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Abstract—In this paper, the problem of joint Carrier Fre-
quency Offset (CFO) and channel estimation for OFDM systems
over the fast time-varying frequency-selective channel is explored
within the framework of the expectation-maximization (EM)
algorithm and parametric channel model. Assuming that the path
delays are known, a novel iterative pilot-aided algorithm for joint
estimation of the multi-path Rayleigh channel Complex Gains
(CG) and the Carrier Frequency Offset (CFO) is introduced.
Each CG time-variation, within one OFDM symbol, is approx-
imated by a Basis Expansion Model (BEM) representation. An
auto-regressive (AR) model is built to statistically characterize
the variations of the BEM coefficients across the OFDM blocks.
In addition to the algorithm, the derivation of the Hybrid
Cramér-Rao Bound (HCRB) for CFO and CGs estimation in
our context of very high mobility is provided. We show that the
proposed EM has a lower computational complexity than the
optimum maximum a posteriori estimator and yet incurs only
an insignificant loss in performance.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) has become a standard technique for

broadband high speed communication systems, mainly the
Mobile Worldwide Interoperability Microwave Systems for
Next-Generation Wireless Communication Systems (WiMAX)
and the Third-Generation Partnership Project (3GPP) in the
form of its Long-Term Evolution (LTE) project. However, it is
well known that small carrier frequency offsets (CFOs) yield
severe degradation in OFDM modulation since it produces
inter-carrier interference (ICI) and attenuates the desired
signal. These effects reduce the effective signal-to-noise ratio
(SNR) in OFDM reception resulting in degraded system
performance [1] [2]. Accurate CFO recovery is thus essential
to make an OFDM system practically viable. In addition,
the coherent detection of signals is generally performed by
means of an equalization task which requires the channel
knowledge. Therefore the channel estimation is also essential
for practical systems.

The best performance is obtained when the CFO and the
channel are estimated jointly [3]. This problem can be regarded
as an estimation problem of one given parameter (here the
CFO) in the presence of unobserved state (here CGs of
the channel). Then, an interesting approach is to use the

Expectation-Maximization (EM) algorithm. The EM algorithm
provides actually an iterative method to find the maximum
likelihood (ML) estimates, as presented in [4] for the problem
of speech recognition system parameters estimation while also
providing the state estimates. Recently, the EM algorithm has
been applied to a lot of problems including channel estimation
[5] [6][7][8]. In [6], the authors proposed a joint CFO and
channel estimator based on EM algorithm forOFDM - single
input-single output (SISO) systems, and in [7] the authors
extended this work to theOFDM - multiple input-multiple
output (MIMO) context. However, these studies have been
derived for quasi-static channels. We propose to address the
problem of joint CFO and channel estimation via the EM
algorithm in the context ofOFDM systems withvery high
mobility. Note that there are other approaches for estimating
both CFO and channel, like the extended Kalman filter used
in [9].

In the context of very high mobility, it is generally prefer-
able to directly estimate the physical channel parameters [10].
Indeed, as the channel delay spread increases, the number of
channel taps also increases, thus leading to a large number of
BEM coefficients, and consequently more pilot symbols are
needed. Estimating the physical propagation parameters means
estimating multi-path delays and multi-path CGs.It is well
known that in Radio-Frequency transmissions, the path delays
are quasi-invariant over several OFDM blocks [11](Sec.III-
A), [12], [13] (whereas the CGs may change significantly,
even within one OFDM block). In this work, the delays are
assumed perfectly estimated and quasi-invariant. It should be
noted that an initial, and generally accurate estimation ofthe
number of paths and delays can be obtained by using the
MDL (minimum description length) and ESPRIT (estimation
of signal parameters by rotational invariance techniques)meth-
ods, respectively [14][10][15]. The CFO and channel estimator
derivations are presented for this approach. Additionally, we
demonstrate that the results for the non-parametric approach
can be simply deduced from those derivations. Hence, this
work can be applied to both approaches.

The Craḿer-Rao bound (CRB) is a well known benchmark
to which the mean-square errors of estimators are compared.
In [16], the authors derived the CRB for the joint estimation
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of CFO and channel response in a static context. In [17], the
authors derived the CRB of path CGs in the presence of high
mobility. We propose to extend this bound to the case of joint
CFO and CGs estimation. Depending on the prior knowledge
available on parameters, the CRB has different expressions.
The hybrid CRB (HCRB) is considered in the case of a hybrid
vector containing deterministic and random parameters. We
provide the derivation of the HCRB for joint estimation of
CFO and the fast time-varying CGs in the OFDM context. To
sum up, the main contributions for the work presented in this
paper are the following:

• Unlike existing methods, the proposed algorithm uses
a parametric channel model to estimate the CFO and
the channel in a highly mobile environment. Using para-
metric channel models is of interest in the case of high
mobility, since less coefficients are to be estimated.

• To reduce estimation complexity, the proposed method
uses the BEM approach (to reduce the number of co-
efficients to estimate), a multivariate AR(1) model (to
describe the statistical variations of the BEM coefficients
across the blocks), and the EM method to avoid batch
processing. Simulations have shown that the proposed al-
gorithm has almost the same performance as the optimum
maximum a posteriori (MAP) estimator which requires
handling and inverting large matrices.

• A closed-form expression of the HCRB is provided.

