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Global exact controllability in infinite time of

Schrödinger equation: multidimensional case

Vahagn Nersesyan, Hayk Nersisyan

Abstract. We prove that the multidimensional Schrödinger equation is exactly

controllable in infinite time near any point which is a finite linear combination of

eigenfunctions of the Schrödinger operator. We prove that, generically with respect

to the potential, the linearized system is controllable in infinite time. Applying the

inverse mapping theorem, we prove the controllability of the nonlinear system.

Contents

1 Introduction 1

2 Main results 4

2.1 Well-posedness of Schrödinger equation . . . . . . . . . . . . . . 4
2.2 Exact controllability in infinite time . . . . . . . . . . . . . . . . 7

3 Proof of Theorem 2.8 8

3.1 Controllability of linearized system . . . . . . . . . . . . . . . . . 8
3.2 Proof of Proposition 3.4 . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Application of the inverse mapping theorem . . . . . . . . . . . . 13

References 15

1 Introduction

This paper is concerned with the problem of controllability for the following
Schrödinger equation

iż = −∆z + V (x)z + u(t)Q(x)z, x ∈ D, (1.1)

z|∂D = 0, (1.2)

z(0, x) = z0(x), (1.3)

where D ⊂ Rd, d ≥ 1 is a rectangle, V,Q ∈ C∞(D,R) are given functions, u is
the control, and z is the state. We prove that (1.1)-(1.3) is exactly controllable in
infinite time near any point which is a finite linear combination of eigenfunctions
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of the Schrödinger operator, extending the results of [24] to the multidimensional
case.

Recall that in the papers [6, 8, 10] it is proved that the 1D Schrödinger equa-
tion is exactly controllable in finite time in a neighborhood of any finite linear
combination of eigenfunctions of Laplacian. In [13, 26, 19], approximate control-
lability in L2 is proved for multidimensional Schrödinger equation, generically
with respect to functions V,Q and domain D. In [20, 11, 23, 22, 21], stabiliza-
tion results and approximate controllability properties are proved. In particular,
combination of the results of [23] with the above mentioned local exact control-
lability properties gives global exact controllability in finite time for 1D case in
the spaces H3+ε, ε > 0. See also papers [28, 29, 3, 2, 1, 9] for controllability of
finite-dimensional systems and papers [16, 17, 5, 31, 14, 15] for controllability
properties of various Schrödinger systems.

The linearization of (1.1)-(1.3) around the trajectory e−iλk,V tek,V with u = 0
and z0 = ek,V (ek,V is an eigenfunction of the Schrödinger operator −∆ + V
corresponding to some eigenvalue λk,V ) is of the form

iż = −∆z + V (x)z + u(t)Q(x)e−iλk,V tek,V , x ∈ D, (1.4)

z|∂D = 0, (1.5)

z(0, x) = 0. (1.6)

Writing this in the Duhamel form

z(T ) = −i

∫ T

0

S(T − s)[u(s)Qe−iλk,V sek,V ]ds, (1.7)

where S(t) = eit(∆−V ) is the free evolution, we see that (1.4)-(1.6) is equivalent

to the following moment problem for dmk := ie
iλm,V T

〈Qem,V ,ek,V 〉 〈z(T ), em,V 〉

dmk =

∫ T

0

eiωmksu(s)ds, m ≥ 1, ωmk = λm,V − λk,V . (1.8)

It is well known that a gap condition for the frequencies ωmk is necessary for
the solvability of this moment problem when T < +∞ (e.g., see [30]). The

asymptotic formula for the eigenvalues λm,V ∼ Cdm
2
d implies that there is no

gap in the case d ≥ 3 (when d = 2, existence of a domain for which there is a
gap between the eigenvalues is an open problem). Moreover, it follows from [4]
that there is a linear dependence between the exponentials: there is a non-zero
{cm} ∈ ℓ2 such that

∑+∞
m=1 cmeiωmks = 0 for t ∈ [0, T ]. Hence (1.4)-(1.6) is non-

controllable in finite time T < +∞. The situation is different when T = +∞.
Indeed, by Lemma 3.10 in [22], the exponentials are independent on [0,+∞),
and moreover, (1.4)-(1.6) is controllable, by Theorem 2.6 in [24]. In [24], we used
the controllability of linearized system (1.4)-(1.6) to prove the controllability of
nonlinear system only in the case d = 1. In the multidimensional case, we were
able to prove the controllability of (1.4)-(1.6) in a more regular Sobolev space
than the one where nonlinear system (1.1)-(1.3) is well posed. We do not know
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if this difficulty of loss of regularity can be treated using the Nash–Moser inverse
function theorem in the spirit of [6]. More precisely, in the multidimensional
case, it is very difficult to prove that the inverse of the linearization satisfies
the estimates in the Nash–Moser theorem. In this paper, we find a space H
(see (1.11) for the definition), where the nonlinear problem is well posed and
the linearized problem is controllable. Applying the inverse inverse function
theorem in the space H, we get controllability for (1.1)-(1.3). Let us notice that
H is a sufficiently large space of functions, it contains the Sobolev space H3d.
Thus, in particular, we prove controllability in H3d. The result of this paper
is optimal in the sense that it seems that the multidimensional Schrödinger
equation (1.1)-(1.3) is not exactly controllable in finite time.

