
HAL Id: hal-00660566
https://hal.science/hal-00660566v1

Preprint submitted on 17 Jan 2012 (v1), last revised 20 Feb 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relaxed p-adic Hensel lifting for algebraic systems
Jérémy Berthomieu, Romain Lebreton

To cite this version:
Jérémy Berthomieu, Romain Lebreton. Relaxed p-adic Hensel lifting for algebraic systems. 2012.
�hal-00660566v1�

https://hal.science/hal-00660566v1
https://hal.archives-ouvertes.fr

Relaxed p-adic Hensel lifting for algebraic systems

Jérémy Berthomieu
Laboratoire de Mathématiques

Université de Versailles
Versailles, France

jeremy.berthomieu@uvsq.fr

Romain Lebreton
Laboratoire d’Informatique

École polytechnique
Palaiseau, France

lebreton@lix.polytechnique.fr

ABSTRACT

In a previous article, an implementation of lazy p-adic in-
tegers with a multiplication of quasi-linear complexity, the
so-called relaxed product, was presented. Given a ring R
and an element p in R, we design a relaxed Hensel lifting for
algebraic systems from R/ (p) to the p-adic completion Rp

of R. Thus, any root of linear and algebraic regular systems
can be lifted with a quasi-optimal complexity. We report
our implementations in C++ within the computer algebra
system Mathemagix and compare them with Newton op-
erator. As an application, we solve linear systems over the
integers and compare the running times with Linbox and
IML.

Keywords

Lazy p-adic numbers, power series, algebraic system resolu-
tion, relaxed algorithms, complexity, integer linear systems.

1. INTRODUCTION
Let R be an effective commutative ring with unit, which

means that algorithms are given for any ring operation and
for zero-testing. Given a proper principal ideal (p) with
p ∈ R, we write Rp for the completion of the ring R for
the p-adic valuation. Any element a ∈ Rp can be written
in a non unique way a =

∑

i∈N
aip

i with coefficients ai ∈
R. To get a unique writing of elements in Rp, let us fix a
subset M of R such that the projection π : M → R/ (p)
is a bijection. Then, any element a ∈ Rp can be uniquely
written a =

∑

i∈N
aip

i with coefficients ai ∈ M .
Two classical examples are the completions k [[X]] of the

ring of polynomials k [X] for the ideal (X) and Zp of the
ring of integers Z for the ideal (p), with p a prime number.
In this paper, for R = Z, we take M = {0, . . . , p− 1}.

Related Works. This paper is the natural extension of [1],
which comes in the series of papers [13, 14, 15, 24]. These
papers deal with lazy power series (or lazy p-adic numbers)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC ’12 Grenoble, FRANCE
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

and relaxed algorithms.
Lazy power series is the adaptation of the lazy evaluation

(also known as call-by-need) function evaluation scheme for
computer algebra [18]. It consists in delaying the evaluation
of the arguments at most. It was used in [25] to minimize
the number of operations in its settings. The main drawback
of these objects is the bad complexity at high order of some
basic algorithms such as the multiplication.
Relaxed algorithms for power series were introduced in

[13]. They share with the lazy algorithms the property that
the coefficients of the output are computed one after another
and that only minimal knowledge on the input is required.
However, relaxed algorithms differ in the sense that they do
not try to minimize the number of operations of each step.
Since they can anticipate some computations, they have bet-
ter complexity. The first presented relaxed algorithm was
for the multiplication: the so-called on-line multiplication
for integer in [7]. Then, came the on-line multiplication for
real numbers in [22], and relaxed multiplication for power
series [12, 13], improved in [14].

One important advantage of relaxed algorithms is to allow
the computation of recursive power series or p-adic numbers
in a good complexity both theoretical and practical. An-
other advantage inherited from lazy power series is that the
precision can be increased at any time and the computation
resumes from its previous state. It is well-suited when one
wants to lift a p-adic number to a rational number with no
sharp a priori estimation on the precision required.

On the other hand, there are zealous algorithms. The pre-
cision is fixed in advance in the computations. The Newton-
Hensel operator allows to solve implicit equations in R/(pn)
for any n ∈ N [21]. It has been thoroughly studied and
optimized in particular for linear system solving [6, 20, 23].

Our contribution. In this paper, we show how to trans-
form algebraic equations into recursive equations. As a con-
sequence, we can use relaxed algorithms to compute the
Hensel lifting of a root from the residue ring R/(p) to its
p-adic ring Rp. We work under the hypothesis of Hensel’s
lemma, which states that the derivative at the point we wish
to lift is not zero.

Our algorithms lose a logarithmic factor in the precision
compared to zealous Newton iteration. However, the con-
stant factors hidden in the big-O notation are potentially
smaller. Moreover, we take advantage of the good evalua-
tion properties of the implicit equations. For example, we
rediscover the quadratic factor in the size of matrices for
linear system solving [23]. Another example concerns the

multivariate Newton operator which performs at each step
an evaluation of the implicit equations and an inversion of
its evaluated Jacobian matrix. In Theorems 25 and 28, we
manage to save the cost corresponding to the Jacobian ma-
trix.

Finally, we implement these algorithms to obtain timings
competitive with Newton and even significantly lower on
wide ranges of input parameters. As an application, we
solve linear systems over the integers and compare to Lin-
box and IML. We show that we improve the timings for
small matrices and big integers.

Our results on the transformation of implicit equations
to recursive equations were discovered independently at the
same time by [24]. The latter paper deals with more general
recursive power series defined by algebraic, differential equa-
tions or a combination thereof. However, its algorithms have
yet to be implemented and only work in characteristic zero.
Furthermore, since the carry is not dealt with, the blockwise
product as presented in [1, Section 4] cannot be used. This
is important because it is the most efficient algorithm for
higher precision among relaxed algorithms.

2. PRELIMINARIES

Straight-line programs. In this paper, we will use the
model of computation to describe the algorithms behind the
algebraic and recursive equations. We give a short presen-
tation of this notion and refer to [3] for more details. Let R
be a ring and A a R-algebra.

A straight-line program (s.l.p.) is an ordered sequence of
operations between elements of A. An operation of arity r
is a map from a subset D of Ar to A. We usually work with
the binary arithmetic operations +,−, · : A2 → A. We also
define for r ∈ R the 0-ary operations rc whose output is the
constant r and the unary scalar multiplication r×· by r. We
denote the set of all these operations Rc and R. Finally, let
us denote S the set of regular elements in R, that is of non
zero divisors in R. We consider for s ∈ S the unary scalar
division ·/s : A×S → A, and we still denote S their set. Let
us fix a set of operations Ω, usually Ω = {+,−, ·}∪R∪S∪Rc.
A s.l.p. starts with a number ℓ of input parameters in-

dexed from − (ℓ− 1) to 0. It has k instructions Γ1, . . . ,Γk

with Γi = (ωi;ui,1, . . . , ui,ri) where −ℓ < ui,1, . . . , ui,ri < i
and ri is the arity of the operation ωi ∈ Ω. The s.l.p. Γ
is executable on a = (a0, . . . , aℓ−1) with result sequence b =
(b−ℓ+1, . . . , bk) ∈ Aℓ+k, if bi = aℓ−1+i whenever − (ℓ− 1) 6
i 6 0 and bi = ωi (bu,1, . . . , bu,ri) with (bu,1, . . . , bu,ri) ∈ Dωi

whenever 1 6 i 6 k.
The multiplicative complexity L∗ (Γ) of a s.l.p. Γ is the

number of operations ωi that are multiplications · between
elements of A.

