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Parametric model of the BAW resonator phase-noise

Maxim Goryachev ⇑, Serge Galliou

FEMTO-ST Institute, Frequency and Time Department, 26, Chemin de l’Epitaphe, Besançon 25000, France

Excepted for the very short terms the frequency stability of ultra-stable oscillators is mainly limited by the resonator noise. In this work we proposed a 

parametric model of the bulk acoustic wave (BAW) res-onator phase noise based on an equivalent circuit. This model explains phase noise generated by a 

BAW crystal from a point of view of parametric fluctuations and proves the f�1 dependences of the crystal noise. The model performance is verified with 

simulation. Simulation results are compared to experimen-tal data and discussed. Comparison of three existing models is made.

1. Introduction

Experimental and theoretical investigation on the origins of
phase noises is of great interest in recent years. The special atten-
tion is devoted to BAW resonators, because of their crucial role for
many types of oscillators. Indeed, performance of ultra-stable BAW
crystal oscillators (usually 5–10 MHz) in terms of frequency stabil-
ity is limited by the resonator noise. Recent experimental re-
searches on high quality bulk acoustic quartz resonators [1–4]
provide a power spectral density (PSD) of the phase noise gener-
ated by quartz crystals. However, these results require further the-
oretical explanation. An explanation from a point of view of
parameter fluctuations is given in this work.

There are two main approaches to a problem of BAW resonator
phase noise. The first one (noise conversion method) is based on a
resonator equivalent circuit and may be successfully used for
phase noise PSD calculation of different oscillatory systems based
on intrinsic noise sources [5,6]. The main advantage of this ap-
proach is that it enables us to study particular finite ranges of
the system PSD and all types of noise without using the corre-
sponding differential equations. This method is rather accurate
and is in a good agreement with available measurements of that
time.

The essence of the second approach (here and further called
phase plane method) lies in the Laplace transform of the phase of
a carrier and representation of the BAW crystal as a transfer func-
tion in a phase plane [9]. Though this method is common for differ-
ent types of phase-locked loop (PLL) systems, it can also be applied
to oscillatory system analysis. According to this approach phase

noise is regarded as additive flicker noise at the input of the reso-
nator transfer function. No other noise sources and phenomena are
considered. Nevertheless, this model may be sufficient for many
types of system level analyses.

In this work we are trying to introduce another model which is
also intended for system level analyses, but incorporates more
noise phenomena than the described above models.

2. Given data

The model presented in this paper is based on recent measure-
ments of different types of 5–10 MHz high quality quartz resona-
tors from different manufacturers. These measurements have
been performed by means of a home-made state-of-the-art inter-
ferometric measurement system. Some details about the test
bench are given in [4] or [3], for example. The noise floor of the
bench depends on the carrier power and, as a consequence, on
the power dissipated inside the couple of quartz crystal resonators.
It can vary according to the motional resistance of the resonator
from �143 dBc/Hz, for a typical dissipated power of 20 lW, up to
�165 dBc/Hz for a typical dissipated power of 200 lW. Here and
now it should be mentioned that experimental results do not exhi-
bit any f0 noise generated by both resonators, greater than the
noise floor of the bench (so, it is also excluded from the model).

In addition, the amplitude-frequency effect have been observed
on the resulting PSDs in the case of dissipated power typically
greater than 75 lW (in fact, it depends on the actual cut angles).
This is described and discussed in [7]. A special attention must
be paid to the measured cut-off frequency (the so-called Leeson’s
frequency), which, in some cases, may be not correct because of
the aliasing effect of the asymmetric PSD on both sides of the car-
rier due to the quartz nonlinearities.
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Each resonator under test is temperature-controlled at its
turnover temperature, in such a way that the thermal stability is
about 2 l �C for measurement time of 1 s and about 20 l �C over
10 s [8]. Thus, the behaviour of f�2-type noise PSD (see further) in-
side the resonators bandwidth is very limited or at least restricted
to offset frequency lower than 0.01 Hz.

