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INTRODUCTION

The impossibility of solving analytically the overwhelming majority of di¤erential equations in Physics soon convinced physicists to investigate the properties of dynamical systems without searching for all the possible solutions. Integral properties of the solutions were then investigated, as conserved quantities, and not much more than the esthetic taste inspired theorists to formulate those shortcuts in a mathematically cleaner way: this is more or less the history of Action Principles [START_REF] Goldstein | Classical Mechanics[END_REF][START_REF] Basdevant | Variational Principles in Physics[END_REF], beginning as acute observations on special problems, and soon generating the wonderful o¤spring of Lagrangian Dynamics (with its noble descendants of path integral representations [START_REF] Feynman | Quantum Mechanics and Path Integrals[END_REF]), and Hamiltonian Dynamics.

Algebrization of dynamical systems appears to be the …nal destination of that virtuous route [START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF]: in the Hamiltonian framework dynamics is turned into a bracket algebra of observable quantities, and then physical properties of systems, especially in terms of conserved quantities and symmetries [START_REF] Mark | The Symplectization of Science[END_REF], can be obtained without even the need of going back to the equations of motion [START_REF] Landau | Mechanics. Course of Theoretical Physics[END_REF]. Hamiltonian dynamics has, also, represented a huge breakthrough to Quantum Physics [START_REF] Dirac | The Principles of Quantum Mechanics[END_REF], that is exquisitely an algebraic formulation. This cultural and methodological evolution, starting with some symmetry observations and ending up with the bracket algebrae, appears to be natural for conservative systems.

A very promising strategy to algebrize the dynamics of a dissipative system is the metriplectic framework [START_REF] Morrison | Some Observations Regarding Brackets and Dissipation[END_REF][START_REF] Morrison | Thoughts on brackets and dissipation : old and new[END_REF]. The system at hand must be complete, i.e. one must be able to keep trace of the total energy during the motion: typically, this means including all the energy exchanges in a conserved Hamiltonian. In other words, the metriplectic framework is applicable to closed systems.

Dissipation is generally understood as the interaction of dynamical variables of the otherwise Hamiltonian system with other microscopic, statistically treated, degrees of freedom (MSTDOF), giving rise to friction. The system is extended to include the MSTDOF, and this closes the system. The dynamics of the closed system with friction is then assigned by de…ning a symmetric extension of the Poisson bracket algebra, and an extension of the Hamiltonian to free energy. In order to extend the Hamiltonian to the free energy of the closed system, the entropy S of the MSTDOF will be used.

Hamiltonian dynamics evolves any quantity f as _ f = ff; Hg, being ff; gg the Poisson bracket, while no-friction condition would imply no entropy production in the Hamiltonian system. Then, the entropy S must be conserved in the Hamiltonian limit of the dissipative system: fS; Hg = 0. For noncanonical Hamiltonian systems, S is then expected to be expressable through Casimir functionals of the Poisson bracket ff; gg, i.e. quantities C such that fC; f g = 0 8 f:

If the, otherwise Hamiltonian, system were described via canonical Poisson bracket, [START_REF] Goldstein | Classical Mechanics[END_REF] would simply mean that the MSTDOF, implemented through the entropy, are independent of the original dynamical variables, and must be summed directly to them to include dissipation. such examples, indicating the origin and the need of the Casimir nature of S, will be discussed in forthcoming papers.

The Hamiltonian is hence extended by de…ning the free energy

F = H + C: (2) 
The coe¢ cient in ( 2) is a constant: under the hypothesis of thermal equilibrium for the MSTDOF and asymptotic equilibrium for the system, this will coincide with minus the temperature of the MSTDOF, but in general it should be understood just as an arbitrary constant coe¢ cient left indicated.

The framework is completed by prescribing that the evolution of any quantity f is generated by F via an extension hhf; gii of the original Poisson bracket hhf; gii = ff; gg + (f; g),

where the symbol (f; g) is symmetric, bilinear and semi-de…nite [START_REF] Morrison | A paradigm for joined Hamiltonian and dissipative systems[END_REF]. For instance, for the positive semi-de…nite case, we have:

(f; g) = (g; f ) ; (f; f ) 0 8 f; g:
In a metriplectic framework the evolution is then generated as:

_ f = hhf; F ii (3) 
(the symmetric bracket (f; g) will be de…ned so to cancel out the presence of the coe¢ cient , de…ned in (2), removing it from the equations of motion).

