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Poincaré Inequality and Haj lasz-Sobolev spaces on nested

fractals

Katarzyna Pietruska-Pa luba

Institute of Mathematics

University of Warsaw

ul. Banacha 2

02-097 Warsaw, Poland

e-mail: kpp@mimuw.edu.pl

Andrzej Stos
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Abstract

Given a nondegenerate harmonic structure, we prove a Poincaré-type inequality
for functions in the domain of the Dirichlet form on nested fractals. We then study
the Haj lasz-Sobolev spaces on nested fractals. In particular, we describe how the
”weak”-type gradient on nested fractals relates to the upper gradient defined in the
context of general metric spaces.
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1 Introduction

The interest in analysis on fractals arose from mathematical physics, and dates
back to the 80’s of the past century. The first object to be meticulously defined
was the Kigami Laplacian on the Sierpiński gasket [14], and, somehow in parallel,
the Brownian motion on the gasket [2]. Since then, we have seen an outburst of
papers focusing both on analytic and probabilistic aspects of stochastic processes
with fractal state-space. The analytic approach, concerned mostly with Dirichlet
forms, their domains and generators, proved particularly useful while constructing
processes on fractals. On the other hand, derivatives on fractals have been defined
[13, 18, 25, 26] and their properties studied. For an account of results from that
time, as well as an extended list of references, we refer to [15] (analytic) and [1]
(probabilistic).

In present paper, departing from the definition of the gradient on nested fractals
from [18, 26], we prove certain Poincaré-type inequalities on nested fractals, for
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functions belonging to the domain of the Brownian Dirichlet form (which can be
seen as a fractal counterpart of the Sobolev space W 1,2(Rd)). We will then be
concerned with Poicaré-Sobolev spaces and spaces of Korevaar-Schoen type, and
our analysis will be much in spirit of [17] and [20].

In the last paper mentioned, the authors consider general metric measure spaces
equipped with a Dirichlet structure (E ,D(E)), much alike the nested fractals we
consider. However, in order to proceed, they make a standing assumption that the
intrinsic metric related to the Dirichlet structure,

dE(x, y) = sup{φ(x) − φ(y) : φ ∈ Γ; dηR(φ, φ) ≤ dµ},

where Γ is a µ-separating core of E , induces the topology equivalent to the initial
one. This assumption fails for fractals: the metric dE is degenerate there, see [3],
p.6. So, in order to extend the results from [20], one should either modify the
definition of dE or choose a different approach.

A discussion of gradients with connetcion to the Poincaré inequality and relation
between various function spaces can be found in the recent paper [6]. While three
types of gradients are considered, the one used in P.I. is the so called upper gradient,
a notion that depends on rectifiable curves. In the context of nested fractals there
may be no such curves at all. Again, for a meaningful theory a different notion of
gradient should be considered.

We propose a hands-on approach based on discrete approximations of nested
fractals and Kusuoka gradients. By a limiting procedure, the gradient can be rea-
sonably defined for functions belonging to the domain of the Dirichlet form, although
it is usually hard to decide whether the limit exists at a given point for functions
other than m-harmonic. This gradient can be used in Poincaré-type inequalities
and in defining variants of Sobolev spaces on fractals.

We start with a local version of Poincaré inequality (P.I., for short), which then
yields a global P.I. on nested fractals. We obtain inequalities of the form

∫

B

|f − fB|dµ ≤ Cr
dw
2

(
1

rd

∫

B(x0,Ar)

〈∇f, Z∇f〉dν

)1/2

, (1.1)

where µ is the d-dimensional Hausdorff measure on the fractal, ν is the Kusuoka
energy measure on the fractal (see Section 2.2.3 for a precise definition), dw is
the walk dimension of the fractal we are considering, d its Hausdorff dimension,
and 〈∇f, Z∇f〉 replaces the square of the norm of the gradient. The measure ν is
typically singular with respect to the Hausdorff measure, but does not charge points.
Observe that in the Euclidean case we have dw = 2, and so the scale function in
P.I. will be linear as it should. Poincaré inequalities involving the Dirichlet energy
measure in a general setting have been investigated in the paper [3], but that paper
did not relate to the definition of gradients on fractal sets. A choice, or even the
existence, of a gradient is not obvious on fractals. We propose to use a weak-type
gradient with the energy measure (cf. Section 2 2.2).

As an application, in the second part of our paper, we compare several possible
definitions of Sobolev-type functions on fractals. On metric spaces, several defini-
tions of Sobolev-type spaces have been considered (see e.g. [5], [9], [16]), and nested
fractals are of particular interest in this context. In present paper, we introduce
Poincaré-inequality based Sobolev spaces on fractals and examine their relation
with Korevaar-Schoen spaces and Hajlasz-Sobolev spaces. While in a typical situ-
ation on metric spaces the scaling factor in a Poincaré inequality is r, the radius
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of a given ball, it turns out that on nested fractals it doesn’t yield an interesting
inequality. To deal with relevant Sobolev spaces, one should take into account the
specific geometry of the fractal and use a scaling factor rdw/2, as in (1.1). For some
preliminary relations between Hajlasz-Sobolev and Korevaar-Schoen Sobolev spaces
on fractals we refer to a paper by Hu [12].

2 Preliminaries

We use C or c to denote a positive constant depending possibly on the fractal set,
whose exact value is not important for our purposes and which may change from line
to line. We will write f ≍ g (on a set D) if there exists a constant C > 0 such that
for every x ∈ D one has C−1g(x) ≤ f(x) ≤ Cg(x). For an m-integrable function f

and a set A of finite measure we adopt the notation fA =

∫

A

fdm =
1

m(A)

∫
fdm.

2.1 Nested fractals

The framework of nested fractals is that of Lindström [21]. Suppose that φ1, ..., φM ,
M ≥ 2, are similitudes of RN with a common scaling factor L > 1. When A ⊂ R

n,
then we write Φ(A) for

⋃M
i=1 φi(A), and Φm for Φ composed m times. There exists

a unique nonempty compact set (see [4], [21]) K ⊂ R
N such that

K =

M⋃

i=1

φi(K) = Φ(K). (2.1)

It is called the self-similar fractal generated by the family of similitudes φ1, ...φM .
Since the set K has a finite nonzero diameter, for simplicity we can and will assume
that diamK = 1.

Each of the mappings φi has a unique fixed point vi. Such a point is called
an essential fixed point if there exists another fixed point vj such that for some
transformations φk, φl one has φk(vi) = φl(vj). The set of all essential fixed points
will be denoted by V (0) = {v1, ..., vr}. For m = 1, 2, ... we set V (m) = Φm(V (0)) and
V (∞) =

⋃
m≥0 V

(m). For nondegeneracy, we assume that r = #V (0) ≥ 2.

The system {φ1, ..., φM} is said to satisfy the open set condition if there exists an
open, nonempty set U such that Φ(U) ⊂ U and for all i 6= j one has φi(U)∩φj(U) =
∅. If the open set condition is satisfied, then the Hausdorff dimension of the self-
similar fractal K is equal to d = d(K) = logM

logL . By µ we denote the d-dimensional

Hausdorff measure on K normalized so that µ(K) = 1.
For m ≥ 1, by a word of length m we mean a sequence w = (w1, ..., wm) ⊂

{1, ...,M}m. Collection of all words of length m is denoted by Wm; W∗ =
⋃

m≥1 Wm

consists of all words of finite length, W is the collection of all infinite words. When
w ∈ W∗ is a finite word, then |w| denotes its length. If w ∈ W is an infinite word,
then [w]m denotes its restriction to first m coordinates, i.e. for w = (w1, w2, ...),
[w]m = (w1, ..., wm). When w = (w1, . . . , wm) is given, then we will use the notation
φw = φw1 ◦ · · · ◦ φwm

, and for a set A, Aw = φw(A).

Definition 2.1. Let m ≥ 1.

