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Oscillator Frequency Stability Improvement 
by Means of Negative Feedback

Maxim Goryachev, Serge Galliou, Philippe Abbé, and Vadim Komine

Abstract—A novel, simple method is proposed to increase 

the frequency stability of an oscillator. An additional nega-

tive feedback is used in combination with the positive loop 

of the harmonic oscillator to decrease the phase sensitivity 

to fluctuations of parameters other than the resonator. The 

main advantage of the proposed correction approach is that it 

does not require expensive external elements such as mixers or 

resonators. The validity of the method is theoretically demon-

strated on a Colpitts oscillator using the control system theory 

approach and numerical simulations, and is experimentally 

verified with phase noise measurements of an actual oscillator-

mockup. It is shown that the medium-term frequency stability 

can be easily improved by a factor of ten.

I. I

I the oscillator frequency stability [1]–[3] is
an important issue for many modern systems dealing 

with communication, navigation, radar applications, etc. 
Traditionally, frequency stability is achieved by minimiz-
ing the environmental influence, maximizing the loaded 
quality-factor Q of the resonator, minimizing the noise 
of the sustaining amplifier, and optimizing the oscillator 
elements. Even if the oscillator phase noise performance 
is optimized by these means, it can be further improved 
by other noise reduction techniques. A summary of the 
most common amplifier and oscillator feedforward and 
feedback noise reduction techniques is given in [4]. Some 
of these techniques are VCO-based locking involving one 
of the following principles: high-Q resonance element as 
an external discriminator [5], Pound discriminator [6]–[8], 
or carrier suppression using a high-Q cavity [9]. The main 
disadvantage of such techniques is that an additional reso-
nant element is required, which is usually the most criti-
cal device and adds its own noise. To avoid this, at least 
two other techniques may be considered: interferometric 
carrier suppression [10]–[12], and the high-Q cavity as an 
external discriminator [13], [14]. These techniques use the 
information extracted from the oscillating loop for its cor-
rection with the voltage-controlled phase shifter. When 
analyzing all of these approaches, one common idea can 
be retained: all of the techniques try to transform the 
oscillator phase noise into a dc voltage by a phase detec-

tion for further feedback correction. In contrast with these 
traditional phase-noise reduction approaches [4], the idea 
developed in this paper does not require a signal-phase–
to–voltage conversion. The proposed structure decreases 
the dependency of the oscillation frequency on fluctua-
tions of oscillator components other than the resonator. 
This improvement is achieved because of the high-level 
improvement of the oscillator architecture (structural op-
timization) and not by a parametric optimization as is 
proposed, for example, in [15].

A basic harmonic oscillator consists of a resonator 
and a sustaining amplifier interconnected in the form of 
a positive-feedback closed loop [16]. To sustain harmonic 
oscillations, the loop must be designed with respect to 
the well-known Barkhausen conditions. In actual applica-
tions, both the amplifier and the resonator are subject to 
parametric fluctuations. Because the oscillator feedback 
is positive, these fluctuations reproduce themselves after 
passing through the loop, according to the Leeson effect 
[17]. This results in a multiplication of the close-to-carrier 
open loop phase-noise power spectral density (PSD) by 
f −2 within the resonator bandwidth. To avoid this draw-
back, the sign of the feedback must be negative as it is in 
a phase-locked loop (PLL) [18]. Indeed, the resulting PSD 
of a PLL depends on the open-loop PSD of its voltage-
controlled oscillator (VCO). Unfortunately, the PLL re-
quires an external frequency reference source because a 
single negative loop is not able to sustain oscillations. As 
a result, the output close-to-carrier noise depends on the 
noise of this external frequency source. In addition, at 
least two resonators are used in this case to implement 
the system: one is in the VCO and another in the external 
reference. Is it possible to combine the ability of the usual 
positive feedback to sustain the oscillation and the prop-
erty of the negative feedback to reduce the close-to-carrier 
phase noise by means of their structural integration using 
just one resonator? In this paper we try to answer this 
question by combining both in one oscillator.