Example 1. Let R = Z, A = Z [X,Y] and Γ be the
s.l.p. with two input parameters indexed −1, 0 and Γ1 =
(·;−1,−1), Γ2 = (·; 1, 0), Γ3 = (1c), Γ4 = (−; 2, 3), Γ5 =
(3× ·; 1).

First, its multiplicative complexity is L∗ (Γ) = 2. Then,
Γ is executable on (X,Y) ∈ A2, and for this input its result
sequence is

(

X,Y,X2, X2Y, 1, X2Y − 1, 3X2
)

.

Remark 2. For the sake of simplicity, we will associate
an arithmetic expression with a s.l.p. It is the same op-
eration as when one writes an arithmetic expression in a

programming language, e.g. C, and a compiler turns it into
a s.l.p. In our case, we fix an arbitrary compiler that starts
by the left-hand side of an arithmetic expression.

For example, the arithmetic expression ϕ : Z 7→
(

Z2
)2

+1
can be represented by the s.l.p. with one input and instruc-
tions Γ1 = (·; 0, 0) ,Γ2 = (·; 1, 1) ,Γ3 = (1c) ,Γ4 = (+; 2, 3).

Lazy framework and data structures on p-adics. We as-
sume that two functions quo and rem are provided in or-
der to deal with carries that appear when computing in
Zp for example. They are the quotient and the remain-
der functions by p; quo(·, p) is a function from R to R and
rem(·, p) is a function from R to M such that for all a in R,
a = quo(a, p)p+ rem(a, p).
Then, we give a short presentation of the lazy framework.

It states that for any operation, the output at a given preci-
sion cannot require to know the input at a precision greater
than necessary. For instance, when computing cn in the
product c = a × b, one cannot make use of an+1 and bn+1.
As a consequence, in the lazy framework, the coefficients of
the output are computed one by one starting from the term
of order 0.

Now let’s recall the basics of the implementation of recur-
sive p-adic numbers found in [1, 13]. We follow these papers
notation and use a C++-style pseudo-code. The main class
Padicp contains the computed coefficients ϕ : M [p] of the
number a up till a given order n in N. In addition, any class
derived from Padicp must contain a method next whose pur-
pose is to compute the next coefficient an.

Example 3. The addition in Zp is implemented in the
class Sum Padicp derived from Padicp and therefore inherits
of the attributes ϕ : M [p] and n. It has additional attributes
a, b in Padicp and carry γ in M set by default to zero. Fi-
nally, the function next adds an, bn and γ, puts the quotient
of the addition in γ and returns the remainder.

The class Padicp is also endowed with an accessor method
[] (n ∈ N) which calls next () until the precision reaches n+1
and then outputs ϕn.

Relaxed multiplication. Having a relaxed multiplication
is very convenient for solving recursive algebraic equation in
good complexity. As we will see, solving a recursive equation
is very similar to checking it. Therefore, the cost of solving
such an equation depends mainly on the cost of evaluating
the equation. If, for example, the equations are sparse, we
are able to take advantage of this sparsity.
Let a, b ∈ Rp be two p-adic numbers. Denote an ∈ M the

coefficients of a in the decomposition a =
∑

n∈N
anp

n. We
detail the computation of the first four terms of c = a× b.

The coefficients cn are computed one by one. The major
difference with the naive algorithm comes from the use of
fast multiplication algorithms on significant parts of forth-
coming terms.
The zeroth coefficient c0 = rem (a0b0, p) is computed nor-

mally, a carry γ = quo (a0b0, p) is then stored. For the first
coefficient, one computes a0b1+a1b0+γ with both products
a0b1 and a1b0. Then, the remainder of the division by p is
assigned to c1 while the quotient is to γ.
Changes arise when computing c2. By hypothesis, the

coefficients a0, a1, a2, b0, b1, b2 ∈ M are known. So one can
compute a0b2 + a2b0 + (a1 + a2p) (b1 + b2p) + γ using two

multiplications of elements of size 1 and one of elements of
size 2: (a1 + a2p) (b1 + b2p). Then, c2 is just the remainder
of the division of this number by p and γ is the quotient.

For the term of order 3, one computes a0b3+a3b0+γ, with
two multiplications of elements of size 1. Instead of the two
products in a1b2+a2b1, we used fast algorithms on the bigger
data a1 + a2p and b1 + b2p to save some multiplications.

Throughout this paper, we measure the cost of an algo-
rithm by the number of arithmetic operations in R/(p) it
performs.

Notation 1. We noteM(n) the number of arithmetic oper-
ations in R/(p) needed to multiply two elements of R/(pn).
In particular, when R = k[X] and p = X, it is classical

that M(n) ∈ O(n log n log log n) [4].
If R = Z, we rather specify the number of bit-operations.

Two integers of bit-size less than m can be multiplied in
I(m) ∈ O(m logm 2log

∗ m) bit-operations [8], where log∗ is
the iterated logarithm.

We note R(n) the number of arithmetic operations in
R/(p) necessary to multiply two elements of Rp at preci-
sion n.

Theorem 4 ([1, 7, 13]). The complexity R(n) for mul-
tiplying two p-adic numbers at precision n is O (M(n) log n).

This statement was discovered for integers in [7]. How-
ever the application to compute recursive power series or
p-adic integers was seen for the first time in [13]. Article [1]
generalizes the algorithm for p-adic numbers.

Remark 5. If R = Fp contains many 2pth root of unity,
then two power series over Fp can be multiplied in precision

n in O
(

M (n) e2
√

log 2 log logn
)

multiplications in Fp, see [14].

The relaxed algorithm will be used for multiplications in
Rp. For divisions in Rp, we use the relaxed algorithm of [1].

Relaxed recursive p-adic numbers. The relaxed model
was motivated by its efficient implementation of recursive p-
adic numbers. We will work with recursive p-adic numbers
in a simple case and do not need the general context of
recursive p-adic numbers [17, Definition 7]. We note νp(a)
the valuation in p of the p-adic number a.