The notations adopted are as follows: Upper (lower) bold face
letters denote matrices (column vectors).[x]n denotes thenth element
of the vectorx, and[X]n,m denotes the[n,m]th element of the matrix
X. It is noteworthy that vector and matrix indices start from0 and not
from 1. We will use the matlab notationX[n1:n2,m1:m2] to extract a
submatrix withinX from row n1 to row n2 and from columnm1 to
columnm2. IN is aN×N identity matrix and0N is aN×N matrix
of zeros. diag{x} is a diagonal matrix withx on its main diagonal,
diag{X} is a vector whose elements are the elements of the main
diagonal ofX and blkdiag{X,Y} is a block diagonal matrix with
the matricesX and Y on its main diagonal. The Hadamard product
for two matricesX andY of the same dimensions is denotedX ◦Y.
The superscripts(·)T and (·)H stand respectively for transpose and
Hermitian operators.| · |, and Tr{·} are respectively the determinant
and trace operations. Re(·), Im(·) and (·)∗ are respectively the real
part, imaginary part and conjugate of a complex number or matrix.
Ex,y[·] is the expectation overx and y, J0(·) is the zeroth-order
Bessel function of the first kind andδk,m is the Kronecker symbol.
∇x and∆x

y represent the first and the second-order partial derivatives
operatori.e., ∇x = [ ∂

∂x1
, ..., ∂

∂xN
]T and∆x

y = ∇y*∇
T
x .

II. TIME-VARYING OFDM SYSTEM SUBJECT TOCFO

A. OFDM System Model

Consider an OFDM system withN sub-carriers, and a
cyclic prefix lengthNg. The duration of an OFDM block is
T = NbTs, whereTs is the sampling time andNb = N +Ng.
Let xk[n], n = −N

2 , . . . ,
N
2 −1 be the transmitted data symbol

on the subcarriern of thekth OFDM symbol. The{xk[n]} are
normalized symbols (i.e.,E

[

xk[n]x
∗
k[n]

]

= 1). The frequency
mismatch between the oscillators used in the radio transmitters
and receivers causes a CFO∆F . The normalized CFO is

denotedν = ∆FNTs. After transmission over a multi-path
Rayleigh channel, the subcarriern of thekth received OFDM
symbolyk[n] is given in the frequency domain (after removing
cyclic prefix and taking DFT) by [13] [18]:

yk = Hk xk + wk (1)

wherexk =
[

xk[−
N
2 ], xk[−

N
2 + 1], ..., xk[

N
2 − 1]

]T
. yk and

wk are defined in a similar way asxk. wk is a white complex
Gaussian noise vector of covariance matrixσ2IN and Hk is
theN×N channel matrix. The elements ofHk can be written
in terms of equivalent channel taps [19]

{

gl,k(qTs) = gl(kT+

qTs)
}

:

[Hk]n,m =

1

N

L′−1
∑

l=0

[

e−j2π(m
N

− 1
2 )·l

N−1
∑

q=0

gl,k(qTs)e
j2πm−n+ν

N
q
]

, (2)

or in terms of physical channel parameters [15] (delays
{

τl
}

and CGs
{

αl,k(qTs) = αl(kT + qTs)
}

), yielding:

[Hk]n,m =

1

N

L−1
∑

l=0

[

e−j2π(m
N

− 1
2 )τl

N−1
∑

q=0

αl,k(qTs)e
j2πm−n+ν

N
q
]

. (3)

L′ < Ng is the number of channel taps andL the number of
paths. The delays are normalized byTs and not necessarily
integers (τl < Ng). The L elements of

{

αl,k(qTs)
}

are un-

correlated. However, theL′ elements of
{

gl,k(qTs)
}

are cor-
related, unless the delays are multiple ofTs as often assumed
in the literature. These channel taps and CGs are wide-sense
stationary (WSS), narrow-band zero-mean complex Gaussian
processes of variancesσgl

2 and σαl

2, respectively, and with
the so-called Jakes’ power spectrum of maximum Doppler
frequency fd [20]. The average energy of the channelis

normalized to one,i.e.,
L′−1
∑

l=0

σgl
2 = 1 and

L−1
∑

l=0

σαl

2 = 1. Let

us define theN × 1 vector:

αl,k =
[

αl,k(0), ..., αl,k

(

(N − 1)Ts

)]T
(4)

The correlation matrix ofαl,k for the time-lagp, R(p)
αl

=
E
[

αl,kαl,k−p
H
]

, is given by:

[R(p)
αl

]n,m = σαl

2J0

(

2πfdTs(n−m+ pNb)

)

(5)

In the next sections, we present the derivations for the second
approach (physical channel). The results of the first approach
(channel taps) can be easily deduced by replacingL by L′

and the set of delays
{

τl
}

by
{

l, l = 0 : L′ − 1
}

.

B. BEM Channel Model

In each OFDM block, there areN samples to be estimated
for each path CG due to the fast time-variation of the channel,
yielding a total ofLN samples for the whole channel and
for each block. In order to reduce the number of parameters
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to be estimated, we resort to the Basis Expansion Model
(BEM). In this section, our aim is to accurately model the
time-variation ofαl,k(qTs) from q = 0 to N − 1 by using a
BEM. The purpose of using a BEM is to approximateαl,k as
the weighted sum of just a few basis functionbd, as follows:

αl,k = αBEM l,k
+ ξl,k = B · cl,k + ξl,k (6)

whereB = [b0, ...,bNc−1] is a N × Nc matrix that collects
theNc basis functionsbd. Vectorcl,k =

[

cl,k[0], ..., cl,k[Nc −

1]
]T

represents theNc BEM coefficients for thelth CG of
the kth OFDM symbol, andξl,k represents the corresponding
BEM modeling error, which is assumed to be minimized in the
mean square error (MSE) sense [21]. Under this criterion, the
optimal BEM coefficients and the corresponding model error
are given by:

cl,k =
(

BHB
)−1

BHαl,k (7)

ξl,k = (IN − S)αl,k

whereS= B
(

BHB
)−1

BH is aN ×N matrix.
Various traditional BEM designs have been reported to

model the channel time-variations, e.g., the Complex Expo-
nential BEM (CE-BEM), the Polynomial BEM (P-BEM) or
the Karhuen-Loeve BEM (DKL-BEM) for instance [18][22].

