Jérémy Berthomieu
email: jeremy.berthomieu@uvsq.fr

Romain Lebreton
email: lebreton@lix.polytechnique.fr

Relaxed p-adic Hensel lifting for algebraic systems

Keywords: Lazy p-adic numbers, power series, algebraic system resolution, relaxed algorithms, complexity, integer linear systems

In a previous article, an implementation of lazy p-adic integers with a multiplication of quasi-linear complexity, the so-called relaxed product, was presented. Given a ring R and an element p in R, we design a relaxed Hensel lifting for algebraic systems from R/ (p) to the p-adic completion Rp of R. Thus, any root of linear and algebraic regular systems can be lifted with a quasi-optimal complexity. We report our implementations in C++ within the computer algebra system Mathemagix and compare them with Newton operator. As an application, we solve linear systems over the integers and compare the running times with Linbox and IML.

INTRODUCTION

Let R be an effective commutative ring with unit, which means that algorithms are given for any ring operation and for zero-testing. Given a proper principal ideal (p) with p ∈ R, we write Rp for the completion of the ring R for the p-adic valuation. Any element a ∈ Rp can be written in a non unique way a = i∈N aip i with coefficients ai ∈ R. To get a unique writing of elements in Rp, let us fix a subset M of R such that the projection π : M → R/ (p) is a bijection. Then, any element a ∈ Rp can be uniquely written a = i∈N aip i with coefficients ai ∈ M .

Two classical examples are the completions k [[X]] of the ring of polynomials k [X] for the ideal (X) and Zp of the ring of integers Z for the ideal (p), with p a prime number. In this paper, for R = Z, we take M = {0, . . . , p -1}.

Related Works. This paper is the natural extension of [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF], which comes in the series of papers [START_REF] Hoeven | Relax, but don't be too lazy[END_REF][START_REF] Hoeven | New algorithms for relaxed multiplication[END_REF][START_REF] Hoeven | Relaxed resolution of implicit equations[END_REF][START_REF] Hoeven | From implicit to recursive equations[END_REF]. These papers deal with lazy power series (or lazy p-adic numbers) and relaxed algorithms.

Lazy power series is the adaptation of the lazy evaluation (also known as call-by-need) function evaluation scheme for computer algebra [START_REF] Karczmarczuk | Generating power of lazy semantics[END_REF]. It consists in delaying the evaluation of the arguments at most. It was used in [START_REF] Hoeij | Factorization of differential operators with rational functions coefficients[END_REF] to minimize the number of operations in its settings. The main drawback of these objects is the bad complexity at high order of some basic algorithms such as the multiplication.

Relaxed algorithms for power series were introduced in [START_REF] Hoeven | Relax, but don't be too lazy[END_REF]. They share with the lazy algorithms the property that the coefficients of the output are computed one after another and that only minimal knowledge on the input is required. However, relaxed algorithms differ in the sense that they do not try to minimize the number of operations of each step. Since they can anticipate some computations, they have better complexity. The first presented relaxed algorithm was for the multiplication: the so-called on-line multiplication for integer in [START_REF] Fischer | Fast on-line integer multiplication[END_REF]. Then, came the on-line multiplication for real numbers in [START_REF] Schröder | Fast online multiplication of real numbers[END_REF], and relaxed multiplication for power series [START_REF] Hoeven | Lazy multiplication of formal power series[END_REF][START_REF] Hoeven | Relax, but don't be too lazy[END_REF], improved in [START_REF] Hoeven | New algorithms for relaxed multiplication[END_REF].

One important advantage of relaxed algorithms is to allow the computation of recursive power series or p-adic numbers in a good complexity both theoretical and practical. Another advantage inherited from lazy power series is that the precision can be increased at any time and the computation resumes from its previous state. It is well-suited when one wants to lift a p-adic number to a rational number with no sharp a priori estimation on the precision required.

On the other hand, there are zealous algorithms. The precision is fixed in advance in the computations. The Newton-Hensel operator allows to solve implicit equations in R/(p n) for any n ∈ N [START_REF] Newton | La méthode des fluxions, et les suites infinies. de Bure aîné[END_REF]. It has been thoroughly studied and optimized in particular for linear system solving [START_REF] Dixon | Exact solution of linear equations using p-adic expansions[END_REF][START_REF] Moenck | Approximate algorithms to derive exact solutions to systems of linear equations[END_REF][START_REF] Storjohann | High-order lifting and integrality certification[END_REF].

Our contribution. In this paper, we show how to transform algebraic equations into recursive equations. As a consequence, we can use relaxed algorithms to compute the Hensel lifting of a root from the residue ring R/(p) to its p-adic ring Rp. We work under the hypothesis of Hensel's lemma, which states that the derivative at the point we wish to lift is not zero.

Our algorithms lose a logarithmic factor in the precision compared to zealous Newton iteration. However, the constant factors hidden in the big-O notation are potentially smaller. Moreover, we take advantage of the good evaluation properties of the implicit equations. For example, we rediscover the quadratic factor in the size of matrices for linear system solving [START_REF] Storjohann | High-order lifting and integrality certification[END_REF]. Another example concerns the multivariate Newton operator which performs at each step an evaluation of the implicit equations and an inversion of its evaluated Jacobian matrix. In Theorems 25 and 28, we manage to save the cost corresponding to the Jacobian matrix.

Finally, we implement these algorithms to obtain timings competitive with Newton and even significantly lower on wide ranges of input parameters. As an application, we solve linear systems over the integers and compare to Linbox and IML. We show that we improve the timings for small matrices and big integers.

Our results on the transformation of implicit equations to recursive equations were discovered independently at the same time by [START_REF] Hoeven | From implicit to recursive equations[END_REF]. The latter paper deals with more general recursive power series defined by algebraic, differential equations or a combination thereof. However, its algorithms have yet to be implemented and only work in characteristic zero. Furthermore, since the carry is not dealt with, the blockwise product as presented in [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF]Section 4] cannot be used. This is important because it is the most efficient algorithm for higher precision among relaxed algorithms.

