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A notion of capacity related to elasticity. Applications to

homogenization.

Michel Bellieud

Abstract. We study a notion of capacity related to elasticity which proves convenient

to analyze the concentrations of strain energy caused by the rigid displacements of some

infinitesimal parts of an elastic body in two or three dimensions. By way of application,

we investigate the behavior of solutions to initial boundary value problems describing

vibrations of periodic elastic composites with rapidly varying elastic properties. More

specifically, we analyze a two-phase medium whereby a set of heavy stiff tiny particles

is embedded in a softer matrix. This task is set in the context of linearized elasticity.
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1 Introduction

The study of composites comprising infinitesimal traces of materials with extreme phys-

ical properties has attracted a lot of attention over the past few decades [9], [10], [11],

[12], [13], [14], [22], [25]. The common feature of this body of work is the emergence

of a concentration of energy in a small region of space surrounding the strong compo-

nents. A similar phenomenon occurs when Dirichlet problems in varying domains are

considered [3], [4], [15], [16],[17], [18], [19], [20]. This extra contribution is characterized

by a local density of the geometric perturbations in terms of an appropriate capacity

depending on the type of equations. We are aiming at complementing this extensive

material.

In the spirit of Villaggio [37], we introduce a notion of capacity characterizing the

strain energy associated to the displacement of a bounded rigid body T immersed in

an elastic space V . More precisely, we consider the family (c3((vvv,ωωω);T ;V ))(vvv,ωωω)∈(R3)2

defined by

c3((vvv,ωωω);T ;V ) := inf

(

Z

V

aaa0eee(ψψψ) : eee(ψψψ)dx, ψψψ ∈ H
1
0 (V ; R3),

ψψψ = vvv +
2

diamT
ωωω ∧ (xxx− xxxT ) in T

)

,

(1)

where aaa0 denotes the elasticity tensor of the medium and xxxT stands for the geomet-

rical center of gravity of T . We denote by Cap3(T ;V ) the 6 × 6 symmetric positive

semidefinite matrix associated with the quadratic form (vvv,ωωω) → c3((vvv,ωωω);T ;V ) in the

canonical basis. In dimension 2, we define in the same way a 3 × 3 symmetric positive

semidefinite matrix Cap2(T ;V ).

The novelty of this notion, compared to what is already available on the subject in

the litterature (see [4], [20], [23], [30]), is that the restrictions to T of the minimizers

of (1) are helicoidal vector fields instead of constants. This choice is suggested by the

small values presumably taken by the symmetrized gradient of the displacement in the

parts of the body where the elasticity coefficients are large. The underlying purpose of

this tool is to describe, in the setting of homogenization, the concentration of strain

energy caused by the rigid displacements of some minuscule parts of a composite. The

presence of the parameter 2
diamT in (1) ensures that, given ωωω 6= 0 and a sequence (Tn)

of domains of vanishing size, the norm on ∂Tn of the minimizers of (1) is bounded

and not uniformly vanishing. As illustrated in the application developed below, this

scaling proves appropriate to study elastic composites comprising small stiff particles

homothetical to some fixed bounded domain of R
N (see Remark 3 (iv)).

For a given bounded smooth open subset Ω of R
N (N ∈ {2, 3}), we consider the

problem
8
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:

ρε
∂2uuuε

∂t2
− divσσσε = ρεfff in Ω × (0, t1),

σσσε = aaaεeee(uuuε), eee(uuuε) =
1

2
(∇∇∇uuuε +∇∇∇Tuuuε),

uuuε ∈ C([0, t1]; H
1
0 (Ω,RN )) ∩ C1([0, t1]; L

2(Ω,RN )),

uuuε(0) = bbb0,
∂uuuε

∂t
(0) = ccc0,

(bbb0, ccc0) ∈ (C(Ω; RN ) ∩H1
0 (Ω; RN )) × C(Ω; RN ), fff ∈ C(Ω × (0, t1); R

N ).

(2)
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The elasticity tensor aaaε and the mass density ρε are supposed to take possibly large

values in some subset Trε
of Ω and constant values aaa0, ρ0 in the surrounding matrix

(see (32), (34)). The set Trε
consists of an ε-periodic distribution of tiny grain-like

particles of diameter rε << ε, homothetical to some bounded connected open subset T

of R
N (see (31)). We show that the homogenized problem associated with (2) depends

on the limit CCCN (T ) of the sum of the images of the connected components of Trε
under

CapN (.;Ω) per unit volume. The critical case takes place when some eigenvalues of

the matrix CCCN (T ) are positive and finite: this corresponds to particles of diameter of

order ε3 if N = 3 and, if N = 2, of diameter rε such that 1
ε2| log rε|

is of order 1. Then,

a gap between the mean displacement of the constituent parts of the composite arises,

giving rise to the emergence of a concentration of elastic strain energy in a thin zone

enveloping the particles (see Remark 3 (iii)). It turns out that the particles behave, at

a microscopic scale, like rigid bodies. Their effective displacement is characterized by

the limit (vvv,ωωω) of the sequence (ṽvvε, ω̃ωωε) defined in terms of the solution uuuε of (2) by

(38), where vvv describes the effective displacement of their geometrical center of gravity,

and ωωω their effective rescaled rotation vector (see Remarks 5 and 6). We prove that the

effective behavior of the tiny grain-like inclusions is governed by the coupled system of

equations in Ω × (0, t1)

∂2

∂t2

 

ρvvv + 2
diamT ωωω ∧ ρ(yyyG − yyyT )

`

2
diamT

´2
JJJρωωω + 2

diamT ρ(yyyG − yyyT ) ∧ vvv

!

=

„

ρfff

ρ(yyyG − yyyT ) ∧ fff

«

−CCCN (T )

„

vvv − uuu

ωωω

«

,

(3)

displaying rigid vibrations, associated with the boundary and initial conditions given in

(40), the constants ρ, JJJρ, yyyG, yyyT being defined by (35). The coupling with the effective

displacement in the matrix uuu is marked by the second term of the right hand member

of (3), which characterizes the sum of the surface forces applied on the particles by

the surrounding medium and their total moment with respect to the center of gravity

of the geometric particle. The effective displacement in the matrix is governed by the

equation

ρ0
∂2uuu

∂t2
− div(aaa0eee(uuu)) = ρ0fff + ρ

„

fff − ∂2vvv

∂t2
− 2

diamT

∂2ωωω

∂t2
∧ ρ(yyyG − yyyT )

«

,

where the second term of the right hand member represents the total force per unit

volume exerted by the particles on the elastic matrix. We obtain a corrector result (see

Section 7.3).

Computing the matrix CCCN (T ) requires a study of CapN which reveals strik-

ing differences depending on N . In the three-dimensional case, we obtain CCC3(T ) =

γ(3)Cap3(T ; R3) where γ(3) := limε→0
rε

ε3
and, in the critical case, each eigenvalue of

CCC3(T ) is positive and finite. By contrast, only two of the three eigenvalues of CCC2(T )

are then positive and finite, whereas (CCC2(T ))33 = +∞ regardless of the order of mag-

nitude of rε. This means that the effective concentration of strain energy generated

by a non vanishing rescaled rotation of the particles is infinite. Accordingly, we find

that ωωω = 0 if N = 2. The second distinctive feature of the two-dimensional case lies

in the independence of the upper 2 × 2 submatrix of CCC2(T ) with respect to T : we get

(CCC2(T ))αβ = γ(2)(MMM2)αβ where γ(2) = limε→0
1

ε2| log rε|
(α, β ∈ {1, 2}) and MMM2 is

defined by (21). The singular behavior of Cap2 leads to a significant simplification of
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the limiting problem (3) in the two-dimensional case: the effective rescaled rotation

vector of the particles is then equal to zero and the effective equations, independent of

the choice of T , consist of the system

8

>

>

<

>

>

:

ρ
∂2vvv

∂t2
= ρfff − γ

(2)
MMM2(vvv − uuu),

ρ0
∂2uuu

∂t2
− div(aaa0eee(uuu)) = ρ0 + ρ

„

fff − ∂2

∂t2
vvv

«

,

associated with the boundary and initial conditions given in (41). The application Cap2

is relevant to the study of fibered structures: if Trε
is made up, instead of particles, of an

ε-periodic distribution of parallel cylinders of cross section of size rε << ε homothetical

to some bounded connected open subset S of R
2, then the limiting problem depends

partly on CCC2(S) (see Section 5.4). Accordingly, the rescaled effective angle of torsion

of the fibers is equal to zero and no torsion effect take place (see Remark 4).

In the elliptic problem associated with (2), which shows the same general features,

the auxiliary variables vvv,ωωω can be eliminated from the effective equations, yielding a

much simpler homogenized problem which covers the complex behavior of the com-

posite at a microscopic scale (see Section 5.1). This elimination is not possible in the

hyperbolic case, where an interesting memory phenomenon arises (see Remark 3 (ii)).

2 Notations

In this paper, {eee1, .., eeeN} stands for the canonical basis of R
N (N ∈ {2, 3}). Points

in R
N or in Z

N and real-valued functions are represented by symbols beginning

by a lightface minuscule (example x, i, detAAA...) and vectors and vector-valued func-

tions by symbols beginning by a boldface minuscule (examples: xxx, xxxT , iii, uuu, fff , ggg,

divσσσε,...). Matrices and matrix-valued functions are represented by symbols begin-

ning by a boldface majuscule with the following exceptions: ∇∇∇uuu (displacement gradi-

ent), eee(uuu) (linearized strain tensor), aaaε (elasticity tensor field). We denote by ui or

(uuu)i the components of a vector uuu and by Aij or (AAA)ij those of a matrix AAA (that

is uuu =
PN
i=1 uieeei =

PN
i=1(uuu)ieeei; AAA =

PN
i,j=1Aijeeei ⊗ eeej =

PN
i,j=1(AAA)ijeeei ⊗ eeej).

We do not employ the usual repeated index convention for summation. We denote by

AAA :BBB =
PN
i,j=1AijBij the inner product of two matrices, by εijk the three-dimensional

alternator, by uuu∧vvv =
P3
i,j,k=1 εijkujvkeeei the exterior product in R

3, by S
M (M ∈ N)

the set of all real symmetric matrices of order M , by ≤ the partial order relation on

S
M defined by

AAA ≤ BBB, if ξξξ.AAAξξξ ≤ ξξξ.BBBξξξ ∀ξξξ ∈ R
M
. (4)

The symbol IIIM represents the M × M identity matrix. The letter B denotes the

open ball of R
N of center 0 and radius 1. The letter C denotes different constants

whose precise values may vary. The symbol aaa0 stands for a fourth order tensor on R
N

satisfying

(aaa0)ijkh = (aaa0)jikh = (aaa0)khij ∀(i, j, k, h) ∈ {1, ..., N}4
,

aaa0MMM :MMM ≥ c|MMM |2 ∀MMM ∈ S
N
, (c > 0).

(5)

Given an open subset V of R
N and a bounded connected open subset T of V such that

T ⊂ V , the symbol CapN (T ;V ) represents, if N = 3, the 6 × 6 symmetric positive



A notion of capacity related to linear elasticity. Applications to homogenization. 5

semidefinite matrix associated to the quadratic form defined by

ξξξ :=

„

aaa

bbb

«

∈ R
3 × R

3 → inf P3(T ;V ;ξξξ) (= ξξξ.Cap3(T ;V )ξξξ),

P3(T ;V ;ξξξ) : inf
ψψψ∈H1

0 (V ;R3)



aV (ψψψ,ψψψ), ψψψ(x) = aaa+
2

diamT
bbb ∧ (xxx− xxxT ) in T

ff

,

(6)

where xxxT :=
R

−
T
xxxdx and aV stands for the bilinear form on H1

0 (V ; R3) given by

aV (ψψψ,ϕϕϕ) :=

Z

V

aaa0eee(ψψψ) : eee(ϕϕϕ)dx.

If N = 2, Cap2(T ;V ) denotes the 3 × 3 symmetric positive semidefinite matrix asso-

ciated to the quadratic form

ξξξ :=

„

aaa

b

«

∈ R
2 × R → inf P2(T ;V ;ξξξ) (= ξξξ.Cap2(T ;V )ξξξ),

P2(T ;V ;ξξξ) : inf
ψψψ∈H1

0 (V ;R2)



aV (ψψψ,ψψψ), ψψψ(x) = aaa+
2

diamT
beee3 ∧ (xxx− xxxT ) in T

ff

.

(7)

In the context of the heat equation, the same approach leads to the quadratic form

a ∈ R → capN (T ;V )a2, where capN denotes the harmonic capacity.

3 Study of CapN

The main objective of this section is to analyze the behavior of the application CapN
with respect to certain small subsets of R

N . In what follows, the letter T denotes a

bounded connected Lipschitz open subset of R
N and V an open subset of R

N such

that T ⊂ V .

Lemma 1. The problems (6) and (7) have minimizing sequences in D(V ; R
N ).

Proof. Assume that N = 3 and fix ξξξ :=

„

aaa

bbb

«

∈ R
3 × R

3. By (6), there holds

ξξξ.Cap3(T ;V )ξξξ = inf
˘

aV (ψψψ,ψψψ), ψψψ ∈ Aξξξ(T ;V )
¯

,

Aξξξ(T ;V ) :=

(

ψψψ ∈ H
1
0 (V ; R3), ψψψ(x) = aaa+ bbb ∧ 2

diamT
(xxx− xxxT ) in T

)

.

As aV is strongly continuous on H1
0 (V ; R3), we just have to check that Aξξξ(T ;V ) ∩

D(V ; R3) is dense in Aξξξ(T ;V ) with respect to the strong topology of H1
0 (V ; R3). Let

us fix ηηη ∈ Aξξξ(T ;V ) and ϕϕϕ ∈ Aξξξ(T ;V ) ∩ D(V ; R3). There holds ηηη − ϕϕϕ = 0 on ∂T

hence, since T is Lipschitz, ηηη −ϕϕϕ ∈ H1
0 (V \ T ; R3). Therefore, there exists a sequence

(ψψψn) ⊂ D(V \ T ; R3) converging strongly to ηηη − ϕϕϕ in H1
0 (V \ T ; R3). We can extend

each ψψψn to V by setting ψψψn = 0 in T . Then ψψψn + ϕϕϕ ∈ Aξξξ(T ;V ) ∩ D(V ; R3) and the

sequence (ψψψn +ϕϕϕ) converges strongly to ηηη in H1
0 (V ; R3). By the same argument, the

problem (7) has a minimizing sequence in D(V ; R2). ⊓⊔
The next lemma marks a fundamental difference between Cap2 and Cap3: the infimum

problem P2(T ;V ;ξξξ) is not achieved in general if V is unbounded (see Remark 2 (ii)),
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whereas P3(T ;V ;ξξξ) is always achieved provided we substitute for H1
0 (V ; R3) in (6) the

Banach space K0(V ; R3) defined by

K0(V ; R3) := D(V ; R3)
|.|K0 , |ψψψ|K0

:=

„Z

V

|ψψψ|6dx
«

1
6

+

„Z

V

|∇∇∇ψψψ|2dx
«

1
2

, (8)

where D(V ; R3)
|.|K0 denotes the closure of D(V ; R3) with respect to the norm |.|K0

.

The space K0(V ; R3) coincides with H1
0 (V ; R3) if V is bounded and may be strictly

larger otherwise. The discrepancy between the behaviors of Cap2 and Cap3 comes in

particular from the fact that Gagliardo-Nirenberg-Sobolev inequality
Z

RN

|f |p
∗

dx ≤ C

Z

RN

|∇f |pdx ∀f ∈W
1,p(RN ) (p∗ :=

Np

N − p
, p < N), (9)

fails to hold for p = N = 2.

Lemma 2. (i) Assume that N = 3, and let ξξξ :=

„

aaa

bbb

«

∈ R
3 × R

3. Then the problem

PK0
(T ;V ;ξξξ) : inf

ψψψ∈K0(V ;R3)

(

aV (ψψψ,ψψψ), ψψψ(x) = aaa+ bbb ∧ 2

diamT
(xxx− xxxT )x ∈ T

)

(10)

has a unique solution, the matrix Cap3(T ;V ) is positive definite, and

ξξξ.Cap3(T ;V )ξξξ = inf P3(T ;V ;ξξξ) = minPK0
(T ;V ;ξξξ).

(ii) Assume that N = 2, that V is bounded in one direction, and let ξξξ :=

„

aaa

b

«

∈ R
2×R.

Then the problem (7) has a unique solution.