From now on, we can describe the OFDM system model
derived previously in terms of the BEM. Substituting (6) in
(1) yields after some algebra:

yk = Kk(ν) · ck + ǫk + wk (8)

where theLNc × 1 vector ck and theN × LNc matrix Kk

are given by:

ck =
[

cT0,k, ..., c
T
L−1,k

]T

Kk(ν) =
1

N
[Z0,k(ν), ...,ZL−1,k(ν)] (9)

Zl,k(ν) = [M0(ν) diag{xk} fl, ...,

MNc−1(ν) diag{xk} fl] (10)

where vectorfl is thelth column of theN ×L Fourier matrix
F that depends on the delays distribution (defined by [14]),
andMd(ν) is aN ×N matrix given by:

[F]n,l = e−j2π( n
N

− 1
2 )τl (11)

[Md(ν)]n,m =

N−1
∑

q=0

[B]q,d ej2π
m−n+ν

N
q (12)

The second component in (8),ǫk, represents the approxi-
mation error in the observation model.

C. The AR Model for ck
From (7), we get that the optimal BEM coefficientscl,k are

correlated complex Gaussian variables with zero-means and
correlation matrix given by:

R(p)
cl = E[cl,kcHl,k−p]

=
(

BHB
)−1

BHR(p)
αl

B
(

BHB
)−1

(13)

Since the coefficientscl,k are correlated Gaussian variables,
their dynamics can be well approached by an auto-regressive

(AR) process [23] [15] . A complex AR process of orderI,
denoted̃cl,k, can be generated as:

c̃l,k =

I
∑

i=1

A(i)c̃l,k−i + ul,k (14)

whereA(1), ...,A(I) areNc×Nc matrices andul,k is aNc×1
complex Gaussian vector with covariance matrixUl. From
[15], it is sufficient to chooseI = 1 to correctlycapturethe
coefficients dynamics. The matricesA(1) = A andUl are the
AR model parameters. The standard choice[23] to compute
those parameters is to impose that the correlation matricesR(p)

c̃l
of the approximate process perfectly match the correlation
matricesR(p)

cl of the true process for lagp ∈ {−1, 0, 1} in (13).
Imposing this correlation matching constraint, the parameters
of the AR process can be computed by the set of the Yule-
Walker equations defined as:

A = R(1)
cl

(

R(0)
cl

)−1

(15)

Ul = R(0)
cl − AR(−1)

cl (16)

Using (14), we obtain the AR model of order1 for c̃k:

c̃k = A · c̃k−1 + uk (17)

where A = blkdiag{A, ...,A} is a LNc × LNc ma-

trix and uk =
[

uT
0,k, ...,u

T
L−1,k

]T

is a LNc × 1 zero-
mean complex Gaussian vector with covariance matrixU =
blkdiag{U0, ...,UL−1}.

III. EM ALGORITHM

First, we consider a block ofK OFDM received symbols.
Let y = [y0

T , ..., yK−1
T ]T and c = [c0T , ..., cK−1

T ]T . The
objective is to jointly estimate the CFOν and the BEM
coefficientsc of the path CGs based on the set of theK
OFDM received signals. It is noteworthy that ifν is known,
the BEM coefficientsc can be estimated by using a Kalman
filter [15]. In our specific context, bothν andc are unknown.
Therefore we propose to use the EM algorithm, which has
been extensively explained in [24]. The EM algorithm is an
iterative method to find the ML estimates of parameters in
the presence of unobserved data. The algorithm comprises two
steps : the expectation step (E-step) and the maximization step
(M-step). We describe an EM algorithm for our model.

We suppose that the transmitted symbolsxk are known (this
configuration is called Data Aided (DA), and corresponds to
the acquisition task). We consider the received datay as in-
complete data, and define the complete data asz def

=
[

yT , cT
]T

.
Since the state isdescribed by first order Markov model, the
likelihood function of the complete data is given by:

p(z; ν) = p(c0)
K−1
∏

k=1

p(ck|ck−1)

K−1
∏

k=0

p(yk|ck; ν)

Then, from (8) (the error termǫk is neglected), we compute
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the log-likelihood of the complete data:

ln (p(z; ν)) = C −
1

σ2

K−1
∑

k=0

(yk − mk(ν))
H
(yk − mk(ν))

+ ln p(c0) +
K−1
∑

k=1

ln p(ck|ck−1) (18)

where C is a constant andmk(ν) = Kk(ν)ck is the mean
vector. Each iterationi = 0, 1, . . . of the EM algorithm for
estimatingν from y consists in two steps:

E-step : given the measurementsy and the latest estimatêν(i)

from the previous iteration, we calculate:

Q(ν, ν̂(i))
def
= Ec|y,ν̂(i) [ln p(z; ν)] (19)

M-step : this step findŝν(i+1), the value ofν which maximizes
Q(ν, ν̂(i)) over all possible values ofν:

ν̂(i+1) = argmaxνQ(ν, ν̂(i)) (20)

This procedure is repeated until the sequenceν̂(0), ν̂(1), . . .
converges.