PRELIMINARIES

Straight-line programs. In this paper, we will use the model of computation to describe the algorithms behind the algebraic and recursive equations. We give a short presentation of this notion and refer to [START_REF] Bürgisser | Algebraic complexity theory[END_REF] for more details. Let R be a ring and A a R-algebra.

A straight-line program (s.l.p.) is an ordered sequence of operations between elements of A. An operation of arity r is a map from a subset D of A r to A. We usually work with the binary arithmetic operations +, -, • : A 2 → A. We also define for r ∈ R the 0-ary operations r c whose output is the constant r and the unary scalar multiplication r ו by r. We denote the set of all these operations R c and R. Finally, let us denote S the set of regular elements in R, that is of non zero divisors in R. We consider for s ∈ S the unary scalar division •/s : A × S → A, and we still denote S their set. Let us fix a set of operations Ω, usually Ω = {+, -, •}∪R∪S∪R c . A s.l.p. starts with a number of input parameters indexed from -(-1) to 0. It has k instructions Γ1, . . . , Γ k with Γi = (ωi; ui,1, . . . , ui,r i) where -< ui,1, . . . , ui,r i < i and ri is the arity of the operation ωi ∈ Ω. The s.l.p. Γ is executable on a = (a0, . . . , a -1) with result sequence b = (b -+1 , . . . , b k) ∈ A +k , if bi = a -1+i whenever -(-1) i 0 and bi = ωi (bu,1, . . . , bu,r i) with (bu,1, . . . , bu,r i) ∈ Dω i whenever 1 i k.

The multiplicative complexity L * (Γ) of a s.l.p. Γ is the number of operations ωi that are multiplications • between elements of A.

Example 1. Let R = Z, A = Z [X, Y] and Γ be the s.l.p. with two input parameters indexed -1, 0 and Γ1 = (•; -1, -1), Γ2 = (•; 1, 0), Γ3 = (1 c), Γ4 = (-; 2, 3), Γ5 = (3 × •; 1).

First, its multiplicative complexity is L * (Γ) = 2. Then, Γ is executable on (X, Y) ∈ A 2 , and for this input its result sequence is

X, Y, X 2 , X 2 Y, 1, X 2 Y -1, 3X 2 .
Remark 2. For the sake of simplicity, we will associate an arithmetic expression with a s.l.p. It is the same operation as when one writes an arithmetic expression in a programming language, e.g. C, and a compiler turns it into a s.l.p. In our case, we fix an arbitrary compiler that starts by the left-hand side of an arithmetic expression.

For example, the arithmetic expression ϕ : Z → Z 2 2 + 1 can be represented by the s.l.p. with one input and instructions Γ1 = (•; 0, 0) , Γ2 = (•; 1, 1) , Γ3 = (1 c) , Γ4 = (+; 2, 3).

Lazy framework and data structures on p-adics. We assume that two functions quo and rem are provided in order to deal with carries that appear when computing in Zp for example. They are the quotient and the remainder functions by p; quo(•, p) is a function from R to R and rem(•, p) is a function from R to M such that for all a in R, a = quo(a, p)p + rem(a, p).

Then, we give a short presentation of the lazy framework. It states that for any operation, the output at a given precision cannot require to know the input at a precision greater than necessary. For instance, when computing cn in the product c = a × b, one cannot make use of an+1 and bn+1. As a consequence, in the lazy framework, the coefficients of the output are computed one by one starting from the term of order 0. Now let's recall the basics of the implementation of recursive p-adic numbers found in [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF][START_REF] Hoeven | Relax, but don't be too lazy[END_REF]. We follow these papers notation and use a C++-style pseudo-code. The main class Padicp contains the computed coefficients ϕ : M [p] of the number a up till a given order n in N. In addition, any class derived from Padicp must contain a method next whose purpose is to compute the next coefficient an. The class Padicp is also endowed with an accessor method [] (n ∈ N) which calls next () until the precision reaches n + 1 and then outputs ϕn.

Relaxed multiplication.

Having a relaxed multiplication is very convenient for solving recursive algebraic equation in good complexity. As we will see, solving a recursive equation is very similar to checking it. Therefore, the cost of solving such an equation depends mainly on the cost of evaluating the equation. If, for example, the equations are sparse, we are able to take advantage of this sparsity.

Let a, b ∈ Rp be two p-adic numbers. Denote an ∈ M the coefficients of a in the decomposition a = n∈N anp n . We detail the computation of the first four terms of c = a × b.

The coefficients cn are computed one by one. The major difference with the naive algorithm comes from the use of fast multiplication algorithms on significant parts of forthcoming terms.

The zeroth coefficient c0 = rem (a0b0, p) is computed normally, a carry γ = quo (a0b0, p) is then stored. For the first coefficient, one computes a0b1 + a1b0 + γ with both products a0b1 and a1b0. Then, the remainder of the division by p is assigned to c1 while the quotient is to γ.

Changes arise when computing c2. By hypothesis, the coefficients a0, a1, a2, b0, b1, b2 ∈ M are known. So one can compute a0b2 + a2b0 + (a1 + a2p) (b1 + b2p) + γ using two multiplications of elements of size 1 and one of elements of size 2: (a1 + a2p) (b1 + b2p). Then, c2 is just the remainder of the division of this number by p and γ is the quotient.

For the term of order 3, one computes a0b3 +a3b0 +γ, with two multiplications of elements of size 1. Instead of the two products in a1b2+a2b1, we used fast algorithms on the bigger data a1 + a2p and b1 + b2p to save some multiplications.

Throughout this paper, we measure the cost of an algorithm by the number of arithmetic operations in R/(p) it performs.