Definition 1. Let Φ ∈ Rp [Y] and y be a fixed point of
Φ, i.e. y = Φ(y), such that y0 = y mod p. Let us denote
Φ0 = Id and, for all n ∈ N∗, Φn = Φ◦· · ·◦Φ (n times). Then,
y is a recursive p-adic number and Φ allows the computation
of y if, for all n ∈ N, we have (y − Φn (y0)) ∈ pn+1Rp.

Proposition 6. Let Φ ∈ Rp [Y] with a fixed point y. If
Φ is such that νp (Φ

′ (y0)) > 0, where y0 = y mod p, then Φ
allows the computation of y.

Proof. At first, we notice that (y − y0) ∈ pRp. Then,
for all p-adic number z, there exists Θ(z) ∈ Rp such that
Φ (Y)− Φ (z) = Φ′ (z) (Y − z) + (Y − z)2 Θ(z). Now for all
n ∈ N, we denote y(n) := Φn (y0) and we apply the previous
statement to z = y(n) to get

y − y(n+1)

y − y(n)

=
Φ(y)− Φ(y(n))

y − y(n)

= Φ′(y(n))+(Y−y(n))Θ(y(n)).

Since Φ′ (y(n)

)

= Φ′ (y0) mod p = 0 mod p, we have that
y−y(n+1)

y−y(n)
∈ pRp, for all n in N.

The definition of a recursive p-adic number is effective:
given y0 ∈ R/ (p) a root of the reduced polynomial P̄ ∈
R/ (p) [Y], we can compute recursively y1, y2, . . . , thanks to
Proposition 6.
Remark that the vector case is included in the definition.

Indeed, if p denotes (p, . . . , p) ∈ Rr, then Rr
p ≃ (Rr)

p
.

Furthermore, the general case with more initial conditions
y0, y1, . . . , yℓ is not considered here but it is believed to be
an interesting extension of these results.
We refer to [1] for a description of the implementation of

a recursive p-adic number y. In a word, the method next

derives the nth term by computing Φ(y)n, which only de-
pends on the preceding terms. But one has to be cautious
with Φ because, even if Φ(y)n does not depend on yn, the
coefficient yn could still be involved in the computation of
this coefficient. Here is an example.

Warning 7. Take Rp = Zp for any prime number p. Let
Φ (Y) = Y 2+p, and y be the only solution of Y = Φ(Y) sat-
isfying y0 = 0. We can check that Φ allows the computation
of y since Φ′ (0) = 0.

At the first step, we find y1 = 1. Then we compute
Φ (y)2 =

(

y2 + p
)

2
=
(

y2
)

2
. In the relaxed product algo-

rithm, we compute y0y2 and q = (y1 + y2p) (y1 + y2p). Then
Φ (y)2 = 2y0y2 + q0 = 0y2 + q0. Here we face two problems.
First, y2 is involved in the computation of Φ (y)2, although

Φ (y)2 does not depend on y2. More importantly, the p-adic
number q involves and depends on y2. Since we do not know
y2 yet, we must proceed otherwise.

Shifted algorithms. Because of the issue raised in Warn-
ing 7, we need to force the shift inside Φ. In other terms,
we must explicit the fact that yn is not required in the com-
putation of (Φ (y))

n
. For this matter, we introduce for all i

in N∗ two new shift operators:

pi × · : Rp → Rp ·/pi : piRp → Rp

a 7→ pia, a 7→ a/pi.

Let Ω′ be the set of operations
{

+,−, ·, pi × ·, ·/pi
}

∪ R ∪
S ∪Rc.

Definition 2. Let Γ = (Γ1, . . . ,Γk) be a s.l.p. over the
R-algebra Rp with ℓ input parameters and operations in Ω′.
For any i, j such that − (ℓ− 1) 6 i 6 k and − (ℓ− 1) 6 j 6

0, the shift sh (Γ, i, j) of the ith operation of Γ with respect
to its jth argument is an element of Z ∪ {+∞}. For i 6 0,
we define sh (Γ, i, j) by 0 if i = j and +∞ otherwise. Now,
for i > 0:

• if Γi = (ωi;u, v) with ωi ∈ {+,−, ·}, then we set
sh (Γ, i, j) := min (sh (Γ, u, j) , sh (Γ, v, j));

• if Γi = (rc;), then sh (Γ, i, j) := +∞;

• if Γi = (ps × ·;u), then sh (Γ, i, j) := sh (Γ, u, j) + s;

• if Γi = (·/ps;u), then sh (Γ, i, j) := sh (Γ, u, j)− s;

• if Γi = (ω;u) with ω ∈ R∪S, then we set sh (Γ, i, j) :=
sh (Γ, u, j).

We abbreviate sh (Γ) := sh (Γ, k, 0) if Γ has one argument.

This definition simply formalizes which terms of the jth
argument is involved in the result of the ith element of the
result sequence from a syntactic point of view.

Proposition 8. With the notation of Definition 2, let
y = (y1, . . . , yr) ∈ (Rp)

r be such that Γ is executable on
input y and b ∈ Rp be the ith element of the result sequence.
Then, for all n ∈ N, the computation of bn involves at most
the terms (yj)l of the jth argument yj for 0 6 l 6 n −
sh (Γ, i, j − r).

Example 9. We carry on with Warning 7. For the nat-
ural s.l.p. Γ with one argument associated to the arithmetic
expression Φ : Z 7→ Z2 + p, we have sh (Γ) = 0. This for-
malizes the previous remark that the computation of Φ (y)

n

involves yl for 0 6 l 6 n.
Now take the s.l.p.

Ψ : Z 7→ p2 ×

(

Z

p

)2

+ p

(see Remark 2). Then sh (Ψ) = 1, since sh
(

p2 × (Z/p)2
)

=

sh
(

(Z/p)2
)

+ 2 = sh (Z/p) + 2 = sh (Z) + 1. Moreover, Ψ
is executable on the solution y of Y = Φ(Y) since y ∈ pRp.
So this s.l.p. Ψ solves the problem raised in Warning 7.
Nevertheless, we explicit the first steps of the new algo-

rithm to convince even the most skeptical reader. So Ψ(y)2
executes

(

(y/p)2
)

0
= y2

1. Then Ψ(y)3 does 2y1y2. Finally
Ψ(y)4 computes y1y3 and q = (y2 + y3p) (y2 + y3p) so that
Ψ(y)4 = 2y1y3 + q0. We can check that there is no depen-
dency issue here and that we have a shift of 1 = sh (Ψ) in
the indices of y.

Thanks to this, we are now able to explicit which s.l.p. Ψ
are suited to the implementation of recursive p-adic num-
bers. Recall that S is the set of regular elements in R, we
denote K := S−1R the total ring of fractions of R.

Definition 3. Let y be a recursive p-adic and Φ ∈ K [Y]
with denominators not in pR that allows the computation
of y. Let Ψ be a s.l.p. with one input and operations in Ω′.