(1) An m-simplex is any set of the form φw(K) with w ∈ Wm (m-simplices are
just scaled down copies of K). The collection of all m-simplices will be denoted
by Tm. The 0-simplex is just K.
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(2) For an m-simplex S = φw(K), w ∈ Wm, let V (S) = φw(V (0)) be the set of its
vertices. An m-cell is any of the sets φw(V (0)). Two points x, y ∈ V (m) are

called m-neighbors, denoted x
m
∼ y, if they belong to a common m-cell.

(3) If ∆ ∈ Tm, m ≥ 1, we denote by ∆∗ the union of ∆ and all the adjacent
m-simplices, and by ∆∗∗ – the union of ∆∗ and all m-simplices adjacent fo
∆∗.

(4) For any x ∈ K \V (∞) and m ≥ 1, set ∆m(x) to be the unique m-simplex that
contains x.

(5) For any x, y ∈ K \ V ∞, define ind(x, y) = min{m ≥ 1 : ∆m(x) ∩ ∆m(y) = ∅}.
When ind(x, y) = n, we set S(x, y) = ∆n−1(x) ∪ ∆n−1(y).

(6) When an m-simplex ∆ = Kw = φw(K), w ∈ Wm is given and w̃ ∈ Wn is
another finite word, then by ∆w̃ we denote the (m + n)-simplex φww̃(K).

From now on we will assume that for every S, T ∈ Tm, m ≥ 1, with S 6= T , one
has S ∩ T = V (S) ∩ V (T ) (nesting). Define the graph structure E(1) on V (1) as
follows: we say that (x, y) ∈ E(1), if x and y are 1-neighbors. Then we require the

graph (V (1), E(1)) to be connected. For x, y ∈ V (0), let Rx,y be the reflection in the
hyperplane bisecting the segment [x, y]. Then we stipulate that

∀i∈{1,...,M}∀x,y∈V (0), x 6=y∃j∈{1,...,M} Rx,y(φi(V
(0))) = φj(V

(0))

(natural reflections map 1-cells onto 1-cells).
The self-similar fractal K is called a nested fractal, if it satisfies the above open

set condition, nesting, invariance under local isometries, and the connectivity as-
sumption.

Part of our results will require the following Property (P) of the fractal:

Property (P). There exist α > 0 such that for all n = 1, 2, ... and x, y – nonvertex
points such that y ∈ ∆∗

n(x) \ ∆∗
n+1(x) one has

ρ(x, y) ≥
α

Ln
. (2.2)

Remark 1. Property (P) holds true for nested fractals such that the similitudes
(φi)i=1,...,M have the same unitary part. This class of fractals contains the well-
knows examples such as the Sierpiński gaskets, snowflakes, the Vicsek set etc. Proof
of this statement is given in the Appendix.

Clearly, if ind(x, y) = n, then ∆n−1(x)∩∆n−1(y) 6= ∅. These sets either coincide
or are adjacent (ie. they meet at exactly one point). Moreover, under Property (P),
the index ind (x, y) is closely related to the Euclidean distance of x, y.

Lemma 2.2. 1. For any fixed x ∈ K \ V (∞) and n ≥ 2, one has

{y : ind(x, y) = n} = ∆∗
n−1(x) \ ∆∗

n(x). (2.3)

2. Assume additionally that the fractal K satisfies the property (P). If ind (x, y) = n
then

ρ(x, y) ≍ L−n, (2.4)

ρ(x, y) being the Euclidean distance.
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Proof. Fix x ∈ K \ V (∞) and n ≥ 2. Observe that y ∈ ∆∗
n(x) if and only if

∆n(x) ∩ ∆n(y) 6= ∅, which is equivalent to ind (x, y) ≥ n + 1. Since {∆n(x)}n is
a decreasing sequence of sets, (2.3) follows. Relation (2.4) follows from (2.3) and
Property (P).

2.2 Gradients of nested fractals

To proceed, we need to define the gradient. The material in this section is classic
and follows mainly [15] and [26]. For other results concerning gradients on fractals
we refer to [18, 13, 25].

2.2.1 Nondegenerate harmonic structure on K

Suppose that K is the nested fractal associated with the system {φ1, ..., φM}. Let
A = [ax,y]x,y∈V (0) be a conductivity matrix on V (0), i.e. a symmetric real matrix with

nonnegative off-diagonal entries and such that for any x ∈ V (0),
∑

y∈V (0) ax,y = 0.

For f : V (0) → R, set E
(0)
A (f, f) = 1

2

∑
x,y∈V (0) ax,y(f(x) − f(y))2. Then we define

two operations:

(1) Reproduction. For f ∈ C(V (1)) we let

Ẽ
(1)
A (f, f) =

M∑

i=1

E
(0)
A (f ◦ φi, f ◦ φi).

The mapping E
(0)
A 7→ Ẽ

(1)
A is called the reproduction map and is denoted by R.

(2) Decimation. Given a symmetric form E on C(V (1)), define its restriction to
C(V (0)), EV (0) , as follows. Take f : V (0) → R, then set

E|V (0)(f, f) = inf{E(g, g) : g : V (1) → R and g|V (0) = f}.

This mapping is called the decimation map and will be denoted by De.

Let G be the symmetry group of V (0), i.e. the group of transformations generated
by symmetries Rx,y, x, y ∈ V (0). Then we have ([21], [23]):

Theorem 2.3. Suppose K is a nested fractal. Then there exists a unique number
ρ = ρ(K) > 1 and a unique, up to a multiplicative constant, irreducible conductivity
matrix A on V (0), invariant under the action of G, and such that

(De ◦ R)(E
(0)
A ) =

1

ρ
E
(0)
A . (2.5)

A is called the symmetric nondegenerate harmonic structure on K. By analogy
with the electrical circuit theory, ρ is called the resistance scaling factor of K. The

number dw = dw(K)
def
= log(Mρ)

logL > 1 is called the walk dimension of K. For further

use, note that ρ = Ldw−d.
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2.2.2 The canonical Dirichlet form on K

Suppose A is the nondegenerate harmonic structure on K. Define E(0) = E
(0)
A , then

let
Ẽ(m)(f, f) = ρm

∑

|w|=m

E(0)(f ◦ φw, f ◦ φw), f ∈ C(V (m)).

The sequence Ẽ(m) is nondecreasing, i.e. for every f : V (∞) → R, one has

Ẽ(m)(f, f) ≤ Ẽ(m+1)(f, f), m = 0, 1, 2, . . .

Set D̃ = {f : V (∞) → R : supm Ẽ(m)(f, f) < ∞} and for f ∈ D̃

Ẽ(f, f) = lim
m→∞

Ẽ(m)(f, f). (2.6)

Further, D = D(E) = {{ ∈ C(K) : {|V(∞) ∈ D̃}, E(f, f) = Ẽ(f |V (∞) , f |V (∞)) for
f ∈ D.

Then (E ,D) is a regular local Dirichlet form on L2(K, µ), which agrees with the
group of local symmetries of K. This Dirichlet form is also called ‘the Brownian
Dirichlet form on K’, and will be essential in defining the gradient. It satisfies the
following scaling relation: for any f ∈ D,

E(f, f) = ρm
∑

w∈Wm

E(f ◦ φw, f ◦ φw). (2.7)

2.2.3 Harmonic functions on K and energy measure

Definition 2.4. Suppose f : V (0) → R is given. Then h ∈ D(E) is called harmonic
on K with boundary values f, if E(h, h) minimizes the expression E(g, g) among all
g ∈ D(E) such that g|V (0) = f. The unique harmonic function that agrees with f on
V (0) will be denoted by Hf.

Denote by H the space of all harmonic functions on K. It is an r-dimensional
linear space, which can be equipped with the norm

‖h‖2H = E(h, h) + (
∑

x∈V (0)

h(x))2.