Notation 1. We note M(n) the number of arithmetic operations in R/(p) needed to multiply two elements of R/(p n).

In particular, when R = k[X] and p = X, it is classical that M(n) ∈ O(n log n log log n) [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF].

If R = Z, we rather specify the number of bit-operations. Two integers of bit-size less than m can be multiplied in I(m) ∈ O(m log m 2 log * m) bit-operations [START_REF] Fürer | Faster Integer Multiplication[END_REF], where log * is the iterated logarithm.

We note R(n) the number of arithmetic operations in R/(p) necessary to multiply two elements of Rp at precision n.

Theorem 4 ([START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF][START_REF] Fischer | Fast on-line integer multiplication[END_REF][START_REF] Hoeven | Relax, but don't be too lazy[END_REF]). The complexity R(n) for multiplying two p-adic numbers at precision n is O (M(n) log n).

This statement was discovered for integers in [START_REF] Fischer | Fast on-line integer multiplication[END_REF]. However the application to compute recursive power series or p-adic integers was seen for the first time in [START_REF] Hoeven | Relax, but don't be too lazy[END_REF]. Article [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF] generalizes the algorithm for p-adic numbers.

Remark 5. If R = Fp contains many 2 p th root of unity, then two power series over Fp can be multiplied in precision

n in O M (n) e 2
√ log 2 log log n multiplications in Fp, see [START_REF] Hoeven | New algorithms for relaxed multiplication[END_REF].

The relaxed algorithm will be used for multiplications in Rp. For divisions in Rp, we use the relaxed algorithm of [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF].

Relaxed recursive p-adic numbers. The relaxed model was motivated by its efficient implementation of recursive padic numbers. We will work with recursive p-adic numbers in a simple case and do not need the general context of recursive p-adic numbers [19, Definition 7]. We note νp(a) the valuation in p of the p-adic number a. Proof. At first, we notice that (y -y0) ∈ pRp. Then, for all p-adic number z, there exists Θ(z)

∈ Rp such that Φ (Y) -Φ (z) = Φ (z) (Y -z) + (Y -z) 2 Θ(z)
. Now for all n ∈ N, we denote y (n) := Φ n (y0) and we apply the previous statement to z = y (n) to get

y -y (n+1) y -y (n) = Φ (y) -Φ(y (n)) y -y (n) = Φ (y (n))+(Y -y (n))Θ(y (n)).
Since Φ y (n) = Φ (y0) mod p = 0 mod p, we have that

y-y (n+1) y-y (n) ∈ pRp, for all n in N.
The definition of a recursive p-adic number is effective: given y0 ∈ R/ (p) a root of the reduced polynomial P ∈ R/ (p) [Y], we can compute recursively y1, y2, . . . , thanks to Proposition 6.

Remark that the vector case is included in the definition. Indeed, if p denotes (p, . . . , p) ∈ R r , then R r p (R r) p . Furthermore, the general case with more initial conditions y0, y1, . . . , y is not considered here but it is believed to be an interesting extension of these results.

We refer to [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF] for a description of the implementation of a recursive p-adic number y. In a word, the method next derives the nth term by computing Φ(y)n, which only depends on the preceding terms. But one has to be cautious with Φ because, even if Φ(y)n does not depend on yn, the coefficient yn could still be involved in the computation of this coefficient. Here is an example.

Warning 7. Take Rp = Zp for any prime number p. Let Φ (Y) = Y 2 +p, and y be the only solution of Y = Φ (Y) satisfying y0 = 0. We can check that Φ allows the computation of y since Φ (0) = 0.

At the first step, we find y1 = 1. Then we compute Φ (y) 2 = y 2 + p 2 = y 2 2 . In the relaxed product algorithm, we compute y0y2 and q = (y1 + y2p) (y1 + y2p). Then Φ (y) 2 = 2y0y2 + q0 = 0y2 + q0. Here we face two problems.

First, y2 is involved in the computation of Φ (y) 2 , although Φ (y) 2 does not depend on y2. More importantly, the p-adic number q involves and depends on y2. Since we do not know y2 yet, we must proceed otherwise.

Shifted algorithms. Because of the issue raised in Warning 7, we need to force the shift inside Φ. In other terms, we must explicit the fact that yn is not required in the computation of (Φ (y)) n . For this matter, we introduce for all i in N * two new shift operators:

p i × • : Rp → Rp •/p i : p i Rp → Rp a → p i a, a → a/p i .
Let Ω be the set of operations +, -, •,

p i × •, •/p i ∪ R ∪ S ∪ R c .
Definition 2. Let Γ = (Γ1, . . . , Γ k) be a s.l.p. over the R-algebra Rp with input parameters and operations in Ω . For any i, j such that -(-1) i k and -(-1) j 0, the shift sh (Γ, i, j) of the ith operation of Γ with respect to its jth argument is an element of Z ∪ {+∞}. For i 0, we define sh (Γ, i, j) by 0 if i = j and +∞ otherwise. Now, for i > 0:

• if Γi = (ωi; u, v) with ωi ∈ {+, -, •}, then we set sh (Γ, i, j) := min (sh (Γ, u, j) , sh (Γ, v, j));

• if Γi = (r c ;), then sh (Γ, i, j) := +∞;

• if Γi = (p s × •; u), then sh (Γ, i, j) := sh (Γ, u, j) + s;

• if Γi = (•/p s ; u), then sh (Γ, i, j) := sh (Γ, u, j) -s;

• if Γi = (ω; u) with ω ∈ R ∪ S, then we set sh (Γ, i, j) := sh (Γ, u, j).

We abbreviate sh (Γ) := sh (Γ, k, 0) if Γ has one argument.