A typical (about 90% of all measurements on various types of
resonators) power spectral density plot of the quartz crystal phase
noise is shown in Fig. 1. The curve shown in Fig. 1 consists of three
parts: phase flicker f�1, f�3 and white f0 noise areas. The latter is the
noise floor of the measurement test bench and not a noise gener-
ated by the resonators under test.

Such a pattern has been explained with the phase plane model
[9]. According to this model the phase noise at the output of the
resonator results from a flicker phase noise at the input (Sadd)
which is always present regardless the absence of the driving sig-
nal noise [9]. Thus, the power spectral density at the output of the
resonator can be found in the following way:

Suðf Þ ¼ jHðf Þj2Saddðf Þ; ð1Þ

where Hðf Þ is the transfer function of an ideal resonator in the
phase plane and f is the Fourier frequency. Since in absence of
detuning signal this transfer function is a linear first order function,
then a term jHðf Þj2 has a spectral density with two regions: f0 and
f�2. A multiplication of this term by Sadd which follows f�1 law gives
a power spectral density shown in Fig. 1 without the f0 part. The
same pattern may be easily obtained with the noise conversion
method [6].

Nevertheless, in practice, for more modest resonators one can
observe f�2 slopes instead of f�3 (see Fig. 2). This is the case of less
than 10% of measured resonators and exclusively observed on just
one type of resonators. This fact can be explained with the first ap-
proach based on fluctuations of the equivalent motional resistance,
i.e. the noise conversion method, but not the phase plane model.

Here we consider a model based on parameter fluctuations of
differential equations, which is close in nature to the second ap-
proach (representation of BAW resonator in phase space), but
based on fluctuations of parameters of the electrical equivalent
model, as in the first method.

3. Parametric fluctuations

Let us consider a simple p-network driven by an ideal sinusoid.
A BAW crystal in this case can be represented by its electrical
equivalent circuit (see Fig. 3).

In order to construct a rigorous model of parameter fluctuating
system this equivalent circuit (Fig. 3) can be considered as a sys-
tem, where motional inductance Lx and capacitance Cx vary with
time in such a fast way that the Laplace transform of the signals be-

comes irrelevant. Nevertheless, it is possible to derive ordinary dif-
ferential equations (ODEs), which describe physical processes in
such a system. The relations appear from the physical analysis of
energy, which is stored in each of the components of the equiva-
lent circuit. In fact, dynamic properties of a time-varying capaci-
tance are associated with the time-varying electric charge and an
inductance with magnetic flux [10]. Therefore, rigorously, the ODEs
of the equivalent electrical circuit must be written and solved for
the electric charge and/or magnetic flux, to fit physical processes.

This choice of fluctuating parameters is made, because an
equivalent inductance and capacitance determine the position of
the system natural frequency, which is believed to be a source of
generated phase noise. Also, these two sources are separated since
their influences on system parameters are different. For the sim-
plicity of the following calculations the shunt capacitance C0
Fig. 3 is neglected. Indeed, the absolute shift of the resonance fre-
quency due to C0 is estimated as follows:

Dx � xx

R2
xC0

Lx
;

where xx is the angular resonance frequency determined by the
series motional branch Lx, Cx, Rx, where Rx is the resonator equiva-
lent series resistance. As an example, for a usual high quality quartz
resonator, Rx is less than 100 Ohms, Lx is about 1 H and C0 is about
2 pF, that gives an absolute frequency shift of just about 10�8 of xx.
So, fluctuations of C0 have 108 lower impact on resonance frequency
than that of Lx and Cx. Moreover, the shunt capacitance is a function
of the BAW resonator geometry and the relative permittivity. Both
can fluctuate with temperature, inducing a C0 relative sensitivity
of a few 10�5 per Kelvin [11], but, in this work, the device under test
is temperature-controlled. For the measurements resulting in Figs. 1
and 2, temperature fluctuations of the tested resonators are typi-
cally lower than 2 � 10�6 K over 1 s [8].