Then, Ψ is said to be a shifted algorithm for Φ and y0 if
sh (Ψ) ≥ 1, Ψ is executable on y over the R-algebra Rp and
Ψ computes Φ (Y) on input Y over the R-algebra K [Y].

Remark 10. There is no uniqueness of a shifted opera-
tor. For example, if Φ (Y) = Y 3 + p ∈ Z [Y] and y0 = 0,

then Ψ : Z → p2 ×
(

Z
p

)2

Z+ p and Ψ1 : Z → p3 ×
(

Z
p

)3

+ p

are two distinct shifted algorithms for Φ and y0 = 0. Indeed
sh (Ψ) = 1, sh (Ψ1) = 2 and they are executable on y.

We have dealt with the algorithmic issues of relaxed re-
cursive p-adic numbers. Now, we can assess the complexity.

Proposition 11. Let Ψ be a shifted algorithm for the re-
cursive p-adic y whose multiplicative complexity is L∗. Then,
the relaxed p-adic y can be computed at precision n in time
L∗R (n) +O(n).

Proof. The cost of the computation of y is the cost of
the evaluation of Ψ (y) in Rp. We recall that addition in
Rp × Rp, subtraction in Rp × Rp, multiplication in R × Rp

(that is operations in R) and division in Rp × S (that is
operations in S) up to the precision n can be computed
in time O (n). Scalars from R are decomposed in Rp in
constant complexity. Finally, multiplications in Rp × Rp

are done in time R (n) (see [1]). Now the multiplicative
complexity L∗ of Ψ counts exactly the latter operation.

3. UNIVARIATE ROOT LIFTING
In [1, Section 7], it is shown how to compute the dth root

of a p-adic number a in a recursive relaxed way, d being
relatively prime to p. In this section, we extend this result
to the relaxed lifting of a simple root of any polynomial
P ∈ R [Y]. Hensel’s lemma ensures that from any modular
simple root y0 ∈ R/ (p) of P̄ ∈ R/ (p) [Y], there exists a
unique lifted root y ∈ Rp of P such that y = y0 mod p.
From now on, P is a polynomial with coefficients in R

and y ∈ Rp is the unique root of P lifted from the modular
simple root y0 ∈ R/ (p).

Proposition 12. The polynomial

Φ (Y) :=
P ′ (y0)Y − P (Y)

P ′ (y0)
∈ K [Y]

allows the computation of y.

Proof. It is clear that if P (y) = 0 and P ′ (y0) 6= 0, then

y = P ′(y0)y−P (y)
P ′(y0)

= Φ(y). Furthermore, Φ′ (y0) = 0.

In the following subsections, we will derive some shifted
algorithms associated to the recursive equation Φ depending
on the representation of P .

3.1 Dense polynomials
We assume in this subsection that the polynomial P of

degree d is given as the vector of its coefficients in the mono-
mial basis

(

1, Y, . . . , Y d
)

. To have a shifted algorithm, we
need to express Φ (Y) with a positive shift. Remark, from
Definition 2, that the shift of Φ (Y) is 0.

Lemma 13. The s.l.p. Γ : Z 7→ p2 ×

(

(

Z−y0
p

)2

· Zk

)

for

k ∈ N− {0} is executable on y and sh (Γ) = 1.

Proof. Since y0 = y mod p, Γ(y) ∈ Rp and Γ is exe-
cutable on y. Furthermore, the shift sh (Γ) equals

2 + min
(

sh
(

Z−y0
p

)

, sh (Z)
)

= 1.

We are now able to derive a shifted algorithm for Φ.

Algorithm 1 - Dense polynomial root lifting

Input: P ∈ R [Y] with a simple root y0 in R/ (p).
Output: A shifted algorithm Ψ associated to Φ and y0.

1. Compute Q (Y) the quotient of P (Y) by (Y − y0)
2

2. Let sq (Z) : Z 7→
(

Z−y0
p

)2

3. return the shifted algorithm Ψ :

Z →
−1

P ′ (y0)

(

P (y0)− P ′ (y0) y0 + p2 × (Q (Z) · sq (Z))
)

.

Proposition 14. Given a polynomial P of degree d in
dense representation and a modular simple root y0, Algo-
rithm 1 defines a shifted algorithm Ψ associated to Φ. The
precomputation of such an operator involves O (M (d)) op-
erations in R, while we can lift y at precision n in time
(d− 1)R (n) +O(n).

Proof. First, Ψ is a shifted algorithm for Φ. Indeed
since sh (P (y0)− P ′ (y0) y0) = +∞ and, due to Lemma 13,
sh
(

p2 × (sq(Z) ·Q (Z))
)

= 1, we have sh (Ψ) = 1.

Also, thanks to Lemma 13, we can execute Ψ on y over the
R-algebra Rp. Moreover, it is easy to see that Φ (Y) = Ψ (Y)
over the R-algebra K [Y].

The quotient polynomial Q is precomputed in O (M (d))
arithmetic operations inR. Using Horner scheme to evaluate
Q (Z), we have L∗ (Ψ) = d − 1 and we can apply Proposi-
tion 11.

3.2 Polynomials as straight-line programs
In [1, Proposition 7.1], the case of the polynomial P (Y) =

Y d−a was studied. Although the general concept of shifted
algorithm was not introduced, an algorithm of multiplica-
tive complexity O (L∗ (P)) was given. The shifts were only
present in the implementation in Mathemagix [16]. We
clarify and generalize this approach to any polynomial P
given as a s.l.p. and propose a shifted algorithm Ψ whose
complexity is linear in L∗ (P).

In this subsection, we fix a polynomial P given as a s.l.p.
with operations in Ω := {+,−, ·}∪R∪Rc and multiplicative
complexity L∗ := L∗ (P), and a modular simple root y0 ∈
R/ (p) of P . Then, we define the polynomials TP (Y) :=
P (y0) + P ′ (y0) (Y − y0) and EP (Y) := P (Y)− TP (Y).

Definition 4. We define recursively a vector τ ∈ R2 and a
s.l.p. ε with operations in Ω′ :=

{

+,−, ·, pi × ·, ·/pi
}

∪ R ∪

S ∪Rc. Initially, ε0 := 0 and τ0 := (y0, 1). Then, we define
εi and τ i recursively on i with 1 6 i 6 k by:

• if Γi = (ac;), then εi := 0, τ i := (a, 0);

• if Γi = (a× ·;u), then εi := a× εu, τ i := aτu;

• if Γi = (±;u, v), then εi := εu ± εv, τ i := τu ± τv;

• if Γi = (·;u, v) and we denote τu = (a, c) , τv = (b, d),
then τ i = (ab, ad+ cb) and εi equals

εu · εv + p× (((c× εv + d× εu) /p) · (Z − y0))+

(a× εv + b× εu) + p2 ×
(

(cd)× ((Z − y0) /p)
2) . (1)

Recall that multiplications denoted by · are the ones between
p-adics. Finally, we set εP := εk and τP := τk where k is
the number of instructions in the s.l.p. P .