This definition simply formalizes which terms of the jth argument is involved in the result of the ith element of the result sequence from a syntactic point of view. Proposition 8. With the notation of Definition 2, let y = (y1, . . . , yr) ∈ (Rp) r be such that Γ is executable on input y and b ∈ Rp be the ith element of the result sequence. Then, for all n ∈ N, the computation of bn involves at most the terms (yj) l of the jth argument yj for 0 l nsh (Γ, i, j -r).

Example 9. We carry on with Warning 7. For the natural s.l.p. Γ with one argument associated to the arithmetic expression Φ : Z → Z 2 + p, we have sh (Γ) = 0. This formalizes the previous remark that the computation of Φ (y) n involves y l for 0 l n. Now take the s.l.p.

Ψ : Z → p 2 × Z p 2 + p
(see Remark 2). Then sh (Ψ) = 1, since sh p 2 × (Z/p) 2 = sh (Z/p) 2 + 2 = sh (Z/p) + 2 = sh (Z) + 1. Moreover, Ψ is executable on the solution y of Y = Φ (Y) since y ∈ pRp. So this s.l.p. Ψ solves the problem raised in Warning 7.

Nevertheless, we explicit the first steps of the new algorithm to convince even the most skeptical reader. So Ψ (y) 2 executes (y/p) 2 0 = y 2 1 . Then Ψ (y) 3 does 2y1y2. Finally Ψ (y) 4 computes y1y3 and q = (y2 + y3p) (y2 + y3p) so that Ψ (y) 4 = 2y1y3 + q0. We can check that there is no dependency issue here and that we have a shift of 1 = sh (Ψ) in the indices of y.

Thanks to this, we are now able to explicit which s.l.p. Ψ are suited to the implementation of recursive p-adic numbers. Recall that S is the set of regular elements in R, we denote K := S -1 R the total ring of fractions of R. Definition 3. Let y be a recursive p-adic and Φ ∈ K [Y] with denominators not in pR that allows the computation of y. Let Ψ be a s.l.p. with one input and operations in Ω .

Then, Ψ is said to be a shifted algorithm for Φ and y0 if sh (Ψ) ≥ 1, Ψ is executable on y over the R-algebra Rp and We have dealt with the algorithmic issues of relaxed recursive p-adic numbers. Now, we can assess the complexity.

Ψ computes Φ (Y) on input Y over the R-algebra K [Y].
Proposition 11. Let Ψ be a shifted algorithm for the recursive p-adic y whose multiplicative complexity is L * . Then, the relaxed p-adic y can be computed at precision n in time

L * R (n) + O(n).
Proof. The cost of the computation of y is the cost of the evaluation of Ψ (y) in Rp. We recall that addition in Rp × Rp, subtraction in Rp × Rp, multiplication in R × Rp (that is operations in R) and division in Rp × S (that is operations in S) up to the precision n can be computed in time O (n). Scalars from R are decomposed in Rp in constant complexity. Finally, multiplications in Rp × Rp are done in time R (n) (see [START_REF] Berthomieu | Relaxed algorithms for p-adic numbers[END_REF]). Now the multiplicative complexity L * of Ψ counts exactly the latter operation.

UNIVARIATE ROOT LIFTING

In [1, Section 7], it is shown how to compute the dth root of a p-adic number a in a recursive relaxed way, d being relatively prime to p. In this section, we extend this result to the relaxed lifting of a simple root of any polynomial P ∈ R [Y]. Hensel's lemma ensures that from any modular simple root y0 ∈ R/ (p) of P ∈ R/ (p) [Y], there exists a unique lifted root y ∈ Rp of P such that y = y0 mod p. >From now on, P is a polynomial with coefficients in R and y ∈ Rp is the unique root of P lifted from the modular simple root y0 ∈ R/ (p).

Proposition 12. The polynomial

Φ (Y) := P (y0) Y -P (Y) P (y0) ∈ K [Y]
allows the computation of y.

Proof. It is clear that if P (y) = 0 and P (y0) = 0, then y = P (y 0)y-P (y) P (y 0) = Φ (y). Furthermore, Φ (y0) = 0.

In the following subsections, we will derive some shifted algorithms associated to the recursive equation Φ depending on the representation of P .

Dense polynomials

We assume in this subsection that the polynomial P of degree d is given as the vector of its coefficients in the monomial basis 1, Y, . . . , Y d . To have a shifted algorithm, we need to express Φ (Y) with a positive shift. Remark, from Definition 2, that the shift of Φ (Y) is 0.

Lemma 13. The s.l.p. Γ :

Z → p 2 × Z-y 0 p 2 • Z k for k ∈ N -{0} is executable on y and sh (Γ) = 1.
Proof. Since y0 = y mod p, Γ(y) ∈ Rp and Γ is executable on y. Furthermore, the shift sh (Γ) equals 2 + min sh Z-y 0 p , sh (Z) = 1.

We are now able to derive a shifted algorithm for Φ.

Z → -1 P (y0) P (y0) -P (y0) y0 + p 2 × (Q (Z) • sq (Z)) .
Proposition 14. Given a polynomial P of degree d in dense representation and a modular simple root y0, Algorithm 1 defines a shifted algorithm Ψ associated to Φ. The precomputation of such an operator involves O (M (d)) operations in R, while we can lift y at precision n in time

(d -1) R (n) + O(n).
Proof. First, Ψ is a shifted algorithm for Φ. Indeed since sh (P (y0) -P (y0) y0) = +∞ and, due to Lemma 13, sh p 2 × (sq(Z) • Q (Z)) = 1, we have sh (Ψ) = 1.

Also, thanks to Lemma 13, we can execute Ψ on y over the R-algebra Rp. Moreover, it is easy to see that Φ

(Y) = Ψ (Y) over the R-algebra K [Y].
The quotient polynomial Q is precomputed in O (M (d)) arithmetic operations in R. Using Horner scheme to evaluate Q (Z), we have L * (Ψ) = d -1 and we can apply Proposition 11.