A time-varying parameter of the capacitor is its amount of elec-
tric charge q stored for a given electric potential or the capacitance
C(t) = q(t)/uc(t). The electrical current through the capacitor is a
speed of change of its charge. From the following equation of the
physical process in the capacitor can be derived:

Fig. 1. Measured phase noise of a 5 MHz high quality quartz crystal resonator. fL
denotes the so-called Leeson frequency, i.e. a half of a resonator bandwidth. The

dashed line is needed to identify the PSD value at f = 1 Hz from the carrier which is

used to calculate the corresponding Allan deviation [2].

Fig. 2. Measured phase noise of a medium quality 10 MHz crystal resonator. This

behaviour has been observed just for one type of the tested resonators.

Fig. 3. Model of the BAW crystal as a part of the p-network.
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icðtÞ ¼
dq

dt
¼

dq

du

duc

dt
¼ CðtÞ

duc

dt
; ð2Þ

where uc(t) is a capacitor voltage, ic(t) is a capacitor current.
In the same manner for a time-varying inductor the main

parameter is the amount of magnetic flux n produced for a given
electric current iL in the inductance n(t) = L(t)�iL(t). The inductor
voltage is a derivative of the magnetic flux:

uLðtÞ ¼
dn

dt
¼

d

dt
LðtÞiLðtÞ ¼

dLðtÞ

dt
iLðtÞ þ LðtÞ

diLðtÞ

dt
: ð3Þ

Now, let us consider an equivalent circuit of the resonator
which has time-varying components Lx(t) = Lx0 + DLx(t) and
Cx(t) = Cx0 + DCx(t). So, the system governing equation can be writ-
ten for a current through the crystal resonator ix as:
Z t

�1

ixðsÞ
CxðsÞ

dsþ
dLxðtÞ

dt
ixðtÞ þ

dixðtÞ

dt
LxðtÞ þ RxixðtÞ þ RLixðtÞ ¼ uiðtÞ:

ð4Þ

Substituting relation uR(t) = (Rx + RL)ix(t) into (4) and differenti-
ating the result, the system equation can be expressed in terms
of the total equivalent (motional resistance of the resonator Rx

and the load resistance RL) resistance voltage drop uR(t):

€uR þ _uR

2 _LxðtÞ þ Rx þ RL

LxðtÞ
þ uR

1

CxðtÞLxðtÞ
þ
€LxðtÞ

LxðtÞ

!

¼ _ui

Rx þ RL

LxðtÞ
; ð5Þ

so that the output voltage is linearly proportional to the total resis-

tance voltage: uo ¼ uR
RL

RLþRx
.

Also, from this variant of description one can find an actual (dy-
namic) natural frequency and actual loaded quality factor of the
crystal:

x0ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

CxðtÞLxðtÞ
þ
€LxðtÞ

LxðtÞ

s

; QðtÞ ¼
LxðtÞx0ðtÞ

2 _LxðtÞ þ Rx þ RL

: ð6Þ

If the time dependences of Lx(t) and Cx(t) are known, Eq. (5) can
be solved numerically by transforming the second order ODEs into
a system of first order differential equations of the Cauchy form:

_y1 ¼ y2;

_y2 ¼ �x2
0ðtÞy1 � 2dðtÞy2 þ 2kðtÞxðtÞ;

�

ð7Þ

where y1 = uR, xðtÞ ¼ _ui and

dðtÞ ¼
2 _LxðtÞ þ R

2LxðtÞ
; kðtÞ ¼

R

2LxðtÞ
: ð8Þ

For the sake of simplicity all following calculations are made for the
total equivalent resistance (R = RL + Rx). However, this task is very
time-consuming. The point is that the frequency of the input signal
has to be in the vicinity of the resonance frequency of the resonator
crystal, i.e. the period of change is about 10�7 s. But in the same
time fluctuations of the parameters of the system are very slow.
Here we are interested in the processes with time constants of tens
and hundreds of seconds. Thus, a number of time steps for model-
ling of such a system is incredibly large. In order to avoid this draw-
back the method of averaging [10,12–14] can be used.