Acknowledgments. The authors would like to thank J.-P Puel for provid-
ing them in privat communication [27] some results about regularity questions
for the Schrödinger equation.

Notation

In this paper, we use the following notation. Let us define the Banach spaces

ℓ2 := {{aj} ∈ C
∞ : ‖{aj}‖2ℓ2 =

+∞
∑

j=1

|aj |2 < +∞},

ℓ20 := {{aj} ∈ ℓ2 : a1 ∈ R},
ℓ∞ := {{aj} ∈ C

∞ : ‖{aj}‖ℓ∞ = sup
j≥1

|aj | < +∞},

ℓ∞0 := {{aj} ∈ ℓ∞ : lim
j→+∞

aj = 0},

ℓ∞01 := {{aj} ∈ ℓ∞0 : a1 ∈ R}.

We denote by Hs := Hs(D) the Sobolev space of order s ≥ 0. Consider the
Schrödinger operator −∆ + V , V ∈ C∞(D,R) with D(−∆ + V ) := H1

0 ∩ H2.
Let {λj,V } and {ej,V } be the sets of eigenvalues and normalized eigenfunctions
of this operator. Let 〈·, ·〉 and ‖ · ‖ be the scalar product and the norm in
the space L2. Define the space Hs

(V ) := D((−∆ + V )
s
2 ) endowed with the

norm ‖ · ‖s,V = ‖(λj,V )
s
2 〈·, ej,V 〉‖ℓ2 . When D is the rectangle (0, 1)d and

V (x1, . . . , xd) = V1(x1) + . . . + Vd(xd), Vk ∈ C∞([0, 1],R), the eigenvalues and
eigenfunctions of −∆+ V on D are of the form

λj1,...,jd,V = λj1,V1 + . . .+ λjd,Vd
, (1.9)

ej1,...,jd,V (x1, . . . , xd) = ej1,V1(x1) · . . . · ejd,Vd
(xd), (x1, . . . , xd) ∈ D, (1.10)

where {λj,Vk
} and {ej,Vk

} are the eigenvalues and eigenfunctions of operator
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− d2

dx2 + Vk on (0, 1). Define the spaces

H = {z ∈ L2 : (j31 · . . . · j3d)〈z, ej1,...,jd,V 〉 ∈ ℓ∞0 ,

‖z‖H := ‖(j31 · . . . · j3d)〈z, ej1,...,jd,V 〉‖ℓ∞ < +∞}, (1.11)

V = {z ∈ L2 : ‖z‖V :=

+∞
∑

j1,...,jd=1

(j31 · . . . · j3d)|〈z, ej1,...,jd,V 〉| < +∞}. (1.12)

The eigenvalues and eigenfunctions of Dirichlet Laplacian on the interval (0, 1)
are λk,0 = k2π2 and ek,0(x) =

√
2 sin(kπx), x ∈ (0, 1). It is well known that for

any V ∈ L2([0, 1],R)

λk,V = k2π2 +

∫ 1

0

V (x)dx+ rk, (1.13)

‖ek,V − ek,0‖L∞ ≤ C

k
, (1.14)

∥

∥

∥

dek,V
dx

− dek,0
dx

∥

∥

∥

L∞

≤ C, (1.15)

where
∑+∞

k=1 r
2
k < +∞ (e.g., see [25]). For a Banach space X , we shall denote

by BX(a, r) the open ball of radius r > 0 centered at a ∈ X . The integer part
of x ∈ R is denoted by [x]. We denote by C a constant whose value may change
from line to line.

2 Main results

2.1 Well-posedness of Schrödinger equation

We assume that V (x1, . . . , xd) = V1(x1) + . . . + Vd(xd), xk ∈ [0, 1] and Vk ∈
C∞([0, 1],R), k = 1, . . . , d. Let us consider the following Schrödinger equation

iż = −∆z + V (x)z + u(t)Q(x)z + v(t)Q(x)y, (2.1)

z|∂D = 0, (2.2)

z(0, x) = z0(x). (2.3)

The following lemma shows the well-posedness of this system in H2
(V ).

Lemma 2.1. For any z0 ∈ H2
(V ), u, v ∈ L1

loc([0,∞),R) and y ∈ L1([0,∞), H2
(V ))

problem (2.1)-(2.3) has a unique solution z ∈ C([0,∞), H2
(V )). Furthermore, if

v = 0, then for all t ≥ 0 we have

‖z(t)‖ = ‖z0‖. (2.4)

See [12] for the proof. In [10] it is proved that this problem is well posed in
H3

(V ) for d = 1, and in [27] the well-posedness in H3
(V ) is proved for d ≥ 1.
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For any integer l ≥ 3, let m = m(l) := [ l−1
2 ] and define the space

Cm
0 := {u ∈ Cm([0,∞),R) :

dku

dtk
(0) = 0, k ∈ [0,m]}

endowed with the norm of Cm([0,∞),R). The following lemma shows that
problem (2.1)-(2.3) is well posed in higher Sobolev spaces when u, v and y are
more regular.