Further, H̃ denotes the orthogonal complement in H of the (one-dimensional) sub-

space of constant functions, and let P̃ : H → H̃ be the orthogonal projection onto
H̃. The norm on H̃ is given by ‖h‖2 = E(h, h) (note that ‖ · ‖ is a seminorm on H,

vanishing on constant functions), and the corresponding scalar product on H̃ will
be denoted by 〈·, ·〉.

Next, for i = 1, ...,M, we define the map Mi : H → H by Mih = h ◦ φi, and
M̃i : H̃ → H̃ by M̃i = P̃ ◦Mi. From the scaling relation (2.7) we deduce that for

h ∈ H̃ and m ≥ 0,

‖h‖2 = ρm
∑

|w|=m

‖M̃wh‖
2, (2.8)

where by M̃w we have denoted M̃wm
◦ · · · ◦ M̃w1h = P̃ (h ◦ φw).
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For f ∈ D, let’s define the energy measure associated with f as the measure
whose value on any given m-simplex Kw = Kw1...wm

is equal to

νf (Kw) = ρm E(f ◦ φw, f ◦ φw). (2.9)

When h ∈ H is a harmonic function and w ∈ Wm, then νh(Kw) = ρm‖Mwh‖2. Let

h1, ..., hr−1 be an orthonormal basis in H̃. Then the expression

ν
def
=

r−1∑

i=1

νhi
(2.10)

does not depend of the choice of the orthonormal basis and its value on an m-simplex
Kw is equal to

ν(Kw) = ρmTr M̃∗
wM̃w.

The measure given by (2.10) is called the Kusuoka measure, or the energy measure
on K. This measure has no atoms, and typically is singular with respect to the
measure µ.

2.2.4 Gradients

When x ∈ K is a nonlattice point, then x has a unique address: it is an (infinite)
sequence w = w1w2 . . . such that x =

⋂∞
m=1 K[w]m (recall that we have denoted

[w]m = (w1...wm)). For such a nonlattice point, let

Zm(x) =





M̃∗
[w]m

M̃[w]m

Tr M̃∗
[w]m

M̃[w]m

if Rank M̃[w]m > 0;

0 otherwise.

(2.11)

It can be shown that Zm(·) is a bounded, matrix-valued martingale with respect to
ν, and as such it is convergent ν-a.s. to an integrable function Z(·).

For a nonlattice point x with address w, set

∇mf(x) = M̃−1
[w]m

(P̃H)(f ◦ φ[w]m), m = 1, 2, ...,

then the gradient of f at point x is the element of H̃ given by

∇f(x) = lim
m→∞

∇mf(x),

provided the limit exists. For the discussion of the ‘pointwise gradients’ and their
properties we refer to [26], [22] and [11]. But even if the pointwise limits of ∇m

are not known to exist, we do know (see [18], Lemmas 3.5 and 5.1, and also the
discussion in [26], p. 137) that when f ∈ D, then there exists a measurable mapping
Y (·, f) such that

E(f, f) =

∫

K

〈Y (·, f), Z(·)Y (·, f)〉dν(·). (2.12)

With an abuse of notation, we will write ∇f for the object Y (·, f), which is defined
ν-a.e. When we will use the pointwise value, it will be clearly indicated.

Definition 2.5. 1. A continuous function f : K → R is called m-harmonic if
f ◦ φw is harmonic for any w = (w1...wm) ∈ Wm.
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2. There exists a unique m-harmonic function with given values at points from
V (m). For a continuous function f on K, by Hmf we denote the unique m-
harmonic function that agrees with f on V (m).

Remark 2. When f is m-harmonic, then for any nonlattice point x ∈ K with address
w ∈ W∞ one has

∇mf(x) = ∇m+nf(x)

for any n ≥ 0, and so ∇f(x) exists at nonlattice points (which are of full ν-measure);
note also that ∇mf − f (and thus also ∇f − f) is constant inside each Kw with
|w| = m.

3 Poincaré inequality on nested fractals

Poincaré inequalities on nested fractals that one can find in the literature (see e.g.
[3] and its references) are usually written in the form

∫

B

|f − fB|
2dµ ≤ cΨ(R)

∫

B

dΓ(f, f), (3.1)

where B is a ball of radius R, Ψ : R+ → R+ is a scale function (most commonly,
Ψ(R) = Rσ), and Γ(f, f) is the energy measure associated with the Brownian
Dirichlet form on fractals.

Poincaré inequalities P (q, p), on a metric measure space (X, ρ, µ), with a dou-
bling measure µ and another Radon measure ν, are similar in spirit, but involve
usually two functions. One says that a pair of measurable functions (f, g) satisfies
the (q, p)-Poincaré inequality, when

(∫

B

|f − fB|
qdµ

)1/q

≤ CR

(∫

σB

|g|pdν

)1/p

, (3.2)

where σ ≥ 1 is a given number, and σB denotes the ball concentric with B, but with
radius σ times the radius of B. For an account of Poincaré inequalities in metric
spaces, we refer mainly to [10], and also to [9].

Poincaré inequalities on nested fractals we will be concerned with will be variants
of two-weight inequalities.. The measure µ appearing on the left-hand side will be
the Hausdorff measure on K, while the measure ν on the right-hand side will be the
Kusuoka energy measure. Recall that the measure ν in most cases is not absolutely
continuous with respect to µ. The difference from the classical case is that the
integral on the right-hand side will not be a barred integral with respect to the
measure ν, but it will be divided by the measure µ of the underlying set.

We start with a fractal version of Poincaré inequality – where balls are replaced
with simplices. This version does not require property (P) of the underlying fractal.
The precise statement reads as follows.

Theorem 3.1. Let f ∈ D(E), and let ∆ be any m-simplex, m ≥ 0. Then we have

∫

∆

|f(x) − f∆|dµ(x) ≤ C (diam ∆)dw/2

(
1

µ(∆∗)

∫

∆∗

〈∇f, Z∇f〉 dν

)1/2

≤ CL−mdw/2

(
L−md

∫

∆∗

〈∇f, Z∇f〉 dν

)1/2

, (3.3)

where ∆∗ denotes the union of ∆ and all m-simplices adjacent to ∆.
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The proof will be given later on. Now, we start with a local version of Poincaré
inequality for adjacent lattice points.

Proposition 3.2. Suppose f ∈ D(E), and let x
m
∼ y. Let Kw be the m-simplex that

contains both points x, y, with address w ∈ Wm. Then

|f(x) − f(y)|2 ≤ C(diamKw)dw−d

∫

Kw

〈∇f, Z∇f〉dν. (3.4)

Proof. Set c(x, y) = a−1
x′y′ where x′, y′ ∈ V (0) are such that x = φw(x′) and y =

φw(y′) (the matrix A = [ax,y] was introduced in Section 2.2.1). Then we have:

|f(x) − f(y)|2 ≤ c(x, y))
∑

u,v∈V (0)

auv|f ◦ φw(u) − f ◦ φw(v)|2

= c(x, y))E(0)(f ◦ φw, f ◦ φw) ≤ E(f ◦ φw, f ◦ φw)

= c(x, y)

∫

K

〈∇(f ◦ φw), Z∇(f ◦ φw)〉dν

≤ c1

∫

K

〈∇(f ◦ φw), Z∇(f ◦ φw)〉dν,

where c1 = sup{ax,y : x, y ∈ V (0)}.
Since diamKw = L−m, the scaling relation from Lemma 3.3 below gives the

desired statement.

Lemma 3.3. Let f ∈ D(E), and let Kw be an m-simplex. Then

∫

K

〈∇(f ◦ φw), Z∇(f ◦ φw)〉dν = L−m(dw−d)

∫

Kw

〈∇f, Z∇f〉dν (3.5)

Remark 3. The right hand side of (3.5) is well-defined since 〈∇f, Z∇f〉 exists ν-a.e.
and

∫
K〈∇f, Z∇f〉dν < ∞, see Theorem 4 of [26].