4. System solution with averaging method

Let the input signal of the p-network is described in the form of
an ideal cosinusoid:

uiðtÞ ¼ ua cosðxt þuÞ;

where x is a constant angular frequency. Then the signal x(t) is a
derivative of the ui(t):

xðtÞ ¼ _uiðtÞ ¼ �uax sinðxt þuÞ ¼ �uax cos xt þu�
p
2

� �

:

A state vector Y = [y1(t),y2(t)]
T shows the position of the sys-

tem at the present moment t in the phase plane. These are
Cartesian (rectangular) coordinates of the point. In this case
both coordinates have the same rate of change. But as it is
known from the control system theory a system in the phase
plane can be represented by an infinite number of ways, i.e.
state coordinates. For example, in the polar coordinates the sys-
tem can be described by a length m(t) (magnitude) and an an-
gle w(t) (phase) of a vector drawn from the point of origin to
the current state: M = [m(t),w(t)]T. For the given system the
transition from the Cartesian coordinates to the polar ones is
done with the following expressions:

y1ðtÞ ¼ mðtÞ cosðxt þ /ðtÞÞ ¼ mðtÞ cosðwðtÞÞ;

y2ðtÞ ¼
dy1ðtÞ

dt
� �mðtÞx sinðwðtÞÞ:

ð9Þ

The coordinate y2(t) is found for the case when the length of the
vectorm(t) and the phase fluctuation /(t) change much slower than
the phase xt. In this variant m(t) and /(t) change with the rate of
parameters of the equivalent circuit Lx(t) and Cx(t), and the phase
xt changes with the rate of the input signal.

Substituting expressions (9) to the system in Cartesian coordi-
nates (see Eq. (7)), reducing equal term in left-hand and right-hand
sides and dividing the second equation by �x, the following sys-
tem in polar coordinates is derived:

_m cosw�m _/ sinw ¼ 0;

_m sinwþm _/ cosw ¼ �mx coswþ
x2

0
x m cosw� 2dm sinw

þ2 kua
m

sinðxtÞ:

8

>

>

<

>

>

:

ð10Þ

This system can be transformed to the Cauchy form for slowly vary-
ing variables m and /. To do this, the first equation of system (10)
has to be multiplied by cosw and the second one by sinw. After
summating the results of these multiplications and taking into ac-
count the Pythagorean trigonometric identity for functions of w,
the first equation of system (11) is obtained. After that the proce-
dure needs to be repeated. This time the first equation has to be
multiplied by �sinw, and the second one by cosw. After summa-
tion, the second equation of (11) is derived.

_m ¼ �mx sinw coswþ
x2

0
m

x sinw cosw� 2dm sin2
w

þ2kua sinðxtÞ sinw;

_/ ¼ �x cos2 wþ
x2

0
x cos2 w� 2d sinw coswþ 2 kua

m
sinðxtÞ cosw:

8

>

>

<

>

>

:

ð11Þ

System (11) still depends on the fast component of the phase.
So, in order to spare from this constituent both parts of both equa-
tions have to be integrated over one period of the input signal
T ¼ 2p

x , or just 2p for the variable w.
The following result is obtained with an assumption that the

length m and the phase / do not change during one period of the
input signal. In case of parameter fluctuations of BAW resonators,
this assumption holds true with good precision. Thus, swapping
derivation and integration (taking in mind that _w � x, so / and
w are independent) we obtain a system for length M and phase
U of an average vector, which describes a system state for one
period of the input signal.
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2p _M ¼ �Mx
R 2p
0 sinw coswdwþ

x2
0
M

x

R 2p
0 sinw coswdw

�2dM
R 2p
0 sin2

wdwþ 2kua

R 2p
0 sinðxtÞ sinwdw;

2p _U ¼ �x
R 2p
0 cos2 wdwþ

x2
0
x

R 2p
0 cos2 wdw

�2d
R 2p
0 sinw coswdwþ 2kua

M

R 2p
0 sinðxtÞ coswdw:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð12Þ

Each of three first integrals of both equations of system (12) is triv-
ial. The last integrals are found taking into account the definition
w =xt + /, which means that xt = w � /. And, so it can be found
using the well-known trigonometric identities for the sinus and
the cosinus of the difference:

Z 2p

0

sinðw� /Þ sinwdw ¼

Z 2p

0

sin2
w cos/dw

�

Z 2p

0

cosw sin/ sinwdw ¼ p cosU:

