Ye = Hr(v) op+wg (35)
VI. CONCLUSION AT
Let us defineQ(v) = [e27% ..., /275%™ | The N x
In this paper, a new algorithm which jointly estimates path N matrix H(v) is defined as follows :
Complex Gains (CG) and Carrier Frequency Offset (CFO) in )
Hi(v) =W -diag{Q(v)} - Lk (36)

the presence of very high mobility has been presented. The
algorithm is based on the EM algorithm. Within one OFDMyith the N x LN matrix £;, given by:

symbol, each time-varying CG is approximated by a Basis oA .

Expansion Model (BEM) representation. The dynamics of tHe ], { ’lovp diag{xy } f; I(:Isqe: p+IN,1=0...L—1
BEM coefficients are modeled by first-order auto-regressive 37)
processes. The algorithm operates in two steps, an aoqm5|
step (pilot OFDM symbols) and a tracking step. Moreover, w,
have derived a closed-form exact Hybrid Cé&mRRao Bound
(HCRB) for joint CFO and CG estimation in the presence '

of very high mobility. In contrast to the existing CRB for ; . ;

the estimation of fast time-varying CGs, the calculatedriabu 1) Computation of: Eq [Fl(a V)]
does not assume a BEM, and hence represents the true low
bound. Simulation results have shown that the CG est|mat|on Fi(a,v) = F!n(a,v) F!12(0¢»V)
reaches the HCRB. We also show that the proposed EM-based ’ Fioi(av)  Flaa(aw)

algorithm is a computationally less demanding techniqa@ thyyhere the submatrices are defined as follows:
the MAP algorithm, with quasi same performance. Simulation

he N x N matrix W is the Fourier matrix
(?W 1 Nk —727°%) and vectorw,, is the pth column of

Flrst we partition the matri¥i(c, v) as follows:

have also shown that our algorithm addresses the problem  Fiiiter) = Eya, [—A% In (p(ylee,v))l.]
of high mobility more efficiently than an existing algorithm Fito(er) = Eya, [-A%L In(pyla,v))]y]
The proposed algorithm is also quite robust to reasonable  Fij, (n.) = Eylaw [~AY In (p(y|ea, V)], ]

uncertainties on the delays and the doppler frequency. Fipy(as) = By [ AV 1 ( yla V))| ]
22(a,v - Yo, v [T =y ) v

Computation of E, [Fi11(a,v)]: the observation model is pre-
sented in (35). Using the whiteness of the noise =

APPENDIXA T . -
COMPUTATION OF THE(Q FUNCTION [Wo™ ..., wi—17]", we obtain:
K—-1
Taking the expectation with respect ¢oconditioned ony, A% In (p(ylo,v) = > AL In (p(yglan,v))  (38)
given the current parameter estimaté), and removing the k=0
terms that do not depend an we obtain from (18): It is important to note that each term of the summation (38) is
a K LN x K LN block diagonal matrix with only one nonzero
o 1 K=t AN LN block matrix, namely:
Qv, ') =—— Tr{E p(i){y—m(u) Y — Mg()
(0 P7) = =23 30T (B [0 = e 0= )" [ i) Aty )

(32) (39)
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wherei(k) = kLN : (k+ 1)LN — 1 with k € [0, K — 1]. As
a direct consequencé\& In (p(y|a,v)) is a block diagonal

whereR(® £'E [, o] is given by:

matrix with thekth diagonal block given by (39). Hence, we RY [i(),i(1)] = R, for tefo,r-1)
btain:
obtain with i(l) = IN : (I+1)N — 1 and R®) defined in (5).
Eq [Fi1i(ew)] = blkdiag{JT o), T1(v), ..., T k-1 } Collecting all the obtained results, we finally get:
where J,(v) is aLN x LN matrix defined as: K-l
. Eo [Fien] =2 T{ROTI(1)}  (49)
Jk(l’) = Ey,a\u[an: In (p(yk|ak’vl/)|u)] (40) k=0

It remains to compute the log-likelihood function in (40hér

vectory, for given o, is a complex Gaussian vector withabove, thatfq [Fiiz(a,v)]

mean vectomy () = H () and covariance matrix?| .
Thus, p(y,|a, v) is defined as:

p(Yelan, v) = Ce™ 52 WM @) (=mi (@) (41)

where(' is a constant. By taking the second derivative of the

natural logarithm In of (41) with respect ta;, we simply
obtain:

1
) ;Hf ) Hiw) (42)

Computation of E, [Fiza(a,v)] : As for the computation of

« [Fi11(e,v)], using the whiteness of the noise, we have that:

AV In (p(y|e,v)

ZA

k=0

yk|akv ))

From (41), it follows that:

1
—A) In (p(yk_\ak,u)) == (7kaAZ (M)
=AY (M) yi + AL (M 0)mi)))

Then, we compute the expectation with respeat,tgielding:

1
Byl [A7 In (p(lok, v))] = —5 (=mif AL (myv)

—A7 (Ml o) m + Ay (M M) ,

is the mean ofy,. Us-

A(W)AZ(B(v)) +

since My (v) Hi )y,

ing AJ(A(v)B(v)) = AJ(A(¥))B(v) +

2V, A(v)V,B(v) with A(rv) andB(r) some matrices depend- [3]

ing on v, we obtain:

Eya,u [—Al”, In (p(yk|ak,u))|,,] = QakHJ;(u)ak (43)

where J}.(») is a LN x LN matrix defined as:

Thw) = ’H ) Hy ()

where H, (v) LV, (Hr(v)) is obtained by replacing2(v)
with Q’(v) in (36), with:

0 jonor N-1) poowv-n.]"
Q') = [ﬂwN@ﬂﬂ’v,...,jzn(N)eﬂ”(NN” }
Then, computingE, [af J7,(v)ay,] vyields, after short

derivations, q‘ghe sum of all the elements of thé&V x LN
matrix (REB) o ‘72(1/)>, that can be written as :

Eo [of! 7 (v)eu] = Tr {RO.77,0)}

Then, it is easily shown, by following a similar reasoning as
=[E, [Figl(a,u)] =0.

2) Computation of Eq [— A2 In (p(a))]: a is a complex
Gaussian vector with zero mean and covariance ma&tgiof
size KLN x KLN defined as:

Ra[i(l,p),i(l,p’)] = Rg_p/) for ie[o,L-1] pp’elo,k—1] (45)

wherei(l,p) = IN+pLN : (I+1)N—1+pLN andRY) is the
correlation matrix ofe; ;; defined in (5). Thus, the probability
density functionp(«) is defined as:

R et

|7Ra|

Taking the second derivative of the natural logarithm of) (46
with respect toa and making the expectation over, we
simply obtain that:

Eq [ —AS In (p(a))]

Collecting all those results yields the expression of theRBC
(29).

p(a) @ (46)

R—l
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