Polynomials as straight-line programs

In [1, Proposition 7.1], the case of the polynomial P (Y) = Y d -a was studied. Although the general concept of shifted algorithm was not introduced, an algorithm of multiplicative complexity O (L * (P)) was given. The shifts were only present in the implementation in Mathemagix [START_REF] Hoeven | SVN Version 6374[END_REF]. We clarify and generalize this approach to any polynomial P given as a s.l.p. and propose a shifted algorithm Ψ whose complexity is linear in L * (P).

In this subsection, we fix a polynomial P given as a s.l.p. with operations in Ω := {+, -, •}∪R ∪R c and multiplicative complexity L * := L * (P), and a modular simple root y0 ∈ R/ (p) of P . Then, we define the polynomials TP (Y) := P (y0) + P (y0) (Y -y0) and EP (Y) := P (Y) -TP (Y). Definition 4. We define recursively a vector τ ∈ R 2 and a s.l.p. ε with operations in Ω := +, -, •,

p i × •, •/p i ∪ R ∪ S ∪ R c .
Initially, ε 0 := 0 and τ 0 := (y0, 1). Then, we define ε i and τ i recursively on i with 1 i k by:

• if Γi = (a c ;), then ε i := 0, τ i := (a, 0);

• if Γi = (a × •; u), then ε i := a × ε u , τ i := aτ u ; • if Γi = (±; u, v), then ε i := ε u ± ε v , τ i := τ u ± τ v ; • if Γi = (•; u, v) and we denote τ u = (a, c) , τ v = (b, d),
then τ i = (ab, ad + cb) and ε i equals

ε u • ε v + p × (((c × ε v + d × ε u) /p) • (Z -y0)) + (a × ε v + b × ε u) + p 2 × (cd) × ((Z -y0) /p) 2 . (1)
Recall that multiplications denoted by • are the ones between p-adics. Finally, we set εP := ε k and τP := τ k where k is the number of instructions in the s.l.p. P .

Lemma 15. The s.l.p. εP is a shifted algorithm for EP and y0. Its multiplicative complexity is bounded by 2L * + 1. Also, τP is the vector of coefficients of the polynomial TP in the basis (1, (Y -y0)).

Proof. Let us call Pi the ith result of the s.l.p. P on the input Y over R [Y], with 0 i k. We note E i := EP i and T i := TP i for all 0 i k. Let us prove recursively that ε i is a shifted algorithm for E i and y0, and that τ i is the vector of coefficients of T i in the basis (1, (Y -y0)).

For the initial step i = 0, we have P0 = Y and we verify that E 0 (Y) = ε 0 (Y) = 0 and T 0 (Y) = y0 + (Y -y0). The s.l.p. ε0 is executable on y over Rp and its shift is +∞. Now we prove the result recursively for i > 0. We detail the case when Γi = (•; u, v), the others cases being straightforward. Equation (1) corresponds to the last equation of

Pi = PuPv ⇔ E i = (E u + T u) (E v + T v) -T i ⇔ E i = E u E v + [E u T v + T u E v] + T u T v -T i ⇔ E i = E u E v + [(P v (y0) E u + P u (y0) E v) (Y -y0) + (Pv (y0) E u + Pu (y0) E v)] +P u (y0) P v (y0) (Y -y0) 2 .
Also τ i = (Pu (y0) Pv (y0) , P u (y0) Pv (y0) + Pu (y0) P v (y0)). The s.l.p. ε i is executable on y over Rp because, for all j < i, sh (εj) > 0 implies that (cε v (y) + dε u (y)) /p ∈ Rp. Concerning the shifts, since sh (εu) , sh (εv) > 0, we can check that every operand in equation (1) has a positive shift. So sh ε i > 0. Then, take i = r to conclude the proof.

Concerning multiplicative complexity, we slightly change ε 0 such that it computes once and for all ((Y -y0) /p) 2 before returning zero. Then, for all multiplication instructions • in the s.l.p. P , the s.l.p. εP adds two multiplications • between p-adics (see equation (1)). So L * (εP) = 2L * + 1.

Proposition 16. Let P be a univariate polynomial over Rp given as a s.l.p. such that its multiplicative complexity is L * . Then, the following algorithm

Ψ : Z → -P (y0) + P (y0) y0 -εP (Z) P (y0)
is a shifted algorithm associated to Φ and y0 whose multiplicative complexity is 2L * + 1.

Proof. We have Φ (Y) = Ψ (Y) over the algebra K [Y] because Φ (Y) = (-P (y0) + P (y0) y0 + EP (Y)) /P (y0). Because of Lemma 15 and νp (P (y0)) = 0, the s.l.p. Ψ is executable on y over Rp and its shift is positive. We conclude with L * (Ψ) = L * (εP) = 2L * + 1 as the division by P (y0) is an operation in the set S.

Remark 17. By adding the square operation • 2 to the set of operations Ω of P , we can gain a few multiplications. In Definition 4, if Γi = • 2 ; u and τ u = (a, c), then define ε i by

ε u •(ε u + 2 × (a + c × (Z -y0)))+p 2 × c 2 × ((Z -y0) /p) 2 .
Thereby, we reduce the multiplicative complexity of εP and Ψ by the number of square operations in P .

Theorem 18. Let P ∈ R[Y] and y0 ∈ R/ (p) be such that P (y0) = 0 mod p and P (y0) = 0 mod p. Denote y ∈ Rp the unique solution of P lifted from y0. Assume that P is given as a s.l.p. with operations in Ω := {+, -, •} ∪ R ∪ R c whose multiplicative complexity is L * . Then, we can lift y up to precision n in time

(2L * + 1) R (n) + O(n).
Proof. By Propositions 12 and 16, y can be computed as a recursive p-adic number with the shifted algorithm Ψ. Proposition 11 gives the announced complexity.