Remark 4. While ν(Kw) depends in general on w, the scaling factor on the right
hand side of (3.5) depends only on m = |w|. Thus, the lemma is not tantamount
to a simple change of variables but reflects an interplay between ∇f and Z.

Proof. Step 1. Assume that f is m-harmonic. Then ∇f(y) exists at all nonlattice
points y and ∇f(y) = ∇mf(y). Observe that ∇mf(·) is constant (ν-a.e.) inside
each m-simplex Kw and that it differs there from M−1

w f(·) by a constant only. It
follows that
∫

Kw

〈∇f, Z∇f〉dν =

∫

Kw

〈∇mf, Z∇mf〉 dν = lim
n→∞

∫

Kw

〈∇mf, Zn∇mf〉dν.

To justify the last statement, observe that the random variables Xn = 〈∇mf, Zn∇mf〉
converge to X = 〈∇mf, Z∇mf〉 in L1(K, dν). This is so because Xn ≥ 0, Xn → X
in measure ν and

∫

K

Xn dν =

∫

K

〈∇mf, Zn∇mf〉 dν = E(Hnf,Hnf) → E(f, f) =

∫

K

X dν.

The convergence in L1(K, dν) follows then from Scheffé’s theorem.
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For short, let us write F = ∇mf ∈ H̃. Let n > m be fixed, and let i =
(im+1, . . . , in) ∈ Wn−m so that wi ∈ Wn. Zn is constant on n-simplices and, once
n > m, we have

∫

Kw

〈F,Zn F 〉 dν =
∑

|i|=n−m

∫

Kwi

〈F,Zn F 〉 dν

=
∑

|i|=n−m

‖M̃wiF‖2

Tr(M̃∗
wiM̃wi)

· Ln(dw−d)Tr(M̃∗
wiM̃wi)

= Ln(dw−d)
∑

|i|=n−m

‖M̃wiF‖2

= Ln(dw−d)
∑

|i|=n−m

E(F ◦ φwi, F ◦ φwi).

From the scaling property of E ,

∑

|i|=n−m

E(F ◦ φwi, F ◦ φwi) =
∑

|i|=n−m

E((F ◦ φw) ◦ φi, (F ◦ φw) ◦ φi)

= L−(n−m)(dw−d)E(F ◦ φw, F ◦ φw).

We know that F ◦ φw and f ◦ φw differ by a constant only, so that

E(F ◦ φw, F ◦ φw) = E(f ◦ φw , f ◦ φw).

Piecing everything together, we obtain

∫

Kw

〈F,ZnF 〉 dν = Lm(dw−d)E(f ◦ φw, f ◦ φw)

= Lm(dw−d)

∫

K

〈∇(f ◦ φw), Z∇(f ◦ φw)〉dν.

The right-hand side does not depend on n, thus we can pass with n to infinity,
obtaining (3.5).

Step 2. Let now f be n-harmonic, with n > m. Then Kw =
⋃

|i|=n−mKwi and

∫

Kw

〈∇f, Z∇f〉dν =
∑

|i|=n−m

∫

Kwi

〈∇f, Z∇f〉dν. (3.6)

To each of the integrals on the right-hand side of (3.6) we apply Step 1, obtaining

(3.6) = Ln(dw−d)
∑

|i|=n−m

∫

K

〈∇(f ◦ φwi), Z∇(f ◦ φwi)〉dν

= Lm(dw−d)
∑

|i|=n−m

L(n−m)(dw−d)E((f ◦ φw) ◦ φi, (f ◦ φw) ◦ φi),

which is, from the scaling property, equal to

Lm(dw−d)E(f ◦ φw.f ◦ φw) = Lm(dw−d)

∫

K

〈∇(f ◦ φw), Z∇(f ◦ φw)〉 dν.
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Step 3. Let now f be any function from D(E). Then

E(f, f) = lim
n→∞

E(Hnf,Hnf)

and
E(f ◦ φw, f ◦ φw) = lim

n→∞
E(Hn(f ◦ φw), Hn(f ◦ φw)). (3.7)

From Step 2 we have: for n ≥ m,

∫

K

〈∇n(Hnf ◦ φw), Z∇n(Hnf ◦ φw)〉 dν = L−m(dw−d)

∫

Kw

〈∇(Hnf), Z∇(Hnf)〉 dν,

(3.8)
and the assertion follows from the limiting procedure: the left-hand side of (3.8) is

equal to E(Hnf ◦ φw, Hnf ◦ φw)
n→∞
−→ E(f ◦ φw, f ◦ φw). As to the right-hand side,

since ∇(Hnf) = ∇nf, and ∇nf converges to ∇f in the seminorm
(∫

K〈·, Z·〉dν
)1/2

,

we also have the convergence in the restricted seminorm
(∫

Kw
〈·, Z·〉dν

)1/2
, which

gives the desired convergence.

From Proposition 3.2 we derive the local Poincaré inequality for nonlattice points.

Theorem 3.4. Supopose that K satisfies property (P). Let f ∈ D(E) and x, y ∈
K \ V (∞). Then

|f(x) − f(y)|2 ≤ Cρ(x, y)dw
1

µ(S(x, y))

∫

S(x,y)

〈∇f, Z∇f〉dν.

where S(x, y) was introduced in Definition 2.1 (6).

Proof. Step 1. Suppose z ∈ V (m) is a vertex of ∆ ∈ Tm and let y ∈ Int ∆. Then
one finds a chain z = z0, z1, ..., zk → y such that for all k = 1, 2, ... the points zk−1

and zk are (m + k)-neighbors. Denote by ∆(zk−1, zk) the (m + k)-simplex they
belong to. From Proposition 3.2 we have, since ∆(zk+1, zk) ⊂ ∆,

|f(zk−1) − f(zk)|2 ≤ C (diam ∆(zk−1, zk))dw−d
∫

∆(zk−1,zk)

〈∇f, Z∇f〉dν

≤ C (diam ∆(zk−1, zk))
dw−d

∫

∆

〈∇f, Z∇f〉dν.

Since f is continuous, summing over k we obtain

|f(z) − f(y)| ≤
∞∑

k=1

|f(zk−1) − f(zk)|

≤
∞∑

k=1

(diam ∆(zk−1, zk))
dw−d

2

(∫

∆

〈∇f, Z∇f〉dν

)1/2

≤
∞∑

k=1

L−m+k
2 (dw−d)

(∫

∆

〈∇f, Z∇f〉dν

)1/2

= CL−m(dw−d)
2

(∫

∆

〈∇f, Z∇f〉 dν

)1/2
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and consequently

|f(z) − f(y)|2 ≤ CLm(d−dw)

∫

∆

〈∇f, Z∇f〉dν. (3.9)

Step 2. Suppose x, y belong to a common m-simplex ∆. Then choose a vertex
v ∈ V (∆), write |f(x)− f(y)|2 ≤ 2(|f(x)− f(v)|2 + |f(v)− f(y)|2), and apply Step
1 in order to get (3.9) for x and y.

Step 3. The result of Step 2 extends immediately to the case when x, y belong
to two adjacent m-simplices: when x ∈ ∆1 ∈ Tm, y ∈ ∆2 ∈ Tm and ∆1,∆2 are
adjacent, then ∆1 and ∆2 share a vertex z ∈ V (m). One applies Step 1 to the pair
(x, z) and then to (y, z), getting

|f(x) − f(y)|2 ≤ CLm(d−dw)

∫

∆1∪∆2

〈∇f, Z∇f〉dν. (3.10)

Step 4. Now take any x, y ∈ K \ V (∞). Let ind (x, y) = m. Then S(x, y) =
∆m−1(x)∪∆m−1(y) is composed either of a common (m−1)-simplex or two adjacent
(m−1)-simplices. In the first case, apply Step 2, in the latter case – Step 3. In either
case, µ(S(x, y)) ≍ L−(m−1)d and ρ(x, y) ≍ L−m, so the theorem is proven.