Lemma 2.2. For any integer l ≥ 3, any z0 ∈ H l
(V ), any y ∈ Wm,1

loc ([0,∞), H2
(V ))

and any u, v ∈ Cm
0 the solution z in Lemma 2.1 belongs to the space C([0,∞), H l)∩

C1([0,∞), H l−2). Moreover, there is a constant C > 0 such that

‖z(t)‖Hl + ‖z‖Wm,1([0,t],H2
(V )

) ≤C(‖z0‖l,V + ‖v‖Cm
0
‖y‖Wm,1([0,t],H2

(V )
))

× e
C(‖u‖Cm

0
+1)t

. (2.5)

See Appendix of [6] for the proof.

Lemma 2.3. Denote by Ut(·, ·) : H2
(V ) ×L1

loc(R+,R)→H2
(V ) the resolving oper-

ator of (1.1), (1.2). Then Ut(·, ·) is locally Lipschitz continuous: there is C > 0
such that

‖Ut(z0, u)− Ut(z
′
0, u

′)‖Hl ≤ C(‖z0 − z′0‖l,V + ‖u− u′‖Cm
0
‖z′0‖l,V )eC(‖u‖Cm

0
+1)t

.

(2.6)

Proof. Notice that z(t) := Ut(z0, u)− Ut(z
′
0, u

′) is a solution of problem

iż = −∆z + V (x)z + u(t)Q(x)z + (u(t)− u′(t))Q(x)Ut(z
′
0, u

′),

z|∂D = 0,

z(0, x) = z0(x)− z′0(x).

Applying Lemma 2.2, we get

‖z(t)‖Hl ≤ C(‖z0 − z′0‖l,V + ‖u− u′‖Cm
0
‖U·(z

′
0, u

′)‖Wm,1([0,t],H2
(V )

))e
C(‖u‖Cm

0
+1)t,

(2.7)

‖U·(z
′
0, u

′)‖Wm,1([0,t],H2
(V )

) ≤ C‖z′0‖l,V eC(‖u‖Cm
0

+1)t. (2.8)

Replacing (2.8) into (2.7), we get (2.6).

Let us rewrite (1.1)-(1.3) in the Duhamel form

z(t) = S(t)z0 − i

∫ t

0

S(t− s)[u(s)Qz(s)]ds, (2.9)

where S(t) = eit(∆−V ) is the free evolution. Let us take any w ∈ L1(R+,R) and
estimate the following integral

Gt(z) :=

∫ t

0

S(−s)[w(s)Qz(s)]ds.
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We take controls from the weighted space space

G := {u ∈ L1(R+,R) : u(·)eB· ∈ L1(R+,R)}

endowed with the norm ‖u‖G = ‖u(·)eB·‖L1 , where the constant B > 0 will be
chosen later. For B > C + 1, where C is the constant in Lemma 2.2, we have
the following result.

Proposition 2.4. Let us take any l ≥ 4d, z0 ∈ H l
(V ), w ∈ G and u ∈ Cm

0 ,

and let z(t) := Ut(z0, u). Then there are constants δ, C > 0 such that for any
u ∈ BCm

0
(0, δ) and for any t > s ≥ 0

‖Gt(z)−Gs(z)‖H ≤ C

∫ t

s

‖z(τ)‖Hl |w(τ)|dτ, (2.10)

and the following integral converges in H

G∞(z) :=

∫ +∞

0

S(−τ)[w(τ)Qz(τ)]dτ. (2.11)

Proof. Using (2.5) with v = 0, the definition of G, and choosing δ > 0 sufficiently
small, we see that

∫ +∞

0

‖z(τ)‖Hl |w(τ)|dτ < +∞.

Combining this with (2.10), we prove the convergence of the integral in (2.11).
Let us prove (2.10). To simplify the notation, let us suppose that d = 2; the
proof of the general case is similar. Let V (x1, x2) = V1(x1)+V2(x2). Integration
by parts gives

〈Qz(s), ej1,V1ej2,V2〉 =
1

λj1,V1

〈(− ∂2

∂x2
1

+ V1)(Qz), ej1,V1ej2,V2〉

=
1

λ2
j1,V1

〈(− ∂2

∂x2
1

+ V1)(Qz), (− ∂2

∂x2
1

+ V1)ej1,V1ej2,V2〉

=
1

λ2
j1,V1

∫ 1

0

∂2

∂x2
1

(Qz)ej2,V2dx2
∂

∂x1
ej1,V1

∣

∣

x1=1

x1=0

+
1

λ2
j1,V1

(

〈V1(−
∂2

∂x2
1

+ V1)(Qz), ej1,V1ej2,V2〉

+ 〈 ∂

∂x1
(− ∂2

∂x2
1

+ V1)(Qz),
∂

∂x1
ej1,V1ej2,V2〉

)

= : Ij + Jj .