Remark 19. We can improve the bound on the multiplicative complexity when the polynomial has a significant part with positive valuation. Indeed suppose that the polynomial P is given as P (Y) = α (Y) + pβ (Y) with α and β two s.l.p.. Then the part pβ (Y) is already shifted. In this case, set εP := εα +pβ so that the following is a shifted algorithm:

Ψ : Z → -α (y0) + α (y0) y0 -εP (Z) α (y0) .
Its multiplicative complexity is L * (α) + 2L * (β) + 1.

LINEAR ALGEBRA OVER P-ADICS

As an extension of the results of the previous section, we will lift a simple root of a system of r algebraic equations with r unknowns in Section 5. For this matter, one needs to solve a linear system based on the Jacobian matrix in a relaxed way, as we describe in this section.

For any matrix A ∈ Mr×s (Rp), we will denote by aij the coefficient of A lying on the ith row and the jth column. Furthermore, A can be seen as a p-adic matrix, i.e. a p-adic number whose coefficients are matrices over M . In this case, the matrix of order n will be denoted by An ∈ Mr×s (M), so that A = ∞ n=0 Anp n .

Inversion of a "scalar" matrix

We can generalize the remark of [1, Section 6.1]: because of the propagation of the carries, the computation of the inverse of a regular r × r matrix with coefficients in M is not immediate in the p-adic case.

Let us recall the scalar case. We define mul rem and mul quo such that βa = mul rem (β, a) + pmul quo (β, a) for all β ∈ M and a ∈ Rp. The nth term of mul rem (β, a) is rem (βan, p) ∈ M , while, for mul quo (β, a), the corresponding one is quo (βan-1, p) ∈ M .

We shall introduce two operators Mul rem and Mul quo which are the matricial counterparts of both mul rem and mul quo. Let B ∈ Mr (M) and A ∈ Mr×s (Rp) seen as a p-adic matrix, then the nth term of Mul rem (B, A) is rem (BAn, p) ∈ Mr×s (M), while the one of Mul quo (B, A) corresponds to quo (BAn-1, p) ∈ Mr×s (Rp), so that we have BA = Mul rem (B, A) + pMul quo (B, A).

Let us denote MM (r, s) the number of operations in the ground ring to multiply a square matrix of size r and a matrix of size r × s. Recall that if r ≥ s, then MM (r, s) ∈ O r 2 s ω-2 and otherwise MM (r, s) ∈ O r ω-1 s , where ω is the exponent of matrix multiplication over any ring.

with C0 = ΓA0 mod p. Furthermore, C can be computed up until precision n in time O (MM (r, s) n).

Proof. First, A = Mul rem (B, C) + pMul quo (B, C) so we can deduce that Mul rem (B, C) = A -pMul quo (B, C). It remains to multiply both sides by Γ using Mul rem to prove equation [START_REF] Bini | Polynomial and matrix computations[END_REF].

From the definition of Mul quo, we can see that the nth term of the right-hand side of equation (2) involves only Cn-1. So C is recursively computed with a cost evaluated in Lemma 20.

Inversion of a matrix over p-adics

We can now apply the division of matrices over p-adic integers, as in [START_REF] Hoeven | Relax, but don't be too lazy[END_REF]. Proposition 22. Let A ∈ Mr×s (Rp) and B ∈ Mr (Rp) be two relaxed matrices such that B0 is invertible of inverse

Γ = B -1 0 mod p. Then, the product C = B -1 A satisfies C = B -1 0 A -p × (B -B0) p • C , (3)
with C0 = ΓA0 mod p. Thus, C can be computed up to precision n in time MM (r, s) R (n) + O(n).

Proof. The right-hand side of equation (3) is a shifted algorithm associated to C → A-BC and Γ. The only p-adic matrix product • involves MM(r, s) p-adic multiplications and therefore a cost of MM (r, s) R (n). Proposition 21 for the product by B -1 0 shows that its cost is not dominant.

Remark 23. Note that if B ∈ Mr (R), then the matrix product ((B -B0)/p) C can be computed up to precision n in time O (MM (r, s) n). Therefore, so can C. This is analogous to the inversion of matrices with polynomial entries which can be done in time linear in the precision [START_REF] Moenck | Approximate algorithms to derive exact solutions to systems of linear equations[END_REF].

MULTIVARIATE ROOT LIFTING

In this section, we lift a p-adic root y ∈ R r p of a polynomial system P = (P1, . . . , Pr) ∈ R [Y] r = R [Y1, . . . , Yr] r in a relaxed recursive way. We make the assumption that y0 = (y1,0, . . . , yr,0) ∈ (R/ (p)) r is a regular modular root of P, i.e. its Jacobian matrix dPy 0 is invertible in Mr (R/ (p)). Newton-Hensel operator ensures both the existence and the uniqueness of y ∈ R r p such that P (y) = 0 and y0 = y mod p. From now on, P is a polynomial system with coefficients in R and y ∈ R r p is the unique root of P lifted from the modular regular root y0 ∈ (R/ (p)) r . Proof. We adapt the proof of Proposition 12. Since dΦy 0 = 0, Φ allows the computation of y.

As in the univariate case, we have to introduce a positive shift in Φ. In the following, we present how to do so depending on the representation of P.

Dense algebraic systems

Let P be given in dense representation. We assume that each Pi has total degree at most d ≥ 2, so that its dense size is bounded by (d + 1) r . As in the univariate case, the shift of Φ (Y) is 0. We adapt Lemma 13 and Proposition 14 to the multivariate polynomial case as follows. For 1 j k r, let Q (j,k) be polynomial systems such that P (Y) equals P (y0)+dPy 0 (Y)+ 1 j k r Q (j,k) (Y) (Yj -yj,0) (Y k -y k,0) . Algorithm 2 -Dense polynomial system root lifting Input: P ∈ R [Y] r with a regular root y0 in (R/ (p)) r . Output: A shifted algorithm Ψ associated to Φ and y0. 1. For 1 j k r, compute a Q (j,k) (Y) from P (Y) 2. For 1 j k r, let pr j,k (Z) := Z j -y j,0 p Z k -y k,0 p 3. Let Ψ1 : Z → 1 j k r Q (j,k) (Z) • pr j,k (Z) 4. return the shifted algorithm Ψ : Z → -dP -1 y 0 P (y0) -dPy 0 (y0) + p 2 × Ψ1 .