Proof of Theorem 3.1. Choose ∆ ∈ Tm. By Jensen’s inequality we have

∫

∆

|f(x) − f∆|dµ(x) ≤

(∫

∆

|f(x) − f∆|
2dµ(x)

)1/2

,

and further:
∫

∆

|f(x) − f∆|
2dµ(x) =

∫

∆

|f(x) −

∫

∆

f(y)dµ(y)|2dµ(x)

=

∫

∆

|

∫

∆

(f(x) − f(y))dµ(y)|2dµ(x)

≤

∫

∆

∫

∆

|f(x) − f(y)|2dµ(y)dµ(x)

=
1

µ(∆)2

∫

∆

∫

∆

|f(x) − f(y)|2dµ(y)dµ(x).

Points x and y under the integral belong to a common m-simplex ∆, and so
ind(x, y) > m (without loss of generality we can and do assume that x, y are non-
vertex points). Using Lemma 2.2, we split the inner integral as follows.

∫

∆

|f(x) − f(y)|2dµ(y)

=

∞∑

n=m+1

∫

{y∈∆: ind (x,y)=n}

|f(x) − f(y)|2dµ(y)

=

∞∑

n=m+1

∫

(∆∗

n−1(x)\∆
∗

n(x))∩∆

|f(x) − f(y)|2dµ(y). (3.11)
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When ind(x, y) = n, then ρ(x, y) ≍ L−n and moreover there exist two adjacent
(n− 1)-simplices, say S and T, such that x ∈ S, y ∈ T (S = T is permitted).

Let v ∈ V (n−1) be a common vertex of S and T. Then, according to (3.10) (which
is true without property (P) as well)

|f(x) − f(y)|2 ≤ CL−n(dw−d)

∫

S∪T

〈∇f, Z∇f〉 dν

≤ CL−n(dw−d)

∫

∆∗

n−1(x)

〈∇f, Z∇f〉 dν.

As µ(∆ ∩ (∆∗
n−1(x) \ ∆∗

n(x))) ≤ µ(∆∗
n−1(x)) ≍ L−nd, each of the integrals in

(3.11) is bounded by

CL−ndw

∫

∆∗

n−1(x)

〈∇f, Z∇f〉 dν.

Consequently,

∫

∆

∫

∆

|f(x) − f(y)|2dµ(y)dµ(x) ≤ C

∞∑

n=m+1

L−ndw

∫

∆

∫

∆∗

n−1(x)

〈∇f, Z∇f〉dνdµ(x).

(3.12)

Let w ∈ Wm be such that ∆ = φw(K) and for i ∈ Wn−1−m set ∆i = φwi(K) ⊂ ∆.
Observe that on each ∆i the mapping x 7→ ∆∗

n−1(x) is constant and equal to ∆∗
i .

It follows
∫

∆

∫

∆∗

n−1(x)

〈∇f, Z∇f〉dνdµ(x)

=
∑

i∈Wn−1−m

∫

∆i

∫

∆∗

i

〈∇f, Z∇f〉dνdµ(x)

=
∑

i∈Wn−1−m

∫

∆∗

i

〈∇f, Z∇f〉dνµ(∆i)

≤ C
∑

i∈Wn−1−m

L−nd

∫

∆∗

i

〈∇f, Z∇f〉dν. (3.13)

Sets ∆∗
i are not pairwise disjoint, but each of them is consists of at most M + 1

simplices from Tn−1. Therefore, if in (3.13) we decompose each of the integrals over
∆∗

i into a number of integrals over corresponding (n − 1)-simplices, then each of
these (n− 1)-simplices will appear at most M + 1 times in the sum. Furthermore,
since for any i ∈ Wn−1−m one has ∆∗

i ⊂ ∆∗, and
⋃

i∈Wn−1−m
∆i = ∆, it follows

that ∑

i∈Wn−1−m

∫

∆∗

i

〈∇f, Z∇f〉dν ≤ C

∫

∆∗

〈∇f, Z∇f〉dν. (3.14)

Collecting (3.12), (3.13), (3.14) we obtain

∫

∆

∫

∆

|f(x) − f(y)|2dµ(y)dµ(x) ≤ C

∞∑

n=m+1

L−ndwL−nd

∫

∆∗

〈∇f, Z∇f〉dν

= CL−mdwL−md

∫

∆∗

〈∇f, Z∇f〉dν.
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To complete the proof, observe again that L−md = cµ(∆). �

Below we derive a Poincaré inequality that uses balls instead of simplices. This
statement requires property (P) and will be used throughout for the results of next
section.

Theorem 3.5. Suppose that K satisfies (P). Suppose f ∈ D(E). Let x0 ∈ K\V (∞)

be a nonvertex point and let r > 0 be given. Denote B = B(x0, r) = {y ∈ K :
ρ(x0, y) ≤ r}. Then there exist C > 0 and A ≥ 1 (independent of x0 and r) such
that

∫

B

|f − fB|dµ ≤ Cr
dw
2

(
1

rd

∫

B(x0,Ar)

〈∇f, Z∇f〉dν

)1/2

. (3.15)

Proof. Only minor changes need to be introduced in the proof of Theorem 3.1. From
property (P) there exists α ∈ (0, 1) such that for every nonlattice x ∈ K, and any
m ≥ 1

B(x,
α

Lm
) ⊆ ∆∗

m(x) ⊆ B(x,
2

Lm
). (3.16)

Let n0 be the unique integer such that L−(n0+1) < r
α ≤ L−n0 , so that

B(x, r) ⊆ B(x, αL−n0) ⊆ ∆∗
n0

(x).

As before, we get

∫

B

|f − fB|
2dµ ≤

1

µ(B)2

∫

B

∫

B

|f(x) − f(y)|2dµ(x)dµ(y).

Since B ⊂ ∆∗
n0

(x0) and ∆∗
n0

(x0) = S1 ∪ . . . ∪ SK is the sum of a finite number of
neighboring n0-simplices, we estimate the inner integral as

∫

∆∗

0

|f(y) − f(x)|2dµ(x)dµ(y) =
∑

i

∫

Si

|f(x) − f(y)|2dµ(y). (3.17)

Now we work with the integral over each Si separately. Observe that when x, y are
as in the integral in (3.17), then ∆n0(x) ∩ ∆n0(y) 6= ∅, so that ind (x, y) ≥ n0 + 1.
Therefore, for any i = 1 . . .K, we have

∫

Si

|f(x) − f(y)|2dµ(y) =

∞∑

n=n0+1

∫

Si∩{y:ind(x,y)=n}

|f(x) − f(y)|2dµ(y)

=

∞∑

n=n0

∫

Si∩(∆∗

n(x)\∆
∗

n+1(x))

|f(x) − f(y)|2dµ(y)

≤ c

∞∑

n=n0

L−ndw

∫

Si∩∆∗

n(x)

〈∇f, Z∇f〉dν.
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From now on we proceed identically as in the proof of (3.3), ending up with

∫

B

∫

B

|f − fB|
2dµdµ ≤

∫

B

∑

i

∫

Si

|f(x) − f(y)|2dµ(y)dµ(x)

≤ L−n0dwL−n0d+f
∑

i

∫

S∗

i

〈∇f, Z∇f〉dν

≤ cL−n0dL−n0d

∫

B(x0,
2L
α

r)

〈∇f, Z∇f〉dν

≤ crdw
1

µ(B(x0,
2L
α r)

∫

B(x0,
2L
α

r)

〈∇f, Z∇f〉dν,

where we have used the inclusions S∗
i ⊆ ∆∗

n0
⊆ B(x0, 2L

−n0) ⊆ B(x0,
2L
α r). Set

A = 2L
α . The proof is complete.

4 Sobolev spaces on fractals

On metric spaces, several definitions of Sobolev-type spaces are possible (see e.g.
[5], [9], [16]). We recall some of them below. Their mutual relations and connections
with the Poincaré inequality form now a well established theory ([10], [9]). Below,
we briefly recall the relevant definitions.