Due to theGauss-Markovnature of the problem, the com-
putation of theQ function can be expressed as (see Appendix
A):

Q(ν, ν̂(i)) = −
1

σ2

K−1
∑

k=0

Tr
{

Kk(ν)S
(i)
k|KK

H
k (ν)

(

yk −Kk(ν)ĉ
(i)
k|K

)(

yk −Kk(ν)ĉ
(i)
k|K

)H
}

(21)

where ĉ(i)
k|K

def
= Ec|y,ν̂(i) [ck] and S(i)

k|K
def
=

Ec|y,ν̂(i)

[

(ck − ĉ(i)
k|K)(ck − ĉ(i)

k|K)H
]

. The required termŝc(i)
k|K

andS(i)
k|K can actually be computed for allk = 0, . . . ,K − 1

from the fixed interval Kalman smoother (using the parameter
estimate at iterationi), since our model (8 in neglecting the
error termǫk) becomes a so-called Gaussian linear model for
the estimation ofck assuming previous knowledge ofν. The
E-step is thus an Estimation-step for the BEM coefficients
vector. The smoother consists of a backward pass that follows
the standard Kalman filter Forward recursion given by:

Forward recursion:
Time Update Equations (TUE):

ĉ(i)
k|k−1 = Aĉ(i)

k−1|k−1 (22)

S(i)
k|k−1 = AS(i)

k−1|k−1A
H + U

Measurement Update Equations (MUE):

Kk = S(i)
k|k−1K

H
k (ν̂(i))

(

Kk(ν̂
(i))S(i)

k|k−1K
H
k (ν̂(i)) + σ2IN

)−1

ĉ(i)
k|k = ĉ(i)

k|k−1 +Kk(ν̂
(i))

(

yk −Kk(ν̂
(i))ĉ(i)

k|k−1

)

(23)

S(i)
k|k = S(i)

k|k−1 − KkKk(ν̂
(i))S(i)

k|k−1

Backward recursion:

Jk = S(i)
k−1|k−1A

HS(i)
k|k−1

ĉ(i)
k−1|K = ĉ(i)

k−1|k−1 + Jk
(

ĉ(i)
k|K − ĉ(i)

k|k−1

)

(24)

S(i)
k−1|K = S(i)

k−1|k−1 + Jk
(

S(i)
k|K − S(i)

k|k−1

)

JHk

It is noteworthy that the EM is a computationally less
demanding technique than MAP [25], since it does not require
batch processing and the matrices to be inverted are only of
size LNc × LNc. The BEM-based MAP technique requires
batch processing and the inversion of(KLNc × KLNc)
matrices. We show in Section V that the MSE performances
of the two methods are very close to each other.

IV. H YBRID CRAMÉR-RAO BOUNDS (HCRB)

A. Introduction

The CRB for the fast time-varying path CGs has been first
computed in [17] for the OFDM context. However, the calcu-
lated CRB assumed a BEM model for the channels. Hence,
the CRB of the CGs derived in [17] cannot be considered as
the true CRBbut as a BEM-based CRBsince it is based on
the CRB of the BEM coefficients. The exact CRB for the CGs
is the one that does not assume a BEM.

In this Section, we propose to derive the true CRB for the
estimation of the CGs together with the CFO, in the presence
of very high mobility. The CFO being deterministic, this yields
to calculate a Hybrid CRB. The CRBs provide a lower bound
on the Mean Square Error (MSE) achievable by any unbiased
estimator. We give the general expression of the Hybrid
Craḿer-Rao Bound (HCRB). The HCRB is particularly suited
for problems where the parameters to be estimated encompass
both deterministic (hereν) and random (hereα) components,
with availability of the a priori information (p(α)). An off-line
scenario is considered, i.e. the receiver waits until the whole
observation frame ofK OFDM symbolsy = [yT0 , ..., y

T
K−1]

T

has been received to perform parameter estimation.
Vectorα is defined as follows:

α =
[

αT
0 , . . . ,α

T
K−1

]T
(25)

αk =
[

αT
0,k, . . . ,α

T
L−1,k

]T
(26)

where the vectorαl,k is defined in (4).
Let µ = [αT , ν]T be the hybrid vector to be estimated. The

HCRB has been initially proposed in [26] as:

Ey,α|ν

[

(

µ̂(y)− µ
)(

µ̂(y)− µ
)H

|ν

]

≥ HCRB

whereX ≥ Y is interpreted as meaning that the matrixX −Y
is positive semi-definite. We partition the HCRB matrix as
follows:

HCRB =

[

HCRBα HCRB12

HCRB21 HCRBν

]

(27)

where theKLN × KLN matrix HCRBα and the scalar
HCRBν are the minimal bounds on the MSE ofα and ν,
respectively, and the vectorsHCRB12 and HCRB21 are the
cross-terms. Note that for notational convenience, we dropthe
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dependence of these submatrices onν. The HCRB1 is the
inverse of the Hybrid Information Matrix (HIM), which can
be written as:

Hi(ν) = Eα

[

Fi(α, ν)
]

+ Eα|ν
[

−∆µ

µ
ln

(

p(α|ν)
)

|ν
]

where p(α|ν) is the prior distribution andFi(α, ν) is the
Fisher Information Matrix (FIM) defined as:

Fi(α, ν) = Ey|α,ν

[

−∆µ

µ
ln
(

p(y|α, ν)
)

|ν
]

wherep(y|α, ν) is the conditional probability density function
of y given α and ν. Since the deterministic and the random
parts of the hybrid vector are statistically independent,i.e.,
p(α|ν) = p(α), then after some algebraic manipulations, the
second component of the HIM can be written as [27]:

Eα|ν
[

−∆µ

µ
ln
(

p(α|ν)
)

|ν
]

=
[

Eα

[

−∆α

α
ln

(

p(α)
)]

0KLN,1

01,KLN 0

]

In the DA context, the transmitted data symbolsx are known
at the receiver and then no averaging over the data is required.
Hence, the probability density function depends onx, and so
do the bound.