Lemma 15. The s.l.p. εP is a shifted algorithm for EP

and y0. Its multiplicative complexity is bounded by 2L∗ + 1.
Also, τP is the vector of coefficients of the polynomial TP in
the basis (1, (Y − y0)).

Proof. Let us call Pi the ith result of the s.l.p. P on the
input Y over R [Y], with 0 6 i 6 k. We note Ei := EPi

and
T i := TPi

for all 0 6 i 6 k. Let us prove recursively that
εi is a shifted algorithm for Ei and y0, and that τ i is the
vector of coefficients of T i in the basis (1, (Y − y0)).
For the initial step i = 0, we have P0 = Y and we verify

that E0 (Y) = ε0 (Y) = 0 and T 0 (Y) = y0 + (Y − y0). The
s.l.p. ε0 is executable on y over Rp and its shift is +∞.

Now we prove the result recursively for i > 0. We detail
the case when Γi = (·;u, v), the others cases being straight-
forward. Equation (1) corresponds to the last equation of

Pi = PuPv

⇔ Ei = (Eu + Tu) (Ev + T v)− T i

⇔ Ei = EuEv + [EuT v + TuEv] +
(

TuT v − T i
)

⇔ Ei = EuEv + [(P ′
v (y0)E

u + P ′
u (y0)E

v) (Y − y0)
+ (Pv (y0)E

u + Pu (y0)E
v)]

+P ′
u (y0)P

′
v (y0) (Y − y0)

2 .

Also τ i = (Pu (y0)Pv (y0) , P
′
u (y0)Pv (y0) + Pu (y0)P

′
v (y0)).

The s.l.p. εi is executable on y over Rp because, for all j < i,
sh (εj) > 0 implies that (cεv (y) + dεu (y)) /p ∈ Rp. Con-
cerning the shifts, since sh (εu) , sh (εv) > 0, we can check
that every operand in equation (1) has a positive shift. So
sh
(

εi
)

> 0. Then, take i = r to conclude the proof.
Concerning multiplicative complexity, we slightly change

ε0 such that it computes once and for all ((Y − y0) /p)
2 be-

fore returning zero. Then, for all multiplication instruc-
tions · in the s.l.p. P , the s.l.p. εP adds two multiplica-
tions · between p-adics (see equation (1)). So L∗ (εP) =
2L∗ + 1.

Proposition 16. Let P be a univariate polynomial over
Rp given as a s.l.p. such that its multiplicative complexity
is L∗. Then, the following algorithm

Ψ : Z 7→
−P (y0) + P ′ (y0) y0 − εP (Z)

P ′ (y0)

is a shifted algorithm associated to Φ and y0 whose multi-
plicative complexity is 2L∗ + 1.

Proof. We have Φ (Y) = Ψ (Y) over the algebra K [Y]
because Φ (Y) = (−P (y0) + P ′ (y0) y0 + EP (Y)) /P ′ (y0).
Because of Lemma 15 and νp (P

′ (y0)) = 0, the s.l.p. Ψ is
executable on y over Rp and its shift is positive. We conclude
with L∗ (Ψ) = L∗ (εP) = 2L∗ + 1 as the division by P ′ (y0)
is an operation in the set S.

Remark 17. By adding the square operation ·2 to the set
of operations Ω of P , we can gain a few multiplications. In
Definition 4, if Γi =

(

·2;u
)

and τu = (a, c), then define εi by

εu·(εu + 2× (a+ c× (Z − y0)))+p2×
(

c2 × ((Z − y0) /p)
2).

Thereby, we reduce the multiplicative complexity of εP and
Ψ by the number of square operations in P .

Theorem 18. Let P ∈ R[Y] and y0 ∈ R/ (p) be such that
P (y0) = 0 mod p and P ′ (y0) 6= 0 mod p. Denote y ∈ Rp

the unique solution of P lifted from y0. Assume that P is
given as a s.l.p. with operations in Ω := {+,−, ·} ∪ R ∪ Rc

whose multiplicative complexity is L∗. Then, we can lift y
up to precision n in time (2L∗ + 1)R (n) +O(n).

Proof. By Propositions 12 and 16, y can be computed
as a recursive p-adic number with the shifted algorithm Ψ.
Proposition 11 gives the announced complexity.

Remark 19. We can improve the bound on the multi-
plicative complexity when the polynomial has a significant
part with positive valuation. Indeed suppose that the polyno-
mial P is given as P (Y) = α (Y)+pβ (Y) with α and β two
s.l.p.. Then the part pβ (Y) is already shifted. In this case,
set ε̃P := εα+pβ so that the following is a shifted algorithm:

Ψ : Z 7→
−α (y0) + α′ (y0) y0 − ε̃P (Z)

α′ (y0)
.

Its multiplicative complexity is L∗ (α) + 2L∗ (β) + 1.

4. LINEAR ALGEBRA OVER P-ADICS
As an extension of the results of the previous section, we

will lift a simple root of a system of r algebraic equations
with r unknowns in Section 5. For this matter, one needs
to solve a linear system based on the Jacobian matrix in a
relaxed way, as we describe in this section.

For any matrix A ∈ Mr×s (Rp), we will denote by aij the
coefficient of A lying on the ith row and the jth column.
Furthermore, A can be seen as a p-adic matrix, i.e. a p-adic
number whose coefficients are matrices over M . In this case,
the matrix of order n will be denoted by An ∈ Mr×s (M),
so that A =

∑∞
n=0 Anp

n.

4.1 Inversion of a “scalar” matrix
We can generalize the remark of [1, Section 6.1]: because

of the propagation of the carries, the computation of the
inverse of a regular r×r matrix with coefficients in M is not
immediate in the p-adic case.

Let us recall the scalar case. We define mul rem and
mul quo such that βa = mul rem (β, a) + pmul quo (β, a) for
all β ∈ M and a ∈ Rp. The nth term of mul rem (β, a) is
rem (βan, p) ∈ M , while, for mul quo (β, a), the correspond-
ing one is quo (βan−1, p) ∈ M .

We shall introduce two operators Mul rem and Mul quo

which are the matricial counterparts of both mul rem and
mul quo. Let B ∈ Mr (M) and A ∈ Mr×s (Rp) seen as
a p-adic matrix, then the nth term of Mul rem (B, A) is
rem (BAn, p) ∈ Mr×s (M), while the one of Mul quo (B, A)
corresponds to quo (BAn−1, p) ∈ Mr×s (Rp), so that we
have BA = Mul rem (B, A) + pMul quo (B, A).

Let us denote MM (r, s) the number of operations in the
ground ring to multiply a square matrix of size r and a
matrix of size r × s. Recall that if r ≥ s, then MM (r, s) ∈
O
(

r2sω−2
)

and otherwise MM (r, s) ∈ O
(

rω−1s
)

, where ω
is the exponent of matrix multiplication over any ring.