Suppose (X, ρ, µ) is a metric measure space, where µ is a doubling Radon mea-
sure on a metric space (X, ρ). Any nested fractal K fits into this definition, with µ
not only doubling but even Ahlfors regular. In the following definitions of Sobolev-
type spaces we suppose p ≥ 1.

1. The Hajlasz-Sobolev spaces M1,p(X) consists of those functions f ∈ Lp(X),
for which there exists a function g ∈ Lp(X), g ≥ 0 such that

|f(x) − f(y)| ≤ Cρ(x, y)(g(x) + g(y)) (4.1)

for µ-almost all x, y ∈ X.

2. The space P1,p(X) consists of those functions f ∈ L1
loc(X), for which there

exist σ ≥ 1 and g ∈ Lp(X) such that for every ball B = B(x, r)

∫

B

|f − fB|dµ ≤ r

(∫

B(x,σr)

gpdµ

)1/p

. (4.2)

3. The Korevaar-Schoen Sobolev space, KS1,p(X) consists of those functions
f ∈ Lp(X) for which

lim sup
ǫ→0

∫

X

∫

B(x,ǫ)

|f(x) − f(y)|p

ǫp
dµ(x)dµ(y) < ∞.

One considers also the Newtonian spaces N1,p(X). The upper gradient those spaces
are based on involves integrals over rectifiable curves. On nested fractals, the family
of rectifiable curves might be empty or not rich enough to yield a non-degenerate
object.
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In general, the inclusions M1,p(X) ⊂ P1,p(X) ⊂ KS1,p(X) hold true, but not
always they can be reversed. In some cases however – for example in R

d – all three
definitions yield the same function spaces. We refer to [17] and [9] for more details.

We are now going to adapt definitions of the spaces M1,p, P1,p and KS1,p to
the fractal setting. As we have already mentioned in the Introduction, the scale r

is not a natural scale here, and it will be replaced by r
dw
2 . Let us mention that in

many cases (the Euclidean spaces, some manifolds) the walk dimension dw, read off
from the heat kernel estimates on the underlying space, is equal to 2, so that the

scale r
dw
2 is just r.

Definition 4.1. Let K be the nested fractal defined in Section 2.1; let p ≥ 1 and
σ > 0 be given. Recall that µ denotes the normalized d-dimensional Hausdorff
measure on K and ν – the Kusuoka measure. We say that a function f ∈ Lp(K, µ)
belongs to:

– the space M1,p
σ (K, µ), when there exists a nonnegative function g ∈ Lp(K, µ)

such that for µ-a.e. x, y ∈ K,

|f(x) − f(y)| ≤ ρ(x, y)σ(g(x) + g(y)); (4.3)

– the space P1,p
σ (K), when there exists a nonnegative function g ∈ Lp(K, ν) such

that for any x ∈ K and 0 < r < diamK,

∫

B(x,r)

|f − fB(x,r)|dµ ≤ rσ

(
1

µ(B(x,Ar)

∫

B(x,Ar)

gpdν

)1/p

, (4.4)

with some A ≥ 1; the inequality (4.4) will be called the (1, p, σ)−Poincaré
inequality;

– the space KS1,p
σ (K), when

lim sup
ǫ→0

∫

K

∫

B(x,ǫ)

|f(x) − f(y)|p

ǫpσ
dµ(x)dµ(y) < ∞,

– the Besov-Lipschitz space Lip(σ, p,∞), σ > 0 (see [7]), if

‖f‖Lip = sup
m≥0

a(p)m (f) < ∞,

where

a(p)m (f) = Lmσ

(
Lmd

∫ ∫

ρ(x,y)≤
c0
Lm

|f(x) − f(y)|pdµ(x)dµ(y)

)1/p

,

with some c0 > 0. Note that different values of this constant yield the same
function space with equivalent norms.

It is immediate to see that the spaces Lip(σ, p,∞)(K) and KS1,p
σ (K) coincide

and that their norms are equivalent.
We now turn to relations between the Poincaré-Sobolev and Korevaar-Schoen

Sobolev spaces on fractals. The inclusion P1,p
σ (K) ⊂ KS1,p

σ (K) is true under usual
constraints on parameters (p ≥ 1, σ > d/p), and it can be reversed for p = 2, σ = dw

2 .

16



Proposition 4.2. Suppose that the fractal K satisfies property (P). Let p ≥ 1 and
σ > 0 be given.

(1) If σ > d/p, then P1,p
σ (K) ⊂ KS1,p

σ (K).

(2) When σ = dw

2 , then P1,2
σ (K) = KS1,2

σ (K).

Proof. Once (1) is proven, then the inclusion ‘⊂’ in (2) would follow from the
relation dw > d (true for any nested fractal). As to the opposite inclusion, Theorem
3.5 gives that the (1, 2, dw

2 )–Poincaré inequality holds true for any f ∈ D(E). As

D(E) = Lip(dw

2 , 2,∞) = KS1,2
dw/2(K) (Theorem 5 of [19]), the inclusion ‘⊃’ in (2)

follows.
Therefore we need to prove (1). Our proof is a modification of the proof of

Theorem 4.1 of [17]. See also [10], Theorem 5.3 and its proof.
Assume that f ∈ P1,p

σ (K) and that the pair (f, g) satisfies the (1, p, σ)-Poincaré
inequality. Introduce a fractal version of Riesz potentials:

Jp(g, n, x) =

∞∑

m=0

L−(m+n)σ

(
1

µ(∆∗
n+m(x))

∫

∆∗

n+m
(x)

gp(z)dν(z)

)1/p

.

The potentials Jp(g, n, x), are well-defined for all nonlattice points of K (this is
a set of full measure µ).

We will show that there exists a constant k0 ≥ 0 such that for µ-a.a. x, y ∈ K
with ind(x, y) ≥ k0 one has:

|f(x) − f(y)| ≤ C (Jp(g, ind (x, y) − k0, x) + Jp(g, ind (x, y) − k0, y)) (4.5)

Since by assumption f ∈ Lp(K, µ) ⊂ L1(K, µ), µ-almost every point of K is a
µ-Lebesgue point for f (cf. [27]):

f(x) = lim
r→0

∫

B(x,r)

f(y)dµ(y) = lim
r→0

fB(x,r).

Let x, y be two nonlattice Lebesgue points for f and let n0 = ind(x, y). We use
a classical chaining argument. Denote rm = α

ALm , where A ≥ 1 is the constant from
the Poincaré inequality (4.4), and α ∈ (0, 1) comes from (3.16). Using the Jensen’s
inequality, the doubling property for µ, the Poincaré inequality (4.4) and (3.16), we
obtain the following chain of inequalities:

17



|f(x) − fB(x,rn0)
| ≤

∞∑

m=0

|fB(x0,rn0+m) − fB(x,rn0+m+1)|

≤
∞∑

m=0

∫

B(x,rn0+m+1)

|f(z) − fB(x,rn0+m)|dµ(z)

≤
∞∑

m=0

∫

B(x,rn0+m)

|f(z) − fB(x,rn0+m)|dµ(z)

≤ C

∞∑

m=0

rσn0+m

(
1

µ(B(x,Arn0+m))

∫

B(x,Arn0+m)

g(z)pdν(z)

)1/p

≤ C

∞∑

m=0

L−(m+n0)σ

(
1

µ(∆∗
n0+m(x))

∫

∆∗

n0+m
(x)

g(z)pdν(z)

)1/p

= CJp(g, ind (x, y), x). (4.6)

Similar estimate holds for y :

|f(y) − fB(y,rn0)
| ≤ CJp(g, ind(x, y), y). (4.7)

From Lemma 2.2, there exists a universal constant C1 > 0 such that when ind(x, y) =
n0, then ρ(x, y) ≤ C1L

−n0 = C1A
α rn0 . For short, denote R = (1 + C1A

α )rn0 . Let k0
be the smallest number such that for any z ∈ K, B(z, AR) ⊂ ∆∗

n0−k0
(z), cf. (3.16).