Let us estimate Ij . Since ∂2

∂x2
1
(Qz(s)) = 0 for all x1 ∈ [0, 1] and for x2 = 0 and

6



x2 = 1, integration by parts in x2 implies

Ij =
1

λ2
j1,V1

λj2,V2

∫ 1

0

(− ∂2

∂x2
2

+ V2)
( ∂2

∂x2
1

(Qz)
)

ej2,V2dx2
∂

∂x1
ej1,V1

∣

∣

x1=1

x1=0

=
1

λ2
j1,V1

λ2
j2,V2

∫ 1

0

(− ∂2

∂x2
2

+ V2)
( ∂2

∂x2
1

(Qz)
)

(− ∂2

∂x2
2

+ V2)ej2,V2dx2
∂

∂x1
ej1,V1

∣

∣

x1=1

x1=0

=
1

λ2
j1,V1

λ2
j2,V2

(− ∂2

∂x2
2

+ V2)
( ∂2

∂x2
1

(Qz)
) ∂

∂x2
ej2,V2

∂

∂x1
ej1,V1

∣

∣

x2=1

x2=0

∣

∣

x1=1

x1=0

+
1

λ2
j1,V1

λ2
j2,V2

∫ 1

0

V2(−
∂2

∂x2
2

+ V2)
( ∂2

∂x2
1

(Qz)
)

ej2,V2dx2
∂

∂x1
ej1,V1

∣

∣

x1=1

x1=0

+
1

λ2
j1,V1

λ2
j2,V2

∫ 1

0

∂

∂x2
(− ∂2

∂x2
2

+ V2)
( ∂2

∂x2
1

(Qz)
) ∂

∂x2
ej2,V2dx2

∂

∂x1
ej1,V1

∣

∣

x1=1

x1=0

=: Ij,1 + Ij,2 + Ij,3. (2.12)

Let us consider the term Ij,1:

Ij,1 =
( 2j1j2π

2

λ2
j1,V1

λ2
j2,V2

(− ∂2

∂x2
2

+ V2)
( ∂2

∂x2
1

(Qz)
)

cos(j1πx1) cos(j2πx2)

+
1

λ2
j1,V1

λ2
j2,V2

(− ∂2

∂x2
2

+V2)
( ∂2

∂x2
1

(Qz)
) ∂2

∂x1∂x2
(ej1,V1ej2,V2−ej1,0ej2,0)

)

∣

∣

x2=1

x2=0

∣

∣

x1=1

x1=0
.

Using (1.13), (1.15) and the Sobolev embedding Hs →֒ L∞, s > d
2 , we get

sup
j1,j2≥1

∣

∣

∣
j31j

3
2

∫ t

s

ei(λj1,V1+λj2 ,V2)τw(τ)Ij,1dτ
∣

∣

∣
≤ C

∫ t

s

‖z(τ)‖Hl |w(τ)|dτ.

The Riemann–Lebesgue theorem and (1.15) imply that

j31j
3
2

∫ t

s

ei(λj1,V1+λj2 ,V2 )τw(τ)Ij,1dτ→0 as j1 + j2→+∞.

Thus

j31j
3
2

∫ t

s

ei(λj1,V1+λj2,V2 )τw(τ)Ij,1dτ ∈ ℓ∞0 .

The terms Ij,2, Ij,3 and Jj are treated exactly in the same way. We omit the
details. Thus we get that

‖Gt(z)−Gs(z)‖H = ‖
∫ t

s

S(−τ)[w(τ)Qz(τ)]dτ‖H ≤ C

∫ t

s

‖z(τ)‖Hl |w(τ)|dτ.

Let Tn→+∞ be a sequence such that e−iλV,jTn→1 as n→∞ for any j ≥ 1
(e.g., see Lemma 2.1 in [24]). Then

S(Tn)z→z as n→+∞ in H for any z ∈ H and t ≥ 0. (2.13)
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Indeed, since

S(t)z =

+∞
∑

j=1

e−iλj,V t〈z, ej,V 〉ej,V , (2.14)

we have

‖S(Tn)z − z‖H ≤ sup
λj1,...,jd,V ≤N

(j31 · . . . · j3d)|e−iλj1,...,jd,V Tn − 1||〈z, ej1,...,jd,V 〉|

+ 2 sup
λj1,...,jd,V >N

(j31 · . . . · j3d)|〈z, ej1,...,jd,V 〉| ≤
ε

2
+

ε

2
= ε

for sufficiently large integers N,n ≥ 1.
Let us take t = Tn in (2.9) and pass to the limit n→∞. Using Proposi-

tion 2.4, the embedding H l
(V ) →֒ H and (2.13), we obtain the following result.