Proof. (i) Setting

Kξξξ(T ;V ) :=

(

ψψψ ∈ K0(V ;R3), ψψψ = aaa+ bbb ∧ 2

diamT
(xxx− xxxT ) in T

)

,

and repeating the argument of the proof of Lemma 1, we find that Kξξξ(T ;V ) ∩ D(V ; R3)
K0

= Kξξξ(T ;V ) and, noticing that aV is continuous on K0(V ; R3), deduce that

ξξξ.Cap3(T ;V )ξξξ = inf
˘

aV (ψψψ,ψψψ), ψψψ ∈ Kξξξ(T ;V )
¯

. (11)

By Gagliardo-Nirenberg-Sobolev inequality in H1(R3; R3) (see (9)), Korn inequality in

H1
0 (V ; R3), and (5), there holds (extending ψψψ to R

3 by setting ψψψ = 0 in R
3 \ V )

„Z

V

|ψψψ|6dx
«

1
6

=

„Z

R3
|ψψψ|6dx

«
1
6

≤ C

„Z

R3
|∇∇∇ψψψ|2dx

«
1
2

= C

„Z

V

|∇∇∇ψψψ|2dx
«

1
2

≤ C

„Z

V

|eee(ψψψ)|2dx
«

1
2

≤ C (aV (ψψψ,ψψψ))
1
2 ≤ C|ψψψ|K0

∀ ψψψ ∈ K0(V ; R3),

(12)

hence the application |.|aV
:=
p

aV (., .) is a norm on K0(V ; R3) equivalent to |.|K0
.

Equiped with this norm, K0(V ; R3) is a Hilbert space on which the bilinear form aV
is continuous and coercive. As Kξξξ(T ;V ) is a closed convex subset of K0(V ; R3), by
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Stampacchia Theorem the infimum (11) is achieved at a unique point ψψψ ∈ Kξξξ(T ;V ). If

ξξξ 6= 0, then ψψψ 6= 0, hence ξξξ.Cap3(T ;V )ξξξ = aV (ψψψ,ψψψ) = |ψψψ|2aV
> 0, therefore the matrix

Cap3(T ;V ) is positive definite.

(ii) If V is bounded in one direction, by Poincaré and Korn inequalities in H1
0 (V ; R2),

|ψψψ|2H1
0 (V ;R2) ≤ C

Z

V

|eee(ψψψ)|2dx ≤ CaV (ψψψ,ψψψ) ∀ψψψ ∈ H
1
0 (V ; R2). (13)

Then we repeat the argument of the case N = 3, substituting (13) for (12) and

H1
0 (V ; R2) for K0(V ; R3). ⊓⊔

The next Lemma, whose proof is straightforward, states that in regard to the order

relation (4), the application (T, V ) → CapN (T ;V ) is decreasing with respect to V

and the N × N upper left submatrix of CapN (T ;V ) is increasing with respect to T .

However, CapN (T ;V ) is presumably not increasing with respect to T (see Remark 2

(i)).

Lemma 3. (i) Let V1 and V2 be two open subsets of R
N such that T ⊂ V1 ⊂ V2. Then

CapN (T ;V1) ≥ CapN (T ;V2).

(ii) Let T1 and T2 be two bounded connected open subsets of R
N such that T 1 ⊂ T 2 ⊂ V .

Then

„

aaa

0

«

.CapN (T1;V )

„

aaa

0

«

≤
„

aaa

0

«

.CapN (T2;V )

„

aaa

0

«

∀aaa ∈ R
N
. (14)

In the following lemma, we investigate the continuity properties of CapN (T, V ) with

respect to V .

Lemma 4. Let (Vn) be an increasing sequence of open subsets of R
N such that T ⊂ V1

and
S+∞
n=1 Vn = V .

(i) There holds

lim
n→+∞

CapN (T ;Vn) = CapN (T ;V ).

(ii) Assume that N = 3, and let ψψψn be the solution of PK0
(T ;Vn;ξξξ) (see (10)) extended

to V by setting ψψψn = 0 in V \ Vn. Then (ψψψn) converges strongly in K0(V ; R3) to the

unique solution of PK0
(T ;V ;ξξξ).

(iii) Assume that N = 2 and V is bounded in one direction, and let ψψψn be the solution

of P2(T ;Vn;ξξξ) (see (7))), extended to V in the same way. Then (ψψψn) converges strongly

in H1
0 (V ; R2) to the unique solution of P2(T ;V ;ξξξ).

Proof. (i) We fix ξξξ ∈ R
N(N+1)

2 , α > 0, ψψψ ∈ D(V ; RN ) ∩ Aξξξ(T ;V ) such that

aV (ψψψ,ψψψ) ≤ ξξξ.CapN (T ;V )ξξξ+α (see Lemma 1) and n0 ∈ N such that Suppψψψ ⊂ Vn ∀n ≥
n0. We have ξξξ.CapN (T ;Vn)ξξξ ≤ aVn

(ψψψ,ψψψ) = aV (ψψψ,ψψψ) ≤ ξξξ.CapN (T ;V )ξξξ+α ∀n ≥ n0.

Applying Lemma 3 (i), we infer

ξξξ.CapN (T ;V )ξξξ ≤ lim inf
n→+∞

ξξξ.CapN (T ;Vn)ξξξ

≤ lim sup
n→+∞

ξξξ.CapN (T ;Vn)ξξξ ≤ ξξξ.CapN (T ;V )ξξξ + α.
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(ii) By (i), we have (see the proof of Lemma 2 (i))

lim
n→+∞

|ψψψn|2aV
= lim
n→+∞

aVn
(ψψψn,ψψψn) = lim

n→+∞
ξξξ.Cap3(T ;Vn)ξξξ

= ξξξ.Cap3(T ;V )ξξξ < +∞,
(15)

hence the sequence (ψψψn) is bounded in K0(V ; R3) and converges weakly, up to a sub-

sequence, to some ψψψ ∈ K0(V ; R3). Since each ψψψn belongs to the convex strongly closed

(thus weakly closed) subset Kξξξ(T ;V ) of K0(V ; R3), there holds ψψψ ∈ Kξξξ(T ;V ). The

functional ggg → aV (ggg,ggg) is convex strongly continuous on K0(V ; R3), hence weakly

lower semi-continuous, therefore aV (ψψψ,ψψψ) ≤ lim infn→+∞ aV (ψψψn,ψψψn) = ξξξ.Cap3(T ;

V )ξξξ. We deduce that ψψψ is the unique solution of PK0
(T ;V ;ξξξ) and that |ψψψ|2aV

=

ξξξ.Cap3(T ;V )ξξξ. It follows then from (15) that limn→+∞ |ψψψn|aV
= |ψψψ|aV

. As the space

K0(V ; R3), equiped with |.|aV
, is a Hilbert space, it is uniformly convex, hence the

weak convergence of (ψψψn) to ψψψ joined with the convergence of the norms yields the

strong convergence of (ψψψn) to ψψψ in K0(V ; R3).

(iii) Same argument as in the case N = 3. ⊓⊔
The properties stated below are easily deduced from Lemma 4 and from the change of

variable formula.

Lemma 5. There holds, for λ > 0

CapN (λT ;V ) = λ
N−2CapN

„

T ;
1

λ
V

«

if λT ⊂ V,

lim
λ→0

CapN

„

T ;
1

λ
V

«

= CapN (T ; RN ) if 0 ∈ V.

(16)

Proof. Let us fix ξξξ ∈ R
N(N+1)

2 and α > 0. By Lemma 1, there exists ψψψ ∈ Aξξξ(λT ;V )∩
D(V ; RN ) such that ξξξ.CapN (λT ; V )ξξξ + α ≥ aV (ψψψ,ψψψ) =

R

V
aaa0eee(ψψψ) : eee(ψψψ)dx. We set

ϕϕϕ(y) := ψψψ(λy). Then ϕϕϕ ∈ Aξξξ(T ; 1
λV ), eee(ϕϕϕ)(y) = λeee(ψψψ)(λy), and

ξξξ.CapN (λT ;V )ξξξ + α ≥
Z

V

aaa0eee(ψψψ) : eee(ψψψ)dx = λ
N
Z

1
λ
V

aaa0eee(ψψψ) : eee(ψψψ)(λy)dy

= λ
N−2

Z

1
λ
V

aaa0eee(ϕϕϕ) : eee(ϕϕϕ)(y)dy ≥ λ
N−2

ξξξ.CapN

„

T ;
1

λ
V

«

ξξξ.

By the arbitrary choice of α, λ, T , V , ξξξ, the first line of (16) is proved.

If 0 ∈ V , we can assume without loss of generality that B ⊂ V . By Lemma 4 we

have limλ→0 CapN (T, 1
λB) = CapN (T,RN ). By passing to the limit as λ → 0 in

the first and third terms of the double inequality CapN (T,RN ) ≤ CapN (T, 1
λV ) ≤

CapN (T, 1
λB) (see Lemma 3), we obtain the second line of (16). ⊓⊔

In the next two lemmas, we investigate the asymptotic behavior of CapN (rεT ;RεB),

being (rε), (Rε) any bounded sequences of positive reals such that rε << Rε. The

study is straightforward in the case N = 3:

Lemma 6. Assume that N = 3, let T be a bounded connected Lipschitz open subset of

R
3 such that B ⊂ T , and let (rε) and (Rε) be two sequences of positive reals such that

rε << Rε ≤ C < +∞. Then,

lim
ε→0

1

rε
Cap3(rεT ;RεB) = Cap3(T ; R3). (17)
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Moreover, if

aaa0MMM := λ0 tr(MMM)IIIN + 2µ0MMM ∀MMM ∈ S
N
, µ0 > 0, 3λ0 + 2µ0 > 0, (18)

then

Cap3(B; R3) =
12πµ0(λ0 + 2µ0)

(2λ0 + 5µ0)

„

III3 0

0 0

«

+ 8πµ0

„

0 0

0 III3

«

. (19)

Proof. By Lemma 4 and Lemma 5 we have

lim
ε→0

1

rε
Cap3(rεT ;RεB) = lim

ε→0
Cap3

„

T ;
Rε

rε
B

«

= Cap3(T ; R3).

The Dirichlet problem PK0
(B; R3;ξξξ) of the spherical cavity in an infinite isotropic

elastic body has been studied by a number of authors (see the bibliography of [29]).

Its infimum ξξξ.Cap3(B; R3)ξξξ is given for instance in [29, (8.4.3)]. Alternatively, the real

ξξξ.Cap3(T ; R3)ξξξ is computed explicitely by Villaggio in [37] for ξξξ ∈
„

eee3
0

«

,

„

0

eee3

«ff

when T is an ellipsoid of revolution along the axis parallel to eee3. Then, for T = B, the

coefficients emerging in (19) are deduced simply by substituting
“

µ0,
λ0

2(λ0+µ0)
, 1
”

for

(G, σ, q0) in [37, line 4, p.347]. ⊓⊔

Remark 1. Under (18), the solution θθθ
(p)
ε (resp., ηηη

(p)
ε ) of the Dirichlet problem for the

homogeneous isotropic elastic hollow sphere P3(rεB;RεB; (eeep, 0)) (resp., P3(rεB;RεB;

(0, eeep))) were determined by Thomson in [36] after the method developed by Lamé [26]

and are given by (see [29, 8.5.30, 8.5.33]):

θθθ
(p)
ε (x) = αε(|xxx|)eeep + βε(|xxx|)xpxxx+̟ε(|xxx|)xxx,

ηηη
(p)
ε (x) =

r2ε

R3
ε − r3ε

„

R3
ε

|xxx|3 − 1

«

eeep ∧ xxx,
(20)

where

αε(r) :=
rε

rε −Rε

„

−Rε
r

+1

«

rεRεa

3δε(rε −Rε)

„

−r
3
ε −R3

ε

r5ε −R5
ε

r
2
εR

2
ε + r

2 − r2ε −R2
ε

r5ε −R5
ε

r
5
«

1

r3
,

βε(r) :=
rεRεa

3δε(rε −Rε)

„

−r
3
ε −R3

ε

r5ε −R5
ε

r
2
εR

2
ε + r

2 − r2ε −R2
ε

r5ε −R5
ε

r
5
«„

− 3

r5

«

,

̟ε(r) :=
rεRε

3δε(rε −Rε)

„

−10

3

«

r2ε −R2
ε

r5ε −R5
ε

 

r2ε −R2
ε

rε −Rε

rεRε

r
− r3ε −R3

ε

rε −Rε
+ r

2

!

,

the constants δε, a, b being defined by

δε := ab− 10

9

rεRε(r
2
ε −R2

ε)
2

(rε −Rε)(r5ε −R5
ε)
, a :=

2

3

λ0 + 4µ0

λ0 + µ0
, b :=

2

3

2λ0 + 5µ0

λ0 + µ0
.

Deriving Cap3(rεB;RεB) from (20) and passing to the limit as ε→ 0 thanks to (17),

we find again (19). We verify in passing that ϕϕϕε ∈ {θθθ(p)ε , ηηη
(p)
ε } satisfies estimates of

the type |ϕϕϕε(x)| ≤ C rε

|xxx|
, |∇∇∇ϕϕϕε(x)| ≤ C rε

|xxx|2
, similar to (110).
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The case N = 2 is appreciably more involved:

Lemma 7. Under (18), for any bounded connected Lipschitz open subset T of R
2

such that B ⊂ T and any couple ((rε), (Rε)) of sequences of positive reals such that

rε << Rε ≤ C < +∞, there holds

lim
ε→0

| log rε|(Cap2(rεT ;RεB))αβ= (MMM2)αβ ∀α∈ {1, 2},

MMM2 := 4πµ0
λ0 + 2µ0

λ0 + 3µ0
III2,

lim
ε→0

Cap2(rεT ;RεB) = Cap2(T ; R2) = (Cap2(T ; R2))33eee3 ⊗ eee3,

(Cap2(T ; R2))33 > 0, |(Cap2(rεT ;RεB))α3| ≤
C

p

| log rε|
∀α∈ {1, 2}.

(21)

Moreover,

Cap2(B; R2) = 4πµ0eee3 ⊗ eee3. (22)

Proof. At first we assume that T = B. Let ηηηε (resp., θθθ
(α)
ε ) denote the solution of

P2(rεB;RεB; (0, 1)) (resp., P2(rεB;RεB; (eeeα, 0)), α ∈ {1, 2}) (see Lemma 2 (ii)). A

straightforward computation yields

ηηηε(x) =
rε

R2
ε − r2ε

„

R2
ε

|xxx|2 − 1

«

eee3 ∧ xxx,

Cap2(rεB;RεB)33 =

Z

RεB

eee(ηηηε) : aaa0eee(ηηηε)dx = 4πµ0
R2
ε

R2
ε − r2ε

,

Cap2(rεB;RεB)α3 =

Z

RεB

eee(θθθ
(α)
ε ) : aaa0eee(ηηηε)dx

= eeeα.

Z

∂(rεB)
aaa0eee(ηηηε)νννdH1(x) = 0.

(23)

The following estimate is established in [10, (5.12)]:

(Cap2(rεB;RεB))αβ = eeeβ .

Z

∂(rεB)
aaa0eee(θθθ

(α)
ε )νννdH1(x)

= 4πµ0
λ0 + 2µ0

λ0 + 3µ0

1

| log rε|
(1 + o(1))δαβ .

(24)

By Lemma 4 and Lemma 5 we have

lim
ε→0

Cap2(rεT ;RεB) = lim
ε→0

Cap2

„

T ;
Rε

rε
B

«

= Cap2(T ; R2). (25)

Thanks to (23), (24), and (25), the estimates (21), (22) are proved in the case T = B

(or T = λB, λ > 0). If T 6= B, there holds

B ⊂ T ⊂ (diamT )B. (26)

Let us fix aaa ∈ R
2. By (14) and (26), we have

| log rε|
„

aaa

0

«

.Cap2(rεB;RεB)

„

aaa

0

«

≤| log rε|
„

aaa

0

«

.Cap2(rεT ;RεB)

„

aaa

0

«

≤ | log rε|
„

aaa

0

«

.Cap2(rε(diamT )B;RεB)

„

aaa

0

«

.
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By passing to the limit as ε → 0 in the first and third terms of the last inequalities,

taking (24) into account, we infer

lim
ε→0

| log rε|
„

aaa

0

«

.Cap2(rεT ;RεB)

„

aaa

0

«

= 4πµ0
λ0 + 2µ0

λ0 + 3µ0
|aaa|2,

yielding by the arbitrary choice of aaa

lim
ε→0

| log rε|(Cap2(rεT ;RεB))αβ=4πµ0
λ0 + 2µ0

λ0 + 3µ0
δαβ ∀α, β ∈ {1, 2}. (27)

Denoting now by θθθ
(α)
ε (α ∈ {1, 2}) (resp., ηηηε) the solution of P2(rεT ;RεB; (eeeα, 0))

(resp., P2(rεT ;RεB; (0, 1))), by Cauchy-Schwarz inequality, (25) and (27) we have

|(Cap2(rεT ;RεB))α3| = |aRεB(θθθ
(α)
ε , ηηηε)| ≤ aRεB(θθθ

(α)
ε , θθθ

(α)
ε )

1
2 aRεB(ηηηε, ηηηε)

1
2

= (Cap2(rεT ;RεB))
1
2
αα(Cap2(rεT ;RεB))

1
2
33 ≤ C

p

| log rε|
.