It must be noted that the proposed method of phase-
noise reduction is not an automatic gain control (AGC). 
The proposed solution deals with the reduction of oscilla-
tor frequency, but not amplitude fluctuations. Thus, the 
amplitude detector and a traditional variable gain ampli-
fier are not used (even though detectorless AGC systems 
can also be of great interest). Instead, the oscillating sig-
nal is fed back into a sustaining amplifier with no averag-
ing or detection of any kind.

The system under investigation is based on a common 
Colpitts quartz-crystal oscillator. The corresponding ana-
lytical description [19] differs from traditional approaches 
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[20]–[22]. Also, for simplicity, some elements are assumed 
to be ideal. The analytical results are further confirmed 
with numerical models using a commercial circuit simu-
lator. This is an intermediate stage toward a conceptu-
al verification. Though an actual implementation of the 
analyzed circuit is obviously slightly more complicated, 
both analytical and simulation investigations are in good 
qualitative agreement with experimental results. The im-
provement of the oscillator long-term frequency stability 
is demonstrated.

II. M D

The analyzed crystal oscillator is shown in Fig. 1. This 
modified Colpitts design has its usual positive feedback 
loop including the crystal filter and a sustaining ampli-
fier. An additional negative feedback includes an ideal-
ized transfer function H(p) (where p ≡ d/dt is the dif-
ferentiation operator) which drives a voltage-controlled 
voltage source Uv. The first feedback loop is intended to 
sustain oscillations whose frequency is mainly defined by 
the crystal (X1) resonance frequency, slightly shifted by 
other oscillator components such as C1 and C2. The sec-
ond feedback loop uses the voltage across the resonator to 
reinject the oscillating signal into the sustaining amplifier, 
but with an open-loop phase shift close to ±π.

The main idea of the proposed analysis is to simplify the 
design through successive equivalent transformations (∆ − 
Y and Y − ∆ transforms, series and parallel connections, 
transforms of dependent signal sources) and to investigate 
the influence of the second negative feedback loop [different 
solutions for H(p)]. The oscillator is analyzed like a feed-
back system, as is usual in the control system theory.

At the first step, the oscillator must be properly trans-
formed. In addition to equivalent transformations of the 
linear elements, the transistor is represented with its well-
known Ebers-Moll model. The result is shown in Fig. 2. 
This oscillator representation has only one nonlinear el-
ement: the base-emitter junction modeled with Ie(Vbe). 
Special attention should be paid to the fact that elements 
Zx, Zl, and Ze are functions of the parameters C1, Re, C2, 
and X1, or more precisely,

Z pL
pC

R Z
pC

Z
pC

Rx x
x

x l e e= + + = =
1 1 1

2 1
, , || ,  

(1)

where Lx, Cx, and Rx are the motional parameters of the 
crystal resonator. Other elements of the system in Fig. 
2 do not depend on C1, Re, C2, and X1. The voltage-
dependent element Ku(p)Uv is the result of an equivalent 
transformation of resistor Rf, the ideal voltage-controlled 
voltage source Uv = H(p)Ux and the dc voltage source 
E parallel to the filtering capacitor Cf. Thus, Ku(p) is a 
transfer function depending on the resistor and the ca-
pacitor.

Using Kirchoff laws, the following system of equations 
may be written to describe the oscillator shown in Fig. 2, 
taking into account that the ideal block H(p) has no input 
current:
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where I is a current through elements Eu, Ua(Ie) = −Zn(p)
Ie. Is and ut are transistor parameters.

System (2) corresponds to the idealized physical system 
shown in Fig. 2. The same system may be represented 
from the point of view of control system theory, i.e., using 
blocks of transfer functions as follows (see Fig. 3):
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Fig. 1. Modified Colpitts oscillator with the second negative feedback.
Fig. 2. Transformed two-loop Colpitts oscillator.
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In the same way as an original circuit, the system 
shown in Fig. 3 represents a two-loop nonlinear system 
with positive and negative feedbacks. The nonlinearity 
is represented with a nonlinear relationship Ie(Ube). The 
common positive loop is represented with the linear trans-
fer function (or physically the impedance) Zfb1(p) and the 
nonlinear transconductance G = Ie(Ube). The negative 
loop consists of the linear transfer functions Ka(p), H(p), 
Ks(p), Za(p), Ku(p), and the nonlinear transconductance 
G = Ie(Ube).