In the same way the last integral of the second equation of (12)
gives:

Z 2p

0

sinðw� /Þ coswdw ¼

Z 2p

0

sinw cos/ coswdw

�

Z 2p

0

cos2 w sin/dw ¼ �p sinU:

And, finally, the system of differential equations for averaged
values of length and phase of the vector can be written in the fol-
lowing way:

_M ¼ �dðtÞM þ KðtÞua cosU;

_U ¼ XðtÞ � KðtÞ ua
M
sinU;

(

ð13Þ

where X ¼
x2

0
ðtÞ�x2

2x is a detuning frequency. And M and U are aver-
age values of m(t), /(t) for one period of the input signal.

In order to find equilibrium points the left parts of the system
(13) have to be set equal to zeros:

dðtÞM ¼ KðtÞua cosU;

XðtÞM ¼ KðtÞua sinU:

�

ð14Þ

If the system is time-invariant and the frequency of the input signal
corresponds to the natural frequency of the resonator (i.e. X = 0),
then the second equation of system (14) gives solutions for U in
the form U = pn, where n 2 Z. This solution of the first equation
gives two possible variants of the first one: M = ±ua. A negative var-
iant of the solution does not make physical sense. Moreover only
one solution (on case of n = 0) can be explained in the physical
way. This result is a solution, where the BAW crystal is in the reso-
nance, i.e. it does not give a phase shift to the input signal (U = 0)
and the input voltage equals to the total resistance voltage drop
(M = ua). The point (ua, 0) in (M,U) space is the stable equilibrium
point of system (13).

Figs. 4 and 5 show amplitudeM and phaseU fluctuations corre-
spondingly produced by some random fluctuations of Lx(t) and
Cx(t) and simulated with system (13), where the input amplitude
is ua = 1V.

Fig. 4 shows that M = ua = 1V is a coordinate of the stable equi-
librium point of system (13). From the physical point of view, M
cannot exceed ua. The same result is obtained with the model.
When M = ua the BAW crystal is exactly in the resonance. In all
other points inductor and capacitor impedances are not compen-
sated and the resonator is not working in the resonance mode.

Fig. 5 shows that the output phase fluctuations are observed
around another coordinate of the equilibrium point U = 0. When
U = 0, the system is in the resonance mode, when impedances of
the capacitor Cx and the inductance Lx are compensated and the
crystal does not give a phase shift between input and output
signals.

So, system of differential Eq. (13) can be used to find phase and
amplitude fluctuations for given fluctuations of equivalent capaci-
tance Cx and inductance Lx, introduced by fluctuating detuning fre-
quency X and coefficients d and K, and vice versa. In both cases a
system of differential equations has to be solved.

5. Numerical simulation

If the PSDs of parameter fluctuations are known, then the
numerical method of finding the generated phase noise PSD can
be represented with the following steps:

1. generating a set of signals (fluctuations) in the time domain
with a PSD corresponding to the known PSD of parameter fluc-
tuations (several signals with the same PSD are needed to verify
if the solution is the same for the whole class of fluctuations, in
other words, it does not depend on the exact form of these
fluctuations);

2. substitution of each signal into system (13);
3. solving system (13) for M and U for each signal from the set;
4. finding the PSD for time-domain signals obtained in the previ-

ous steps and averaging of results for the given set. If all signals
from the set produce the same result, then this result is consid-
ered as correct. Finding the confidence range.

To generate random fluctuations (random phase for each Fou-
rier frequency) for the given PSD the following algorithm can be
used:

1. to take the square root of the absolute value of the given PSD for
each data point to get a magnitude spectral density:
jXðf Þj ¼

ffiffiffiffiffiffiffiffiffiffiffi

Sxðf Þ
p

;
2. to generate random (uniform probability density) phase in fre-

quency domain: W(f) = 2pn(f), where n(f) is a random number
generated for each frequency

3. to take the Inverse Fourier Transform of the random spectrum:
DLxðtÞ ¼ F�1ðjXðf Þj � expðjWðf ÞÞÞ, where F�1ð�Þ is the Inverse
Fourier Transform.