The symmetric structure (f; g) is referred to as metric component of the motion, and is chosen so that H is conserved during the motion (3): due to (1) and ( 2), this can be realized by de…ning (f; g) so that

(H; f ) = 0 8 f: (4) 
With all these conditions, it's easy to observe the separation of the metriplectic motion

(3) into a Hamiltonian component plus a metric one: hhf; F ii = ff; Hg + (f; C). The metriplectic evolution then reads:

_ f = ff; Hg + (f; C) : (5) 
While the Hamiltonian is conserved due to ( 5) and (4) (completeness of the system _ H = 0), the Casimir C chosen in (2) to mimic the entropy undergoes a non-trivial evolution:

_ C = (C; C) : (6) 
Due to the semi-de…niteness of (f; g), _ C has a constant sign: constructing this C as suitably limited from above or below, it can be used as a Lyapunov quantity for the dynamics (3), admitting asymptotic equilibria, as it must be the case for dissipative systems. The entropic meaning of C will be discussed more deeply in forthcoming papers. Note, however, that its equation of motion [START_REF] Landau | Mechanics. Course of Theoretical Physics[END_REF] should be interpreted as an H-Theorem for the MSTDOF involved in dissipation: in this sense, the metriplectic scheme represents a simple strategy towards the algebrization of irreversibility.

METRIPLECTIC FORMULATION OF VISCO-RESISTIVE MHD

The system we want to deal with here is a fully ionized plasma interacting with the magnetic …eld generated by its own motion; dissipation takes place due to the …nite viscosity and resistivity of the ‡uid [START_REF] Raichoudhuri | The Physics of Fluids and Plasmas -an introduction for astrophysicists[END_REF]. More, heat conductivity is …nite, hence nearby parcels of ‡uid tend to thermalize.

The con…guration of the system is given by assigning the bulk velocity ṽ of the ‡uid, the magnetic induction B, the matter density . Then, another …eld is introduced expressing the thermodynamic nature of the matter involved, e.g. the mass-speci…c entropy s. The resulting system of equations may be written in an SO (3)-covariant form as:

8 > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > : @ t v i = v k @ k v i 1 @ i p 1 2 @ i B 2 + 1 B k @ k B i @ i grav + 1 @ k ik ; @ t B i = B j @ j v i B i @ j v j v j @ j B i + @ 2 B i ; @ t = @ k ( v k ) ; @ t s = v k @ k s + ik T @ k v i + T ikh h mn @ i B k @ m B n + T @ 2 T; 8 x 2 D; t 2 I (7) 
(here D R 3 is the space domain where the dynamical variables are de…ned and I R is the time interval of interest). Local thermal equilibrium is assumed, so that the smooth …eld T may be de…ned. grav is the gravitational potential to which the plasma undergoes. The stress tensor ik is chosen to be linear in the gradient of the velocity:

8 > > > < > > > : ik = ikmn @ m v n ; ikmn def = ni mk + nk mi 2 3 ik mn + ik mn ; (8) 
The addendum T ikh h mn @ i B k @ m B n in the fourth equation of ( 7) is the entropy production rate (@ t s) B due to the Joule E¤ect and may be obtained through some considerations of elementary Thermodynamics. In that expression indicates the plasma resistivity. The system [START_REF] Dirac | The Principles of Quantum Mechanics[END_REF] is "closed" expressing the quantities p and T in terms of mass-speci…c internal energy of the ‡uid U :

p = 2 @U @ ; T = @U @s : (9) 
In the system at hand, the …elds ṽ, B and may be intended as macroscopic, deterministically treated variables, while the Statistical Mechanics of the MSTDOF giving rise to dissipation is encoded in s.

The description of the isolated visco-resistive MHD as a complete system [START_REF] Morrison | Some Observations Regarding Brackets and Dissipation[END_REF] is possible if the "total energy"

H = Z D 2 v 2 + grav + B 2 2 + U ( ; s) d 3 x (10) 
is introduced. Thanks to the way in which the Joule E¤ect contribution appears in @ t s, it is possible to show that this H is a constant of motion for the equations ( 7), provided suitably good boundary conditions are given to the plasma. Indeed, along the motion [START_REF] Dirac | The Principles of Quantum Mechanics[END_REF] the quantity H changes only via a boundary term: _ H @ = 0 (a @ = b means that a and b only di¤er by a boundary term). The "suitable conditions" at @D are those rendering the magnetized plasma an isolated system.