Finally, the mean MSE of the estimation ofα is lower-
bounded by:

HCRBα =
1

KLN
Tr {HCRBα} (28)

The HCRB associated with the estimation ofν, HCRBν , is
given by (27).

B. Expression of the HCRB

The closed-form exact expression for the HCRB related to
the estimations ofα and ν in the Data Aided (DA) mode
of OFDM systems is presented hereafter. The details of the
derivation are given in Appendix B, yielding:

HCRB = (blkdiag{J 0(ν), . . . ,JK−1(ν),

Eα [Fi22(α,ν)]}+ blkdiag
{

R−1
α

, 0
})−1

(29)

whereJ k(ν) is given by (42),Eα [Fi22(α,ν)] is given by (44)
andRα is given by (45).

V. SIMULATION RESULTS

For all our simulations the channel autocorrelation function
is assumed to be given by the widely accepted Jakes’ model,
as stated in Section II.

System parameters in our simulations follow the WiMAX
mobile standard [28], withN = 128 and1/Ts = 1.25 MHz,
yielding a subcarrier spacing of 10.94KHz which is the value
imposed by WiMAX (section 2.3 WIMAX Physical layer in
[28]). The carrier frequency is set to 3.5GHz.

The Rayleigh channel model is the channel A from [28]
(L = 6 paths and maximum delayτmax = 3.1Ts, see Table
I). The data symbols are drawn from normalized 4QAM
constellations. We setNg = N

8 . Three different normalized

1We recall that, for a deterministic parameter, Standard Cramér-Rao Bound
(SCRB) would be directly the inverse of the Fisher Information Matrix (FIM).

Path number Relative Power (dB) Delay (nsec)

0 0 0
1 -1 310
2 -9 710
3 -10 1,090
4 -15 1,730
5 -20 2,510

TABLE I
ITU MULTIPATH CHANNEL MODEL - CHANNEL A [28]

Doppler frequencies have been selected,fdT = 0.05, fdT =
0.1 and fdT = 0.15, corresponding to a mobile terminal
moving at speeds of 130 Km/h, 270 Km/h and 400 Km/h,
respectively. The BEM model used for the simulation is the
polynomial BEM. The normalized CFOν has been set to 0.35,
corresponding to an oscillator tolerance of 1 ppm. The mean
MSE of the estimations ofα and the MSE of the estimation
of ν aredefinedas follows:

MSEα
def
=

1

KNL
E

[

(α̂−α)
H
(α̂−α)

]

(30)

MSEν
def
= E

[

|ν̂ − ν|
2
]

(31)

where the expectation is estimated via monte-carlo simulations
in the following.

A. Acquisition algorithm

First, the impact of the number of EM iterations on CFO
estimation has been investigated for different speeds. Fig. 1
shows the meanover 100 realizations of the CFO recursive
estimate (̂ν(i)) versus the number of EM iterationsi for
Eb/N0 = 20 dB andK = 2. The normalized CFOν has been
set to 0.35, corresponding to an oscillator tolerance of 1 ppm.
This figure shows that the estimated CFO converges to the
true value faster when the Doppler is lower.For fdT = 0.05,
fdT = 0.1, fdT = 0.15, the algorithm converges after about
30, 50, 100 iterations respectively. Hence, the convergence
time strongly depends on the mobile speed. Fig. 2 illustrates
this convergence with theQ-function as a function ofν for
different values of iteration numberi and for fdT = 0.1
(always for a true valueν = 0.35). It is worthwhile to observe
that the function does not present local maximas.

Next, the acquisition range for the CFO has been investi-
gated for the most critical casefdT = 0.15. Fig. 3 showsthe
CFO estimate curves (ν̂(i)) versus the number of EM iterations
for different values ofν selected in the range[−1.2, 1.3] with
an increment of 0.1 (each curve corresponding to a given
ν̂ is averaged over 100 realizations). It is shown that the
algorithm is able to acquire the normalized CFOν in the range
[−1.1, 1.2], corresponding to about±3.4 ppm.

Fig. 4 shows the HCRB for the CG estimation (28) and CFO
estimation (27) versus the block sizeK for different values
of Eb/N0, again withfdT = 0.1 andNc = 3. K varies from
2 to 50. As expected, it is observed that both bounds rapidly
decreasewhenK varies from 2 to 10, and then decrease with
a smoother slope. Hence, the gain in performance is important
only for small values ofK, then the gain becomes negligible.
A good trade off would be to chooseK = 10, but the value of
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Fig. 2. Q functions atEb/N0 = 20 dB andfdT = 0.1, K = 2, ν = 0.35

K depends on the standard. A typical value isK = 2. In the
sequel, we will perform simulations withK = 2 andK = 5.