Note should be taken that if the PSD of the phase fluctuations is
limited by the frequency which is less than the sampling frequency
of the system, then the generated signal is differentiable. And dif-
ferentiability is a mandatory requirement for the fluctuations of
system parameters.

Calculations have beenmade (see Fig. 6) for a high quality quartz
crystal (BVA-type, SC-cut) with the following parameters: reso-
nance frequency f0 = 10 Hz (C mode, 3rd overtone), motional resis-
tance Rx = 90.12 Ohm, average motional inductance Lx = 1.79 H,
averagemotional capacitance Cx = 141 aF. So, for this crystal resona-
tor the unloaded Q is approximately 1.25 � 106. Numerical simula-
tions show that in order to obtain a result in accordance with
experimental observations (i.e. f�1 and f�3 regions) the original
PSD of Lx and Cx fluctuations must follow f�1 law.

As expected, if fluctuations of the equivalent inductance is a
random ergodic process with a f�1 power spectral density, then
the resulting PSD of average phase fluctuations has two regions,
where the power spectrum is proportional to f�1 and f�3 (see
Fig. 6). Fig. 6 shows three PSD curves for three different levels of
Lx fluctuations: �45 dBc/Hz (curve 1), �50 dBc/Hz (curve 2),
�55 dBc/Hz (curve 3) at 1 Hz. This result is obtained for all gener-
ated signals of parameter fluctuations from the inital set. The
inductance fluctuations DLx(t) also result in fluctuations of the sys-
tem natural frequency, as it was stated earlier.

The Leeson frequency of the resonator under study is a half of
its bandwidth fL �

f0
2QL

� 3:9 Hz. However, this formula cannot be
regarded as precise, because a loaded quality factor QL is a function
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of time according to expression (6). However, Fig. 6 shows approx-
imately the same result as a border frequency between f�1 and f�3

regions.
It can be seen from Fig. 6 that for smaller values of input fluctu-

ations the resulting PSD curves have more distortions, thus, the
slope f�3 may be mistakenly regarded as f�2. This fact is a result
of numerical limitations of the used algorithm for direct and in-
verse Fourier Transforms (limitation of data types). But it is evalu-
ated that in order to achieve the level of about �135 dBc/Hz at
1 Hz, the level of Lx fluctuations has to be approximately
�56 dBc/Hz at the same frequency.

Also it has to be mentioned that for other spectral laws of input
parameter fluctuations (f0, f�2 or any other) the output fluctuations
have different (from those shown in Fig. 6) PSD configurations.

6. Influence of the equivalent resistance noise

The model described above does not take into account flicker
and thermal noise of the equivalent series and load resistances.

These types of noises can be easily introduced into the model. In
fact, the result system (13) remains valid even in this case, but
parameters x2

0, d and K have to be extended:

x2
0 ¼

1

CxLx
�
2 _R

R

_Lx
Lx

�
_R

R

" #

�
€R

R
�
€Lx
Lx

" #

; d ¼
2 _Lx þ R

2Lx
�

_R

2R
;

K ¼
R

2Lx
: ð15Þ

These three parameters represent system noise sources, amongst
which x2

0 is dominant for a considered frequency interval. This
parameter represent a squared natural frequency of a resonator
and its fluctuations are equivalent to frequency fluctuations of the
input signal.

System parameter x2
0 consists of three terms. The first term

� 1
CxLx

has a spectrum slope f�1 (when Cx and Lx fluctuate according
to f�1 PSD) and produces clear pattern of f�1 and f�3 noise PSDs
slopes at the resonator output. The second term has a PSD slope
of f0 for all frequencies of the spectrum, if R noise has also flicker
spectrum. By, applying the same rule as to the first term, the

Fig. 4. M (amplitude of the total resistance voltage drop uR) fluctuations for some fluctuations of Lx and Cx, the input amplitude ua = 1 V. This curve has the same form as

output amplitude (see (6)).

Fig. 5. U (phase of the motional resistance signal and the output signal) fluctuations for some fluctuations of Lx and Cx.
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resulting PSD of the system, when only this term is present, con-
sists of f0 and f�2. The third term also results in white noise of
the equivalent resonance frequency x0, and so produces f0 and
f�2 spectral laws.