H may be used as the Hamiltonian component of the free energy of the system which will metriplecticly generate the evolution [START_REF] Dirac | The Principles of Quantum Mechanics[END_REF].

Setting to zero the coe¢ cients , , and , the ideal MHD is obtained:

8 > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > : @ t v i = v k @ k v i 1 @ i p 1 2 @ i B 2 + 1 B k @ k B i @ i grav ; @ t B i = B j @ j v i B i @ j v j v j @ j B i ; @ t = @ k ( v k ) ; @ t s = v k @ k s: (11) 
The functional H in [START_REF] Morrison | A paradigm for joined Hamiltonian and dissipative systems[END_REF] is the Hamiltonian for this …eld theory [START_REF] Morrison | Poisson brackets for ‡uids and plasmas[END_REF], with the noncanonical

Poisson bracket [START_REF] Morrison | Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics[END_REF] ff; gg =

Z D d 3 x f @ i g v i g @ i f v i 1 f v i ikj jmn g v k @ m v n + + 1 f v i ijk kmn B j @ m g B n + f B i ijk @ j 1 kmn B m g v n + + 1 @ i s f s g v i g s f v i : (12) 
Any quantity f is evolved along the motion (11) via the prescription _ f = ff; Hg. The Poisson bracket [START_REF] Morrison | Poisson brackets for ‡uids and plasmas[END_REF] has several Casimir observables, in particular we quote those of the form

C [ ; s] = Z D ' (s) d 3 x; (13) 
among which one may recognize the total mass M and the total entropy S of the ‡uid:

M [ ] = Z D d 3 x; S [ ; s] = Z D sd 3 x: (14) 
M and S are conserved along the motion [START_REF] Raichoudhuri | The Physics of Fluids and Plasmas -an introduction for astrophysicists[END_REF], because they have zero Poisson bracket with any quantity f , and in particular with H. The functionals C in ( 13) may be used to construct a metriplectic framework with H in [START_REF] Morrison | A paradigm for joined Hamiltonian and dissipative systems[END_REF], as prescribed in ( 2) and ( 3).

Other non-Casimir quantities, remarkably conserved by the motion [START_REF] Raichoudhuri | The Physics of Fluids and Plasmas -an introduction for astrophysicists[END_REF], are all the spacetime symmetries related to the Galileo transformation, i.e. the total momentum P of the system, the total angular momentum L and a quantity G, which is the symplectic generator of Galileo's boosts. Their de…nitions

8 > > > > > > > > < > > > > > > > > : P h = Z D v h d 3 x; L h = Z D hij x i v j d 3 x; G h = Z D (x h v h t) d 3 x (15) 
plus the de…nition of H in [START_REF] Morrison | A paradigm for joined Hamiltonian and dissipative systems[END_REF] and of the Poisson bracket ff; gg in (12) imply:

fP h ; Hg @ = 0; fL h ; Hg @ = 0; fG h ; Hg @ = 0: (16) 
Let's turn back to the system with dissipation (7): the dissipative terms appearing there must be given by a suitable symmetric bracket (f; g) (still to be de…ned) of the dynamical variables at hand with the Casimir C to be used as in [START_REF] Mark | The Symplectization of Science[END_REF]. The correct Casimir to be used is the plasma entropy S [ ; s] in [START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF].

The result presented here is the explicit expression of such bracket (f; g).

The dissipative terms in [START_REF] Dirac | The Principles of Quantum Mechanics[END_REF] are the 8 expressions

D (v) i = 1 @ k ik ; D (B) i = @ 2 B i ; D ( ) = 0; D (s) = 1 T ik @ k v i + j 2 + @ 2 T ;
with self-evident meaning of the symbols. If these terms are collected in an 8-uple D = D(v) ; D(B) ; D ( ) ; D (s) and the dynamical variables in (7) are = ṽ; B; ; s , then one aims to de…ne the metric bracket (f; g) so that D = ; S .