(28)

By (7), (26), there holds

(Cap2(T ; R2))33 =

„

0

1

«

.Cap2(T ; R2)

„

0

1

«

≥ inf
ψψψ∈H1

0 (R2;R2)

(

aR2(ψψψ,ψψψ), ψψψ =
2

diamT
eee3 ∧ (xxx− xxxT ) in B

)

= inf
ψψψ∈H1

0 (R2;R2)

(

aR2(ψψψ,ψψψ), ψψψ = −2eee3 ∧ xxxT
diamT

+
2

diamB

diamB

diamT
eee3 ∧ xxx in B

)

=

„

− 2eee3∧xxxT

diamT
diamB
diamT

«

.Cap2(B; R2)

„

− 2eee3∧xxxT

diamT
diamB
diamT

«

= 4πµ0

„

diamB

diamT

«2

> 0.

(29)

Joining (25 ), (27), (28), and (29), the estimates (21) are proved. ⊓⊔
We are in position to determine the asymptotic behavior of the sequence (CCCNε(T ))

introduced in Section 1:

Lemma 8. Let Ω be a bounded open subset of R
N such that 0 ∈ Ω. Assume (18) if

N = 2. Then the estimates deduced by substituting Ω for RεB in (17) and (21) are

satisfied. In particular, setting CCCNε(T ) := 1
εN CapN (rεT ;Ω), we have, if 0 < γ(N) <

+∞ (see (39))

lim
ε→0

CCC3ε(T ) = γ
(3)Cap3(T ; R3),

lim
ε→0

(CCC2ε(T ))αβ = γ
(2)(MMM2)αβ , α, β ∈ {1, 2},

lim
ε→0

(CCC2ε(T ))33 =(Cap2(T ; R3))33> 0, (CCC2ε(T ))α3≤
C

p

| log rε|
,

(30)

where MMM2 is given by (21).

Proof. Let (c, d) ∈ R
2 be such that cB ⊂ Ω ⊂ dB. Lemma 8 follows from

Lemma 7 (applied with Rε ∈ {c, d}) and from the double inequality CapN (rεT ; cB) ≥
CapN (rεT ;Ω) ≥ CapN (rεT ; dB). ⊓⊔
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Remark 2. (i) The application (T, V ) → CapN (T ;V ) is not increasing with re-

spect to T , as illustrated by the following example: assume that N = 3 and set Tε :=

B ∪ Cε, where Cε := (εBR2) × (−2, 2) (see fig.1). Then, due to the presence of the

parameter 2
diamT in (1), it is easy to prove that limε→0

„

0

eee3

«

.Cap3(Tε; R
3)

„

0

eee3

«

=

1
2

„

0

eee3

«

.Cap3(B; R3)

„

0

eee3

«

, although B ⊂ Tε. Hence, given ξξξ ∈ R
N(N+1)

2 , the applica-

Fig. 1

tion T → ξξξ.CapN (T ;V )ξξξ is not the restriction of a Choquet capacity to the connected

relatively compact open subsets of V , unless ξξξ =

„

aaa

0

«

for some aaa ∈ R
N (see (14)),

and the application T → CapN (T ;V ), defined for relatively compact connected open

subsets of V , can presumably not be extended to 2V .

(ii) If aaa ∈ R
2 \ {0}, then the infimum problem P2

„

T ; R2;

„

aaa

0

««

(see (7)) is not

achieved. Otherwise, should ψψψ ∈ H1
0 (R2; R2) be a minimum, then by Korn inequality in

H1
0 (R2; R2) and the second line of (21), |∇∇∇ψψψ|2L2(R2;R2) ≤ CaR2(ψψψ,ψψψ) = ξξξ.Cap2(T ; R2)ξξξ =

0, hence ψψψ = 0, in contradiction with the fact that ψψψ = aaa in T . This lack of solution is

similar to Stokes’ paradox in fluid Mechanics [34].

4 Application to homogenization

Let Ω and T be bounded Lipschitz domains of R
N . Given a sequence of positive reals

(rε) such that rε << ε, we set (see fig. 2)

Trε
:=

[

i∈Iε

T
i
rε

; T
i
rε

:= εiii+ rεT ; Iε :=
n

i ∈ Z
N
, Y

i
ε ⊂ Ω

o

;

Y
i
ε := ε({iii} + Y ); Y :=

„

−1

2
,

1

2

«N

.

(31)

We consider the problem of elastodynamics (2). The elasticity tensor aaaε and the mass

density ρε are supposed to take possibly large values in Trε
and constant values in the

matrix Ω \ Trε
. More precisely, we assume that
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Fig. 2

8

>

>

>

>

<

>

>

>

>

:

ρε(x) = ρ

„

yε(x)

rε

«

εN

rNε |T |
if x ∈ Trε

,

ρε(x) = ρ0 > 0 if x ∈ Ω \ Trε
,

ρ ∈ C(T ), ρ(y) > c > 0 ∀y ∈ T ,

(32)

where

yyyε(x) :=
X

i∈ZN

1Y i
ε
(x) (xxx− εiii) , (33)

and that

(aaaε)ijkh = (aaaε)jikh = (aaaε)khij ∀(i, j, k, h) ∈ {1, ..., N}4
,

aaaε(x)MMM :MMM ≥ dε(x)|MMM |2 ∀MMM ∈ S
N
, ∀x ∈ Ω, dε(x) > d > 0 ∀x ∈ Ω,

aaaε(x) = aaa0 in Ω \ Trε
, lim

ε→0
cε = +∞ if N = 3, cε := inf

x∈Trε

dε(x).

(34)

We assume also that the elastic material constituting the matrix is isotropic, i. e. that

aaa0 satisfies (18) (see Remark 3 (v)). The scalar ρ, the vectors yyyT , yyyG and the N ×N

symmetric matrix JJJρ defined by

ρ :=

Z

−
T

ρdy, yyyT :=

Z

−
T

yyydy, ρyyyG :=

Z

−
T

ρyyydy,

J
ρ
ij := −

Z

−
T

ρ(yyy − yyyT )i(yyy − yyyT )jdy if i 6= j, J
ρ
ii :=

X

j 6=i

Z

−
T

ρ|(yyy − yyyT )j |2dy,
(35)

characterize respectively the average mass density, the geometrical center of gravity,

the center of mass and the mass-inertia matrix of the rescaled particle. We suppose

that

T of class C3 if N = 3,

Z

Ω

aaaεeee(bbb0) : eee(bbb0)dx < C < +∞, (36)

and, without loss of generality, that

B ⊂ T. (37)
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Denoting by uuuε the solution of the problem (2), we introduce the auxiliary sequences

(ω̃ωωε) and (ṽvvε) defined by (see Remark 5)

ω̃ωωε(x, t) :=
X

i∈Iε

 

c(N)
diamT

2

Z

−
∂Bi

rε

„

yyyε(s)

rε
∧ uuuε(s, t)

«

dHN−1(s)

!

1Y i
ε
(x),

ṽvvε(x, t) :=
X

i∈Iε

 

Z

−
∂Bi

rε

uuuε(s, t)dHN−1(s)

!

1Y i
ε
(x) − ω̃ωωε(x, t) ∧ yyyT ,

(38)

where c(2) = 1, c(3) = 3
2 and Birε

is obtained by substituting B for T in (31). We

show that the limiting problem depends on the parameter γ(N) defined by

γ
(N) := lim

ε→0
γ
(N)
ε ∈ [0,+∞], γ

(2)
ε :=

1

ε2| log rε|
, γ

(3)
ε :=

rε

ε3
. (39)

If 0 < γ(N) < +∞, we prove that (uuuε, ṽvvε, ω̃ωωε) converges, in the sense defined below, to

the unique solution (uuu,vvv,ωωω) of the problem given, if N = 3, by

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ρ0
∂2uuu

∂t2
− div(aaa0eee(uuu)) =

ρ0fff + ρ

 

fff − ∂2vvv

∂t2
− 2

diamT

∂2ωωω

∂t2
∧ ρ(yyyG − yyyT )

!

in Ω × (0, t1),

∂2

∂t2

 

ρvvv+ 2
diamT ωωω ∧ ρ(yyyG − yyyT )

`

2
diamT

´2
JJJρωωω+ 2

diamT ρ(yyyG − yyyT ) ∧ vvv

!

=

„

ρfff

ρ(yyyG − yyyT ) ∧ fff

«

− γ
(3)Cap3(T ; R3)

„

vvv − uuu

ωωω

«

in Ω × (0, t1),

(uuu,vvv,www)∈
“

L
∞(0, t1;H

1
0 (Ω; R3)) × L

∞(0, t1;L
2(Ω; R3))2

”

∩
“

C
1([0, t1];L

2(Ω; R3))
”3
,

uuu(0) = vvv(0) = bbb0,
∂uuu

∂t
(0) =

∂vvv

∂t
(0) = ccc0, ωωω(0) =

∂ωωω

∂t
(0) = 0,

(40)

and, if N = 2, by

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ωωω = 0 in Ω × (0, t1),

ρ0
∂2uuu

∂t2
− div(aaa0eee(uuu)) = ρ0fff + ρ

„

fff − ∂2vvv

∂t2

«

in Ω × (0, t1),

ρ
∂2vvv

∂t2
= ρfff − γ

(2)
MMM2(vvv − uuu) in Ω × (0, t1),

(uuu,vvv) ∈
“

L
∞(0, t1;H

1
0 (Ω; R2)) × L

∞(0, t1;L
2(Ω; R2))

”

∩
“

C
1([0, t1];L

2(Ω; R2))
”2
,

uuu(0) = vvv(0) = bbb0,
∂uuu

∂t
(0) =

∂vvv

∂t
(0) = ccc0.

(41)

where MMM2 is defined by (21). The following result is partly announced in [8].
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Theorem 1. Assume (18), (32)-(36), and 0 < γ(N) < +∞. Let uuuε be the solution of

(2) and let ṽvvε, ω̃ωωε be defined by (38). Then (uuuε) converges weak-star in L∞(0, t1;H
1
0 (Ω;

R
N )) and strongly in L∞(0, t1;L

2(Ω; RN )) to uuu and (ṽvvε, ω̃ωωε) converges weak-star in

(L∞(0, t1;L
2(Ω; RN )))2 to (vvv,ωωω). If N = 3, (uuu,vvv,ωωω) is the unique solution of (40). If

N = 2, ωωω = 0 and (uuu,vvv) is the unique solution of (41).

Remark 3. (i) The conclusions of Theorem 1 can be extended to the cases γN ∈
{0,+∞} (see Section 7.4):

- If γ(N) = +∞ and if

r
2
ε << ε

3 if N = 3 and rε << ε
2 if N = 2, (42)

then uuuε converges weak-star in L∞(0, t1;H
1
0 (Ω; RN )) and strongly in L∞(0, t1; L

2(Ω; RN ))

to the solution of

8

>

>

<

>

>

:

(ρ0 + ρ)
∂2uuu

∂t2
− div(aaa0eee(uuu)) = (ρ0 + ρ)fff in Ω × (0, t1),

uuu ∈ L
∞(0, t1;H

1
0 (Ω; RN )) ∩ C1([0, t1];L

2(Ω; RN )), uuu(0) = bbb0,
∂uuu

∂t
(0) = ccc0.

(43)

In this case, the sequences (ṽvvε) and (ω̃ωωε) converge strongly in (L∞(0, t1;L
2(Ω; RN )))2

respectively to uuu and to 0.

-If γ(N) = 0, then uuuε converges weak-star in L∞(0, t1;H
1
0 (Ω; RN )) and strongly in

L∞(0, t1;L
2(Ω; RN )) to the solution of

8

>

>

<

>

>

:

ρ0
∂2uuu

∂t2
− div(aaa0eee(uuu)) = ρ0fff in Ω × (0, t1),

uuu ∈ L
∞(0, t1;H

1
0 (Ω; RN )) ∩ C1([0, t1];L

2(Ω; RN )), uuu(0) = bbb0,
∂uuu

∂t
(0) = ccc0.

(ii) (Memory effects). Assume for simplicity N = 3, T = B, 0 < γ(3) < +∞, and that

ρ is constant (that is ρ = ρ). Then by (35) there holds yyyG = yyyT = 0. We deduce from

(19) and from the second equation of (40) that

JJJ
ρ ∂

2ωωω

∂t2
+ 8πµ0γ

(3)
ωωω = 0, in Ω × (0, t1), ωωω(0) =

∂ωωω

∂t
(0) = 0,

therefore ωωω = 0 and vvv satisfies

ρ
∂2vvv

∂t2
+ γ

(3)
χ(vvv − uuu) = ρfff in Ω × (0, t1), vvv(0) = bbb0,

∂vvv

∂t
(0) = ccc0, (44)

where (cf. (19)) χ :=
12πµ0(λ0 + 2µ0)

(2λ0 + 5µ0)
. Setting δ :=

s

χ
γ(3)

ρ
, we find

vvv(x, t)=

Z t

0

sin δ(t− τ)

δ

“

fff(x, τ)+δ2uuu(x, τ)
”

dτ + ccc0(x)
sin δt

δ
+ bbb0(x) cos δt. (45)

Subtracting (44) from the first equation of (40), we get

ρ0
∂2uuu

∂t2
− div(aaa0eee(uuu)) − γ

(3)
χ(vvv − uuu) = ρ0fff. (46)



16 Michel Bellieud

After substitution of (45) in (46), we deduce that uuu satisfies the equation

ρ0
∂2uuu

∂t2
− div(aaa0eee(uuu)) + ρδ

2
„

uuu− δ

Z t

0
sin(δ(t− τ))uuu(τ)dτ

«

= ρ0fff + ρδ

Z t

0
sin(δ(t− τ))fff(τ)dτ + ρδccc0(x) sin(δt) + ρδ

2
bbb0(x) cos(δt),

where the memory term ”−ρδ3
R t
0 sin(δ(t− τ))uuu(τ)dτ” emerges.

(iii) The total mechanical energy stored in the composite at the instant τ is given by

(see (96), (117), (118), (144))

e(τ) =
1

2

Z

Ω

ρ0

˛

˛

˛

˛

∂uuu

∂t

˛

˛

˛

˛

2

(τ)dx

+
1

|T |

Z

Ω×T
ρ

˛

˛

˛

˛

∂vvv

∂t
+

2

diamT

∂ωωω

∂t
∧ (yyy − yyyT )

˛

˛

˛

˛

2

(τ)dxdy + Φ(uuu,vvv,ωωω).

where, if N = 3,

Φ(uuu,vvv,ωωω) :=
1

2

Z

Ω

aaa0eee(uuu) : eee(uuu)(τ)dx

+
1

2
γ
(3)
Z

Ω

„

vvv − uuu

ωωω

«

.Cap3(T ; R3)

„

vvv − uuu

ωωω

«

(τ)dx,

(47)

and, if N = 2,

Φ(uuu,vvv,ωωω) :=
1

2

Z

Ω

aaa0eee(uuu) : eee(uuu)dx+
1

2
γ
(2)
Z

Ω

(vvv − uuu).MMM2(vvv − uuu)dx if ωωω = 0,

Φ(uuu,vvv,ωωω) := +∞ otherwise.

(48)

The second term of Φ represents the concentration of strain energy, stored in a small

zone enveloping the particles, generated by the discrepancy between the effective dis-

placement in the particles and the effective displacement in the matrix.

(iv) The choice of the parameter 2
diamT in (1) may be inappropriate if the particles

have a complicated shape. For instance, in the case of a set Tε consisting of three-

dimensional needle-shaped particles parallel to one of the coordinate axes, the variant

of Cap3 deduced from (1) by replacing the Dirichlet condition on T by

ψψψ = aaa+
X

i=1,2

2

diamPi(T )
bieeei ∧ (xxx− xxxT ),

where Pi denotes the orthogonal projection on the axis Reeei, should rather be considered.