Using the Poincaré inequality (4.4) and the Ahlfors-regularity of µ we get:

|fB(x,rn0)
− fB(y,rn0)

| (4.8)

≤ |fB(x,rn0)
− fB(x,R)| + |fB(y,rn0)

− fB(x,R)|

≤

∫

B(x,rn0)

|f(z) − fB(x,R)| dµ(z) +

∫

B(y,rn0)

|f(z) − fB(x,R)| dµ(z)

≤

(
µ(B(x,R))

µ(B(x, rn0 ))
+

µ(B(x,R))

µ(B(y, rn0))

)∫

B(x,R)

|f(z) − fB(x,R)| dµ(z)

≤ CRσ

(
1

µ(B(x,AR)

∫

B(x,AR)

g(z)pdν(z)

)1/p

≤ CJp(g, ind(x, y) − k0, x). (4.9)

The estimate (4.5) follows when we sum up (4.6), (4.7), (4.8).
The proposition will be proven once we show that

sup
m≥k0

(
a(p)m (f)

)p
< ∞,

where

(
a(p)m (f)

)p
= Lm(σp+d)

∫ ∫

ρ(x,y)≤ α
Lm

|f(x) − f(y)|pdµ(x)dµ(y).
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We have:
(
a(p)m (f)

)p

≤

∫

K

∫

∆∗

m(x)

|f(x) − f(y)|pdµ(y)dµ(x)

≤

∫

K

(
∞∑

k=m+1

∫

∆∗

k−1
(x)\∆∗

k
(x)

|f(x) − f(y)|pdµ(y)

)
dµ(x) (4.10)

Since y ∈ ∆∗
k−1(x) \ ∆∗

k(x) is tantamount to ind(x, y) = k + 1, we can use the
previously obtained estimate (4.5) and get

∫

∆∗

k−1(x)\∆
∗

k
(x)

|f(x) − f(y)|pdµ(y)

≤ C

(∫

∆∗

k−1(x)\∆
∗

k
(x)(x)

Jp
p (g, k − k0, x)dµ(y) +

∫

∆∗

k
(x)\∆∗

k+1(x)

Jp
p (g, k − k0, y)dµ(y)

)

= C(Ik(x) + IIk(x)). (4.11)

To estimate these two parts we need a lemma, which is similar to Lemma 4.3 (ii),
(iii) of [17]:

Lemma 4.3. Let N ≥ 1, p ≥ 1, σ > 0 be given and let the functions f ∈ Lp(K, µ),
g ∈ Lp(K, ν) satisfy the (1, p, σ)-Poincaré inequality. Then for µ-almost all x ∈ K

∫

∆∗

N
(x)

Jp
p (g,N, y)dµ(y) ≤ CL−Nσp

∫

∆∗∗

N
(x)

gpdν (4.12)

and ∫

K

Jp
p (g,N, y)dµ(y) ≤ C L−Nσp

∫

K

gpdν. (4.13)

Proof. For y ∈ ∆∗
N (x) and k ≥ N one has ∆∗

k(y) ⊂ ∆∗
N (y) ⊂ ∆∗∗

N (x) and therefore

Jp(g,N, y) =

∞∑

m=0

L−(m+N)σ

(
1

µ(∆∗
N+m(y))

∫

∆∗

N+m
(y)

gp(z)dν(z)

)1/p

≤ C

∞∑

m=0

L−(σ− d
p
)(N+m)

(∫

∆∗∗

N
(x)

gp(z)dν(z)

)1/p

= CL−(σ− d
p
)N

(∫

∆∗∗

N
(x)

gp(z)dν(z)

)1/p

.

Since µ(∆∗
N (x)) ≤ CL−Nd, (4.12) follows.

To see (4.13), observe that, using (4.12):
∫

K

Jp
p (g,N, y)dµ(y) =

∑

∆∈TN

∫

∆

Jp
p (g,N, y)dµ(y)

≤ C
∑

∆∈TN

L−Npσ

∫

∆∗∗

gpdν.

A covering argument as the one used to conclude the proof of Theorem 3.1 gives
(4.13).
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Conclusion of the proof of Proposition 4.2. Since

Ik(x) ≤ µ(∆∗
k−1(x))Jp

p (g, k − k0, x) ≤ CL−kdJp
p (g, k − k0, x),

one has, using (4.13)
∫

K

Ik(x)dµ(x) ≤

∫

K

∫

∆∗

k
(x)

Jp
p (g, k − k0, x)dµ(y)dµ(x)

≤ C

∫

K

Jp
p (g, k − k0, x)µ(∆∗

k(x))dµ(x)

≤ CL−k(d+σp)

∫

K

gpdν. (4.14)

To estimate the other part, we use (4.12):
∫

K

IIk(x)dµ(x) ≤

∫

K

∫

∆∗

k
(x)

Jp
p (g, k − k0, y)dµ(y)dµ(x)

≤ C

∫

K

∫

∆∗

k−k0
(x)

Jp
p (g, k − k0, y)dµ(y)dµ(x)

≤ C

∫

K

L−kσp

∫

∆∗∗

k−k0
(x)

gpdν dµ(x)

≤ CL−k(d+σp)

∫

K

gpdν. (4.15)

Summing up (4.14) and (4.15) over k ≥ m we get that the right-hand side of (4.10)
is not bigger than

C

∞∑

k=m

L−k(d+σp)

∫

K

gpdν = CL−m(d+σp)

∫

K

gpdν,

so that (
a(p)m (f)

)p
≤

∫

K

gpdν,

once m ≥ k0. The proposition follows.

We now turn our attention to the relation of Poincaré-Sobolev spaces P1,p
σ (K)

to Haj lasz-Sobolev spaces M1,p
σ (K). It has been proven by Hu that M1,p

σ (K) ⊂
KS1,p

σ (K), for all p ≥ 1 and σ > 0 (Theorem 1.1. of [12]). Moreover, this theorem
asserts that one has the inclusion KS1,p

σ (K) ⊂ M1,p
σ′ (K), for all 0 < σ′ < σ. It is not

known whether the inclusion KS1,p
σ (K) ⊂ M1,p

σ (K) holds true on nested fractals,
even if we assume that Property (P) holds.

Recall that for p ≥ 1, the ’weak’ Lp, or the Marcinkiewicz space Lp
w(K, µ) consists

of those measurable functions f for which

sup
t>0

{tp µ{x : |f(x)| > t}} < +∞.

We can consider the ‘weak’ Hajlasz-Sobolev spaces.

Definition 4.4. Let p ≥ 1 and σ > 0. One says that f ∈ Lp(K, µ) belongs to the
weak Hajlasz-Sobolev space (M1,p

σ )w(K), if there exists g ∈ Lp
w(K, µ) such that (4.1)

holds true.
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We have the following.

Proposition 4.5. Suppose that the nested fractal K satisfies Property (P). Assume
p ≥ 1, σ > 0. Then one has:

(1) P1,p
σ (K) ⊂ (M1,p

σ )w(K) ⊂ M1,p′

σ (K), with any 1 ≤ p′ < p (the last inclusion
requires p > 1).

(2) When p = 2, σ = dw/2, then M1,2
σ (K) ⊂ P 1,2

σ (K).

Proof. (1) Once we have proven estimates for fractal Riesz-potentials, this result is
immediate. Let f ∈ P1,p

σ (K), and let (f, f̃) satisfy the (1, p, σ) Poincaré inequality.
The function g (corresponding to the upper gradient), needed in the definition of

Haljasz-Sobolev spaces, will be a fractal variant of the Hardy-Littlewood maximal
function: for x ∈ K \ V (∞) we set

g(x) = (Mf̃)(x)
def
= sup

m≥1

(
1

µ(∆∗
m(x))

∫

∆∗

m(x)

f̃pdν

)1/p

.