Fig. 7 presents three PSDs, generated separately by the first
(curve (1)), second (curve (2)) and third terms (curve (3)) of x2

0.
As it is shown in this figure, f�2 can be seen instead of f�3 for some
resonators, if phase noise generated by the second and third terms
of x2

0 dominate in this region. Thus, this effect depends on resona-
tor parameter (static values of Cx, Lx and R), as well as noise levels
of these parameters. So, it is not surprising that this effect is pres-
ent for some types of crystal resonators.

7. Link between the phase plane model and the present

approach

System (13) shows a dynamical link between fluctuations of the
output signal in form of amplitudeM and phaseU, and fluctuations
of the model parameters (equivalent inductance Lx and equivalent

capacitance Cx). Such a system represents time-varying system,
where excitation is introduced with parameter fluctuations. A sim-
ilar relationship may be written for a case of time-invariant addi-
tive model of the BAW crystal phase noise, when excitation is
introduced with a phase noise of the input signal:

uiðtÞ ¼ ua cosðxt þ hðtÞÞ;

where h is an additive phase noise. When a signal with an addive
phase noise is applied to the p-network, it is filtrated in the phase
plane. Following the same procedure as in the case of the paramet-
ric model, another system in terms of output averaged amplitude
and phase (M,U) may be derived (16):

_M ¼ �dM þ kua
ðxþ _HÞ

x cosðU�HÞ;

_U ¼ Xþ k ua
M

ðxþ _HÞ

x sinðU�HÞ;

8

<

:

ð16Þ

where H is the average (for one period of the input signal) value of
input phase fluctuations h(t), and X, d and k are time-invariant
parameters.

Fig. 6. Power spectral densities ðSUðf Þ ¼ 2Lðf ÞÞ of average phase fluctuations generated by Lx(t) fluctuations with a f�1 power spectral densities with levels of �45 dBc/Hz (1),

�50 dBc/Hz (2), and �55 dBc/Hz (3) at 1 Hz.

Fig. 7. Resulting power spectral densities of average phase fluctuations generated by first (curve (1)), second (curve (2)) and third terms (curve (3)) of fluctuating parameter

x2
0 (15), when Lx, Cx and Rx disturbances has flicker noise PSD. The levels of applied noise are arbitrary.
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If the input phase noise PSD follows f�1 law, then simulation of
this system with the method described above showed the same
results as simulation of system (13), i.e. the output phase noise
PSD has f�1 and f�2 regions with Leeson frequency of about
3.9 Hz. This fact proves that a BAW crystal inside the p-network
acts as a first order filter in the phase plane. In fact, both systems
((13) and (16)) represent the same nonlinear dynamics, but with
different inputs of excitation.

Assuming the following simplifications:

1þ
_H

x
� 1;

x2 �x2
0

2x
� x�x0 ¼ �X; ð17Þ

the same system of equations may be used to find the resonator
transfer functions in the phase space:

HðsÞ ¼
UðsÞ

HðsÞ
¼

dsþ d2 þX2

s2 þ 2dsþ d2 þX2
: ð18Þ

The transfer function corresponds to the phase plane model ob-
tained with another heuristic approaches [4,9]. In fact, the latter
is a special case of the present model with the following main sim-
plifications: (1) fluctuations of d and k are discarded (see (13)); (2)
simplifications described in (17) are used; and (3) the second and
third terms of parameter x2

0 (see (15)) are excluded.
Moreover, if both input amplitude and phase noise and inner

parametric noise are of interest for some reasons the model may
be extended:

_M ¼ �dðtÞM þ KðtÞ � _ua
x sinðU�HÞ þ ua 1þ

_H
x

� �

cosðU�HÞ
h i

;

_U ¼ XðtÞ þ KðtÞ 1
M

� _ua
x cosðU�HÞ � ua 1þ

_H
x

� �

sinðU�HÞ
h i

:

8

>

<

>

:

ð19Þ

This system of differential equations represents a Multiple Input
Multiple Output (MIMO) time-varying transfer function for ampli-
tude and phase noises, which is the most general case of resonator
representation in amplitude-phase space.