Lemma 20. Let B and A be two p-adic matrices such that
B ∈ Mr (M) and A ∈ Mr×s (Rp). Then, the computations
of Mul rem (B, A), Mul quo (B, A), and therefore of BA, can
be done to precision n in time O (MM(r, s)n).

Proof. To computeMul rem (B, A), we multiply B andA
as if B were overR/ (p) andA over (R/ (p)) [[x]]. To compute
Mul quo (B, A), for each k < n, we multiply B with Ak−1 and
only keep the quotient by p of this product. Therefore, the
total cost is in O (MM (r, s)n).

Proposition 21. Let A be a relaxed matrix of size r × s
over Rp and let B ∈ Mr (M). If B is invertible modulo p
and Γ:=B−1 mod p, then the product C = B−1A satisfies

C = Mul rem (Γ, A− pMul quo (B, C)) (2)

with C0 = ΓA0 mod p. Furthermore, C can be computed up
until precision n in time O (MM (r, s)n).

Proof. First, A = Mul rem (B, C) + pMul quo (B, C) so
we can deduce that Mul rem (B, C) = A − pMul quo (B, C).
It remains to multiply both sides by Γ using Mul rem to
prove equation (2).

From the definition of Mul quo, we can see that the nth
term of the right-hand side of equation (2) involves only
Cn−1. So C is recursively computed with a cost evaluated
in Lemma 20.

4.2 Inversion of a matrix over p-adics
We can now apply the division of matrices over p-adic

integers, as in [13].

Proposition 22. Let A ∈ Mr×s (Rp) and B ∈ Mr (Rp)
be two relaxed matrices such that B0 is invertible of inverse

Γ = B−1
0 mod p. Then, the product C = B−1A satisfies

C = B−1
0

(

A− p×

(

(B −B0)

p
· C

))

, (3)

with C0 = ΓA0 mod p. Thus, C can be computed up to
precision n in time MM (r, s)R (n) +O(n).

Proof. The right-hand side of equation (3) is a shifted
algorithm associated to C 7→ A−BC and Γ. The only p-adic
matrix product · involves MM(r, s) p-adic multiplications
and therefore a cost of MM (r, s)R (n). Proposition 21 for
the product by B−1

0 shows that its cost is not dominant.

Remark 23. Note that if B ∈ Mr (R), then the matrix
product ((B −B0)/p)C can be computed up to precision n
in time O (MM (r, s)n). Therefore, so can C. This is anal-
ogous to the inversion of matrices with polynomial entries
which can be done in time linear in the precision [20].

5. MULTIVARIATE ROOT LIFTING
In this section, we lift a p-adic root y ∈ Rr

p of a polynomial
system P = (P1, . . . , Pr) ∈ R [Y]r = R [Y1, . . . , Yr]

r in a
relaxed recursive way. We make the assumption that y0 =
(y1,0, . . . , yr,0) ∈ (R/ (p))r is a regular modular root of P,
i.e. its Jacobian matrix dPy0 is invertible in Mr (R/ (p)).
Newton-Hensel operator ensures both the existence and the
uniqueness of y ∈ Rr

p such thatP (y) = 0 and y0 = y mod p.
From now on, P is a polynomial system with coefficients in
R and y ∈ Rr

p is the unique root of P lifted from the modular
regular root y0 ∈ (R/ (p))r.

Proposition 24. The polynomial system

Φ (Y) := dP−1
y0

(dPy0 (Y)−P (Y)) ∈ K [Y]r

allows the computation of y.

Proof. We adapt the proof of Proposition 12. Since
dΦy0 = 0, Φ allows the computation of y.

As in the univariate case, we have to introduce a posi-
tive shift in Φ. In the following, we present how to do so
depending on the representation of P.

5.1 Dense algebraic systems
Let P be given in dense representation. We assume that

each Pi has total degree at most d ≥ 2, so that its dense size
is bounded by (d+ 1)r. As in the univariate case, the shift of
Φ (Y) is 0. We adapt Lemma 13 and Proposition 14 to the
multivariate polynomial case as follows. For 1 6 j 6 k 6 r,
let Q(j,k) be polynomial systems such that P (Y) equals

P (y0)+dPy0 (Y)+
∑

16j6k6r

Q
(j,k) (Y) (Yj − yj,0) (Yk − yk,0) .

Algorithm 2 - Dense polynomial system root lifting

Input: P ∈ R [Y]r with a regular root y0 in (R/ (p))r.
Output: A shifted algorithm Ψ associated to Φ and y0.

1. For 1 6 j 6 k 6 r, compute a Q(j,k) (Y) from P (Y)

2. For 1 6 j 6 k 6 r, let prj,k (Z) :=
(

Zj−yj,0

p

)(

Zk−yk,0

p

)

3. Let Ψ1 : Z 7→
∑

16j6k6r
Q(j,k) (Z) · prj,k (Z)

4. return the shifted algorithm

Ψ : Z 7→ −dP−1
y0

(

P (y0)− dPy0 (y0) + p2 ×Ψ1

)

.

Theorem 25. Given P = (P1, . . . , Pr) a polynomial sys-
tem in R [Y] in dense representation, such that each Pi has
total degree at most d, and an approximate zero y0, Algo-
rithm 2 outputs a shifted algorithm Ψ associated to Φ and
y0. The precomputation in Ψ costs Õ (rdr), while the eval-
uation of y to precision n costs rdrR (n) +O(n).

Proof. First, for j 6 r, we perform the Euclidean divi-
sion of P by (Yj − yj,0)

2 to reduce the degree in each vari-
able. We use Kronecker substitution [2, Chapter 1, Sec-
tion 8] to obtain a quasi-linear complexity. By Kronecker
substitution on the variables Y2, . . . , Yr, P can be written as
a bivariate polynomial system P̃(Y1, U1) of degree dr−1 in

U1. Then, one obtains Q̃
(1,1) (Y1, U1) by doing the Euclidean

division of each P̃i (Y1, U1) by (Y1 − y1,0)
2 and then retrieve

Q(1,1) (Y) as a r-variate polynomial system. The Euclidean

division costs Õ (dr) arithmetic operations for each Pi, for

a total cost of Õ (rdr). Next, the process is repeated on
the remainders of the division. We write them as bivariate
polynomials in Y2 and U2 with degree 2dr−2 in U2 and di-
vide them by (Y2 − y2,0)

2 and so on. The total cost of this

process is Õ (rdr) arithmetic operations.
Then, for each Pi, it remains a polynomial with partial

degree at most 1 in each variable. Necessary divisions by
(Yj − yj,0) (Yk − yk,0) are given by the presence of a multiple
of YjYk, which gives rise to a cost of O (2r).