If rε denotes the length of the ”needles”, say rε = diamP3(T
i
ε) and αεrε, βεrε charac-

terize the size of their cross-sections (αεrε = diamP1(T
i
ε), βεrε = diamP2(T

i
ε)), then

for each choice of the sequence (rε) (such that cε3 ≤ rε <
ε
2 ), there exists presumably

several critical sizes of the parameter, αε, βε for which some specific microscopic rigid

displacements of the particles should induce the emergence of a concentration of strain

energy in their neighborhood .

(v) The results stated in Theorem 1 are likely to hold true in the anisotropic case:

the assumption (18) is used only in Lemma 11 if N = 3 (resp. in Lemma 7 and

in the proof of (146) if N = 2). However, they may fail to hold if the hypothesis

limε→0 cε = +∞ if N = 3, stated in (34) and used to prove (93), (138), is not

satisfied. In this case, we expect a concentration of strain energy stored inside the

particles to emerge in the effective problem.
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5 Variants of the homogenization results

In this section, we comment the elliptic equations associated with (2), the Dirichlet

problems in varying domains, the scalar case, the fibered case, and the case of particles

distributed on a surface.

5.1 Stationary case

Assuming (31), (32), (34), γ(N) > 0, we consider the sequence of elliptic problems

− div(aaaεeee(uuuε)) = ρεfff in Ω, uuuε ∈ H
1
0 (Ω; RN ), (fff ∈ C(Ω; RN )). (49)

By mimicking the proof of Theorem 1, it is easy to prove that the sequence (uuuε) of the

solution of (49) converges weakly in H1
0 (Ω; RN ) to the unique solution uuu of

− div(aaa0eee(uuu)) = (ρ0 + ρ)fff in Ω, uuu ∈ H
1
0 (Ω; RN ). (50)

The seeming simplicity of (50) covers the complex behavior of the displacement in the

particles. Indeed, the sequence (ṽvvε, ω̃ωωε) defined by (38) converges weakly to (vvv,ωωω) in

(L2(Ω; RN ))2, where (uuu,vvv,ωωω) is the unique solution in H1
0 (Ω; RN ) × (L2(Ω; RN ))2 of

the problem deduced formally from (40), (41), (43), by substituting 0 for the derivatives

with respect to t. For instance, if N = 3 and 0 < γ(3) < +∞, we obtain the system of

equations

8

>

>

>

>

<

>

>

>

>

:

− div(aaa0eee(uuu)) = (ρ0 + ρ)fff in Ω,

γ
(3)Cap3(T ; R3)

„

vvv − uuu

ωωω

«

=

„

ρfff

ρ(yyyG − yyyT ) ∧ fff

«

in Ω,

(uuu,vvv,www) ∈ H
1
0 (Ω; R3) × (L2(Ω; R3))2,

(51)

associated with the minimization problem

min
(uuu,vvv,ωωω)∈H1

0 (Ω;R3)×(L2(Ω,R3))2
Φ(uuu,vvv,ωωω) − L(uuu,vvv,ωωω),

where Φ is defined by (47) and L(uuu,vvv,ωωω) := −
R

Ω
ρ0fff.uuu+ρfff.vvv+(ρ(yyyG−yyyT )∧fff).ωωωdx.

As the matrix Cap3(T ; R3) is invertible (see Lemma 2), we deduce from (51) that

„

vvv

ωωω

«

=

„

uuu

0

«

+
1

γ(3)
(Cap3(T ; R3))−1

„

ρfff

ρ(yyyG − yyyT ) ∧ fff

«

.

If N = 2, then ωωω = 0 and the effective problem takes the form

min
(uuu,vvv)∈H1

0 (Ω;R2)×L2(Ω,R2)
Φ(uuu,vvv, 0) −

Z

Ω

ρ0fff.uuu+ ρfff.vvvdx,

being Φ given by (48), yielding vvv = uuu+ 1
γ(2) (MMM2)

−1(ρfff). The intricate behavior of the

composite at a microscopic scale is only revealed, in (50), by the presence of the term

ρfff .
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5.2 Dirichlet problems in varying domains

We consider the sequence of Dirichlet problems in the perforated domain Ω \ Trε
,

(

− div(aaaεeee(uuuε)) = ρεfff in Ω \ Trε
,

uuuε ∈ H
1
0 (Ω; RN ), uuuε = 0 in Trε

.
(52)

Corollary 1. Under (18), (31)-(36), the sequence (uuuε) of the solution of (52) converges

weakly in H1
0 (Ω; RN ) to the unique solution in H1

0 (Ω; RN ) of

− div(aaa0eee(uuu)) + γ
(3)
MMM3(T ; R3)uuu = ρ0fff in Ω, if N = 3, 0<γ(3)

<+∞,

− div(aaa0eee(uuu)) + γ
(2)
MMM2uuu = ρ0fff in Ω, if N = 2, 0<γ(2)

<+∞,

− div(aaa0eee(uuu)) = ρ0fff in Ω, if γ
(N) = 0,

uuu = 0 in Ω, if γ
(N) = +∞,

(53)

where MMM3(T ; R3) denotes the upper left 3 × 3 submatrix of Cap3(T ; R3) and MMM2 is

defined by (21). This result is obtained simply by substituting 0 for ψψψ and ζζζ in the

sequence of test functions used in the proof of Theorem 1 (see (119), (139)). The terms

γ(3)MMM3(T ; R3)uuu and γ(2)MMM2uuu emerging in (53) are analogous to the so-called ”strange

term” obtained by D. Cioranescu and F. Murat [16] in the context of diffusion equations

and to the linear zero-order term for the velocity in the Brinkman’s law obtained by

G. Allaire in the homogenization of the Stokes and of the Navier-Stokes equations in

a domain containing many tiny solid obstacles [3].

5.3 Scalar case

We consider the scalar evolution equation in L2(Ω × (0, t1);H
1
0 (Ω))

ρε
∂nuε

∂tn
− div(aε∇uε) = ρεf in Ω × (0, t1),

+ initial boundary conditions (n ∈ {1, 2}).

We assume that aε(x) = 1 in Ω \ Trε
, aε(x) > cε > c > 0 in Trε

, where limε→0 cε =

+∞ if N = 3. The results obtained in [6] in the case of three-dimensional spherical

particles can be easily extended to the case of particles homothetical to an arbitrary

Lipschitz bounded domain T . The effective equations depend then on the parameter

cN (T ) := limε→0
1
εN capN (rεT,Ω), where capN (T ;Ω) denotes the harmonic capacity

of T with respect to Ω. We find c3(T ) = γ(3)cap3(T ; R3) and c2(T ) = γ(2)2π, being

γ(N) defined by (39). If 0 < γ(N) < +∞, we obtain an effective system of equations of

the type

ρ0
∂nu

∂tn
−∆u = ρ0f + ρ

„

f − ∂nv

∂tn

«

in Ω × (0, t1),

ρ
∂nv

∂tn
= ρf − cN (T )(v − u) in Ω × (0, t1),

+ initial boundary conditions,

analogous to (40).
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5.4 Fibered case

We consider a cylindrical domain Ω := Υ × (0, L) of R
3. Given a bounded Lipschitz

domain S of R
2, we define the ε-periodic distribution of parallel ”fibers” Trε

of cross

section of size rε homothetical to S by setting

Trε
= Srε

× (0, L), Srε
=
[

i∈Iε

εi+ rεS, Iε := {i ∈ Z
2
, Y

i
ε ⊂ Υ}. (54)

Under (18), (32)-(36), (54), the problem (2) has been studied by the author with I.

Gruais in [10], assuming that the material constituting the fibers is homogeneous and

isotropic (the Lamé coefficients taking constant values µ1ε, λ1ε in Trε
) and that the

rescaled cross section S is a disk. These results can be extended easily to the case of

an arbitrary Lipschitz domain S. The effective problem, which depends partly on the

asymptotic behavior of
`

1
ε2

Cap2(rεS, Υ )
´

(see (21), (30)), is then given in the elliptic

case by

min
(uuu,vvv)∈(L2(Ω;R3))2

Φ(uuu,vvv) −
Z

Ω

ρ0fff.uuu+ ρfff.vvvdx, (55)

the symbol Φ denoting the lower semi-continuous envelop in the strong topology of

(L2(Ω; R3))2 of the functional

Φ(uuu,vvv) :=
1

2

Z

Ω

aaa0eee(uuu) : eee(uuu)dx+
1

2
γ
(2)4πµ0

λ0 + 2µ0

λ0 + 3µ0

Z

Ω

2
X

α=1

|vα − uα|2dx

+
1

2
γ
(2)2µ0π

Z

Ω

|v3 − u3|2dx+ Φfibers(vvv), if (uuu,vvv) ∈ D,

Φ(uuu,vvv) := +∞, otherwise,

D := H
1
0 (Ω,R3) ×



vvv ∈ L
2(Ω,H2

0 (0, L; R3)),
∂v1

∂x3
=
∂v2

∂x3
= 0 in Ω × {0, L}

ff

.

where the functional Φfibers, which describes the strain energy stored in the fibers and

is the only part of Φ depending on S, is given in terms of the limit vvv of the sequence

(ṽvvε) defined by (38) by

Φfibers(vvv) =
1

2

3l + 2

2(l + 1)
k|S|

Z

Ω

˛

˛

˛

˛

∂v3

∂x3

˛

˛

˛

˛

2

dx+
1

2

2
X

α,β=1

κ|S|3l + 2

l + 1
Jαβ

Z

Ω

∂2vα

∂x2
3

∂2vβ

∂x2
3

dx,

Jαβ :=

Z

−
S

(yyy − yyyS)α(yyy − yyyS)βdy,

k := lim
ε→0

r
2
εµ1ε, κ := lim

ε→0
r
4
εµ1ε, l := lim

ε→0

λ1ε

µ1ε
.

Moreover, the sequence (ω̃ωωε.eee3), where ω̃ωωε(., x3) is defined by (38) on each section

x3 = const (setting N = 2), converges to zero: this means that the rescaled effective

angle of rotation of the fibers is equal to zero.

Remark 4. The lack of torsion effects in the effective problem (55) is a consequence

of the specific behavior of Cap2, whose singularity originates, in particular, in the fact

that Gagliardo-Nirenberg-Sobolev inequality fails to hold in H1(R2) (see the paragraph

preceding Lemma 2). Therefore torsion effects are likely to take place if the strain
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energy density function of the material constituting the matrix has a growth of order

p ∈ (1, 2). In linear elasticity, torsion effects are actually obtained in a quite different

context, namely, when an ε-periodic distribution of fibers of cross section of size of

order ε and of stiffness of order 1, embedded in a very soft matrix of stiffness of order

ε2 is considered (see [7]).

5.5 Three-dimensional particles periodically distributed on a surface

We suppose that the set Trε
consists of three-dimensional particles of size rε, ε-

periodically distributed on the portion of hyperplane Σ := Ω ∩ {x1 = 0} (see fig.

3). More precisely, setting

Trε
=
[

i∈Jε

T
i
rε
, T

i
rε

= ε(0, iii) + rεT, Jε = {i ∈ Z
2
, P

i
ε ⊂ Σ},

P
i
ε = {0} × ε

 

iii+

„

−1

2
,

1

2

«2
!

, Ω
− = Ω ∩ {x1 < 0}, Ω

+ = Ω ∩ {x1 > 0},

ρε(x) = ρ01Ω\Trε
+ ρ

„

yε(x)

rε

«

ε2

r3ε |T |
1Trε

(x),

(56)

we consider the problem (2) under the assumptions (18), (34), (36), (56). The critical

case corresponds then to particles of diameter of order ε2. It is easy to prove, by

adapting the argument of the proof of Theorem 1, that if 0 < γ := limε→0
rε

ε2
≤ +∞,

then the solution uuuε of (2) converges weak-star in L∞(0, t1;H
1
0 (Ω; R3)) and strongly in

L∞(0, t1;L
2 (Ω; R3)) to uuu and the sequence (ṽvvε, ω̃ωωε) deduced from (38) by substituting

1P i
ε
(x) for 1Y i

ε
(x) (see (56)), converges weak-star in (L∞(0, t1;L

2(Σ; R3)))2 to (vvv,ωωω),

where (uuu,vvv,ωωω) is the unique solution of the system of equations

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

∂2

∂t2

 

ρvvv+ 2
diamT ωωω ∧ ρ(yyyG − yyyT )

`

2
diamT

´2
JJJρωωω+ 2

diamT ρ(yyyG − yyyT ) ∧ vvv

!

=

„

ρfff

ρ(yyyG − yyyT ) ∧ fff

«

− γCap3(T ; R3)

„

vvv − uuu

ωωω

«

on Σ × (0, t1),

ρ0
∂2uuu

∂t2
− divσσσ0 = ρ0fff in (Ω− ∪Ω+) × (0, t1), σσσ0 = aaa0eee(uuu),

(σσσ−0 − σσσ
+
0 )ννν = ρfff − ρ

∂2

∂t2

„

vvv +
2

diamT
ωωω ∧ (yyyG − yyyT )

«

on Σ × (0, t1),

associated to the initial boundary conditions given by

8

>

>

>

>

>

<

>

>

>

>

>

:

(uuu,vvv,www)∈L∞(0, t1;H
1
0 (Ω; R3)) ×

“

L
∞(0, t1;L

2(Σ; R3))
”2

∩ C1([0, t1];L
2(Ω; R3) ×

“

C
1([0, t1];L

2(Σ; R3))
”3
,

uuu(0) = vvv(0) = bbb0,
∂uuu

∂t
(0) =

∂vvv

∂t
(0) = ccc0, ωωω(0) =

∂ωωω

∂t
(0) = 0,

being σσσ−0 (resp. σσσ+
0 ) the restriction of σσσ0 = aaa0eee(uuu) to Ω− (resp. Ω+), and ννν the

outward pointing normal to Ω− (hence ννν = eee1 on Σ). The vector field (σσσ−0 − σσσ+
0 )ννν

describes the density of the surface forces exerted by the particles on the matrix.
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Fig. 3

6 Technical preliminaries and a priori estimates

This section is devoted mainly to the study of the asymptotic behavior of the sequence

(uuuε) of the solutions of (2) and of the auxiliary sequences (ṽvvε) and (ω̃ωωε) given by

(38). As a means to particularize the oscillatory behavior of the displacement in the

inclusions, we will use the following variant of the two-scale convergence of Allaire [2]

and Nguetseng [31]. Let (mε) be the sequence of measures defined by

mε :=
εN

rNε |T |
LN ⌊Trε

, (57)

where Trε
is given by (31). A sequence (fε) in L2(0, t1;L

2(Ω)) will be said to two-

scale converge with respect to (mε) to f0 ∈ L2(0, t1;L
2(Ω ×T )) if, for each ψ ∈

D(Ω × (0, t1) × Y ), there holds

lim
ε→0

Z

Ω×(0,t1)
fε(x, t)ψ

„

x, t,
yε(x)

rε

«

dmε(x)dt =
1

|T |

Z

Ω×(0,t1)×T
f0ψdxdtdy, (58)

where yε(x) is given by (33). This convergence will be denoted fε
mε
⇀⇀ f0. We have

Lemma 9. (i) Let (fε) be a sequence in L2(0, t1;L
2(Ω)) such that supt∈(0,t1)

R

|fε|2(t)
dmε ≤ C. Then (fε) two-scale converges with respect to (mε), up to a subsequence, to

some f0 ∈ L∞(0, t1;L
2(Ω × T )). Furthermore, if fε

mε
⇀⇀ f0, then

lim inf
ε→0

Z

Ω×(0,t1)
|fε|2dmεdt ≥

1

|T |

Z

Ω×T×(0,t1)
|f0|2dxdtdy. (59)

(ii) Assume in addition that fε
mε
⇀⇀ f0,

∂fε

∂t ∈ L2(0, t1;L
2(Ω)) and that supt∈(0,t1)

R

|∂fε

∂t |
2(t)dmε ≤ C. Then f0 ∈W 1,∞(0, t1;L

2(Ω × T )) and
“

∂fε

∂t

”

two-scale converges

with respect to (mε) to ∂f0
∂t .