8. Comparison of the noise conversion model and the present

approach

Here two cases are distinguished: within and beyond half band-
width, which are separated with Leeson’s frequency fL.

Within half bandwidth both models are in full correspondence.
The shape of the PSD is determined by the effect of motional induc-
tance and capacitance flicker noise. Futhermore, according to all
three approaches, the level of the resulting flicker noise is propor-
tional to the squared loaded quality factor ðQ2

L Þ, in terms of
SUðf Þ ¼ 2Lðf Þ.

Beyond the half bandwidth, models are in contrast to each
other. First, let’s consider results predicted by the noise conversion
method. According to the results obtained in [6] the PSD of the res-
onator phase noise may be formed by the following noise sources:
motional inductance and capacitance flicker noise (f�5), resonator
additive thermal noise (f�2), motional resistance flicker noise
(f�3), load noise (f0). So, as it has been concluded in this paper:
the PSD slope beyond the half bandwidth can vary from f�3 to f�2

as a result of losses additive thermal and flicker noises. For more
information see [6].

The contradictory points of the present model and the noise
convertion method are:

1. motional resistance flicker noise according to the simulations
presented here may produce f�2 for certain resonators, but
not f�3 as in [6];

2. as it has been shown both analytically and numerically, the
motional inductance and capacitance flicker noise results in
f�3 phase noise slope at the output (but not f�5), which is con-
firmed by experiments in 90% of all cases. Also, Lx and Cx are
the only sources of f�3 noise according to the previous point;

3. the motional resistance additive thermal noise cannot be con-
sidered as a noise source for f�2 phase noise. Indeed, in accor-
dance with [6] the level of the noise at the output can be
calculated as follows:

Lðf Þ ¼
2kT

P

f 2L
f 2

; ð20Þ

where k is Boltzmann’s constant, T = 350 K, P = 20 lW is the carrier
power, and fL � 4.5 Hz for the case shown in Fig. 2. With this data
one may obtain with (20) �153 dBc/Hz at f = fL, which is about
the same level as the measurement bench noise. And, the actual
measured f�2 noise is about 25 dBc/Hz higher.
4. f0 slope of the resulting PSD has been discarded, since it cannot

be seen with the present measurement equipment, which is the
main source of f0 noise in Figs. 1 and 2.

Since the results of two approaches contradict each other, fur-
ther scientific discussions and measurements are badly needed
for finding the actual sources of the resonator noise.

9. Conclusion

It can be concluded from the results of the previous numerical
experiments, that most common patterns of the phase noise at
the output of the BAW resonator (See Figs. 1 and 2) can be regarded
as a result of its dynamics Lx (as well as, Cx and Rx) fluctuations with
f�1 spectrum. Inside the resonator half bandwidth the resulting
flicker phase noise is determined by f�1 fluctuations of Lx and Cx.
Outside the half bandwidth the phase noise can be formed by pairs
Cx–Lx with the result of f�3 or Lx–Rx with the result of f�2. The first
case is observed experimentally in 90% of measurements. And the
remaining 10% have been observed just on one type of resonators.

The simulation results testify to the validity of the proposed
way of resonator phase noise modelling. Contrary to ordinary
phase space method the approach proposed in this paper is based
on consideration of the true phase noise origin, but not a virtual
additive phase noise. This origin lies in parameter fluctuations of
the BAW crystal due to fluctuations of temperature, pressure, etc.
So, the proposed method confirms with simulation a guess that
phase noise generated by a BAW crystal is a result of natural fre-
quency fluctuations. The presented model is more general and
may incorporate link between magnitude and phase noises in the
cases of parametric noise, input additive noise and both (19). Nev-
ertheless, the main difficulty is connected with the fact that the
presented approach has not been reduced to simple engineering
solutions. Instead one can use the ordinary phase space model as
a simplified solution.

In the same time the results obtained with this approach con-
tradict the results of noise convertion method for the phase noise
beyond the half bandwidth. This leads us to futher discussions
on BAW resonator phase noise origins.
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