Fig. 5 shows the MSE performance of the path CG es-
timation for the forward step and the backward step. For
reference, the HCRB has been plotted. The parameters values
are ν = 0.35, Nc = 3 and fdT = 0.1. Simulations have
been performed for bothK = 2 andK = 5. As expected the
backward step consistently outperforms the performance ofthe
forward step. This is understood since the backward step uses
the whole received sequence. Note also that the backward step
reaches the HCRB. On the other hand, the improvement given
by the backward step is more important withK = 5 than with
K = 2. The gain in performance as a function of the block
size can also be observed with the HCRB in Fig. 4. The MSE
for the MAP algorithm [25] has also been plotted. It is similar
to that obtained with the proposed EM algorithm.

Fig. 6 shows the MSE performance of the CFO estimation
for the proposed EM algorithm and the MAP algorithm. The
MSE of CFO MAP estimate is far from the bound, and is
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Fig. 3. EM trajectories for different values ofν at Eb/N0 = 20 dB and
fdT = 0.15, K = 2
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Fig. 4. HCRB versusK for (a) the CG estimation, (b) the CFO estimation
with fdT = 0.1 andNc = 3

quasi the same as the MSE of CFO EM estimate. Since we
take the expectation of the hybrid FIM with respect to the
channel statistics, the HCRB is not necessarily tight for the
CFO estimation. This is similar to what is observed with the
modified CRB for the CFO in the case of non-data aided
systems where the expectation of the FIM is taken with respect
to the unknown data before taking the inverse.
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B. Tracking algorithm

The proposed EM algorithm is used as an acquisition
algorithm on the firstK OFDM symbols of the frame, as-
suming the knowledge of all the transmitted symbolsxk, k =
0 . . . K − 1. In order to propose a complete algorithm able
to perform detection, we propose using the tracking algo-
rithm of [15]. This tracking algorithm proceeds in order
to jointly make CG estimation and data detection, based
on pilots symbols evenly inserted in each OFDM symbol.
The pilot positions are given by the set of pilot indices
P = { nLf , n = 0 . . . Np − 1}, where Lf is the distance
between two adjacent pilots andNp is the number of pilots.
The algorithm is an on-line algorithm, i.e. it operates on each
OFDM symbol. The CG tracking is based on Kalman filter,
using the CG estimated in the acquisition phase as an initial
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Fig. 7. BER of the proposed tracking algorithm forLf = 8, Lf = 16 and
N = 128, N = 512

value. It should be noted that we use the estimated CFO to
remove its effect on the received symbols. The switch between
our acquisition algorithm and this tracking algorithm makes
sense since both algorithms rely on an AR(1) dynamical model
of the BEM representation of the CG variations, used for the
Kalman filter.

Fig. 7 shows the obtained BER forN = 128 andN = 512.
For the sake of comparison, the performance of the algorithm
obtained with perfect channel state information (CSI) is also
given. As expected, the BER is closer to the one obtained
with perfect CSI when using a higher number of pilots. Also,
the BER withN = 512 is more favorable than withN = 128
(note that the bandwidth is larger withN = 512, the subcarrier
spacing remaining constant). Hence, to test the robustness
of the algorithm in the sequel, we will choose the most
unfavorable caseN = 128.

C. Robustness of the tracking algorithm to imperfect delay
and Doppler frequency knowledge

Fig. 8 measures the effect of an imperfect delay knowledge
on the BER performance of our proposed tracking algorithm.
SD denotes the standard deviation of the time delay errors
(modeled as zero mean Gaussian variables). As expected
(common drawback to any parametric channel estimator), the
algorithm performance decreases with respect to the delay
error. However, the algorithm is not very sensitive to a delay
error SD < 0.2Ts in low SNR, andSD < 0.1Ts in high
SNR, for bothNp = 8 andNp = 16. And when increasing the
number of pilot subcarriers toNp = 16, sensibility to delay
error decreases. These required performance for the delays
acquisition can well be obtained when using high resolution
algorithms [14], thanks to the quasi invariance of the delays
(with respect to the scale of the sampling timeTs) during a
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Fig. 9. BER of the proposed tracking algorithm for imperfect knowledge of
the Doppler frequency for (a)Np = 16, (b) Np = 8

large number of OFDM symbols (see also performance in [15]
obtained by the ESPRIT method [14]).

Robustness to imperfect Doppler frequency is investigated
in Fig. 9. The algorithm is not sensitive to a Doppler frequency
errorSD < 0.01/T for bothNp = 8 andNp = 16. Similarly
to the delay error, increasing the number of pilots increases
the robustness to Doppler frequency errors.

We now study the effect of the wrong estimate ofL = 6 on
our algorithm withNp = 16. A study on this issue was made
in [15] for time-varying channels estimation (without CFO).
Le stands for the estimate ofL. In case of an overestimated
(Le = 7 and Le = 8), it is shown that such a mismatch
ends up in slight degrades of performance as shown in 10.
However, in case of underestimated (Le = 5 andLe = 4), the
performance of our algorithm suffers from this disappearing
of paths especially at moderate and highEb/N0 region. This
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Fig. 10. BER of the proposed tracking algorithm for imperfectknowledge
of the number of pathsL

result is similar to the result obtained in [15]. However as [15],
by using a robust method like the minimum description length
(MDL) to estimateL, we can make our algorithm correctly
performs without a priori knowledge ofL.