Next, we have to evaluate Ψ1 at y. Since the total num-
bers of monomials of the Q(j,k) (Y) for 1 6 j 6 k 6 r is
bounded by rdr, Proposition 11 gives the desired cost esti-
mate for the evaluation of y at precision n. Finally, we have
to multiply this by the inverse of the Jacobian of P at y0,
which is a matrix with coefficients in R. By Proposition 21
and Remark 23, and since we only lift a single root, it can
be done at precision n in time O(r2n).

5.2 Algebraic systems as s.l.p.
We keep basically the same notations as in Section 3.2.

Given an algebraic system P, we define TP (Y) := P (y0)+
dPy0 (Y − y0) and EP (Y) := P (Y) − TP (Y). We adapt
Definition 4 so that we may define τ and ε for multivariate
polynomials.

Definition 5. We define recursively vectors τj ∈ Rr+1 and
s.l.p.s εj for 1 6 j 6 r with operations in Ω′, where Ω′ :=
{

+,−, ·, pi × ·, ·/pi
}

∪R ∪ S ∪Rc.

First, we initialize for all 1 6 i 6 r, ε−r+i
j := 0, τ−r+i

j :=
(yi,0, 0, . . . , 0, 1, 0, . . . , 0) with 1 at index i + 1. Then for
1 6 i 6 kj where kj is the number of instructions in the
s.l.p. Pj , we define εij and τ i

j recursively on i by almost the
same formulas as in Definition 4. Let us detail the changes
when Γi = (·, u, v):

Let τu
j = (a0, a1, . . . , ar) and τv

j = (b0, b1, . . . , br), then

τ i
j = (a0b0, a0b1 + a1b0, . . . , a0br + arb0) , and εij := εuj ε

v
j +

p× ε1 + p2 × ε2 with ε1 given by
(

r
∑

ℓ=1

aℓ × (Zℓ − y0,ℓ)

)

·
εvj
p

+

(

r
∑

ℓ=1

bℓ × (Zℓ − y0,ℓ)

)

·
εuj
p
,

ε2 =
∑

16ℓ1,ℓ26r
aℓ1bℓ2×((Zℓ1 − y0,ℓ1) /p)·((Zℓ2 − y0,ℓ2) /p).

As before, we set εPj
:= ε

kj

j and τPj
:= τ

kj

j .

Lemma 26. The s.l.p. εP := (εP1 , . . . , εPr) is a shifted

algorithm for EP and y0. Its complexity is 3L∗ + r(r+1)
2

.

Moreover, assuming TP = (TP1 , . . . , TPr). Then, τPj
is

the vector of coefficients of the polynomial TPj
in the basis

(1, (Y1 − y1,0) , . . . , (Yr − yr,0)).

Proof. From Lemma 15, it is clear that εP is a shifted
algorithm for EP and y0. It is also clear that τPi

is the co-
efficients of TPi

in the basis (1, (Y1 − y1,0) , . . . , (Yr − yr,0)).
Concerning the multiplicative complexity, we perform the

same change as in Lemma 15 by computing ((Yi − yi,0) /p) ·
((Yj − yj,0) /p) once and for all in ε0P. Therefore we have to

perform r(r+1)
2

product of p-adics.
Moreover, for all instruction · in the s.l.p. Pj , εPj

adds
three multiplications between p-adics (see operations · in

formulas above). So L∗ (εP) = 3L∗ + r(r+1)
2

.

Proposition 27. Let P be a polynomial system of r poly-
nomials in r variables over Rp, given as a s.l.p. such that
its multiplicative complexity is L∗. Then, the algorithm

Ψ : Z 7→ dP−1
y0

((−P (y0) + dPy0 (y0))− εP (Z))

is a shifted algorithm associated to Φ and y0 whose evalua-

tion complexity is 3L∗ + r(r+1)
2

.

Proof. We just need to prove the bound for the mul-
tiplicative complexity as the remaining part is straightfor-
wardly analogous to Proposition 16.
As in the proof of Theorem 25, the evaluation of dP−1

y0
(·)

consists of a product of the inverse of a matrix over R
and of a vector over Rp, and does not contribute to the
multiplicative complexity. Therefore, L∗ (Ψ) = L∗ (εP) =

3L∗ + r(r+1)
2

.

Theorem 28. Let P be a system of r polynomials in r
variables over R and y0 ∈ (R/ (p))r be such that P (y0) =
0 mod p and det(dP (y0)) 6= 0 mod p. Denote y ∈ Rr

p the
unique solution of P lifted from y0. Assume that P is given
as a s.l.p. with multiplicative complexity L∗. Then, one can

compute y to precision n in time
(

3L∗ + r(r+1)
2

)

R (n) +

O(n).

Proof. By Propositions 24 and 27, y can be computed as
a p-adic vector with the shifted algorithm Ψ. Proposition 11
gives the announced complexity.

6. IMPLEMENTATION AND TIMINGS
In this section, we display computation times in millisec-

onds for the univariate polynomial root lifting and for the
computation of the product of the inverse of a matrix with
a vector or with another square matrix. Timings are mea-
sured using one core of an Intel Xeon X5650 at 2.67 GHz
running Linux, Gmp 5.0.2 [11] and setting p = 536871001 a
29 bit prime number. In the following tables, the first line,
“Newton” corresponds to the classical Newton iteration [9,
Algorithm 9.2] used in the zealous model. The second line
“Mmx”corresponds to our best variant. The last line gives a
few details about which variant is used. We make use of the
naive variant “N” and the relaxed variant “R”. Furthermore,
when the precision is high, we make use of blocks of size 32
or 1024. That means, that at first, we compute the solution
f up to precision 32 as F0 = f0+· · ·+f31p

31 with“N”. Then,
we say that our solution can be seen as a p32-adic integer
F = F0 + · · · + Fnp

32n + · · · and the algorithm runs with
F0 as the initial condition. Then, each Fn is decomposed in

base p to retrieve f32n, . . . , f32n+31. Although it is compet-
itive, the initialization of F can be quite expensive. “BN”
means that F is computed with “N”, while “BR”means it is
with “R”. Finally, if the precision is high enough, one may
want to compute F with blocks of size 32, and therefore f
with blocks of size 1024. “B2N” (resp. “B2R”) means that f
and F are computed up to precision 32 with “N” and then,
the p1024-adic solution is computed with “N” (resp. “R”).

Polynomial root. These first two tables correspond to the
lifting of a regular root from Fp to Zp at precision n as in
Section 3.

Dense polynomial of size 8

n 16 64 28 210 212 214 216

Newton 0.023 0.078 0.52 4.1 29 170 870
Mmx 0.052 0.29 0.60 2.9 27 120 1300

Variant N N BN BN B2N B2N B2N

Dense polynomial of size 128

n 4 16 64 28 210 212 214

Newton 0.21 0.90 7.9 86 720 5400 30000
Mmx 0.086 0.71 4.4 46 140 600 4200
Variant N N N N BN BR BR

Linear algebra. The next two tables correspond to timings
of computing B−1A at precision n, with A,B ∈ Mr×r(Zp).