Proof. (i) Let νε be the measure onΩ × (0, t1) × T defined by
R

ψdνε :=
R t1
0

R

fε(x, t)

ψ
“

x, t,
yε(x)
rε

”

dmε(x)dt ∀ψ ∈ C(Ω × (0, t1) × T ). Cauchy-Schwartz inequality yields

˛

˛

˛

˛

Z

ψdνε

˛

˛

˛

˛

≤
Z t1

0
dt

„Z

Ω

|fε(x, t)|2 dmε(x)

«
1
2

 

Z

Ω

˛

˛

˛

˛

ψ

„

x, t,
yε(x)

rε

«˛

˛

˛

˛

2

dmε(x)

!
1
2

≤ C

Z t1

0
dt

 

Z

Ω

˛

˛

˛

˛

ψ

„

x, t,
yε(x)

rε

«˛

˛

˛

˛

2

dmε(x)

!
1
2

≤ C|ψ|L∞(Ω×(0,t1)×T ),

(60)
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hence the sequence (νε) is bounded in M(Ω × (0, t1) × T ) and converges weak-star, up

to a subsequence, to some ν ∈ M(Ω × (0, t1) × T ). By passing to the limit as ε→ 0 in

the first and third terms of (60), thanks to the dominated convergence theorem we get
˛

˛

˛

˛

Z

ψdν

˛

˛

˛

˛

≤ C|ψ|L1(0,t1;L2(Ω×T )) ∀ψ ∈ C(Ω × (0, t1) × T ). (61)

By (61), the linear form ψ ∈ C(Ω × (0, t1) × T ) →
R

ψdν can be extended by density

to a continuous linear form on L1(0, t1;L
2(Ω × T )). We deduce that ν = 1

|T |
f0 for a

suitable f0 ∈ L∞(0, t1;L
2(Ω × T )). Then, by the weak-star convergence of (νε) to ν,

the sequence (fε) two-scale converges with respect to (mε) to f0. Moreover,

lim inf
ε→0

Z t1

0

Z

|fε|2dmε(x)dt ≥ lim
ε→0

Z t1

0

Z

2fεψ

„

x, t,
yε(x)

rε

«

−
˛

˛

˛

˛

ψ

„

x, t,
yε(x)

rε

«˛

˛

˛

˛

2

dmε(x)dt

=
1

|T |

Z

Ω×(0,t1)×T
2f0ψ − ψ

2
dxdtdy,

for all ψ ∈ C(Ω × (0, t1) × T ). Our sending ψ to f0 in L2(Ω×(0, t1)×T ) yields (59).

(ii) By (i) the sequence (∂fε

∂t ) two-sale converges with respect to mε, up to a subse-

quence, to some ξ0 ∈ L∞(0, t1;L
2(Ω × T )). For all ψ ∈ D(Ω × (0, t1) × Y ), there

holds

Z

Ω×(0,t1)×T
ξ0ψdxdtdy = lim

ε→0

Z

Ω×(0,t1)

∂fε

∂t
ψ

„

x, t,
yε(x)

rε

«

dmεdt

= − lim
ε→0

Z

Ω×(0,t1)
fε
∂ψ

∂t

„

x, t,
yε(x)

rε

«

dmεdt

= −
Z

Ω×(0,t1)×T
f0
∂ψ

∂t
dxdtdy,

hence f0 ∈W 1,∞(0, t1;L
2(Ω× T )), ∂f0∂t = ξ0, and the entire sequence (∂fε

∂t ) two-scale

converges with respect to (mε) to ξ0. ⊓⊔

By (39) and (42), we can choose a sequence of positive reals (Rε) such that

rε << Rε << ε; Rε <<
1

γ
(N)
ε

;

ε
3
<< Rε if N = 3; ε

2| logRε| << 1 if N = 2.

(62)

(Set for instance Rε = ε
3
2 if N = 3 and Rε = ε2 if N = 2). We define (see (31))

B
i
Rε

:= εiii+RεB, H
i
ε := B

i
Rε

\ T irε
, BRε

:=
[

i∈Iε

B
i
Rε
, Hε :=

[

i∈Iε

H
i
ε. (63)

Given a sequence (uuuε) ⊂ H1(Ω; RN ), we consider the sequences (ṽvvε) and (ω̃ωωε) intro-

duced in (38) and the sequences (ũuuε) and (v̂vvε) given by (see (70))

ũuuε(x) :=
X

i∈Iε

 

Z

−
∂Bi

Rε

uuuε(s)dHN−1(s)

!

1Y i
ε
(x),

v̂vvε(x) :=
X

i∈Iε

 

Z

−
∂Bi

rε

uuuε(s)dHN−1(s)

!

1Y i
ε
(x).

(64)
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In the next lemma, we establish a series of estimates which will take a crucial part in

the proof of Theorem 1.

Lemma 10. Assume (37), let uuuε be a sequence in H1(Ω,RN ) and let mε, (ũuuε), (v̂vvε),

(ṽvvε), (ω̃ωωε) be defined by (38), (57), (64). Then the following estimates hold true:

Z

Ω

|uuuε − ũuuε|2dx ≤ C
ε3

Rε

Z

Ω

|∇∇∇uuuε|2dx,
Z

Ω

|ũuuε − v̂vvε|2dx ≤ C
ε3

rε

Z

Ω

|∇∇∇uuuε|2dx,

9

>

>

>

=

>

>

>

;

if N = 3,

Z

Ω

|uuuε − ũuuε|2dx ≤ Cε
2| logRε|

Z

Ω

|∇∇∇uuuε|2dx,
Z

Ω

|ũuuε − v̂vvε|2dx ≤ Cε
2| log rε|

Z

Ω

|∇∇∇uuuε|2dx,

9

>

>

=

>

>

;

if N = 2,

Z

Ω

|ϕϕϕε|2dx =

Z

|ϕϕϕε|2dmε ∀ϕϕϕε ∈ {ũuuε, v̂vvε, ṽvvε, ω̃ωωε},

(65)

and
Z

Trε

|uuuε − v̂vvε|2dx ≤ Cr
2
ε

Z

Trε

|∇∇∇uuuε|2dx,
Z

∂BRε

|uuuε − ũuuε|2dHN−1(x) ≤ CRε

Z

BRε

|∇∇∇uuuε|2dx,

Z

Trε

˛

˛

˛

˛

uuuε − ṽvvε −
2

diamT
ω̃ωωε ∧

„

yyyε(x)

rε
− yyyT

«˛

˛

˛

˛

2

dx ≤ Cr
2
ε

Z

Trε

|eee(uuuε)|2dx,

Z

∂Trε

˛

˛

˛

˛

uuuε − ṽvvε −
2

diamT
ω̃ωωε ∧

„

yyyε(x)

rε
− yyyT

«˛

˛

˛

˛

2

dHN−1(x)≤Crε
Z

Trε

|eee(uuuε)|2dx,

(66)

where Trε
and BRε

are given, respectively, by (31) and (63).

Proof. If N = 3, the estimates (65) are established in [6, Lemma 3.1]. If N = 2, the

estimate
R

Ω
|uuuε−ũuuε|2dx ≤ Cε2| logRε|

R

Ω
|∇∇∇uuuε|2dx is deduced by freezing the variable

x3 in the estimate obtained in [9, p. 420, l. 7-10]. We get, in the same way,
R

Ω
|uuuε −

v̂vvε|2dx ≤ Cε2| log rε|
R

Ω
|∇∇∇uuuε|2dx and infer

R

Ω
|ũuuε−v̂vvε|2dx ≤ Cε2| log rε|

R

Ω
|∇∇∇uuuε|2dx.

The last line of (65) can be checked easily. To prove (66), we establish that ∀ www ∈
H1(T ; RN ),

Z

T

˛

˛

˛

˛

www −
Z

−
∂B

www(s)dHN−1(s)

˛

˛

˛

˛

2

dx ≤ C

Z

T

|∇∇∇www|2dx,
Z

∂T

˛

˛

˛

˛

www −
Z

−
∂B

www(s)dHN−1(s)

˛

˛

˛

˛

2

dHN−1(x) ≤ C

Z

T

|∇∇∇www|2dx,
(67)

yielding the first two lines of (66) by making suitable changes of variables (set T = B

to get the second line of (66)). To that aim, assume that the first line of (67) is false,

then there exists a sequence (wwwn) ⊂ H1(T ; RN ) such that

Z

−
T

˛

˛

˛

˛

wwwn −
Z

−
∂B

wwwn(s)dHN−1(s)

˛

˛

˛

˛

2

dx = 1,

Z

T

wwwndx = 0, lim
n→+∞

Z

T

|∇∇∇wwwn|2dx=0.
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Taking Poincaré-Wirtinger inequality
R

T

˛

˛wwwn −
R

T
wwwn(y)dy

˛

˛

2
dx ≤ C

R

T
|∇∇∇wwwn|2 dx

into account, we infer that (wwwn) converges strongly to 0 in H1(T ; RN ) and then, by

the strong continuity of the trace application from H1(T ; RN ) to L1(∂B; RN ), that

limn→+∞
R

−
∂B
wwwn(s)dHN−1(s) = 0. By the continuous embedding of H1(T ; RN ) into

L2(T ; RN ), we get limn→+∞
R

−
T
|wwwn −

R

−
∂B
wwwn(s)dHN−1(s)|2dx = 0, a contradiction.

The second line of (67) can be obtained in a similar manner.

The last two lines of (66) remain to be proved. To this purpose, given uuu ∈ H1(T ; RN ),

we consider the problem

min
www∈R

(

„Z

∂B

|uuu−www|2 dHN−1
«

1
2

)

,

where R denotes the space of rigid displacements. This minimum problem is achieved

at the point ppp(uuu) ∈ R defined by

ppp(uuu)(x) :=

Z

−
∂B

uuu(s)dHN−1(s)+

„Z

−
∂B

c(N)(sss ∧ uuu(s))dHN−1(s)

«

∧ xxx, (68)

where c(2) := 1 and c(3) := 3
2 . The linear subspace of H1(T ; RN ) defined by V := {uuu ∈

H1(T ; RN ), ppp(uuu) = 0} satisfies V ∩R = {0}, hence by Korn inequality there holds

|uuu|H1(T ;RN ) ≤ C|eee(uuu)|L2(T ;RN ) ∀uuu ∈ V.

Noticing that uuu − ppp(uuu) ∈ V and eee(uuu) = eee(uuu − ppp(uuu)) ∀uuu ∈ H1(T ; RN ), we infer from

the continuous embedding of H1(T ; RN ) into L2(T ; RN ) and from the continuity of

the trace from H1(T ; RN ) into L2(∂T ; RN ) that

|uuu− ppp(uuu)|L2(T ;RN ) + |uuu− ppp(uuu)|L2(∂T ;RN ) ≤ C|eee(uuu)|L2(T ;RN ), (69)

for all uuu ∈ H1(T ; RN ). By making appropriate changes of variables in (69), taking (38)

and (68) into account (see also (70)), we find the last two lines of (66). ⊓⊔

Remark 5. Given uuuε ∈ H1(Ω; R3), the field ṽvvε + 2
diamT ω̃ωωε ∧

“

yyyε(x)
rε

− yyyT

”

defined by

(38) coincides in each cell Y iε with the best approximation of uuuε in R with respect to

the seminorm
“

R

∂Bi
rε

|.|2 dHN−1
”

1
2
. The simplifying assumption yyyT = 0 would induce

a loss of generality, due to the hypothesis (37). Notice that

v̂vvε +
2

diamT
ω̃ωωε ∧

yyyε(x)

rε
= ṽvvε +

2

diamT
ω̃ωωε ∧

„

yyyε(x)

rε
− yyyT

«

. (70)

The main results of Section 6 are stated in the next proposition, where the asymptotic

behavior of several sequences associated to the sequence (uuuε) of the solutions of (2) is

specified.

Proposition 1. Assume (34), let uuuε be the solution of (2), and let ṽvvε, ω̃ωωε, ũuuε be defined

by (38), (64). Then

uuuε ∈ C([0, t1], H
1
0 (Ω,RN )) ∩ C1([0, t1], L

2(Ω,RN )),

∂2uuuε

∂t2
∈ L

2(0, t1;H
−1(Ω,RN )).

(71)
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Moreover, the following estimates hold ((cε), (γ
(N)
ε ) being introduced in (34)), (39))

Z

Ω

 

|ũuuε|2 + |uuuε|2 + |eee(uuuε)|2 + |∇∇∇uuuε|2 +

˛

˛

˛

˛

∂uuuε

∂t

˛

˛

˛

˛

2
!

(τ)dx ≤ C,

Z
˛

˛

˛

˛

∂uuuε

∂t

˛

˛

˛

˛

2

(τ)dmε ≤ C,

Z

Trε

|eee(uuuε)|2(τ)dx ≤ C

cε
,

Z

|uuuε|2(τ)dmε ≤ C

 

1 +
1

γ
(N)
ε

!

,

(72)

and the next convergences take place, up to a subsequence, for some suitable uuu ∈
W 1,∞(0, t1;H

1
0 (Ω; RN ), L2(Ω; RN )), uuu0 ∈W 1,∞(0, t1;L

2(Ω × T ; RN )) (see (58))

uuuε
⋆
⇀uuu weak-star in L

∞(0, t1;H
1
0 (Ω; RN )),

∂uuuε

∂t

⋆
⇀

∂uuu

∂t
weak-star in L

∞(0, t1;L
2(Ω; RN )),

uuuε → uuu and ũuuε → uuu strongly in L
∞(0, t1; L

2(Ω; RN )),

uuuε
mε
⇀⇀ uuu0 and

∂uuuε

∂t

mε
⇀⇀
∂uuu0

∂t
two-scale with respect to (mε).

(73)

In addition, we have

Z

Ω

|ω̃ωωε|2(τ)dx =

Z

|ω̃ωωε|2(τ)dmε(x) ≤
εN

rN−2
ε

,

Z

Ω

|ṽvvε|2(τ)dx =

Z

|ṽvvε|2(τ)dmε(x) ≤ C

 

1 +
1

γ
(N)
ε

!

,

(74)

and, up to a subsequence,

ω̃ωωε → 0 strongly in L
∞(0, t1;L

2(Ω; R3)) if N = 2,

ṽvvε
⋆
⇀ vvv weak-star in L

∞(0, t1; L
2(Ω; RN )),

ω̃ωωε
⋆
⇀ωωω weak-star in L

∞(0, t1; L
2(Ω; R3)),

ṽvvε
mε
⇀⇀ vvv, ω̃ωωε

mε
⇀⇀ ωωω, uuu0 = vvv +

2

diamT
ωωω ∧ (yyy − yyyT ),

∂uuu0

∂t
=

∂vvv

∂t
+

2

diamT

∂ωωω

∂t
∧ (yyy − yyyT ),

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

if γ(N) > 0,
(75)

for a suitable (vvv,ωωω) ∈W 1,∞(0, t1;L
2(Ω; RN )) ×W 1,∞(0, t1;L

2(Ω; R3)). Moreover,

ωωω = 0 if N = 2,

ωωω = 0 and vvv = uuu if γ
(N) = +∞.

(76)

Proof. The assertion (71) follows from the regularity result (95) stated below. Fixing

t ∈ [0, t1], we multiply (2) by ∂uuuε

∂t and integrate by parts over Ω. We find

d

dt

 

1

2

Z

Ω

ρε

˛

˛

˛

˛

∂uuuε

∂t
(t)

˛

˛

˛

˛

2

dx+
1

2

Z

Ω

aaaεeee(uuuε) : eee(uuuε)(t)dx

!

=

Z

Ω

ρεfff.
∂uuuε

∂t
(t)dx. (77)
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Then, we fix τ ∈ [0, t1] and integrate (77) with respect to t over [0, τ ]. We get

1

2

 

Z

Ω

ρε

˛

˛

˛

˛

∂uuuε

∂t
(τ)

˛

˛

˛

˛

2

dx+

Z

Ω

aaaεeee(uuuε) : eee(uuuε)(τ)dx

!

=
1

2

„Z

Ω

ρε |ccc0|2 dx+

Z

Ω

aaaεeee(bbb0) : eee(bbb0)dx

«

+

Z

Ω×(0,τ)
ρεfff

∂uuuε

∂t
dxdt.

(78)

By (32) and (57), there holds

c1(LN +mε) ≤ ρεLN ≤ c2(LN +mε), (79)

for some suitable positive constants c1, c2, thus (ρε) is bounded in M(Ω). Since ccc0 is

continuous on Ω (see (2)), taking (36) into account we deduce from (78 ) that

1

2

 

Z

Ω

ρε

˛

˛

˛

˛

∂uuuε

∂t
(τ)

˛

˛

˛

˛

2

dx+

Z

Ω

aaaεeee(uuuε) : eee(uuuε)(τ)dx

!

≤ C

0

@1 +

s

Z

Ω×(0,t1)
ρε

˛

˛

˛

˛

∂uuuε

∂t

˛

˛

˛

˛

2

dxdt

1

A ∀ τ ∈ [0, t1].