Since the metriplectic scheme for a dissipative neutral ‡uid has been already worked out in [START_REF] Morrison | Some Observations Regarding Brackets and Dissipation[END_REF], here (f; g) for the system (7) will be de…ned by generalizing the expressions of the metric part of dynamics to include the Joule e¤ect dissipation. Considering (8), the dissipation element in the ṽ-equation and the corresponding entropy production due to the velocity gradients show a beautiful parallel with the same terms pertaining to the motion of B:

8 > > > > > > > > > > < > > > > > > > > > > : D (v) i = 1 @ k ( kimn @ m v n ) ; D (B) i = @ k ( kimn @ m B n ) ; jkmn def = jki i mn ; (@ t s) v = 1 T jkmn @ j v k @ m v n ; (@ t s) B = 1 T jkmn @ j B k @ m B n :
The system (7) may be re-written as:

8 > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > : @ t v i = v k @ k v i 1 @ i p 1 2 @ i B 2 + 1 B k @ k B i @ i grav + 1 @ k ( kimn @ m v n ) ; @ t B i = B j @ j v i B i @ j v j v j @ j B i + @ k ( kimn @ m B n ) ; @ t = @ k ( v k ) ; @ t s = v k @ k s + 1 T kimn @ k v i @ m v n + 1 T kimn @ k B i @ m B n + T @ 2 T: (17) 
In both the cases of ṽ and of B, the dissipative term is given by the divergence of the contraction of a rank-4-tensor ( kimn and kimn respectively) with the gradient of the local variable (@ m v n and @ m B n respectively); in both the cases, the contribution to the entropy production is a quadratic form in the gradients of the …eld, 1 T kimn @ k v i @ m v n and 1 T kimn @ k B i @ m B n respectively (quadratic dissipation). In [START_REF] Morrison | Some Observations Regarding Brackets and Dissipation[END_REF] the dissipative part of the motion of a viscous Navier-Stokes system is accounted for via

(f; g) NS = 1 Z D d 3 x T ikmn @ i 1 f v k 1 T @ i v k f s @ m 1 g v n 1 T @ m v n g s + + T 2 @ k 1 T f s @ k 1 T g s : (18) 
the addendum linear in ikmn accounts for the dissipation as in the equations of motion of ṽ and for the entropy production due to the viscosity. The other addendum describes the entropy variation due to the heat transport. The analogy between the quadratic dissipation for ṽ and that for B suggests that the bracket for the dissipative MHD should be of the form:

(f; g) = 1 Z D d 3 x T ikmn @ i 1 f v k 1 T @ i v k f s @ m 1 g v n 1 T @ m v n g s + +T ikmn @ i f B k 1 T @ i B k f s @ m g B n 1 T @ m B n g s + + T 2 @ k 1 T f s @ k 1 T g s : (19) 
This bracket is shown to be the right one to produce the dissipative terms in [START_REF] Priest | Magnetic Reconnection[END_REF] once the free energy is chosen as F = H + S, H being the Hamiltonian de…ned in [START_REF] Morrison | A paradigm for joined Hamiltonian and dissipative systems[END_REF] and S the total entropy given in [START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF], so that:

F h ṽ; B; ; s i = Z D 2 v 2 + grav + B 2 2 + U ( ; s) + s d 3 x: (20) 
The metric bracket ( 19) is shown to generate the dissipative part of @ t ṽ, because in the part concerning the velocity …eld this (f; g) is exactly the (f; g) NS in [START_REF] Morrison | Hamiltonian formulation of reduced magnetohydrodynamics[END_REF]; the addendum involving B does not contribute to @ t ṽ. It contributes instead to the dissipative part of @ t B, calculated as (B h ; S) = @ 2 B h .

The bracket in [START_REF] Hirota | Variational principle for linear stability of ‡owing plasmas in Hall magnetohydrodynamics[END_REF] is symmetric in the exchange f $ g, due to the property ikmn = mnik and ikmn = mnik , and the self-evident symmetry of the addendum

T 2 @ k 1 T f s @ k 1 T g s .
As far as its semi-de…niteness is concerned, consider that it has been constructed by summing the bracket (f; g) NS in [START_REF] Morrison | Hamiltonian formulation of reduced magnetohydrodynamics[END_REF] and the bracket

(f; g) B = 1 Z D d 3 xT ikmn @ i f B k 1 T @ i B k f s @ m g B n 1 T @ m B n g s : (21) 
The semi-de…niteness of (f; g) NS was proved in [START_REF] Morrison | Some Observations Regarding Brackets and Dissipation[END_REF]. Now, one must do the same for the new Joule term (f; g) B , for which one has:

8 > > > > > > < > > > > > > : (f; f ) B = 1 Z D d 3 xT ikmn T ik (f ) T mn (f ) ; T ab (f ) = @ a f B b 1 T @ a B b f s :
T ab (f ) can be subdivided into a symmetric part S ab (f ) = 1 2 T ab (f ) + T ba (f ) plus an antisymmetric part A ab (f ) = 1 2 T ab (f ) T ba (f ) , and, due to the symmtry properties of ikmn , ikmn = kimn and ikmn = iknm , one can replace T ab (f ) with its antisymmetric part A ab (f ) only, since the symmetric parts will be canceled in the calculation of (f; f ) B :

(f; f ) B = 2 X i;k Z D T A 2 ik (f ) d 3 x:
The sign of this expression is just that of for every functional f . The semi-de…niteness of the whole (f; g) = (f; g) NS +(f; g) B is proved (so that S may be considered a good Lyapunov functional).

Last but not least, the metric algebra [START_REF] Hirota | Variational principle for linear stability of ‡owing plasmas in Hall magnetohydrodynamics[END_REF] generates exactly the local entropy production due to the mechanisms of dissipation and heat transport:

(s; S) = D (s) .
It is possible to show that the functional gradient of the Hamiltonian is a null mode of the metric algebra [START_REF] Hirota | Variational principle for linear stability of ‡owing plasmas in Hall magnetohydrodynamics[END_REF]:

(H; f ) = 0 8 f:
Also, the metric part of the motion algebra keeps the quantities in (15) constant:

(P h ; S) = 0; (L h ; S) = 0; (G h ; S) = 0: (22) 
Equation ( 22), together with [START_REF] Biskamp | Magnetic Reconnection in Plasmas[END_REF], renders the metriplectic motion of the non-ideal MHD invariant under the transformations of the Galileo Group.

The metriplectic bracket

hhf; gii =

Z D d 3 x f @ i g v i + g @ i f v i 1 f v i ikj jmn g v k @ m v n + + 1 f v i ijk kmn B j @ m g B n + f B i ijk @ j 1 kmn B m g v n + + 1 @ i s f s g v i g s f v i + 1 Z D d 3 xT T @ k 1 T f s @ k 1 T g s + + ikmn @ i 1 f v k 1 T @ i v k f s @ m 1 g v n 1 T @ m v n g s + + ikmn @ i f B k 1 T @ i B k f s @ m g B n 1 T @ m B n g s ; (23) 
obtained by putting together ( 12) and ( 19), has all the features required to govern the visco-resistive MHD, with the free energy de…ned in [START_REF] Hinton | Theory of plasma transport[END_REF].

As suggested in [START_REF] Morrison | A paradigm for joined Hamiltonian and dissipative systems[END_REF], it is possible to determine the equilibrium con…gurations by studying the extrema of the free energy F . The functional derivatives of

F read 8 > > > > > > > > > > > < > > > > > > > > > > > : F ṽ = ṽ; F B = B; F = v 2 2 + grav + U + @U @ + s; F s = @U @s + ;
so that, setting them to zero and considering the thermodynamic closure ( 9), the asymptotic equilibrium con…guration is found to be:

8 > > > < > > > :
ṽeq = 0; Beq = 0; T eq = ;

p eq = eq (T s U ) eq :

A con…guration towards which the system may tend to relax (under suitable initial conditions) has neither bulk velocity, nor magnetic induction, while pressure equilibrates the thermodynamic free energy of the gas, and the temperature …eld matches everywhere minus the constant . At the equilibrium, the free energy of the metriplectic scheme really appears to be isomorphic to the expression known in traditional Thermodynamics F = H T eq S, being H the energy of the ‡uid and S its entropy.

As a corollary of the above results, one can obtain the metriplectic formulation of reduced MHD models [START_REF] Biskamp | Nonlinear Magnetohydrodynamics[END_REF], which are widely used when the dependence on one of the spatial coordinates can be ignored. This can be the case, form instance, of tokamak fusion devices, in which the presence of a strong toroidal component of the magnetic …eld B0 makes the dynamics essentially two-dimensional and taking place on the poloidal plane, perpendicular to the toroidal direction. Several such examples may be done both in astrophysical plasmas and fusion plasmas.