It must be noted that if H(p) ≡ 0, the second loop is
broken and the system dynamics are characterized only by 
the linear transfer function Zfb1(p), and the corresponding 
amplitude is determined by nonlinear transconductance G 
and impedance Zfb1(p). This case corresponds to the clas-
sical Colpitts oscillator. If H(p) ≠ 0, the two-loop system 
may be equivalently transformed into a system with one 
loop and another linear transfer function Zfb2(p).

Further, for simplicity, it is assumed that Ku(p) = 1 
without lack of generality. This is possible when the ca-
pacitance Cf is large enough.

III. M A

The nonlinear dynamic system shown in Fig. 3 can be 
represented by nonlinear and linear parts in one closed 
loop. Different methods to find oscillation amplitude and 
frequency are known for this type of nonlinear systems: 
for example, the method of describing functions [23], [24], 
also called the harmonic balance method in control theory. 
This method is very useful for high-order systems and 
helps to find the oscillation conditions from the open-loop 
transfer function of the whole system.

In the absence of the additional negative feedback, the 
linearized open-loop transfer function of the oscillator can 
be expressed as

H G Zol1 fb1= 0− , (4)

where G0 is a linearized transconductance of the nonlinear 
element Ie(Ube) in the vicinity of the operating point.

As previously mentioned, if the second loop exists, it 
may be represented as a modification of the first positive 

loop. In this case, one can also calculate the open-loop 
transfer function of the oscillating loop as
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Thus, for example, in the ideal case of H(p) = 1, the trans-
fer function (5) is considerably simplified:
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The existence of oscillations is found from Barkhausen 
conditions, which may be written as ℑ{ }H iol  = 0 and |Holi| 
> 0, where i ∈ {1, 2} and ℑ{} denotes an imaginary part. 
From the first equation of the Barkhausen conditions, one 
may write the equation necessary for calculating the oscil-
lation frequency. Thus, in the absence of the second loop, 
the oscillating frequency may be found from the sixth-or-
der equation
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where
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For simplicity, it is assumed that Rm = Z2 and Km = 
1 − Zn/Za are real. This is relevant when the presence of 
Lc may be neglected. In this work all of the parameters 
defined in (8) are considered fluctuating with time.

For the case of a system having a second loop with a 
transfer function H(p) = 1, the oscillating frequency is 
determined by the fourth-order equation
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with two physically based solutions in the case of a high 
quality factor Q: ω2 ≈ ω ω0

2
1

2
+  and ω2 ≈ ω ω0

2 2+ Σ.
For the further analysis, this case of high-Q resonators 

is considered, i.e., that of crystal resonators whose Q · f0 
product is greater than 1 · 1013 (Q is typically close to 
1 · 106 at f0 = ω0/(2π) = 10 MHz). Then, all the terms 

Fig. 3. Block-diagram representation of the Colpitts oscillator with the 
additional feedback [a path with the transfer functions Ze(p), Ka(p), and 
H(p)].
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inversely proportional to Q can be neglected in (7) and 
(9). In fact, (7) and (9) are of the same type, and can be 
represented in the following form:

ω ω α β ω α β β6 4
1 1

2
2 2 3[ ] [ ] = 0,− + + + +q q q  (10)

where q is a generic parameter, such that if q = 0, (10) 
reduces to (9), and if q = 1, this equation represents the 
system without correction, i.e., described by (7): β1 = −
(1/(τ1τΣ)), β2 = −( ) ( ),2 0
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To compare the frequency sensitivity in both cases, 
small changes of parameters around their mean values 
must be considered. Thus, the oscillating frequency is a 
sum of a constant value ωc and a small change ∆ω. The 
same representation can be made for equation parameters, 
i.e., α1 = α1c + ∆α1, α2 = α2c + ∆α2, β1 = β1c + ∆β1, β2

= β2c + ∆β2, β3 = β3c + ∆β3. Next, substituting these ex-
pressions into (10) and neglecting the higher-order terms 
of small variations, an expression for the frequency change 
can be deduced:
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Eq. (12) clearly shows that in the case of q = 0, the last 
term does not exist. It can also be easily shown that the 
denominator of both terms slightly depends on q in the 
case ω ω ωc