(80)

By integrating (80) with respect to τ over (0, t1), we infer that
R

Ω×(0,t1)
ρε

˛

˛

˛

∂uuuε

∂t

˛

˛

˛

2

dxdt ≤ C, and then deduce from (80) that

Z

Ω

ρε

˛

˛

˛

˛

∂uuuε

∂t
(τ)

˛

˛

˛

˛

2

dx+

Z

Ω

aaaεeee(uuuε) : eee(uuuε)(τ)dx ≤ C ∀τ ∈ [0, t1], (81)

yielding, by (79),

Z

Ω

˛

˛

˛

˛

∂uuuε

∂t
(τ)

˛

˛

˛

˛

2

dx+

Z
˛

˛

˛

˛

∂uuuε

∂t
(τ)

˛

˛

˛

˛

2

dmε ≤ C ∀τ ∈ [0, t1]. (82)

Applying Poincaré and Korn inequalities in H1
0 (Ω; RN ), we obtain (see (34))

Z

Ω

|uuuε|2(τ)dx ≤ C

Z

Ω

|∇∇∇uuuε|2(τ)dx ≤ C

Z

Ω

|eee(uuuε)|2(τ)dx

≤ C

Z

Ω

|eee(uuuε)|2(τ)dx+ C

Z

Trε

cε|eee(uuuε)|2(τ)dx

≤ C

Z

Ω

aaaεeee(uuuε) : eee(uuuε)(τ)dx.

(83)

By the last line of (65) and the first line of (66) we have (see (57))
Z

|uuuε|2(τ)dmε ≤ 2

Z

|uuuε − v̂vvε|2dmε + 2

Z

|v̂vvε|2(τ)dmε

≤ C
εN

rN−2
ε

Z

Trε

|∇∇∇uuuε|2(τ)dx+ 2

Z

Ω

|v̂vvε|2(τ)dx.
(84)

By (39) and (65), there holds
Z

Ω

|v̂vvε|2(τ)dx ≤ C

Z

Ω

|v̂vvε − ũuuε|2 + |ũuuε − uuuε|2 + |uuuε|2(τ)dx

≤ C

γ
(N)
ε

Z

Ω

|∇∇∇uuuε|2(τ)dx+ C

Z

Ω

|uuuε|2(τ)dx.
(85)
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Joining (84) and (85), we infer (see (39))
Z

|uuuε|2(τ)dmε ≤
C

γ
(N)
ε

Z

Ω

|∇∇∇uuuε|2(τ)dx+ C

Z

Ω

|uuuε|2(τ)dx. (86)

Collecting (81), (82), (83), (86), taking (34)) into account, we obtain the estimates

(72). We infer, up to a subsequence, the convergences stated in two first lines of (73).

By (72), the sequence (uuuε) is bounded in both spaces W 1,∞(0, t1;L
2(Ω; RN )) and

L∞(0, t1;H
1
0 (Ω; RN )), hence by the compact embedding Theorem of Aubin and Si-

mon (see [5], [33]) it is strongly relatively compact in L∞(0, t1;L
2(Ω; RN )) and in

C(0, t1;L
2(Ω; RN )). The first convergence in third line of (73) is proved. By (39) and

(65), we have
Z

Ω

|uuuε − ũuuε|2(τ)dx ≤ C
rε

Rε

1

γ
(3)
ε

Z

Ω

|∇∇∇uuuε|2(τ)dx if N = 3,

Z

Ω

|uuuε − ũuuε|2(τ)dx ≤ C
| logRε|
| log rε|

1

γ
(2)
ε

Z

Ω

|∇∇∇uuuε|2(τ)dx if N = 2,

Z

Ω

|v̂vvε − ũuuε|2(τ)dx ≤ C

γ
(N)
ε

Z

Ω

|∇∇∇uuuε|2(τ)dx.

(87)

By (39) and (62) there holds

lim
ε→0

rε

Rε

1

γ
(3)
ε

= 0 if N = 3, lim
ε→0

| logRε|
| log rε|

1

γ
(2)
ε

= 0 if N = 2. (88)

The strong convergence of (ũuuε) in L∞(0, t1;L
2(Ω; RN )) stated in (73) follows from

that of (uuuε), and from (87) and (88). The two scale convergences with respect to (mε)

stated in the last line of (73) result from (72) and from Lemma 9.

We turn now to the study of the asymptotic behavior of the sequences (ω̃ωωε) and (ṽvvε)

defined by (38). We start from the elementary inequality

|bbb|2 ≤ C

Z

T

|bbb ∧ yyy|2dLN (y) ∀bbb ∈ R
3
, N ∈ {2, 3}, T ⊂ R

N
.

By making simple changes of variables, we deduce (see (33))

|bbb|2 ≤ C

rNε

Z

T i
rε

˛

˛

˛

˛

bbb ∧ yyyε(x)

rε

˛

˛

˛

˛

2

dx ∀bbb ∈ R
3
, ∀i ∈ Iε. (89)

We can apply (89) for each i ∈ Iε to bbb = ω̃ωωε(εi, τ). Taking the first and third lines of

(66), (70) and (72) into account, we infer

Z

Ω

|ω̃ωωε(τ)|2dx =
X

i∈Iε

ε
N |ω̃ωωε(εi, τ)|2 ≤ C

X

i∈Iε

εN

rNε

Z

T i
rε

˛

˛

˛

˛

ω̃ωωε(εi, τ) ∧
yyyε(x)

rε

˛

˛

˛

˛

2

dx

= C
εN

rNε

Z

Trε

˛

˛

˛

˛

ω̃ωωε(τ) ∧
yyyε(x)

rε

˛

˛

˛

˛

2

dx

≤ C
εN

rNε

Z

Trε

|uuuε − v̂vvε|2 (τ) +

˛

˛

˛

˛

uuuε − ṽvvε −
2

diamT
ω̃ωωε ∧

„

yyyε(x)

rε
− yyyT

«˛

˛

˛

˛

2

(τ)dx

≤ C
εN

rN−2
ε

Z

Trε

|∇∇∇uuuε|2 (τ) + |eee(uuuε)|2(τ)dx ≤ C
εN

rN−2
ε

,

(90)
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and, noticing that εN

rN−2
ε

≤ 1

γ
(N)
ε

(see (39)), deduce from (66), (72) and (90) that

Z

Ω

|ṽvvε|2 (τ)dx =

Z

Ω

|ṽvvε|2 (τ)dmε

≤C
Z

Ω

|uuuε|2+|ω̃ωωε|2+

˛

˛

˛

˛

uuuε − ṽvvε −
2

diamT
ω̃ωωε ∧

„

yyyε(x)

rε
− yyyT

«˛

˛

˛

˛

2

(τ)dmε

≤C
 

1 +
1

γ
(N)
ε

!

.

(91)

Joining (90) and (91), we obtain (74) and deduce the convergences stated the three first

lines of (75). If γ(N) > 0, by Lemma 9 and (74) the sequence (ṽvvε) (resp., (ω̃ωωε)) two-scale

converges with respect to (mε), up to a subsequence, to some vvv0 ∈ L∞(0, t1;L
2(Ω ×

T ; RN )) (resp. ωωω0 ∈ L∞(0, t1;L
2(Ω × T ; R3))). We prove below that

vvv0(x, t, y) = vvv(x, t) and ωωω0(x, t, y) = ωωω(x, t) in Ω × (0, t1) × T,

uuu0(x, t, y) = vvv(x, t) +
2

diamT
ωωω(x, t) ∧ (yyy − yyyT ) in Ω × (0, t1) × T.

(92)

It follows then from the last line of (73) that ∂vvv
∂t ∈ L∞(0, t1;L

2(Ω; RN )), ∂ωωω
∂t ∈

L∞(0, t1;L
2(Ω; R3)) and ∂uuu0

∂t = ∂vvv
∂t + 2

diamT
∂ωωω
∂t ∧ (yyy − yyyT ) in Ω × (0, t1) × T . As-

sertion (75) is proved.

If γ(N) = +∞, then by (70), (75) and (90 ) there holds ωωω = 0 and (v̂vvε) converges

weak-star to vvv in L∞(0, t1;L
2(Ω; RN )). By (65) and (72),

Z

Ω×(0,t1)
|uuu− vvv|2dxdt ≤ lim inf

ε→0

Z

Ω×(0,t1)
|ũuuε − v̂vvε|2dxdt

≤ C lim inf
ε→0

1

γ
(N)
ε

Z

Ω

|∇∇∇uuuε|2dx = 0,

thus uuu = vvv. Taking (74) into account, Assertion (76) is proved. ⊓⊔
Proof of (92). Since ṽvvε is constant in each connected component of Trε

, for any

matrix-valued field ΨΨΨ ∈ D(Ω × (0, t1)×T ; RN ×R
N ) we have

Z

Ω×(0,t1)
ṽvvε.divyΨΨΨ

“

x, t,

yε(x)
rε

”

dmεdt = 0. By passing to the limit as ε → 0, we get
1

|T |

Z

Ω×(0,t1)×T
vvv0.divyΨΨΨ

dxdtdy = 0, and deduce from the arbitrary choice of ΨΨΨ that vvv0 is independent of y.

Let us fix ϕϕϕ ∈ D(Ω × (0, t1); R
N ) and η ∈ D(Y ) such that η(y) = 1 ∀y ∈ T . It is easy

to prove that

˛

˛

˛

˛

˛

Z

Ω×(0,t1)
ϕϕϕ.ṽvvεdxdt−

Z

Ω×(0,t1)
ϕϕϕ.ṽvvεdmεdt

˛

˛

˛

˛

˛

≤ Cε

 

Z

Ω×(0,t1)
|ṽvvε(τ)|2dxdt

!
1
2

≤ Cε.

Taking into account the last inequalities, the weak-star convergence of (ṽvvε) to vvv in

L∞(0, t1;L
2(Ω; RN )) and its two-scale convergence with respect to (mε) to vvv0, we
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deduce that

Z

Ω×(0,t1)
vvv.ϕϕϕdxdt = lim

ε→0

Z

Ω×(0,t1)
ṽvvε.ϕϕϕdxdt = lim

ε→0

Z

Ω×(0,t1)
ṽvvε.ϕϕϕdmεdt

= lim
ε→0

Z

Ω×(0,t1)
ṽvvε(x, t).

„

ϕϕϕ(x, t)η

„

yε(x)

rε

««

dmεdt

=
1

|T |

Z

Ω×(0,t1)×T
vvv0 (x, t) .ϕϕϕ (x, t) η(y)dxdtdy

=

Z

Ω×(0,t1)
vvv0.ϕϕϕdxdt,

thus, by the arbitrariness of ϕϕϕ, vvv0 = vvv. Likewise we find that ωωω0 = ωωω. Fixing ψψψ ∈
D(Ω × (0, t1)× Y ; RN ), and testing the two-scale convergence with respect to (mε) of

(ω̃ωωε) to ωωω with the test field (yyy − yyyT ) ∧ψψψ, we obtain

lim
ε→0

Z

Ω×(0,t1)

„

ω̃ωωε ∧
„

yyyε(x)

rε
− yyyT

««

.ψψψ

„

x, t,
yε(x)

rε

«

dmεdt

= lim
ε→0

Z

Ω×(0,t1)
ω̃ωωε.

„„

yyyε(x)

rε
− yyyT

«

∧ψψψ
„

x, t,
yε(x)

rε

««

dmεdt

=
1

|T |

Z

Ω×(0,t1)×T
ωωω.((yyy − yyyT ) ∧ψψψ)dxdtdy

=
1

|T |

Z

Ω×(0,t1)×T
(ωωω ∧ (yyy − yyyT )).ψψψdxdtdy.

We infer that
“

ω̃ωωε ∧
“

yyyε(x)
rε

− yyyT

””

two-scale converges to (ωωω ∧ (yyy−yyyT )) with respect

to (mε). It follows that
“

uuuε − ṽvvε − 2
diamT ω̃ωωε ∧

“

yyyε(x)
rε

− yyyT

””

two-scale converges to

(uuu0 − vvv − 2
diamT ωωω ∧ (yyy − yyyT )) with respect to (mε). Since γ(N) > 0, we deduce from

(59), the third line of (66) and (72) that

1

|T |

Z

Ω×(0,t1)×T
|uuu0 − vvv − 2

diamT
ωωω ∧ (yyy − yyyT )|2dxdtdy

≤ lim inf
ε→0

Z

Ω×(0,t1)

˛

˛

˛

˛

uuuε − ṽvvε −
2

diamT
ω̃ωωε ∧

„

yyyε(x)

rε
− yyyT

«˛

˛

˛

˛

2

dmεdt

≤ lim inf
ε→0

C
εN

rN−2
ε

1

cε
= 0,

(93)

hence uuu0 = vvv + 2
diamT ωωω ∧ (yyy − yyyT ). ⊓⊔

We collect in the next theorem some abstract classical results which will be appropriate

to check the uniqueness of the solution of the homogenized problem (40). Furthermore,

the energy equation (97) is the key to the proof of the corrector result (see Proposition

2). The proof of Theorem 2 can be found in [28, Theorem 8.1 p. 287, Theorem 8.2 and

Lemma 8.3 p. 298], [21, Formula (5.20) p. 667, and Theorem 1 p. 670], [27, Remark

1.3 p. 155]. Henceforth, the derivatives in D′(0, T ;H) are identified with the time

derivatives in D′(Ω × (0, T ) × Y ) and are denoted both by ∂ζ
∂t or by ζ′.
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Theorem 2. Let V and H be separable Hilbert spaces such that V ⊂ H = H ′ ⊂
V ′, with continuous and dense embeddings. Let ||.||V , |.|H , ((., .))V , (., .)H denote

their respective norm and inner product. Let a : V × V → R be a continuous bilinear

symmetric form on V . Let A ∈ L(V, V ′) be defined by a(ξ, ξ̃) = (Aξ, ξ̃)(V ′,V ) ∀ (ξ, ξ̃) ∈
V 2. Assume that

∃(λ, α) ∈ R+ × R
∗
+, a(ξ, ξ) + λ|ξ|2H ≥ α||ξ||2V ∀ ξ ∈ V.

Let h ∈ L2(0, t1;H), ξ0 ∈ V , ξ1 ∈ H. Then there exists a unique solution ξ of

Aξ(t) + ξ
′′(t) = h(t), ξ ∈ L

2(0, t1;V ),

ξ
′ ∈ L

2(0, t1;H), ξ(0) = ξ0, ξ
′(0) = ξ1,

(94)

where ξ′ = ∂ξ
∂t , ξ

′′ = ∂2ξ
∂t2

. What is more,

ξ ∈ C([0, t1];V ) ∩ C1([0, t1];H), ξ′ ∈ L
2(0, t1;V ), ξ′′ ∈ L

2(0, t1;V
′). (95)

Furthermore, setting

e(τ) :=
1

2

ˆ`

ξ
′(τ), ξ′(τ)

´

H
+ a(ξ(τ), ξ(τ))

˜

∀ τ ∈ [0, t1], (96)

there holds

e(τ) = e(0) +

Z τ

0

`

h, ξ
′´

H
dt ∀ τ ∈ [0, t1]. (97)

Moreover, (94) is equivalent to

Z t1

0

“

a(ξ(t), ξ̃)η(t) + (ξ(t), ξ̃)Hη
′′(t)

”

dt+ (ξ0, ξ̃)Hη
′(0)

− (ξ1, ξ̃)Hη(0) =

Z t1

0
(h, ξ̃)Hη(t)dt

∀ ξ̃ ∈ V, ∀ η ∈ D(] −∞, t1[); ξ∈L2(0, t1;V ), ξ′∈L2(0, t1;H).

(98)

7 Proof of Theorem 1

Besides the demonstration of Theorem 1, this section contains the statement and the

proof of a corrector result (see Section 7.3) and a justification of Remark 3 (i) (see

Section 7.4).

Let us briefly outline the proof of Theorem 1. In the spirit of Tartar’s method

[35], we will multiply (2) by an appropriate sequence of oscillating test fields (φφφε) and,

by passing to the limit as ε → 0 in accordance with the convergences (73) and (75)

established in proposition 1, obtain a variational problem of the type (98) satisfied by

the triple (uuu,vvv,ωωω). Theorem 2 will yield then the uniqueness and the regularity of the

solution and the initial boundary conditions. We will deduce also that the convergences

established in (73) and (75) for subsequences, take place for the entire sequences.