An incompressible 2D resistive MHD model, accounting for entropy production, may be obtained reducing the 3D system, taking the limit of zero viscosity and adopting magnetic potential, vorticity and entropy per unit mass, as dynamical variables [START_REF] Grasso | Magnetic islands and spontaneous generation of zonal ‡ows[END_REF]:

8 > > > > > > > > > > < > > > > > > > > > > : @ @t + [ ; ] = @ 2 ? ; @! @t + [ ; !] + [@ 2 ? ; ] = 0; @s @t + [ ; s] = 0 T (@ 2 ? ) 2 : (25) 
In the above equations is the poloidal magnetic ‡ux, the stream function, ! = @ 2 ? the plasma vorticity, s the entropy per unit mass, the resistivity and [a; b] = @ x a@ y b @ y a@ x b is the canonical bracket in the x, y coordinates in the plane orthogonal to B0 , the poloidal plane. @? is the gradient along the poloidal plane, and @ 2 ? is the corresponding Laplacian. All …elds depend on x and y only. Consistently with the incompressibility assumption, the mass density 0 is taken to be constant.

Although deprived of the terms depending on the ‡uid viscosity, the model ( 25) is a useful tool for investigating, for instance, the phenomenon of magnetic reconnection [START_REF] Biskamp | Magnetic Reconnection in Plasmas[END_REF][START_REF] Priest | Magnetic Reconnection[END_REF], in which the dissipative term depending on the resistivity, allows for the change of topology of magnetic …eld line con…gurations, in addition to converting magnetic energy into heat.

The Hamiltonian component of the motions in (25), obtained in the limit = 0, is generated by the Hamiltonian functional

H = 1 2 Z d 2 x(j @? j 2 + j @? j 2 ) + 0 Z d 2 xU (s) (26) 
and by the Poisson bracket

ff; gg = Z d 2 x ( ([f ; g ! ] + [f ! ; g ]) + ![f ! ; g ! ] + s([f s ; g ! ] + [f ! ; g s ])) ; (27) 
where subscripts indicate functional derivatives.

The last term on the right-hand side of (26) comes from the contribution of the internal energy U . In the constant density limit, however, such term is actually a Casimir of the bracket (27). The dissipative part of the system is generated with the help of a metric bracket (; ). In the incomplete case, with no entropy evolution, the symmetric bracket producing the resistive term in the Ohm's law in (25), had been presented in [START_REF] Morrison | Hamiltonian formulation of reduced magnetohydrodynamics[END_REF]. For the above complete system, the dissipative part is obtained from the (; ) B metric bracket presented in [START_REF] Phythian | The functional formalism of classical statistical dynamics[END_REF], by applying the relation @? f B = f Ã, where à is the magnetic vector potential and B the magnetic induction, and then by projecting in 2D. The result is

(f; g) = Z d 2 x T f g + @ 2 ? 0 (f g s + f s g ) + (@ 2 ? ) 2 2 0 T f s g s : (28) 
For this reduced model, the properties characterizing the metric bracket can be shown with more immediacy. The bracket (28), indeed, is evidently symmetric. The relation

(H; g) = Z d 2 x T ( @ 2 ? )g + @ 2 ? 0 (( @ 2 ? )g s + 0 T g ) + (@ 2 ? ) 2 2 0 T 0 T g s = 0
shows that the functional gradient of H is in the kernel of the metric bracket for any g.

Concerning semi-de…niteness one can see that

(f; f ) = Z d 2 xT f + @ 2 ? 0 T f s 2 ;
so that (f; f ) has the same sign of . Finally, upon de…ning

F = H + 0 Z sd 2 x;
one can verify that ( ; F ), (!; F ) and (s; F ) yield the desired dissipative terms:

( ; F ) = @ 2 ? ; (!; F ) = 0; (s; F ) = 0 T (@ 2 ? ) 2 :

CONCLUSIONS

The metriplectic formulation of the visco-resistive MHD equations has been derived. Such formulation is identi…ed by a free energy functional, given by the sum of the Hamiltonian of ideal MHD with the entropy Casimir, and a bracket obtained by summing the Poisson bracket of ideal MHD with a new metric bracket giving rise to the dissipative terms. The metric bracket extends that derived in Ref. [START_REF] Morrison | Some Observations Regarding Brackets and Dissipation[END_REF] for dissipative Navier-Stokes equations. In addition to yielding the desired dissipative terms, the bracket is shown to conserve the Hamiltonian of ideal MHD as well as other constants of motion, related to space-time symmetries.

