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The closure of a sheet is not always a union of

sheets, a short note

Michaël Bulois
∗

Abstract

In this note we answer to a frequently asked question. If G is an

algebraic group acting on a variety V , a G-sheet of V is an irreducible

component of V (m), the set of elements of V whose G-orbit has dimension

m. We focus on the case of the adjoint action of a semisimple group on

its Lie algebra. We give two families of examples of sheets whose closure

is not a union of sheets in this setting.

Let g be a semisimple Lie algebra defined over an algebraically closed field
k of characteristic zero. Let G be the adjoint group of g. For any integer m,
one defines

g(m) = {x ∈ g | dimG.x = m}.

A G-sheet (or simply sheet) is an irreducible component of g(m) for some m ∈ N.
We refer to [TY, §39] for elementary properties of sheets. The most important
one is that each sheet contains a unique nilpotent orbit.

There exists a well known subdivision of sheets which forms a stratification.
The objects considered in this subdivision are Jordan classes and generalize the
classical Jordan’s block decomposition in gln. Those classes and their closures
are widely studied in [Bo] (cf. also [TY, §39] for a more elementary viewpoint).
Since sheets are locally closed, a natural question is then the following.

If S is a sheet, is S is a union of sheets?

The answer is negative in general. We give two families of counterexamples
below.

1. A nilpotent orbit O of g is said to be rigid if it is a sheet of g. Rigid
orbits are key objects in the description of sheets given in [Bo]. They were
classified for the first time in [Sp, §II.7&II.10]. The closure ordering of
nilpotent orbits (or Hasse diagram) can be found in [Sp, §II.8&IV.2]. In
the classical cases, a more recent reference for these lists is [CM]. One
easily checks from these classifications that there may exists some rigid
nilpotent orbit O1 that contains a non-rigid nilpotent orbit O2 in its clo-
sure. Then, we set S = O1 and we get O2 ⊂ S ⊂ N (g) where N (g) is the
set of nilpotent elements of g. Since O2 is not rigid, the sheets containing
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O2 are not wholly included in N (g). Therefore, the closure of S is not a
union of sheets.

Here are some examples of such nilpotent orbits. In the classical cases, we
embed g in gln in the natural way. Then, we can assign to each nilpotent
orbit O, a partition of n, denoted by Γ(O). This partition defines the
orbit O, sometimes up to an element of Aut(g). In the case g = so8 (type
D4), there is exactly one rigid orbit O1, such that Γ(O1) = [3, 22, 1]. It
contains in its closure the non-rigid orbit O2 such that Γ(O2) = [3, 15]
(cf. [Mo, Table2, p.15]). Very similar examples can be found in types C
and B.

In the exceptional cases, we denote nilpotent orbits by their Bala-Carter
symbol as in [Sp]. Let us give some examples of the above described
phenomenon.

• in type E6 (O1 = 3A1 and O2 = 2A1),

• in type E7 (O1 = A2 + 2A1 and O2 = A2 +A1),

• in type E8 (O1 = A2 +A1 and O2 = A2)

• and in type F4 (O1 = A2 +A1 and A2).

2. In the case g = sln of type A, there is only one rigid nilpotent orbit, the
null one. Hence the phenomenon depicted in 1 can not arise in this case.
Let S be a sheet and let λS = (λ1 > · · · > λk(λS)) be the partition of n
associated to the nilpotent orbit OS of S. As a consequence of the theory
of induction of orbits, cf. [Bo], we have

S = G.hS
reg

(1)

where hS is the centre of a Levi subalgebra lS . The size of the blocks of
lS yield a partition of n, which we denote by λ̃S = (λ̃1 > · · · > λ̃p(λS)).

In fact λ̃ is the dual partition of λ, i.e. λ̃i = #{j | λj > i} (see, e.g., [Kr,
§2.2]). In particular, the map sending a sheet S to its nilpotent orbit OS

is a bijection.

An easy consequence of (1) is the following (see [Kr, Satz 1.4]). Given any
two sheets S and S′ of g, we have S ⊂ S′ if and only if hS is G-conjugate
to a subspace of hS′ or, equivalently, lS′ is conjugate to a subspace of lS .
This can be translated in terms of partitions by defining a partial ordering
on the set of partitions of n as follows. We say that λ � λ′ if there exists
a partition (Ji)i∈[[1,p(λ)]] of [[1, p(λ

′)]] such that λ̃i =
∑

j∈Ji
λ̃′

j . Hence, we
have the following characterization.

Lemma 1. S ⊂ S′ if and only if λS � λS′ .

One sees that this criterion is strictly stronger than the characterization
of inclusion relations of closures of nilpotent orbits (see, e.g., [CM, §6.2]).
More precisely, one easily finds two sheets S and S′ such that OS ⊂ OS′

while λS � λS′ . Then, OS ⊂ S′, S is the only sheet containing OS and
S 6⊂ S′. For instance, take λS′ = [3, 2], λS = [3, 1, 1]. Their respective
dual partitions being [2, 2, 1] and [3, 1, 1], we have λS � λS′ .
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