Lemma 2.5. Let us take any l ≥ 4d and z0 ∈ H l
(V ). There is a constant δ > 0

such that for any u ∈ BCm
0
(0, δ) ∩ G the following limit exists in H

lim
n→+∞

UTn
(z0, u) =: U∞(z0, u). (2.15)

2.2 Exact controllability in infinite time

Let l ≥ 4d be the integer in Proposition 2.4. Take any integer s ≥ l and let

Hs
0(R+,R) := {u ∈ Hs(R+,R) : u

(k)(0) = 0, k = 0, . . . , s− 1}.

The set of admissible controls is the Banach space

F := G ∩Hs
0(R+,R) (2.16)

endowed with the norm ‖u‖F := ‖u‖G + ‖u‖Hs . Equality (2.4) implies that
it suffices to consider the controllability properties of (1.1), (1.2) on the unit
sphere S in L2.

We prove the controllability of (1.1), (1.2) under below condition.

Condition 2.6. Suppose that the functions V,Q ∈ C∞(D,R) are such that

(i) infp1,j1,...,pd,jd≥1 |(p1j1 · . . . · pdjd)3Qpj |>0,Qpj :=〈Qep1,...,pd,V , ej1,...,jd,V 〉,

(ii) λi,V − λj,V 6= λp,V − λq,V for all i, j, p, q ≥ 1 such that {i, j} 6= {p, q} and
i 6= j.

See [24] and [26, 23, 18] for the proof of genericity of (i) and (ii), respectively.
Let us set

E := span{ej,V }. (2.17)

Below theorem is the main result of this paper.
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Theorem 2.7. Under Condition 2.6, for any z̃ ∈ S∩E there is σ > 0 such that
problem (1.1), (1.2) is exactly controllable in infinite time in S ∩BH(z̃, σ), i.e.,
for any z1 ∈ S ∩BH(z̃, σ) there is a control u ∈ F such that limit (2.15) exists
in H and z1 = U∞(z̃, u).

See Section 3.3 for the proof. Since the space H3d
(V ) is continuously embedded

into H, we obtain

Theorem 2.8. Under Condition 2.6, for any z̃ ∈ S ∩ E there is σ > 0 such
that for any z1 ∈ S ∩BH3d

(V )
(z̃, σ) there is a control u ∈ F such that limit (2.15)

exists in H and z1 = U∞(z̃, u).

Remark 2.9. As in the case d = 1 (see Theorems 3.7 and 3.8 in [24]) here also one
can prove controllability in higher Sobolev spaces with more regular controls,
and a global controllability property using a compactness argument.

3 Proof of Theorem 2.8

3.1 Controllability of linearized system

In this section, we study the controllability of the linearization of (1.1), (1.2)
around the trajectory Ut(z̃, 0), z̃ ∈ S ∩ E :

iż = −∆z + V (x)z + u(t)Q(x)Ut(z̃, 0), (3.1)

z|∂D = 0, (3.2)

z(0, x) = z0. (3.3)

The controllability in infinite time of this system is proved in [24], Section 2.
For the proof of Theorem 2.8 we need to show controllability of (3.1)-(3.3) in H
which is larger than the space considered in [24]. Hence a generalization of the
arguments of [24] is needed.

Let S be the unit sphere in L2. For y ∈ S, let Ty be the tangent space to S
at y ∈ S:

Ty = {z ∈ L2 : Re〈z, y〉 = 0}.
By Lemma 2.1, for any z0 ∈ H2

(V ) and u ∈ L1
loc(R+,R), problem (3.1)-(3.3) has

a unique solution z ∈ C(R+, H
2
(V )). Let

Rt(·, ·) : H2
(V ) × L1([0, t],R) → H2

(V ),

(z0, u) → z(t)

be the resolving operator. Then Rt(z0, u) ∈ TUt(z̃,0) for any z0 ∈ Tz̃ ∩H2
(V ) and

t ≥ 0. Indeed,

d

dt
Re〈Rt,Ut〉 = Re〈Ṙt,Ut〉+Re〈Rt, U̇t〉

= Re〈i(∆− V )Rt − iu(t)Q(x)Ut,Ut〉+Re〈Rt, i(∆− V )Ut〉
= Re〈i(∆− V )Rt,Ut〉+Re〈Rt, i(∆− V )Ut〉 = 0.
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Since Re〈R0,U0〉 = Re〈z0, z̃〉 = 0, we get Rt(z0, u) ∈ TUt(z̃,0).
As (3.1)-(3.3) is a linear control problem, the controllability of system with

z0 = 0 is equivalent to that with any z0 ∈ Tz̃. Henceforth, we take z0 = 0 in
(3.3). Let us rewrite this problem in the Duhamel form

z(t) = −i

∫ t

0

S(t− s)u(s)Q(x)Us(z̃, 0)ds. (3.4)

Let Tn→∞ be the sequence defined in Section 2.1. For any u ∈ F the following
limit exists in H

R∞(0, u) := lim
n→+∞

z(Tn) = lim
n→+∞

RTn
(0, u). (3.5)