The underlying idea of the construction of (φφφε) is to mimic the asymptotic behavior,

studied in Proposition 1, of the sequence (uuuε) of the solutions of (2). Accordingly, the

field φφφε depends on three smooth fields ϕϕϕ,ψψψ,ζζζ designed to identify, by their arbitrary
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nature, the system of equations satisfied by (uuu,vvv,ωωω) (if N = 2, we can set ζζζ = 0 because

we know by (76) that ωωω = 0). It coincides in each particle with the rigid displacement

associated to the rotation vector 2
rεdiamT ζζζε and taking the value ψψψε at the geometric

center of gravity of the particle, being ζζζε and ψψψε suitable approximations of ζζζ and ψψψ

taking constant values in Y iε (see (101)). The field φφφε coincides with ϕϕϕ outside some

neighborhood of the particles consisting of an ε-periodic distribution BRε
of balls of

radius Rε (see (63)), being (Rε) a sequence of positive reals such that rε << Rε << ε.

In the set BRε
\ Trε

, the field φφφε takes approximately the value of the displacement

minimizing the stored energy corresponding to the elastic state associated to the Lamé

coefficients λ0, µ0, to vanishing body forces and to the Dirichlet boundary conditions

on ∂(BRε
\ Trε

) determined by the values taken by φφφε in Ω \ (BRε
\ Trε

) as described

above. The simplest candidate coping with these conditions is the field given by (139)

if N = 2 and, if N = 3, by

φφφε :=

3
X

p=1

ϕp

“

eeep − θθθ
(p)
ε

”

+ ψεpθθθ
(p)
ε + ζεpηηη

(p)
ε ,

where θθθ
(p)
ε (resp., ηηη

(p)
ε ) coincides in each set BiRε

with the solution of the problem

P3(T
i
rε

;BiRε
; (eeep, 0)) (resp., P3(T

i
rε

;BiRε
; (0, eeep)), see (6)) and is equal to zero in Ω \

BRε
. However, this choice of φφφε would lead to technical complications, because at some

stage of the proof, to be precise in (138) if N = 3 and in the proof of (146) if N = 2,

in order to compute the limit of (see (63))

Z

Hε×(0,t1)
aaa0eee(uuuε) : eee(φφφε)dxdt, (99)

we would have to establish some uniform upper bounds for the norm of the gradients

of θθθ
(p)
ε and ηηη

(p)
ε in the matrix Ω \ Trε

, like (18) if N = 3 and like [10, (5.11)] if N = 2.

Such estimates mean that the stress vectors associated to the solution of the problem

PN (rεT ;RεB;ξξξ) defined by (6), (7) do not concentrate on small parts of the connected

components of the boundary of RεB \ rεT as ε→ 0. They are plausibly satisfied if ∂T

is sufficiently smooth and can actually be checked under (18) if T is a ball by means of

explicit computations (see Remark 1 and [10, (5.11)]). In the setting of scalar diffusion

equations, the corresponding upper bounds can be deduced for a sufficiently smooth set

T from the maximum principle which unfortunately fails to hold in linear elasticity. We

circumvent this difficulty by assuming that the matrix is homogeneous and isotropic

(i.e. that aaa0 is given by (18)) and by substituting in (99) suitable approximations of

the fields θθθ
(p)
ε and ηηη

(p)
ε for which the last mentioned upper bounds can be proved. A

similar approach has been taken by Allaire in [3] in the context of Stokes equations.

The choice of these approximations depends on N ∈ {2, 3}.
-IfN = 3, we substitute the fields θθθ

(p)
ε and ηηη

(p)
ε , in each set BiRε

\T irε
(i ∈ Iε), for the

respective solutions PK0
(T irε

; R3; (eeep, 0)) and PK0
(T irε

; R3; (0, eeep)), whose existences

are guaranteed by Lemma 2 (i). By using suitable arguments of potential analysis (see

Lemma 11), we check that under (18), these approximations of the restrictions of θθθ
(p)
ε

and ηηη
(p)
ε to BRε

\ Trε
satisfy the required estimates provided that ∂T is of class C3.

As they don’t vanish on ∂BRε
, we link them up to zero in the set B2Rε

\ BRε
(see

(103)) in a way such that the integral
R

(B2Rε
\BRε

)×(0,t1)
aaa0eee(uuuε) : eee(φφφε)dxdt converges

to zero as ε→ 0 (see (127), (129)). This method doesn’t fit to the case N = 2 because
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the existence of a solution to P2(T
i
rε

; R2; (aaa, 0)) in a suitable functional space fails to

hold if aaa 6= 0 (see Remark 2 (ii)).

-If N = 2, we prove that the limit of (99) stays the same if we substitute θθθ
(p)
Bε for

θθθ
(p)
ε in (139), where, setting B′ := (diamT )B (by (37), T ⊂ B′), θθθ

(p)
Bε coincides in each

set BiRε
with the solution of PN (B′i

rε
;BiRε

; (eeep, 0)) and is equal to zero in Ω \ B′
Rε

.

As the last mentioned upper bounds hold true under (18) if T is a ball, the technical

difficulty is overcome. This method is appropriate to the case N = 2, because then the

effective problem does not depend on the choice of T , unlike the case N = 3.

7.1 Case N = 3, 0 < γ(3) < +∞

We fix three arbitrary fields ϕϕϕ, ψψψ and ζζζ such that

ϕϕϕ,ψψψ,ζζζ ∈ C
∞(Ω × (0, t1),R

3),

ϕϕϕ = ψψψ = ζζζ =
∂ϕϕϕ

∂t
=
∂ψψψ

∂t
=
∂ζζζ

∂t
= 0 on (∂Ω×]0, t1]) ∪ (Ω × {t1}),

(100)

and set

χχχε(x, t) :=
X

i∈Iε

 

Z

−
T i

rε

χχχ(y, t)dy

!

1Y i
ε
(x), χχχ ∈ {ϕϕϕ,ψψψ,ζζζ}. (101)

For each p ∈ {1, 2, 3}, we denote by θθθ
(p)
∞ (resp., ηηη

(p)
∞ ) the solution of the problem

PK0
(T ; R3; (eeep, 0)) (resp., PK0

(T ; R3; (0, eeep))) (see (10)). We fix a sequence (Rε) of

positive reals satisfying (62), set

gε(r) :=

8

>

<

>

:

1 if 0 ≤ r ≤ Rε,

− t
Rε

+ 2 if Rε ≤ r ≤ 2Rε,

0 if r ≥ 2Rε,

(102)

and define (see (33))

θθθ
(p)
∞,ε(x) := gε (|yε(x)|)θθθ(p)∞

„

yε(x)

rε

«

,

ηηη
(p)
∞,ε(x) := gε (|yε(x)|)ηηη(p)

∞

„

yε(x)

rε

«

.

(103)

The next equations, satisfied for each p, q ∈ {1, 2, 3}, i ∈ Iε, will be used to prove (112)

and to pass from (130) to (132):

rε(Cap3(T ; R3))pq =

Z

R3\T i
rε

aaa0eee

„

θθθ
(p)
∞

„

x− εi

rε

««

: eee

„

θθθ
(q)
∞

„

x− εi

rε

««

dx

= eeeq.

Z

∂T i
rε

aaa0eee

„

θθθ
(p)
∞

„

x− εi

rε

««

νννdH2

= eeeq.

Z

∂T i
rε

aaa0eee(θθθ
(p)
∞,ε)νννdH2 = −eeeq.

Z

∂Bi

Rε

aaa0eee(θθθ
(p)
∞,ε)νννdH2

,

(104)
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rε(Cap3(T ; R3))p(q+3) =

Z

R3\T i
rε

aaa0eee

„

θθθ
(p)
∞

„

x− εi

rε

««

:eee

„

ηηη
(q)
∞

„

x− εi

rε

««

dx

=eeep.

Z

∂T i
rε

aaa0eee(ηηη
(q)
∞,ε)νννdH2= −eeep.

Z

∂Bi

Rε

aaa0eee(ηηη
(q)
∞,ε)νννdH2

=
2

diamT

Z

∂T i
rε

„

eeeq ∧
„

yyyε(x)

rε
− yyyT

««

.(aaa0eee(θθθ
(p)
∞,ε)ννν)dH2

,

(105)

rε(Cap3(T ; R3))(p+3)(q+3)

=

Z

R3\T i
rε

aaa0eee

„

ηηη
(p)
∞

„

x− εi

rε

««

: eee

„

ηηη
(q)
∞

„

x− εi

rε

««

dx

=
2

diamT
eeep.

Z

∂T i
rε

„

yyyε(x)

rε
− yyyT

«

∧ (aaa0eee(ηηη
(q)
∞,ε)ννν)dH2

.

(106)

Proof of (104), (105), (106). By (33), (102), (103), the field θθθ
(p)
∞,ε (resp., ηηη

(p)
∞,ε) coin-

cides in each set Hi
ε = BiRε

\T irε
with the solution θθθ

(p)
∞

“

x−εi
rε

”

of PK0
(T irε

; R3; (eeep, 0))

(resp., ηηη
(p)
∞

“

x−εi
rε

”

of PK0
(T irε

; R
3; (0, eeep))), therefore

div
“

aaa0eee(θθθ
(p)
∞,ε)

”

= div
“

aaa0eee(ηηη
(p)
∞,ε)

”

= 0 in B
i
Rε

\ T irε
. (107)

Denoting by ννν the outward unit normal to ∂(BiRε
\T irε

), we deduce from the divergence

formula that (by Lemma 11 below, the next integrals are well defined)

Z

∂T i
rε

aaa0eee(θθθ
(p)
∞,ε)νννdH2 = −

Z

∂Bi

Rε

aaa0eee(θθθ
(p)
∞,ε)νννdH2

,

Z

∂T i
rε

aaa0eee(ηηη
(p)
∞,ε)νννdH2 = −

Z

∂Bi

Rε

aaa0eee(ηηη
(p)
∞,ε)νννdH2

.

(108)

By (16) we have

Cap3(T
i
rε

; R3) = Cap3(rεT ; R3) = rεCap3(T ; R3). (109)

The equations (104), (105), (106) are deduced by integration by parts, taking (107),

(108), (109), and the definition of Cap3(T
i
rε

; R3) into account (see (6)). ⊓⊔
In the next Lemma, we establish some suitable uniform upper bounds for the norm of

the gradients of θθθ
(p)
∞,ε and ηηη

(p)
∞,ε in the matrix Ω \ Trε

.

Lemma 11. Under (18), there holds

˛

˛

˛θθθ
(p)
∞,ε(x)

˛

˛

˛+
˛

˛

˛ηηη
(p)
∞,ε(x)

˛

˛

˛ ≤ C
rε

|yε(x)|
∀x ∈ Ω \ Trε

,

˛

˛

˛∇∇∇θθθ(p)∞,ε (x)
˛

˛

˛+
˛

˛

˛∇∇∇ηηη(p)
∞,ε (x)

˛

˛

˛ ≤ C
rε

|yε(x)|2
∀x ∈ Ω \ Trε

.
(110)

In particular, we have

|aaa0eee(ηηη
(p)
∞,ε)ννν|L∞(∂Trε

) ≤
C

rε
, |aaa0eee(ηηη

(p)
∞,ε)ννν|L∞(∂BRε

) ≤ C
rε

R2
ε

,

|aaa0eee(θθθ
(p)
∞,ε)ννν|L∞(∂Trε

) ≤
C

rε
, |aaa0eee(θθθ

(p)
∞,ε)ννν|L∞(∂BRε

) ≤ C
rε

R2
ε

,

(111)
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and

Z

Ω

|θθθ(p)∞,ε|2+ |ηηη(p)
∞,ε|2dx ≤ CRεrεγ

(3)
ε ,

Z

Ω

|eee(θθθ(p)∞,ε)|2+ |eee(ηηη(p)
∞,ε)|2dx ≤ Cγ

(3)
ε . (112)

Proof. Let us fix ξξξ =

„

aaa

bbb

«

∈ (R3)2 and let www be the solution of PK0
(T ; R3;ξξξ)

(see (10)). The field www, which represents a displacement in the homogeneous isotropic

elastic space R
3 \T corresponding to zero body forces, is biharmonic in R

3 \T (see [24,

p. 133]), therefore it satisfies the following mean value formula (see [24, p. 21, (4)])

www(y) =
3

8π

„

5

Z

y+B
wwwdx−

Z

y+∂B
wwwdH2

«

, (113)

provided yyy + B ⊂ R
3 \ T . Let us fix ε > 0. Since |www|K0(R3;R3) < +∞ (see (8)), there

exists r0 > 0 such that T ⊂ r0B and

Z

R3\r0B
|www|6 + |∇∇∇www|2dx ≤ ε. (114)

If |y| > r0 + 1, then y +B ⊂ R
3 \ r0B and by (114) and Hölder inequality we have

˛

˛

˛

˛

Z

y+B
wwwdx

˛

˛

˛

˛

≤ C

„Z

y+B
|www|6dx

«
1
6

≤ Cε
1
6 ,

Z

y+B
|www|2dx ≤ C

„Z

y+B
|www|6dx

«
1
3

≤ Cε
1
3 ,

(115)

yielding, by the continuity of the trace application from H1(y +B) to L1(y + ∂B),

˛

˛

˛

˛

Z

y+∂B
wwwdH2

˛

˛

˛

˛

2

≤ C

Z

y+B
|www|2 + |∇∇∇www|2dx ≤ C(ε

1
3 + ε). (116)

Joining (113), (115), (116), we infer that |www(y)| < Cε
1
6 provided |y| > r0, hence

lim|y|→+∞ |www(y)| = 0. Being biharmonic in a neighborhood of infinity and vanishing

at infinity, the field www satisfies the following estimates in a neighborhood of infinity (see

[24, p. 23]): |www(y)| ≤ C
|y|
, |∇∇∇www(y)| ≤ C

|y|2
. On the other hand, as ∂T is of class C3

(see (36)), by the classical boundary regularity results for solutions to elliptic systems

of partial differential equations (see [1]) there holds www ∈ C1(R3 \ T ; R3), therefore the

last mentioned estimates hold true in R3 \ T (by (37) there holds 0 ∈ T ). Choosing

(aaa,bbb) ∈ {(eeep, 0), (0, eeep)} (that is www ∈ {θθθ(p)∞ , ηηη
(p)
∞ }), we obtain, by making suitable

changes of variables, the following estimates in R3 \ Trε
(see (33))

˛

˛

˛

˛

θθθ
(p)
∞

„

yε(x)

rε

«˛

˛

˛

˛

+

˛

˛

˛

˛

ηηη
(p)
∞

„

yε(x)

rε

«˛

˛

˛

˛

≤ C
rε

|yε(x)|
,

˛

˛

˛

˛

∇∇∇
„

θθθ
(p)
∞

„

yε(x)

rε

««˛

˛

˛

˛

+

˛

˛

˛

˛

∇∇∇
„

ηηη
(p)
∞

„

yε(x)

rε

««˛

˛

˛

˛

≤ C
rε

|yε(x)|2
.

Taking (102) and (103) into account, we deduce (110), (111), and (112). ⊓⊔
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With a view to applying Theorem 2, we adopt the following notations

H := (L2(Ω; R3))3, V := H
1
0 (Ω; R3) × (L2(Ω; R3))2,

((uuu,vvv,ωωω), (ϕϕϕ,ψψψ,ζζζ))H :=

Z

Ω

ρ0uuu.ϕϕϕdx

+
1

|T |

Z

Ω×T
ρ

„

vvv +
2ωωω

diamT
∧ (yyy − yyyT )

«

.

„

ψψψ +
2ζζζ

diamT
∧ (yyy − yyyT )

«

dxdy,

(((uuu,vvv,ωωω), (ϕϕϕ,ψψψ,ζζζ)))V := ((uuu,vvv,ωωω), (ϕϕϕ,ψψψ,ζζζ))H +

Z

Ω

∇∇∇uuu.∇∇∇ϕϕϕdx,

(117)

and consider the continuous bilinear symmetric form a on V and the fields ξ, ξ̃ ∈
L2(0, t1;V ), h ∈ L2(0, t1;H), ξ0 ∈ V , ξ1 ∈ H defined by

a(ξ(τ), ξ̃(τ)) :=

Z

Ω

aaa0eee(uuu) : eee(ϕϕϕ)(τ)dx

+ γ
(3)
Z

Ω

„

ψψψ −ϕϕϕ

ζζζ

«

.Cap3(T ; R3)

„

vvv − uuu

ωωω

«

(τ)dx,

ξ = (uuu,vvv,ωωω), ξ̃ = (ϕϕϕ,ψψψ,ζζζ), ξ0 = (bbb0, bbb0, 0), ξ1 = (ccc0, ccc0, 0), h = (fff,fff, 0).

(118)

Setting

φφφε :=
3
X

p=1

ϕp

“

eeep − θθθ
(p)
∞,ε

”

+ ψεpθθθ
(p)
∞,ε + ζεpηηη

(p)
∞,ε, (119)

we multiply the first line of (2) by φφφε and integrate by parts over Ω × (0, t1):

Z

Ω×(0,t1)
ρεuuuε.