It is obvious that for any n ≥ 1

Jp(f̃ , n, x) ≤ CL−nσg(x), (4.16)

with some universal constant C > 0. Recall the estimate (4.5):

|f(x) − f(y)| ≤ C
(
Jp(f̃ , ind (x, y) − k0, x) + Jp(f̃ , ind (x, y) − k0, y)

)

(k0 was a universal index depending only on the geometry of the fractal), so that
further, taking into account the relation (2.4)

|f(x) − f(y)| ≤ CL−σind(x,y)(g(x) + g(y)) ≤ Cρ(x, y)σ(g(x) + g(y)).

The argument that proves g ∈ Lp
w(K, ν) is also classical. Fix t > 0 and suppose

that g(x) > t for some x ∈ K \ V (∞). By the definition of g, there exists m = m(x)
such that

µ(∆∗
m(x)) ≤

1

tp

∫

∆∗

m(x)

f̃pdν. (4.17)

Consider the covering of the set A(t) = {x ∈ K : g(x) > t} by balls B(x, 2L−m(x)),
x ∈ A(t) \ V (∞). By the 5r-covering lemma there is a countable subcollection of
these balls, Bi = B(xi, ρi), with ρi = 2L−m(xi), such that the Bi’s are pairwise
disjoint, yet A(t) ⊂

⋃
iB(xi, 5ρi). Due to (3.16), the sets ∆∗

m(xi)
(xi) are disjoint.

Then, by the doubling property of µ,

µ({x : g(x) > t} ≤ µ

(
⋃

i

B(xi, 5ρi)

)
≤ C

∑

i

µ(B(xi, ρi))

≤ C
∑

i

µ(B(xi, αL
−m(xi))) ≤ C

∑

i

µ(∆∗
m(xi)

)

(4.17)

≤
C

tp

∑

i

∫

∆∗

m(xi)

f̃pdν ≤
C

tp

∫

K

f̃pdν.

Since µ(K) < ∞, we have Lp
w(K, µ) ⊂ Lp′

(K, µ) for p′ < p. This way (1) is proven.
Assertion (2) follows from Hu’s inclusion M1,2

σ (K) ⊂ KS1,p
σ (K) and Proposition 4.2

(2) above.
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5 Appendix

We will now prove the statement from Remark 1. Set

α0 = inf{dist (A,B) : A,B ∈ T2, A ∩B = ∅} and α = Lα0.

More precisely, we will be proving the following.

Proposition 5.1. Let K be the nested fractal associated with similitudes {φi}ri=1

with contraction factor L. Suppose that the φi’s share their unitary parts, i.e. there
is an isometry U : Rn → R

n such that φi(x) = 1
L U(x) + ti, ti ∈ R

n, i = 1, 2, ..., r.
Then (P) holds.

The key argument in the proof is provided by the following lemma.

Lemma 5.2. Let n ≥ 1. Suppose A,B are two neighbouring n−simplices, and let
A1 ⊂ A, B1 ⊂ B be two (n + 1)−simplices that are disjoint. Then dist (A1, B1) ≥
αL−n.

Proof. We proceed by induction on n. Clearly, the statement is true for n = 1.
Suppose that the statement is true for 1, ..., n− 1. Let A,B ∈ Tn, A1, B1 ∈ Tn+1

be as in the statement; let (i1, ..., in) be the address of A and (w1, ., , , wn) – the
address of B. Define k0 = min{l : il 6= wl}. One has 1 ≤ k0 ≤ n.

If k0 > 1 then A,B ⊂ Ki1...ik0−1
∈ Tk0−1. Set

A′ = φ−1
i1...ik0−1

(A), B′ = φ−1
i1...ik0−1

(B) (we have A′, B′ ∈ Tn−k0+1),

A′
1 = φ−1

i1...ik0−1
(A1), B′

1 = φ−1
i1...ik0−1

(B1) (we have A′
1, B

′
1 ∈ Tn−k0+2).

Those simplices satisfy the assumptions for n− k0 + 1 ≤ (n− 1)) and the statement
follows.

Now, suppose that k0 = 1. We have

Ki1 ⊃ Ki1i2 ⊃ ... ⊃ Ki1...in = A ⊃ A1 = Ki1...inin+1 ,

Kw1 ⊃ Kw1w2 ⊃ ... ⊃ Kw1...wn
= B ⊃ B1 = Kw1...wnwn+1 .

Let v be a junction point of A and B. Because of the inclusions above,
v ∈ Ki1i2 ∩ Kw1w2 ⊂ Ki1 ∩ Kw1 as well.

We will now show that Ki1i2 ∪Kw1w2 is similar to Ki1 ∪Kw1 . More precisely, we
will see that

Ki1i2 − v = S(Ki1 − v) and Kw1w2 − v = S(Kw1 − v), (5.1)

where S = 1
LU is the similitude such that φi = S + ti.

Since v ∈ Ki1 ∩Kw1 ⊂ V (1), there exist z1, z2 ∈ V (0) and mappings φj1 , φj2 such
that zl is the fixed point of φjl , l = 1, 2, and v = φi1(z1) = φw1(z2). Further, since
v ∈ Ki1i2 , there exist another essential fixed point u, such that v = φi1i2(u). Then
we have φi1 (z1) = φi1i2(u) and so z1 = φi2(u). In particular, z1 ∈ Ki2 ∩ Kj1 . By
Proposition IV.13 of [21], any element in V (0) belongs to exactly one n-cell for each
n. It follows that j1 = i2. The same argument for Kw1w2 gives j2 = w2.

Since S is linear, we have

S(Ki1 − v) = S(φi1(K) − φi1(z1)) = S(SK + ti1 − Sz1 − ti1) = S2(K − z1).
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On the other hand, since z1 = φi2 (z1), we get

Ki1i2 − v = φi1(φi2 (K)) − φi1(z1)

= S(φi2(K)) − S(z1)

= S(φi2(K) − φi2(z1))

= S(SK − Sz1)

= S2(K − z1).

Identical arguments hold for the pair Kw1 and Kw1w2 and the proof of (5.1) is
complete.

Now,

A′ = S−1(A− v) + v, B′ = S−1(B − v) + v,

A′
1 = S−1(A1 − v) + v, B′

1 = S−1(B1 − v) + v,

are two pairs of (n− 1)− and (n − 2)−simplices satisfying the assumptions, hence
dist (A′

1, B
′
1) ≥ α

Ln−1 , and thus dist (A1, B1) ≥ α
Ln . This completes the proof.

Proof of Proposition 5.1. We proceed by induction on n.
If n = 1 and y /∈ ∆∗

1(x) \ ∆∗
2(x), then the 2−simplices ∆2(x) and ∆2(y) are

disjoint. Thus, ρ(x, y) ≥ dist (∆2(x),∆2(y)) ≥ α0 = α/L.
Suppose now that the statement is true for 1, 2, ..., n − 1, and take

y ∈ ∆∗
n(x) \ ∆∗

n+1(x). Then the sets ∆n+1(x) and ∆n+1(y) are disjoint, whereas
∆n(x) and ∆n(y) are not. There are two possibilities: either ∆n(x) = ∆n(y), or they
are adjacent n−simplices. Let (i1, ..., in) be the address of ∆n(x) and (w1, ..., wn)
be the address of ∆n(y).

If ∆n(x) = ∆n(y), we consider points x′ = φ−1
i1...in−1

(x), y′ = φ−1
i1...in−1

(y).

Then ∆2(x′) and ∆2(y′) are disjoint 2−simplices, so from the assumption we get
ρ(x′, y′) ≥ α

L , thus ρ(x, y) ≥ α
Ln .

If ∆n(x) and ∆n(y) are adjacent n−simplices, we apply lemma 5.2 to A = ∆n(x),
B = ∆n(y), A1 = ∆n+1(x), B1 = ∆n+1(y). �
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