Using (2.14) and (3.4), we obtain

〈z(t), em,V 〉 = −i

+∞
∑

k=1

e−iλm,V t〈z̃, ek,V 〉Qmk

∫ t

0

eiωmksu(s)ds, m ≥ 1, (3.6)

where ωmk = λm,V − λk,V and Qmk := 〈Qem,V , ek,V 〉. Let us take t = Tn in
(3.6) and pass to the limit as n → +∞. The choice of the sequence Tn implies
that

〈R∞(0, u), em,V 〉 = −i

+∞
∑

k=1

〈z̃, ek,V 〉Qmk

∫ +∞

0

eiωmksu(s)ds. (3.7)

Moreover, R∞(0, u) ∈ Tz̃. Indeed, using (3.5) and the convergence UTn
(z̃, 0)→z̃

in H, we get

Re〈R∞(0, u), z̃〉 = lim
n→∞

Re〈RTn
(0, u),UTn

(z̃, 0)〉 = 0.

Lemma 3.1. The mapping R∞(0, ·) is linear continuous from F to Tz̃ ∩H.

Proof. By (2.24) in [24], there is a constant C > 0 such that for any mj , kj ≥ 1,
j = 1, . . . , d we have

∣

∣

∣

(m1 · . . . ·md)
3

(k1 · . . . · kd)3
〈Qek1,...,kd,V , em1,...,md,V 〉

∣

∣

∣
≤ C. (3.8)

Then (3.7), (3.8) and the Schwarz inequality imply that

‖R∞(0, u)‖H = sup
m1,...,md≥1

|(m3
1 · . . . ·m3

d)〈R∞(0, u), em1,...,md,V 〉|

≤ C sup
m1,...,md≥1

∣

∣

∣
(m3

1 · . . . ·m3
d)〈z̃, em1,...,md,V 〉〈Qem,V , em,V〉

∫ +∞

0

u(s)ds
∣

∣

∣

+ C‖z̃‖V sup
m,k≥1,m 6=k

∣

∣

∣

(m1 · . . . ·md)
3

(k1 · . . . · kd)3
〈Qek1,...,kd,V , em1,...,md,V〉

∫ +∞

0

eiωmksu(s)ds
∣

∣

∣

≤ C‖z̃‖2V‖u‖2F < +∞,

where V is defined by (1.12).
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Let us introduce the set

E0 :={z ∈ S :∃p, q ≥ 1, p 6= q,z = cpep,V + cqeq,V ,

|cp|2〈Qep,V , ep,V 〉−|cq|2〈Qeq,V , eq,V 〉 = 0}.

Theorem 3.2. Under Condition 2.6, for any z̃ ∈ S ∩ E \ E0, the mapping
R∞(0, ·) : F → Tz̃ ∩ H admits a continuous right inverse, where the space
Tz̃ ∩ H is endowed with the norm of H. If z̃ ∈ S ∩ E0, then R∞(0, ·) is not
invertible.

Remark 3.3. The invertibility of the mapping RT (0, ·) with finite T > 0 and
z̃ = e1 is studied by Beauchard et al. [7]. They prove that for space dimension
d ≥ 3 the mapping is not invertible. By Beauchard [6], RT is invertible in the
case d = 1 and z̃ = e1. The case d = 2 is open to our knowledge.

For any u ∈ L1(R+,R), denote by ǔ the inverse Fourier transform of the
function obtained by extending u as zero to R∗

−:

ǔ(ω) :=

∫ +∞

0

eiωsu(s)ds. (3.9)

Proof of Theorem 3.2. Let us take any z̃ ∈ S ∩ E \ E0 and y ∈ Tz̃ ∩H. There is
an integer N ≥ 1 such that 〈z̃, ek,V 〉 = 0 for any k ≥ N + 1. Let us define

dmk :=
i〈y, em,V 〉〈ek,V , z̃〉 − i〈ek,V , y〉〈z̃, em,V 〉

Qmk

+ Cmk,

for k ≤ N , where Cmk ∈ C. Notice that

sup
m,k≥1

∣

∣

∣

〈y, em,V 〉〈ek,V , z̃〉
Qmk

∣

∣

∣
≤ C‖y‖H‖z̃‖H < +∞.

Repeating the arguments of the proof of Theorem 2.6 in [24], one can show that
the constants Cmk can be chosen such that

sup
m,k≥1

|dmk| < +∞, dmm = d11, dmk = dkm for all 1 ≤ m, k ≤ N,

dmk→0 as m→∞ for any fixed k ≥ 1,

and y = R∞(0, u) holds for any solution u ∈ F of system

dmk = ǔ(ωmk) for all m ≥ 1 and k ∈ [1, N ].

It remains to use the following proposition, which is proved in next subsection.

Proposition 3.4. If the strictly increasing sequence ωm ∈ R,m ≥ 1 is such that
ω1 = 0 and ωm→+∞ as m→+∞, then there is a linear continuous operator
A from ℓ∞01 to F such that { ˇA(d)(ωm)} = d for any d ∈ ℓ∞01.
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The proof of the non-invertibility of R∞(0, ·) is a remark by Beauchard and
Coron [8] (cf. Step 2 of the proof of Theorem 2.6 in [24]).