2
0
2

0
2− ≪ , which is also relevant. It can be noted 

that the second term could vanish even for q = 1 in the 
marginal case ωc = ω0. In this case, the oscillating fre-
quency depends only on ω0 and no improvement is achieved 
with the second feedback. However, ωc never actually 
equals ω0 (although the condition ω ω ωc

2
0
2

0
2− ≪  holds 

true), simply because some other reactive components ex-
ist in the circuit. Moreover, resonators are intentionally 
fabricated with a resonant frequency less than the desired 
oscillation frequency. The difference is usually tuned with 
a series capacitance (not shown in our schematics, for sim-
plicity) in the course of oscillator design. This is done to 
cover resonator parameter dispersion. So, in reality, the 
second term in (12) always exists for q = 1. Thus, the 
circuit sensitivity to parameter fluctuations can be de-
creased. The improvement effect exists even for parame-
ters Lx and Cx of the resonator itself (again only in the 
case ωc ≠ ω0). Thus, this analysis demonstrates that the 
oscillator with the second feedback is less sensitive to 
parametric fluctuations, because its related frequency 
change ∆ω has fewer contributing terms of instability.

In general, the resonator should always be considered 
as a BAW device in its fluctuating environment (electrical, 
thermal, mechanical). Therefore, the proposed method 
can be considered as an improvement of the electrical en-
vironment in terms of the oscillating frequency’s sensitiv-
ity to circuit component fluctuations.

The sign of the transfer function H(p) = 1 is justified 
by the fact that the second feedback is inherently negative 
because of the sign introduced by the system configura-
tion. In the same way, the first loop is positive in spite of 
the sign in (4)–(6). In the case of a practical circuit, in 
which the sustaining amplifier of the oscillating loop is 
more complicated, the negative sign of the second feed-
back is introduced by an inverting amplifier.

IV. S S

To verify the results of the previous section, the phase 
noise of the considered oscillator has been simulated with 
Advanced Design System (ADS, Agilent Technologies 
Inc., Santa Clara, CA) (for phase noise simulation prin-
ciples see, for example, [3], [25]). An ADS design of the 
system is shown in Fig. 4. This design represents a more 
realistic variant of the circuit shown in Fig. 1, with an ad-
ditional common-emitter amplifier in the oscillator nega-
tive feedback. The operational concept remains the same. 
The voltage across the crystal resonator is amplified and 
injected back into the sustaining amplifier.

During the oscillator phase-noise simulation, special 
attention is devoted to the parametric noise of circuit 
components, because these component instabilities are 
supposed to be suppressed by the second loop. Because 
the usual commercial circuit simulators do not contain 
any parametric noise models, we solve this problem with 
the approach that has been successfully used for precision 
close-to-carrier phase-noise simulations [26]. To introduce 
parametric phase fluctuations into the system, a paramet-
ric noise source is implemented in the circuit (see Fig. 4). 
This source includes a voltage-controlled capacitor SRC7, 

Fig. 4. Advanced Design System (ADS) design of the two-loop system: 
(1) sustaining amplifier, (2) crystal resonator, (3) buffer amplifier, (4) 
parametric noise source. Signal paths of both loops are shown in bold.
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whose value depends on the voltage of two noise sources 
SRC1 and SRC2. Indeed, voltage noise is converted into 
parametric capacitance change, and further into oscil-
lation frequency fluctuations related to oscillator phase 
noise. Thus, the first source SRC1 must have a PSD pro-
portional to f −1/2 to produce an open-loop f −1 noise for 
medium and high Fourier frequencies, because the created 
noise on SRC7 has a spectral density proportional to the 
squared voltage of the noise source SRC1. In other words, 
SRC1 is a source of parametric flicker noise. Similarly, 
the second source SRC2, with a PSD proportional to f −1, 
gives an f −2 slope of the open-loop noise for very low fre-
quencies (which is mainly caused by temperature random-
walk fluctuations, physically). In other words, SRC2 is a 
source of parametric random walk. These noise sources 
are calibrated to be dominant for low Fourier frequencies.