Square matrices of size r = 8

n 4 16 64 28 210 212 214 216

Newton 0.097 0.22 0.89 6.8 59 490 3400 20000
Mmx 0.15 0.61 3.1 8.1 38 335 1600 14000

Variant N N N BN BN BN B2N B2N

Square matrices of size r = 128

n 4 16 64 28 210

Newton 930 2600 14000 140000 1300000
Mmx 3600 18000 53000 150000 1000000
Variant N N N BN BN

As above, we solve integer linear systems, however, now
we retrieve the solutions over Q, using the rational number
reconstruction [9, Section 5.10]. We set q as p to the power
2j and pick at random a square matrix B of size r with co-
efficients in M = {0, . . . , q − 1}. We solve BC = A with a
random vector A. Because we deal with q-adic numbers at
low precision, we only use the naive variant in our timings.
We wanted to compare to Linbox [19] and IML [5]. How-
ever, we do not display the timings of IML within Linbox
because they are about 10 times slower. It goes against the
impression of [10, page 148] that IML is better for large
integers.

Integer linear system of size r = 4
j 0 2 4 6 8 10 12
Linbox 1.0 1.4 3.6 25 310 4700 77000
Mmx 0.10 0.24 0.58 0.96 5.3 39 290

Integer linear system of size r = 32
j 0 2 4 6 8 10
Linbox 5.9 25 170 1900 27000 48000
Mmx 24 150 360 2000 14000 90000

In fact, when j is small, there is a major overhead coming
from the use of Gmp. Indeed, in our case, it is best to
transform q-adic numbers into p-adic numbers, to compute
up to the necessary precision and then retrieve the solutions
as q-adic numbers before calling the rational reconstruction.

Acknowledgments

We would like to thank J. van der Hoeven, M. Giusti,
G. Lecerf, M. Mezzarobba and É. Schost for their help-
ful comments and remarks. For their help with Linbox, we
thank J.-G. Dumas and B. Boyer.
This work has been partly supported by the Digiteo

2009-36HD grant of the Région Île-de-France, and by the
French ANR-09-JCJC-0098-01 MaGiX project.

7. REFERENCES
[1] J. Berthomieu, J. v. d. Hoeven, and G. Lecerf. Relaxed

algorithms for p-adic numbers. J. Théor. Nombres Bordeaux,
23(3):541–577, 2011.

[2] D. Bini and V. Y. Pan. Polynomial and matrix computations.
Vol. 1. Birkhäuser Boston Inc., Boston, MA, 1994.

[3] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic
complexity theory, volume 315. Springer-Verlag, Berlin, 1997.

[4] D. G. Cantor and E. Kaltofen. On fast multiplication of
polynomials over arbitrary algebras. Acta Inform.,
28(7):693–701, 1991.

[5] Z. Chen and A. Storjohann. IML, the Integer Matrix Library,
2004. Version 1.0.3. Available from
http://www.cs.uwaterloo.ca/~astorjoh/iml.html.

[6] J. D. Dixon. Exact solution of linear equations using p-adic
expansions. Numer. Math., 40(1):137–141, 1982.

[7] M. J. Fischer and L. J. Stockmeyer. Fast on-line integer
multiplication. J. Comput. System Sci., 9:317–331, 1974.

[8] M. Fürer. Faster Integer Multiplication. In Proceedings of
STOC 2007, pages 57–66, San Diego, California, 2007.

[9] J. v. z. Gathen and J. Gerhard. Modern computer algebra.
Cambridge University Press, Cambridge, second edition, 2003.

[10] P. Giorgi. Arithmétique et algorithmique en algèbre linéaire
exacte pour la bibliothèque LinBox. PhD thesis, ENS Lyon,
France, 2004. Available from
http://tel.archives-ouvertes.fr/tel-00008951.

[11] T. Granlund et al. GMP, the GNU multiple precision
arithmetic library, 1991. Version 5.0.2. Available from
http://www.swox.com/gmp.

[12] J. v. d. Hoeven. Lazy multiplication of formal power series. In
W. W. Küchlin, editor, Proceedings of ISSAC ’97, pages
17–20, Maui, Hawaii, 1997.

[13] J. v. d. Hoeven. Relax, but don’t be too lazy. J. Symb.
Comput., 34(6):479–542, 2002.

[14] J. v. d. Hoeven. New algorithms for relaxed multiplication. J.
Symbolic Comput., 42(8):792–802, 2007.

[15] J. v. d. Hoeven. Relaxed resolution of implicit equations.
Technical report, HAL, 2009.
http://hal.archives-ouvertes.fr/hal-00441977/fr/.

[16] J. v. d. Hoeven et al. Mathemagix, 2002. SVN Version 6374.
Available from http://www.mathemagix.org.

[17] G. Kapoulas. Polynomially time computable functions over
p-adic fields. In Computability and complexity in analysis,
volume 2064, pages 101–118. Springer, Berlin, 2001.

[18] J. Karczmarczuk. Generating power of lazy semantics. Theoret.
Comput. Sci., 187(1-2):203–219, 1997.

[19] The LinBox Group. LinBox – Exact Linear Algebra over the
Integers and Finite Rings, 2008. SVN Version 4136. Available
from http://linalg.org.

[20] R. T. Moenck and J. H. Carter. Approximate algorithms to
derive exact solutions to systems of linear equations. In
EUROSAM ’79, Internat. Sympos., Marseille, volume 72,
pages 65–73. Springer, Berlin, 1979.

[21] I. Newton. La méthode des fluxions, et les suites infinies. de
Bure âıné, 1740. French traduction by G. Buffon of the 1671
paper. Available at http://gallica.bnf.fr.

[22] M. Schröder. Fast online multiplication of real numbers. In
STACS 97 (Lübeck), volume 1200 of Lecture Notes in
Comput. Sci., pages 81–92. Springer, Berlin, 1997.

[23] A. Storjohann. High-order lifting and integrality certification. J.
Symbolic Comput., 36(3-4):613–648, 2003. ISSAC’2002, Lille.

[24] J. van der Hoeven. From implicit to recursive equations.
Technical report, HAL, 2011.
http://hal.archives-ouvertes.fr/hal-00583125/fr/.

[25] M. van Hoeij. Factorization of differential operators with
rational functions coefficients. J. Symb. Comput.,
24(5):537–561, 1997.

	Introduction
	Preliminaries
	Univariate root lifting
	Dense polynomials
	Polynomials as straight-line programs

	Linear algebra over p-adics
	Inversion of a ``scalar'' matrix
	Inversion of a matrix over p-adics

	Multivariate root lifting
	Dense algebraic systems
	Algebraic systems as s.l.p.

	Implementation and Timings
	References