Theorem 25. Given P = (P1, . . . , Pr) a polynomial system in R [Y] in dense representation, such that each Pi has total degree at most d, and an approximate zero y0, Algorithm 2 outputs a shifted algorithm Ψ associated to Φ and y0. The precomputation in Ψ costs Õ (rd r), while the evaluation of y to precision n costs rd r R (n) + O(n).

As above, we solve integer linear systems, however, now we retrieve the solutions over Q, using the rational number reconstruction [9, Section 5.10]. We set q as p to the power 2 j and pick at random a square matrix B of size r with coefficients in M = {0, . . . , q -1}. We solve BC = A with a random vector A. Because we deal with q-adic numbers at low precision, we only use the naive variant in our timings. We wanted to compare to Linbox [START_REF] Linbox | LinBox -Exact Linear Algebra over the Integers and Finite Rings[END_REF] and IML [START_REF] Chen | IML, the Integer Matrix Library[END_REF]. However, we do not display the timings of IML within Linbox because they are about 10 times slower. It goes against the impression of [10, page 148] that IML is better for large integers. In fact, when j is small, there is a major overhead coming from the use of Gmp. Indeed, in our case, it is best to transform q-adic numbers into p-adic numbers, to compute up to the necessary precision and then retrieve the solutions as q-adic numbers before calling the rational reconstruction.

Example 3 .

 3 The addition in Zp is implemented in the class Sum Padicp derived from Padicp and therefore inherits of the attributes ϕ : M [p] and n. It has additional attributes a, b in Padicp and carry γ in M set by default to zero. Finally, the function next adds an, bn and γ, puts the quotient of the addition in γ and returns the remainder.

Definition 1 .

 1 Let Φ ∈ Rp [Y] and y be a fixed point of Φ, i.e. y = Φ (y), such that y0 = y mod p. Let us denote Φ 0 = Id and, for all n ∈ N * , Φ n = Φ•• • ••Φ (n times). Then, y is a recursive p-adic number and Φ allows the computation of y if, for all n ∈ N, we have (y -Φ n (y0)) ∈ p n+1 Rp. Proposition 6. Let Φ ∈ Rp [Y] with a fixed point y. If Φ is such that νp (Φ (y0)) > 0, where y0 = y mod p, then Φ allows the computation of y.

Remark 10 . 2 Z 3 +

 1023 There is no uniqueness of a shifted operator. For example, ifΦ (Y) = Y 3 + p ∈ Z [Y] and y0 = 0, then Ψ : Z → p 2 × Zp + p and Ψ1 : Z → p 3 × Z p p are two distinct shifted algorithms for Φ and y0 = 0. Indeed sh (Ψ) = 1, sh (Ψ1) = 2 and they are executable on y.

Algorithm 1 - 2 2. 2 3.

 122 Dense polynomial root lifting Input: P ∈ R [Y] with a simple root y0 in R/ (p). Output: A shifted algorithm Ψ associated to Φ and y0. 1. Compute Q (Y) the quotient of P (Y) by (Y -y0) Let sq (Z) : Z → Z-y 0 p return the shifted algorithm Ψ :

Lemma 20 .

 20 Let B and A be two p-adic matrices such that B ∈ Mr (M) and A ∈ Mr×s (Rp). Then, the computations of Mul rem (B, A), Mul quo (B, A), and therefore of BA, can be done to precision n in time O (MM(r, s)n). Proof. To compute Mul rem (B, A), we multiply B and A as if B were over R/ (p) and A over (R/ (p)) [[x]]. To compute Mul quo (B, A), for each k < n, we multiply B with A k-1 and only keep the quotient by p of this product. Therefore, the total cost is in O (MM (r, s) n). Proposition 21. Let A be a relaxed matrix of size r × s over Rp and let B ∈ Mr (M). If B is invertible modulo p and Γ:=B -1 mod p, then the product C = B -1 A satisfies C = Mul rem (Γ, A -pMul quo (B, C))

Proposition 24 .

 24 The polynomial system Φ (Y) := dP -1 y 0 (dPy 0 (Y) -P (Y)) ∈ K [Y] r allows the computation of y.

Acknowledgments

We would like to thank J. van der Hoeven, M. Giusti, G. Lecerf, M. Mezzarobba and É. Schost for their helpful comments and remarks. For their help with Linbox, we thank J.-G. Dumas and B. Boyer.

This work has been partly supported by the Digiteo 2009-36HD grant of the Région Île-de-France, and by the French ANR-09-JCJC-0098-01 MaGiX project.

Proof. First, for j r, we perform the Euclidean division of P by (Yj -yj,0) 2 to reduce the degree in each variable. We use Kronecker substitution [2, Chapter 1, Section 8] to obtain a quasi-linear complexity. By Kronecker substitution on the variables Y2, . . . , Yr, P can be written as a bivariate polynomial system P(Y1, U1) of degree d r-1 in U1. Then, one obtains Q(1,1) (Y1, U1) by doing the Euclidean division of each Pi (Y1, U1) by (Y1 -y1,0) 2 and then retrieve Q (1,1) (Y) as a r-variate polynomial system. The Euclidean division costs Õ (d r) arithmetic operations for each Pi, for a total cost of Õ (rd r). Next, the process is repeated on the remainders of the division. We write them as bivariate polynomials in Y2 and U2 with degree 2d r-2 in U2 and divide them by (Y2 -y2,0) 2 and so on. The total cost of this process is Õ (rd r) arithmetic operations.