Fig. 5 shows the simulation results in terms of L( )f , the 
phase-noise PSD, of the oscillator with and without the 
second feedback. The PSD of the oscillator without the 
second feedback [see curve (1), Fig. 5] for Fourier frequen-
cies lower than 5 Hz, i.e., inside the resonator bandwidth, 
is dominated by the parametric noise introduced as de-
scribed previously. This conclusion is made by comparing 
the results with and without the parametric noise source. 
The slopes of these curves close to the carrier are due to 
the Leeson effect [17] applied to the parametric phase 
noise. Usually f −2 (because parametric random walk is 
dominant for f < 5 · 10−2 Hz) and f −1 (because paramet-
ric flicker is dominant for 5 · 10−2 < f < 2 Hz) are ob-
served here. For the higher frequencies, the oscillator 
phase noise is mainly due to the additive noise of its com-
ponents. The second feedback considerably reduces f −3 
parametric noise for low Fourier frequencies by about 
9 dBc/Hz and almost eliminates f −4 instabilities for the 
very low Fourier frequencies (curve (2), Fig. 5). These ef-
fects strongly correlate with the amplification and phase 
shift in the second system feedback. Also it must be noted 
that in the absence of the parametric noise source, the ef-
fect of the additional feedback is negligible in the close-to-
carrier region. Therefore, when comparing both curves, it 
can be seen that the frequency stabilization effect exists 

for parametric instabilities in the region of low Fourier 
frequencies, where parametric fluctuations are dominant. 
For higher offset frequencies, the second feedback increas-
es instabilities because of the additional noise of the am-
plifier in the second feedback. The level of this additive 
noise is mostly determined by the signal-to-noise ratio in 
the second feedback.

Thus, the simulation results confirm the analytical 
analysis made in the previous section. The second nega-
tive feedback reduces the oscillator frequency sensitiv-
ity to fluctuations of its parameters inside the resonator 
bandwidth despite an increase outside this bandwidth. 
Using the same simulation techniques, the effectiveness of 
this approach has also been confirmed for another crystal 
oscillator topology known as a Pierce oscillator.

V. E V

A 10-MHz quartz crystal oscillator with two feedback 
loops has been designed (see Fig. 6) to verify the actual ef-
ficiency of the expected phase-noise correction. The imple-
mented mockup-oscillator is based on a cascode amplifier 
stage with two independent inputs. One input (base of 
transistor VT1) is connected directly with the resonator 
and locks the oscillating loop. The other input (base of 
transistor VT2) is connected to the same resonator, but 
through the common-emitter amplifier based on transis-
tor VT3, which shifts the phase (ideally) by π to intro-
duce the appropriate correction to the oscillating loop. 
Though this circuit is much more complicated than the 
one described in the previous sections, it works on the 
same principles. The actual circuit parameters are chosen 
to meet the assumptions made in the previous sections. 
Particularly, the input current of the inverting amplifier 
is much less than that of the sustaining one to meet the 
assumption of a high input impedance in H(p).

The circuit operation has been tested in two configura-
tions to find out the effect of the additional negative feed-
back. In the first operation mode [see Fig. 7, curves (1) 

Fig. 5. Simulated effect of the oscillator negative feedback on the oscilla-
tor phase-noise power spectral density [single-sideband noise spectrum 
L( )f ]: (1) one-loop oscillator, (2) two-loop oscillator.

Fig. 6. Practical realization of the two-loop oscillator. L2 and C8 are 
added to reject resonator spurious modes.
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and (3)], this second feedback is unlocked. Thus, for ex-
ample, resistor R9 is substituted with an open circuit. So, 
the feedback inverting amplifier is present in the circuit, 
but it is not locked to the sustaining amplifier. After that, 
the same circuit is tested with small values of this resistor, 
i.e., in operation with both loops [see Fig. 7, curves (2)
and (4)]. The experiment is repeated for several values of 
the supply voltage VCC.

The goal of this design is not to built an ultra-stable os-
cillator (that necessarily requires a complex and expensive 
thermo-mechanical structure), but to demonstrate the ef-
ficiency of the phase-correction loop. The whole circuit 
is simply placed inside a Dewar flask with just a single 
temperature control of the resonator case. Moreover, the 
circuit lacks output matching amplifiers and is not para-
metrically optimized.

Measurements have been made with a TSC 5120A 
phase noise test set (Timing Solutions Corp., Boulder, 
CO) using a hydrogen maser as a reference.