Remark 3.5. The proof of Theorem 3.2 does not work in the multidimensional
case for a general z̃ /∈ E . Indeed, assume that 〈z, ekn,V 〉 6= 0 for some se-
quence kn→ + ∞. Then the well-known asymptotic formula for eigenvalues
λk,V ∼ Cdk

2
d implies that the frequencies ωmnkn

→0 for some integers mn ≥ 1
for space dimension d ≥ 3. Thus the moment problem ǔ(ωmk) = dmk cannot be
solved in the space L1(R+,R) for a general dmk. Clearly, this does not imply
the non-controllability in infinite time of linearized system.

3.2 Proof of Proposition 3.4

The proof of Proposition 3.4 is close to that of Proposition 2.9 in [24]. Let

G̃ := {u ∈ L1(R+,R) : u
2(·)eB̃· ∈ L1(R+,R)}

endowed with the norm ‖u‖G̃ = ‖u2(·)eB̃·‖L1, where the constant B̃ > 2B.
Then

F̃ := G̃ ∩Hs
0(R+,R)

is a subspace of F defined by (2.16). Moreover, F̃ is a Hilbert space. The
construction of the operator A is based on the following lemma.

Lemma 3.6. Under the conditions of Proposition 3.4, for any d ∈ ℓ∞01 there is
u ∈ F̃ such that {ǔ(ωm)} = d.

Proof of Proposition 3.4. By Lemma 3.6, the mapping u→{ǔ(ωm)} is surjective
linear bounded form Hilbert space F̃ onto Banach space ℓ∞01. Hence it admits a
linear bounded right inverse A : ℓ∞01→F̃ .

Proof of Lemma 3.6. Let us show that there is a constant M > 0 such that for
any d ∈ ℓ∞01, ‖d‖ℓ∞01 ≤ 1 there is u ∈ BF̃(0,M) satisfying {ǔ(ωm)} = d.

Let us introduce the functional

F (u) := ‖{ǔ(ωm)} − d‖ℓ∞

defined on the space F̃ .

Step 1. First, let us show that for any M > 0 there is u0 ∈ BF̃(0,M) such
that

F (u0) = inf
u∈B

F̃
(0,M)

F (u). (3.10)

To this end, let un ∈ BF̃(0,M) be an arbitrary minimizing sequence. Since

F̃ is reflexive, without loss of generality, we can assume that there is u0 ∈
BF̃(0,M) such that un ⇀ u0 in F̃ . Using the compactness of the injection
H1([0, N ])→C([0, N ]) for any N > 0 and a diagonal extraction, we can assume
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that un(t)→u0(t) uniformly for t ∈ [0, N ]. Again extracting a subsequence, if
it is necessary, one gets {ǔn(ωm)}→{ǔ0(ωm)} in ℓ∞ as n→ + ∞. Indeed, the
tails on [T,+∞), T ≫ 1 of the integrals (3.9) are small uniformly in n (this
comes from the boundedness of un in G̃), and on the finite interval [0, T ] the
convergence is uniform. This implies that

F (u0) ≤ inf
u∈B

F̃
(0,M)

F (u).

Since u0 ∈ BF̃(0,M), we have (3.10).

Step 2. To complete the proof, we need to show that F (u0) = 0.

Lemma 3.7. Under the conditions of Proposition 3.4, the set

U := {{ǔ(ωm)} : u ∈ F̃}
is dense in ℓ∞10.

Combining this with the Baire lemma, we get that for sufficiently large
M > 0

Ũ := {{ǔ(ωm)} : u ∈ BF̃ (0,M)}
is dense in Bℓ∞10

(0, 1). Thus F (u0) = 0.

Proof of Lemma 3.7. It is well known that the dual of ℓ∞0 is ℓ1. Let us suppose
that h = {hm} ∈ ℓ1 is such that

〈h, {ǔ(ωm)}〉ℓ1,ℓ∞0 = 0

for all u ∈ F̃ . Then replacing in this equality ǔ(ωm) by its integral representa-
tion, we get

0 =

+∞
∑

m=1

∫ +∞

0

eiωmsu(s)dshm =

∫ +∞

0

u(s)
(

+∞
∑

m=1

eiωmshm

)

ds.

Since ωi 6= ωj for i 6= j, by Lemma 3.10 in [22], we have hm = 0 for any m ≥ 1.
This proves that U is dense.