Then, for each Pi, it remains a polynomial with partial degree at most 1 in each variable. Necessary divisions by (Yj -yj,0) (Y k -y k,0) are given by the presence of a multiple of YjY k , which gives rise to a cost of O (2 r).

Next, we have to evaluate Ψ1 at y. Since the total numbers of monomials of the Q (j,k) (Y) for 1 j k r is bounded by rd r , Proposition 11 gives the desired cost estimate for the evaluation of y at precision n. Finally, we have to multiply this by the inverse of the Jacobian of P at y0, which is a matrix with coefficients in R. By Proposition 21 and Remark 23, and since we only lift a single root, it can be done at precision n in time O(r 2 n).

Algebraic systems as s.l.p.

We keep basically the same notations in Section 3.2. Given an algebraic system P, we define T P (Y) := P (y0) + dPy 0 (Y -y0) and E P (Y) := P (Y) -T P (Y). We adapt Definition 4 so that we may define τ and ε for multivariate polynomials.

Definition 5. We define recursively vectors τj ∈ R r+1 and s.l.p.s εj for 1 j r with operations in Ω , where Ω := +, -, •,

First, we initialize for all 1 i r, ε -r+i j := 0, τ -r+i j := (yi,0, 0, . . . , 0, 1, 0, . . . , 0) with 1 at index i + 1. Then for 1 i kj where kj is the number of instructions in the s.l.p. Pj, we define ε i j and τ i j recursively on i by almost the same formulas as in Definition 4. Let us detail the changes when Γi = (•, u, v):

Let τ u j = (a0, a1, . . . , ar) and τ v j = (b0, b1, . . . , br), then τ i j = (a0b0, a0b1 + a1b0, . . . , a0br + arb0) , and

As before, we set εP j := ε k j j and τP j := τ

Lemma 26. The s.l.p. ε P := (εP 1 , . . . , εP r) is a shifted algorithm for E P and y0. Its complexity is 3L * + r(r+1) 2 . Moreover, assuming T P = (TP 1 , . . . , TP r). Then, τP j is the vector of coefficients of the polynomial TP j in the basis (1, (Y1 -y1,0) , . . . , (Yr -yr,0)).

Proof. From Lemma 15, it is clear that ε P is a shifted algorithm for E P and y0. It is also clear that τP i is the coefficients of TP i in the basis (1, (Y1 -y1,0) , . . . , (Yr -yr,0)).

Concerning the multiplicative complexity, we perform the same change as in Lemma 15 by computing ((Yi -yi,0) /p) • ((Yj -yj,0) /p) once and for all in ε 0 P . Therefore we have to perform r(r+1) 2 product of p-adics. Moreover, for all instruction • in the s.l.p. Pj, εP j adds three multiplications between p-adics (see operations • in formulas above). So L * (ε P) = 3L * + r(r+1) 2 .

Proposition 27. Let P be a polynomial system of r polynomials in r variables over Rp, given as a s.l.p. such that its multiplicative complexity is L * . Then, the algorithm Ψ : Z → dP -1 y 0 ((-P (y0) + dPy 0 (y0)) -ε P (Z)) is a shifted algorithm associated to Φ and y0 whose evaluation complexity is 3L * + r(r+1) 2 .

Proof. We just need to prove the bound for the multiplicative complexity as the remaining part is straightforwardly analogous to Proposition 16.

As in the proof of Theorem 25, the evaluation of dP -1 y 0 (•) consists of a product of the inverse of a matrix over R and of a vector over Rp, and does not contribute to the multiplicative complexity. Therefore, L * (Ψ) = L * (ε P) = 3L * + r(r+1) 2 .

Theorem 28. Let P be a system of r polynomials in r variables over R and y0 ∈ (R/ (p)) r be such that P (y0) = 0 mod p and det(dP (y0)) = 0 mod p. Denote y ∈ R r p the unique solution of P lifted from y0. Assume that P is given as a s.l.p. with multiplicative complexity L * . Then, one can compute y to precision n in time

Proof. By Propositions 24 and 27, y can be computed as a p-adic vector with the shifted algorithm Ψ. Proposition 11 gives the announced complexity.

IMPLEMENTATION AND TIMINGS

In this section, we display computation times in milliseconds for the univariate polynomial root lifting and for the computation of the product of the inverse of a matrix with a vector or with another square matrix. Timings are measured using one core of an Intel Xeon X5650 at 2.67 GHz running Linux, Gmp 5.0.2 [START_REF] Granlund | the GNU multiple precision arithmetic library[END_REF] and setting p = 536871001 a 29 bit prime number. In the following tables, the first line, "Newton" corresponds to the classical Newton iteration [9, Algorithm 9.2] used in the zealous model. The second line "Mmx" corresponds to our best variant. The last line gives a few details about which variant is used. We make use of the naive variant "N" and the relaxed variant "R". Furthermore, when the precision is high, we make use of blocks of size 32 or 1024. That means, that at first, we compute the solution f up to precision 32 as F0 = f0 +• • •+f31p 31 with "N". Then, we say that our solution can be seen as a p 32 -adic integer

and the algorithm runs with F0 as the initial condition. Then, each Fn is decomposed in base p to retrieve f32n, . . . , f32n+31. Although it is competitive, the initialization of F can be quite expensive. "BN" means that F is computed with "N", while "BR" means it is with "R". Finally, if the precision is high enough, one may want to compute F with blocks of size 32, and therefore f with blocks of size 1024. "B 2 N" (resp. "B 2 R") means that f and F are computed up to precision 32 with "N" and then, the p 1024 -adic solution is computed with "N" (resp. "R").

Polynomial root. These first two tables correspond to the lifting of a regular root from Fp to Zp at precision n as in Section 3.