The results in Fig. 7 show that for all values of the 
supply voltage, the long-term frequency stability of the 
oscillator is improved. At the same time, its short-term 
stability is slightly degraded because of additional noise of 
the transistor VT3 in the second feedback. Even though 
the transistor VT1 is saturated in the 18-V configuration, 
the effect of stability improvement exists. In the 5-V ex-
periment, this transistor is in the linear operating mode, 
and in this case the oscillator exhibits better results than 
for 18 V. Thus, when nonlinearities are very limited, the 
negative feedback loop is still efficient. This fact confirms 
the linear nature of the experimentally observed effect. 
The effect of the negative feedback is also seen on the cor-
responding phase-noise PSDs which are shown in Fig. 8. 
This effect is qualitatively the same as predicted by the 
simulation (see Fig. 5).

The experimental results are in good agreement with 
simulation data. Parts of the plots on the left of the min-
ima are determined by the white phase noise (see Fig. 5) 
and mostly depend on the signal-to-noise ratio. In the case 
of 18-V power supply, better performances are achieved in 
this region. Here also, the second feedback degrades the 
system frequency stability. This fact corresponds to the 
increase of white phase noise for high Fourier frequen-
cies in Fig. 5. Next, the minima of the Allan deviation 
are determined by the oscillator flicker frequency noise, 
i.e., the f −3 phase noise in Fig. 5. Here, the second feed-
back results in stability improvement with a simultane-
ous shift of the minima toward the higher τ. Frequency 
stability improvement is clearly observed for the interme-
diate values of τ (up to about 200 sec) where the Allan 

Fig. 7. Effect of the oscillator negative feedback on the Allan deviation: 
(1) 18-V supply voltage, one-loop oscillator, (2) 18-V supply voltage, 
two-loop oscillator, (3) 5-V supply voltage, one-loop oscillator, (4) 5-V 
supply voltage, two-loop oscillator.

Fig. 8. Effect of the oscillator negative feedback on the phase-noise power spectral density [single-sideband noise spectrum L( )f ]: (1) one-loop oscil-
lator, (2) two-loop oscillator.
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deviation corresponds to f −3 and f −4 phase noise (τ 0 and 
τ +1/2 slopes, respectively). This effect has been predicted 
by the simulation. In addition, the effect of the second 
feedback decreases for very long averaging times τ in the 
5-V case. Indeed, the very-long-term frequency stability of 
such oscillators mainly originates from resonator paramet-
ric instabilities and aging (all of the sources of oscillator 
frequency instabilities are still discussed [27]–[29]) and, 
thus, according to the suggested analytical analysis, it 
can hardly be improved. These effects were not simulated 
previously. In the 18-V case, the improvement still ex-
ists, meaning that these instabilities originate from other 
sources not previously considered here.

VI. C

In this work, investigations of the oscillator architecture 
are presented. The introduction of a negative feedback loop 
was suggested in addition to the positive one that sustains 
the oscillation. The second additional feedback reinjects 
the inverted signal from the crystal resonator into the sus-
taining amplifier. It is shown analytically, using a simple 
model, that this second feedback is able to make the oscil-
lating frequency less dependent on the circuit parameters, 
and therefore less sensitive to the parametric fluctuations 
of the circuit. The same idea is further demonstrated with 
numerical simulations. Additionally, the simulation analy-
sis states that for high Fourier frequencies, the oscillator 
phase noise could be increased. These conclusions are also 
confirmed with actual frequency stability measurements 
of a mock-up oscillator. A non-negligible frequency sta-
bility improvement is observed in the area of middle and 
high averaging times, τ. On the other hand, the short-term 
frequency stability is slightly degraded because of addi-
tive noise of the additional electronic components. These 
results are achievable for medium-quality oscillators with 
no additional costs on high-quality resonators, mixers, or 
temperature control units, which are the most expensive 
components. The phase-correction loop could be an alter-
native solution for a crystal oscillator positioned between 
the temperature-compensated crystal oscillator (TCXO) 
type and the oven-controlled crystal oscillator (OCXO) 
type [30]. In further work, the same principle of frequency 
stability improvement should be investigated for state-of-
the-art oscillators.
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