The dynamics governed by this metriplectic system is then shown to tend asymptotically in time toward states with no ‡ow and no magnetic energy. From the general results on visco-resistive MHD, we obtained also the metriplectic formulation of a reduced resistive model for incompressible plasmas.

Concerning future directions, some equilibrium con…guration less trivial than (24) should be investigated: the con…guration (24) is "entropic death", taking place when friction has dissipated all the bulk kinetic and magnetic energy into heat. The existence of the equilibrium con…guration (24) is very intuitive, it is a con…guration reachable from initial zero Galileo charges [START_REF] Grasso | Magnetic islands and spontaneous generation of zonal ‡ows[END_REF], but it represents only one possible …nal state. Actually, even if the free energy [START_REF] Hinton | Theory of plasma transport[END_REF] seems to predict only this equilibrium con…guration, other relaxation plasma states are known in nature, justi…able in this framework by generalizing the metric bracket and the functional F in [START_REF] Hinton | Theory of plasma transport[END_REF] to some F 0 , so to bring into the play constraints not considered

here. An extremization of F conditioned to initial values of the quantities in (15) would, for instance, give a …nal ṽeq di¤erent from zero. Also, with suitable initial conditions, non-trivial con…gurations for Beq could be found.

Possibly, even more interesting would be the extension of F to expressions in which the Casimir functional C in ( 2) is not simply restricted to S, but involves the velocity and the magnetic degrees of freedom [START_REF] Hirota | Variational principle for linear stability of ‡owing plasmas in Hall magnetohydrodynamics[END_REF]. In general, however, the issue of the variety of …nal relaxed states, is related to the existance and number of attractors of the visco-resistive MHD equations.

All the conditioning schemes just mentioned appear to be very smart, but should better be deduced from a consistent "First Principle"of metriplectic Physics, which is not yet clear to the Authors.

As a second remark, we would like to underline that the temperature and the entropy of the MSTDOF have particular roles in this framework: considering equations ( 2) and (3), the equilibrium temperature coincides with minus the constant , while the Casimir C is the entropy S. Now, how does this framework adapt to systems in which the temperature is anisotropic, due to the anisotropy of viscosity and di¤usivity, as in the Braginskii equations [START_REF] Hinton | Theory of plasma transport[END_REF]? An adaptation of the present formalism to that context would maybe require the use of "anisotropic entropies", with more than one Casimir involved, and represents a very interesting future investigation (even prior to that, a further necessary step would be of course the identi…cation of a Hamiltonian structure for the Braginskii model in the nondissipative limit).

A …nal important remark, is that the relationship between S in the evolution of the dissi-pative system, and its information theory interpretation should be investigated. Indeed, on the one hand, the relationship (5) renders S a piece of the functional F that metriplectically generates the time translations, so that the entropy is recognized as the quantity that is fully responsible for dissipation. On the other hand, S should quantify the lack of information about the precise state of the MSTDOF: in the metriplectic scheme, however, no mention to probability is done, it is apparently a fully deterministic dynamics, even if the proper Thermodynamics emerges clearly. The metriplectic framework could probably emerge in a natural way within the Physics of a Hamiltonian system interacting with noise, that represents the MSTDOF free to ‡uctuate stochastically [START_REF] Phythian | The functional formalism of classical statistical dynamics[END_REF]. Such a stochastic scenario is expected to be approximated by the deterministic dynamics ( 5) under suitable hypotheses.

The theory of stochastic systems will be of great help in this line of research [START_REF] Frank | Nonlinear Fokker-Planck Equations[END_REF].

The metriplectic framework appears to the Authors as a natural extension of the Hamiltonian theory of dynamical systems to systems showing dissipation. The metriplectic framework regards the relationship between dissipative "forces" and entropic quantities of the MSTDOF under a new light, and points towards fundamental aspects of the frictioninformation relationship. Also, it is expected to lead to original predictions on more complicated dynamical systems given by a Hamiltonian system plus dissipation, and to simplify the derivation of known results to a great extent, due to its geometrical nature, in which symmetries of the theory emerge very easily.
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