D. Performance comparison

In this section, we compare our proposed algorithm with
the algorithm of [9]. This algorithm is based on the extended
Kalman filtering to carry out channel taps and CFO estimation
together with data detection. Note that it operates on equivalent
discrete channel model only, and not on the parametric channel
model. The simulations presented in [9] have been carried out
in Decision-Directed (DD) mode only (after the acquisition
step), i.e. only decoded data symbols are used to perform
the filtering. However, when introducing their algorithm, the
authors also stated that in case of high mobility, pilot signals
are also needed [9][29]. So to compare both algorithms, we
insert pilots in the algorithm following the pilot scheme ofour
tracking algorithm [15]. We use the same parameters as in [9]
to perform the simulations, i.e. a 4-taps discrete channel with
power loss[0,−1,−3,−9][dB] and delay profile[0, 1, 2, 3]µs
, (which corresponds to a urban type of scenario), a carrier
frequency of2.4 GHz and a bandwidth1/Ts = 1 MHz.

Simulations for three different speeds, 30 km/h, 150 km/h
and 300 km/h have been performed for an SNR equal to 20 dB
(see Fig. 11). For reference, the performance of the algorithm
is given by using the ideal channel state information (CSI).It is
observed that our algorithm is far more robust to mobility than
the literature algorithm proposed in [9]. This is logical since
our algorithm has been devised to handle the high mobility,
which is not the case of [9]. But to the best of our knowledge,
we do not know an algorithm which performs channel and
CFO estimation together with data detection in the presence
of very high mobility.
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VI. CONCLUSION

In this paper, a new algorithm which jointly estimates path
Complex Gains (CG) and Carrier Frequency Offset (CFO) in
the presence of very high mobility has been presented. The
algorithm is based on the EM algorithm. Within one OFDM
symbol, each time-varying CG is approximated by a Basis
Expansion Model (BEM) representation. The dynamics of the
BEM coefficients are modeled by first-order auto-regressive
processes. The algorithm operates in two steps, an acquisition
step (pilot OFDM symbols) and a tracking step. Moreover, we
have derived a closed-form exact Hybrid Cramér-Rao Bound
(HCRB) for joint CFO and CG estimation in the presence
of very high mobility. In contrast to the existing CRB for
the estimation of fast time-varying CGs, the calculated bound
does not assume a BEM, and hence represents the true lower
bound. Simulation results have shown that the CG estimation
reaches the HCRB. We also show that the proposed EM-based
algorithm is a computationally less demanding technique than
the MAP algorithm, with quasi same performance. Simulations
have also shown that our algorithm addresses the problem
of high mobility more efficiently than an existing algorithm.
The proposed algorithm is also quite robust to reasonable
uncertainties on the delays and the doppler frequency.

APPENDIX A
COMPUTATION OF THEQ FUNCTION

Taking the expectation with respect toc conditioned ony,
given the current parameter estimateν̂(i), and removing the
terms that do not depend onν, we obtain from (18):

Q(ν, ν̂(i)) = −
1

σ2

K−1
∑

k=0

Tr
{

Ec|y,ν̂(i)

[

(yk − mk(ν)) (yk − mk(ν))
H
]}

(32)

From (32), we find:

Q(ν, ν̂(i)) = −
1

σ2

K−1
∑

k=0

Tr
{

ykyHk +Kk(ν)P
(i)
k|KK

H
k (ν)

−ykĉ(i)
H

k|K K
H
k (ν) −Kk(ν)ĉ

(i)
k|KyHk

}

(33)

whereP(i)
k|K

def
= Ec|y,ν̂(i)

[

ckcHk
]

and ĉ(i)
k|K

def
= Ec|y,ν̂(i) [ck]. Let

us define:

S(i)
k|K

def
= Ec|y,ν̂(i)

[

(ck − ĉ(i)
k|K)(ck − ĉ(i)

k|K)H
]

= P(i)
k|K − ĉ(i)

k|K ĉ(i)
H

k|K (34)

Then, by using (34) in (33), we find (21).

APPENDIX B
COMPUTATION OF THEHCRB

In this appendix, we provide the main steps leading to the
computation of the HCRB. First, we rearrange the system
model given in (1) as follows:

yk = Hk(ν) ·αk + wk (35)

Let us defineΩ(ν) =
[

ej2π
0ν
N , . . . , ej2π

(N−1)ν
N

]T

. The N ×

LN matrix Hk(ν) is defined as follows :

Hk(ν) = W · diag{Ω(ν)} ·Lk (36)

with theN × LN matrix Lk given by:

[Lk]p,q =

{

wH
p diag{xk} fl if q = p+ lN , l = 0 . . . L− 1

0 else
(37)

The N × N matrix W is the Fourier matrix
([W ]n,p = 1√

N
e−j2π np

N ) and vectorwp is thepth column of
W .

1) Computation of: Eα

[

Fi(α, ν)
]

First, we partition the matrixFi(α, ν) as follows:

Fi(α, ν) =

[

Fi11(α,ν) Fi12(α,ν)

Fi21(α,ν) Fi22(α,ν)

]

where the submatrices are defined as follows:

Fi11(α,ν) = Ey|α,ν

[

−∆α

α
ln
(

p(y|α, ν)
)

|ν
]

Fi12(α,ν) = Ey|α,ν

[

−∆ν
α

ln
(

p(y|α, ν)
)

|ν
]

Fi21(α,ν) = Ey|α,ν

[

−∆α

ν ln
(

p(y|α, ν)
)

|ν
]

Fi22(α,ν) = Ey|α,ν

[

−∆ν
ν ln

(

p(y|α, ν)
)

|ν
]

Computation of Eα [Fi11(α,ν)]: the observation model is pre-
sented in (35). Using the whiteness of the noisew =
[w0