3.3 Application of the inverse mapping theorem

The proof is based on the inverse mapping theorem. We project the system onto
the tangent space Tz̃ and apply the inverse mapping theorem to the following
mapping

Ũ∞(·) : F→Tz̃ ∩H,

u→PU∞(z̃, u),

where P is the orthogonal projection in L2 onto Tz̃, i.e., Pz = z−Re〈z, z̃〉z̃, z ∈
L2. Notice that P−1 : BTz̃

(0, δ)→S is well defined for sufficiently small δ > 0.
The following result proves that Ũ∞ is C1.
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Proposition 3.8. For a sufficiently small δ > 0 the mapping

U∞(z̃, ·) : BF (0, δ)→H,

u→U∞(z̃, u),

is C1. Moreover, dU∞(z̃, u)v = R∞(u, v), where

R∞(u, v) := lim
n→+∞

RTn
(u, v) in H, (3.11)

and Rt is the resolving operator of

iż = −∆z + V (x)z + u(t)Q(x)z + v(t)Q(x)Ut(z̃, u), (3.12)

z|∂D = 0, (3.13)

z(0, x) = z0. (3.14)

This proposition implies that Ũ∞ ∈ C1(BF (0, δ)). By the definition of Tn,
we have limn→+∞ UTn

(z̃, 0) = z̃. Hence U∞(z̃, 0) = z̃ and Ũ∞(0) = 0. We have
dŨ∞(0)v = R∞(0, v), which is invertible for z̃ /∈ E0 in view of Theorem 3.2. Thus
applying the inverse mapping theorem, we complete the proof of Theorem 2.8
for z̃ /∈ E0.

In the case z̃ ∈ E0 the linearized system is not controllable, and R∞ is not
invertible. Controllability near z̃ in finite time and for d = 1 is proved by
Beauchard and Coron [8]. They show that the linearized system is controllable
up to codimension one. This implies that the nonlinear system is also con-
trollable up to codimnsion one. The controllability in the missed directions is
proved using the intermediate values theorem. In the case d ≥ 1 and T = +∞,
the proof repeats literally the arguments of [8]. We omit the details.

Proof of Proposition 3.8. See [10] for the proof the fact that UT (z̃, ·) is C1 when
T is finite, d = 1 and phase space is H3. Let us show that U∞(z̃, ·) is differ-
entiable at any u ∈ BF (0, δ) for sufficiently small δ > 0. We need to prove
that

‖U∞(z̃, u+ v)− U∞(z̃, u)−R∞(u, v)‖H = o(‖v‖F). (3.15)

Notice that h = Ut(z̃, u+ v)− Ut(z̃, u)−Rt(u, v) is a solution of

iḣ = −∆h+ V (x)h+ (u(t) + v(t))Q(x)h + v(t)Q(x)Rt(u, v),

h|∂D = 0,

h(0, x) = 0.
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Using Proposition 2.4 and Lemma 2.2, we get

‖h(∞)‖H ≤ C

∫ +∞

0

(‖h(τ)‖Hl |u(τ) + v(τ)| + ‖Rτ (u, v)‖Hl |v(τ)|)dτ

≤ C

∫ +∞

0

(‖v‖Cm
0
‖R·(u, v)‖Wm,1([0,τ ],H2

(V )
)|u(τ) + v(τ)|eC(‖u+v‖Cm

0
+1)τ

+ ‖Rτ (u, v)‖Hl |v(τ)|)dτ

≤ C

∫ +∞

0

(‖v‖2Cm
0
‖U·(z̃, u)‖Wm,1([0,τ ],H2

(V )
)|u(τ) + v(τ)|eC(‖u+v‖Cm

0
+‖v‖Cm

0
+2)τ

+ ‖v‖Cm
0
‖U·(z̃, u)‖Wm,1([0,τ ],H2

(V )
)|v(τ)|eC(‖v‖Cm

0
+1)τ

)dτ

≤ C‖v‖2F ,

for any v ∈ BF (0, ε), sufficiently small ε > 0, and for sufficiently large B > 0 in
the definition of G.

It remains to prove that R∞(u, ·) is continuous in BF (0, δ). For g :=
Rt(u1, v)−Rt(u2, v) we have

iġ = −∆g + V (x)g + u1(t)Q(x)g + (u1(t)− u2(t))Q(x)Rt(u2, v)

+ v(t)Q(x)(Ut(z̃, u1)− Ut(z̃, u2)),

g|∂D = 0,

g(0, x) = 0.

By Proposition 2.4,

‖g(∞)‖H ≤ C

∫ +∞

0

(‖g(τ)‖Hl |u1(τ)| + ‖Rτ (u2, v)‖Hl |u1(τ) − u2(τ)|

+ ‖Uτ (z̃, u1)− Uτ (z̃, u2))‖Hl |v(τ)|)dτ =: I1 + I2 + I3.

Lemmas 2.2 and 2.3 imply

I1 ≤ C

∫ +∞

0

(‖R·(u2, v)‖Wm,1([0,τ ],H2
(V )

)‖u1(τ)− u2(τ)‖Cm
0

+ ‖U·(z̃, u1)− U·(z̃, u2)))‖Wm,1([0,τ ],H2
(V )

)||v(t)‖Cm
0
)|u1(τ)|eC(‖u1‖Cm

0
+1)τ

dτ

≤ C‖u1 − u2‖F .

The terms I2, I3 are treated in a similar way. Thus we get the continuity of
R∞(u, ·).
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