T , ...,wK−1
T ]T , we obtain:

∆α

α
ln

(

p(y|α, ν
)

=

K−1
∑

k=0

∆α

α
ln
(

p(yk|αk, ν)
)

(38)

It is important to note that each term of the summation (38) is
aKLN×KLN block diagonal matrix with only one nonzero
LN × LN block matrix, namely:

∆α

α
ln
(

p(y|α, ν)
)

[i(k),i(k)]
= ∆αk

αk
ln
(

p(yk|xk,αk, ν)
)

(39)
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wherei(k) = kLN : (k + 1)LN − 1 with k ∈ [0,K − 1]. As
a direct consequence,∆α

α
ln
(

p(y|α, ν)
)

is a block diagonal
matrix with thekth diagonal block given by (39). Hence, we
obtain:

Eα [Fi11(α,ν)] = blkdiag{J 0(ν),J 1(ν), ...,JK−1(ν)}

whereJ k(ν) is aLN × LN matrix defined as:

J k(ν) = Ey,α|ν
[

−∆αk
αk

ln
(

p(yk|αk, ν)|ν
)]

(40)

It remains to compute the log-likelihood function in (40). The
vector yk for given αk is a complex Gaussian vector with
mean vectormk(ν) = Hk(ν)αk and covariance matrixσ2IN .

Thus,p(yk|αk, ν) is defined as:

p(yk|αk, ν) = Ce−
1
σ2 (yk−mk(ν))

H(yk−mk(ν)) (41)

whereC is a constant. By taking the second derivative of the
natural logarithm ln of (41) with respect toαk, we simply
obtain:

J k(ν) =
1

σ2
H

H
k (ν)Hk(ν) (42)

Computation of Eα [Fi22(α,ν)] : As for the computation of
Eα [Fi11(α,ν)], using the whiteness of the noise, we have that:

∆ν
ν ln

(

p(y|α, ν)
)

=

K−1
∑

k=0

∆ν
ν ln

(

p(yk|αk, ν)
)

From (41), it follows that:

−∆ν
ν ln

(

p(yk|αk, ν)
)

=
1

σ2

(

−yHk ∆ν
ν (mk(ν))

−∆ν
ν

(

mH
k (ν)

)

yk +∆ν
ν

(

mH
k (ν)mk(ν)

))

Then, we compute the expectation with respect toy, yielding:

Ey|α,ν

[

−∆ν
ν ln

(

p(yk|αk, ν)
)]

=
1

σ2

(

−mH
k ∆ν

ν (mk(ν))

−∆ν
ν

(

mH
k (ν)

)

mk +∆ν
ν

(

mH
k (ν)mk(ν)

))

,

since mk(ν) = Hk(ν)αk is the mean of yk. Us-
ing ∆ν

ν(A(ν)B(ν)) = ∆ν
ν(A(ν))B(ν) + A(ν)∆ν

ν(B(ν)) +
2∇νA(ν)∇νB(ν) with A(ν) andB(ν) some matrices depend-
ing on ν, we obtain:

Ey|α,ν

[

−∆ν
ν ln

(

p(yk|αk, ν)
)

|ν
]

= 2αH
k J

′

k(ν)αk (43)

whereJ ′

k(ν) is aLN × LN matrix defined as:

J
′

k(ν) =
1

σ2
H

′H
k (ν)H

′

k(ν)

whereH
′

k(ν)
def
= ∇ν (Hk(ν)) is obtained by replacingΩ(ν)

with Ω
′(ν) in (36), with:

Ω
′(ν) =

[

j2π
0

N
ej2π

0ν
N , . . . , j2π

(N − 1)

N
ej2π

(N−1)ν
N

]T

Then, computingEα

[

αH
k J

′

k(ν)αk

]

yields, after short
derivations, the sum of all the elements of theLN × LN

matrix
(

R(0)
α

T
◦J ′

k(ν)
)

, that can be written as :

Eα

[

αH
k J

′

k(ν)αk

]

= Tr
{

R(0)
α

J
′

k(ν)
}

whereR(0)
α

def
= E

[

αkα
H
k

]

is given by:

R(0)
α [i(l),i(l)] = R(0)

αl
for l∈[0,L−1]

with i(l) = lN : (l + 1)N − 1 and R(p)
αl

defined in (5).
Collecting all the obtained results, we finally get:

Eα [Fi22(α,ν)] = 2

K−1
∑

k=0

Tr
{

R(0)
α

J
′

k(ν)
}

(44)

Then, it is easily shown, by following a similar reasoning as
above, thatEα [Fi12(α,ν)] = Eα [Fi21(α,ν)] = 0.

2) Computation of Eα

[

−∆α

α
ln
(

p(α)
)]

: α is a complex
Gaussian vector with zero mean and covariance matrixRα of
sizeKLN ×KLN defined as:

Rα[i(l,p),i(l,p′)] = R(p−p′)
αl

for l∈[0,L−1] p,p′∈[0,K−1] (45)

wherei(l, p) = lN+pLN : (l+1)N−1+pLN andR(p)
αl

is the
correlation matrix ofαl,k defined in (5). Thus, the probability
density functionp(α) is defined as:

p(α) =
1

|πRα|
e−α

HR−1
α

α (46)

Taking the second derivative of the natural logarithm of (46)
with respect toα and making the expectation overα, we
simply obtain that:

Eα

[

−∆α

α
ln

(

p(α)
)]

= R−1
α

Collecting all those results yields the expression of the HCRB
(29).
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