∂2φφφε
∂t2

dxdt+

Z

Ω

ρε

„

bbb0
∂φφφε(0)

∂t
dx− ccc0φφφε(0)

«

dx

+

Z

Ω×(0,t1)
aaaεeee(uuuε) : eee(φφφε)dxdt−

Z

Ω×(0,t1)
ρεfff.φφφεdxdt = 0.

(120)

It is easy to check that φφφε = ψψψε + 2
diamT ζζζε ∧

“

yyyε(x)
rε

− yyyT

”

in Trε
. Taking (32) and

(57) into account, we infer

Z

Ω×(0,t1)
ρεuuuε.

∂2φφφε
∂t2

dxdt =

Z

(Ω\Trε
)×(0,t1)

ρ0uuuε.
∂2φφφε
∂t2

dxdt

+

Z t1

0

Z

ρ

„

yε

rε

«

uuuε.

„

∂2ψψψε
∂t2

+
2

diamT

∂2ζζζε
∂t2

∧
„

yyyε(x)

rε
− yyyT

««

dmεdt.

(121)

The sequence
“

∂2φφφ
ε

∂t2
1Ω\Trε

”

converges strongly to
∂2ϕϕϕ

∂t2
in L2(Ω × (0, t1); R

3), hence

by the strong convergence of (uuuε) to uuu in L2(Ω × (0, t1); R
3) (see (73)), we have

lim
ε→0

Z

(Ω\Trε
)×(0,t1)

ρ0uuuε.
∂2φφφε
∂t2

dxdt =

Z

Ω×(0,t1)
ρ0uuu.

∂2ϕϕϕ

∂t2
dxdt. (122)
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By (72) and (101) there holds
˛

˛

˛

˛

˛

Z t1

0

Z

ρ

„

yε

rε

«

uuuε.

"

„

∂2ψψψε
∂t2

+
2

diamT

∂2ζζζε
∂t2

∧
„

yyyε(x)

rε
− yyyT

««

−
„

∂2ψψψ

∂t2
+

2

diamT

∂2ζζζ

∂t2
∧
„

yyyε(x)

rε
− yyyT

««

#

dmεdt

˛

˛

˛

˛

˛

≤ Crε

s

Z t1

0

Z

|uuuε|2dmεdt ≤ Crε.

(123)

By testing the two-scale convergence of (uuuε) to vvv +ωωω ∧ (yyy − yyyT ) with respect to (mε)

(see (58), (75)) with the test field ρ (y) (∂
2ψψψ
∂t2

+ 2
diamT

∂2ζζζ
∂t2

∧ (yyy − yyyT )), taking (35) and

(123) into account, we obtain

lim
ε→0

Z t1

0

Z

ρ

„

yε

rε

«

uuuε.

„

∂2ψψψε
∂t2

+
2

diamT

∂2ζζζε
∂t2

∧
„

yyyε

rε
− yyyT

««

dmεdt

=
1

|T |

Z

Ω×(0,t1)×T
ρ

„

vvv +
2

diamT
ωωω ∧ (yyy − yyyT )

«

.

„

∂2ψψψ

∂t2
+

2

diamT

∂2ζζζ

∂t2
∧ (yyy − yyyT )

«

dxdtdy

=

Z

Ω×(0,t1)

 

ρvvv.
∂2ψψψ

∂t2
+ (ρ(yyyG − yyyT ) ∧ vvv). 2

diamT

∂2ζζζ

∂t2

+

„

2

diamT
ωωω ∧ ρ(yyyG − yyyT )

«

.
∂2ψψψ

∂t2
+

„

2

diamT

«2

JJJ
ρ
ωωω.
∂2ζζζ

∂t2

!

dxdt.

(124)

Joining (117), (118), (121), (122), and (124), we get

lim
ε→0

Z

Ω×(0,t1)
ρεuuuε.

∂2φφφε
∂t2

dxdt =

Z t1

0
(ξ(t), ξ̃”(t))Hdt. (125)

By repeating the same argument, replacing uuuε by the continuous fields bbb0, ccc0, fff and

the sequence
“

∂2φφφ
ε

∂t2

”

by
“

∂φφφ
ε

∂t (0)
”

, (φφφε(0)), (φφφε), we find

lim
ε→0

Z

Ω

ρε

„

bbb0.
∂φφφε
∂t

(0) − ccc0.φφφε(0)

«

dx−
Z

Ω×(0,t1)
ρεfff.φφφεdxdt

= (ξ0, ξ̃
′(0))H − (ξ1, ξ̃(0))H −

Z t1

0
(h(t), ξ̃(t))Hdt.

(126)

Noticing that eee(φφφε) = 0 on Trε
, we set (see (63))

Z

Ω×(0,t1)
aaaεeee(uuuε) : eee(φφφε)dxdt = I1ε + I2ε + I3ε; I1ε :=

Z

Ω\(B2Rε
)×(0,t1)

aaa0eee(uuuε) : eee(ϕϕϕ)dxdt,

I2ε :=

Z

(B2Rε
\BRε

)×(0,t1)
aaa0eee(uuuε) : eee(φφφε)dxdt, I3ε :=

Z

Hε×(0,t1)
aaa0eee(uuuε) : eee(φφφε)dxdt.

(127)

By (73) the sequence (aaa0eee(uuuε)) converges weakly to aaa0eee(uuu) in L2(Ω × (0, t1); S
3). As

(eee(ϕϕϕ)1Ω\(B2Rε
)) converges strongly to eee(ϕϕϕ) in L2(Ω × (0, t1); S

N ), we infer
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lim
ε→0

I1ε =

Z

Ω×(0,t1)
aaa0eee(uuu) : eee(ϕϕϕ)dxdt. (128)

By (72), (110), (119), and (127), there holds

I2ε ≤ C

s

Z

(B2Rε
\BRε

)×(0,t1)
|eee(φφφε)|2dxdt

≤ C

v

u

u

t

3
X

p=1

Z

B2Rε
\BRε

1+|θθθ(p)∞,ε|2+|ηηη(p)
∞,ε|2+|∇∇∇(θθθ

(p)
∞,ε)(x)|2+|∇∇∇(ηηη

(p)
∞,ε)(x)|2 dx

≤ C

s

„

1 +
r2ε

R4
ε

«

L3(B2Rε
) ≤ C

s

rε

Rε
γ
(3)
ε +

R3
ε

ε3
= o(1).

(129)

Denoting by ννν the outward unit normal to ∂(BRε
\ Trε

), we set (see (38), (64))

Ĩ3ε :=
3
X

p=1

Z

∂Trε
×(0,t1)

„

ṽvvε +
2ω̃ωωε

diamT
∧
„

yyyε

rε
− yyyT

««

.
“

(ψεp − ϕεp)aaa0eee(θθθ
(p)
∞,ε)ννν + ζεpaaa0eee(ηηη

(p)
∞,ε)ννν

”

dHN−1
dt

+

3
X

p=1

Z

∂BRε
×(0,t1)
ũuuε.
“

(ψεp−ϕεp)aaa0eee(θθθ
(p)
∞,ε)ννν+ζεpaaa0eee(ηηη

(p)
∞,ε)ννν

”

dHN−1
dt.

(130)

We establish below that

|I3ε − Ĩ3ε| = o(1). (131)

For a fixed t ∈ (0, t1), the fields ϕϕϕε, ψψψε, ζζζε, ṽvvε, ω̃ωωε, and ũuuε are constant in each connected

components of Hε. By (16), (104)-(106), and (130), we have

Ĩ3ε =

Z t1

0

X

i∈Iε

„

ψψψε −ϕϕϕε
ζζζε

«

.Cap3(rεT ; R3)

„

ṽvvε − ũuuε
ω̃ωωε

«

(εi, t)dt

=
rε

ε3

X

i∈Iε

Z

Y i
ε
×(0,t1)

„

ψψψε −ϕϕϕε
ζζζε

«

.Cap3(T ; R3)

„

ṽvvε − ũuuε
ω̃ωωε

«

dxdt

= γ
(3)
ε

Z

Ω×(0,t1)

„

ψψψε −ϕϕϕε
ζζζε

«

.Cap3(T ; R3)

„

ṽvvε − ũuuε
ω̃ωωε

«

dxdt.

(132)

By passing to the limit as ε → 0 in (132), thanks to the uniform convergence of

(ϕϕϕε,ψψψε, ζζζε) to (ϕϕϕ,ψψψ,ζζζ) in Ω × (0, t1) (see (101)) and to the convergences stated in (73)

and (75), we obtain

lim
ε→0

Ĩ3ε = γ
(3)
Z

Ω×(0,t1)

„

ψψψ −ϕϕϕ

ζζζ

«

.Cap3(T ; R3)

„

vvv − uuu

ωωω

«

dxdt. (133)

Joining (118), (127), (128), (129), (131), and (133), we get

lim
ε→0

Z

Ω×(0,t1)
aaaεeee(uuuε) : eee(φφφε)dxdt =

Z t1

0
a(ξ, ξ̃)dt. (134)
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We deduce from (120), (125), (126), and (134) that

Z t1

0
(ξ, ξ̃”)H + a(ξ, ξ̃) − (h, ξ̃)Hdt+ (ξ0, ξ̃

′(0))H − (ξ1, ξ̃(0))H = 0. (135)

By the arbitrary choice of ξ̃ = (ϕϕϕ,ψψψ,ζζζ) and by a density argument, the variational

formulation (135) is equivalent to (98). It is easy to check that under (117) and (118)

the assumptions of Theorem 2 are satisfied. We infer that ξ = (uuu,vvv,ωωω) satisfies (95) and

is the unique solution of the problem (94), equivalent to (40). The proof of Theorem 1

is achieved in the case N = 3. ⊓⊔
Proof of (131). We set

I3ε :=

Z

Hε×(0,t1)
aaa0eee(uuuε) : eee(φφφε)dxdt,

φφφε :=
3
X

p=1

ϕεp

“

eeep − θθθ
(p)
∞,ε

”

+ ψεpθθθ
(p)
∞,ε + ζεpηηη

(p)
∞,ε.

(136)

Thanks to (72), (112), and to the estimate |ϕϕϕ−ϕϕϕε| ≤ CRε in Hε (easily deduced from

(101)), we get

|I3ε − I3ε| ≤ C

v

u

u

u

t

Z

Hε×(0,t1)

˛

˛

˛

˛

˛

˛

eee

0

@

3
X

p=1

(ϕεp − ϕp)(eeep − θθθ
(p)
∞,ε)

1

A

˛

˛

˛

˛

˛

˛

2

dxdt

≤ C

v

u

u

u

t

Z

Hε×(0,t1)

0

@R2
ε

3
X

p=1

˛

˛

˛eee
“

θθθ
(p)
∞,ε

”˛

˛

˛

2
+ 1 +

3
X

p=1

|θθθ(p)∞,ε|2
1

A dxdt

≤ C

q

R2
εγ

(3)
ε + L3(Hε) = o(1).

(137)

As for fixed t the fields ϕϕϕε, ψψψε, ζζζε are constant in each connected components of Hε,

by (136) there holds

I3ε =

3
X

p=1

Z

Hε×(0,t1)
(ψεp − ϕεp)aaa0eee(uuuε) : eee(θθθ

(p)
∞,ε) + ζεpaaa0eee(uuuε) : eee(ηηη(p)

∞,ε)dxdt.

By integration by parts, taking (107) into account, we infer

I3ε =
3
X

p=1

Z

∂Trε
×(0,t1)
uuuε.
`

(ψεp − ϕεp)aaa0eee(θθθ
(p)
∞,ε)ννν + ζεpaaa0eee(ηηη

(p)
∞,ε)ννν

´

dHN−1(x)dt

+

3
X

p=1

Z

∂BRε
×(0,t1)
uuuε.
`

(ψεp − ϕεp)aaa0eee(θθθ
(p)
∞,ε)ννν + ζεpaaa0eee(ηηη

(p)
∞,ε)ννν

´

dHN−1(x)dt,
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where ννν denotes the outward unit normal to ∂Hε. It follows then from (130) that

˛

˛

˛I3ε − Ĩ3ε

˛

˛

˛ ≤ C

3
X

p=1

s

Z

∂Trε
×(0,t1)
|ṽvvε +

2

diamT
ω̃ωωε ∧

„

yyyε(x)

rε
− yyyT

«

− uuuε|2dH2dt

×
q

H2(∂Trε
)

„

˛

˛

˛aaa0eee(θθθ
(p)
∞,ε)ννν

˛

˛

˛

L∞(rεT )
+
˛

˛

˛aaa0eee(ηηη
(p)
∞,ε)ννν

˛

˛

˛

L∞(rεT )

«

+ C

3
X

p=1

s

Z

∂BRε
×(0,t1)

|ũuuε−uuuε|2dH2dt

q

H2(∂BRε
)

×
„

˛

˛

˛aaa0eee(θθθ
(p)
∞,ε)ννν

˛

˛

˛

L∞(RεB)
+
˛

˛

˛aaa0eee(ηηη
(p)
∞,ε)ννν

˛

˛

˛

L∞(RεB)

«

.

Thanks to (66), (72), and (111) we infer (by (34) we have limε→0 cε = +∞)

˛

˛

˛I3ε − Ĩ3ε

˛

˛

˛ ≤ C

s

Z

Trε
×(0,t1)

rε |eee(uuuε)|2 dxdt
r

r2ε

ε3
1

rε

+ C

s

Rε

Z

BRε
×(0,t1)

|∇∇∇uuuε|2dxdt
r

R2
ε

ε3
rε

R2
ε

≤ C

r

rε

ε3

 

r

1

cε
+

r

rε

Rε

!

= C

q

γ
(3)
ε

 

r

1

cε
+

r

rε

Rε

!

= o(1).

(138)

The estimate (131) follows from (137) and (138). ⊓⊔

7.2 Case N = 2, 0 < γ(2) < +∞

We fix ϕϕϕ,ψψψ such that

ϕϕϕ,ψψψ ∈ C
∞(Ω × (0, t1),R

2),

ϕϕϕ = ψψψ =
∂ϕϕϕ

∂t
=
∂ψψψ

∂t
= 0 on (∂Ω×]0, t1]) ∪ (Ω × {t1}),

and set

φφφε :=

2
X

α=1

ϕα

“

eeeα − θθθ
(α)
ε

”

+ ψεαθθθ
(α)
ε , (139)

where ψψψε is defined by (101) and θθθ
(α)
ε ( α ∈ {1, 2}) denotes the solution of

inf
θθθ∈H1

0 (Ω,R2)

(

Z

Ω

aaa0eee(θθθ) : eee(θθθ)dx

˛

˛

˛

˛

˛

θθθ = eeeα in Trε
,

θθθ = 0 in Ω \BRε

)

. (140)

Hence the field θθθ
(α)
ε coincides in each set BiRε

with the solution of P2(T
i
rε

;BiRε
; (eeeα, 0))

(see (7)) and is equal to zero in Ω \BRε
. We have Cap2(T

i
rε

;BiRε
) = Cap2(rεT ;RεB)

and the next formula (similar to (107)-(104)) hold true (α, β ∈ {1, 2}, i ∈ Iε)

div
“

aaa0eee(θθθ
(α)
ε )

”

= 0 in Hε (= BRε
\ Trε

),
Z

∂T i
rε

aaa0eee(θθθ
(α)
ε )νννdH1 = −

Z

∂Bi

Rε

aaa0eee(θθθ
(α)
ε )νννdH1

,

(Cap2(rεT ;RεB))αβ = eeeβ .

Z

∂T i
rε

aaa0eee(θθθ
(α)
ε )νννdH1 = −eeeβ .

Z

∂Bi

Rε

aaa0eee(θθθ
(α)
ε )νννdH1

,
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where ννν denotes the outward unit normal to ∂(BRε
\ Trε

). There holds

Z

Hε

˛

˛

˛eee(θθθ
(α)
ε )

˛

˛

˛

2
dx ≤ Cγ

(2)
ε ,

Z

Ω

|θθθ(α)
ε |2dx ≤ CR

2
εγ

(2)
ε . (141)

Proof of (141). By (5), (21) and (39), we have

Z

Hε

˛

˛

˛eee(θθθ
(α)
ε )

˛

˛

˛

2
dx ≤ C

X

i∈Iε

Z

Bi

Rε

aaa0eee(θθθ
(α)
ε ) : eee(θθθ

(α)
ε )dx

≤ C

ε2
(Cap2(rεT ;RεB))αα ≤ C

ε2| log rε|
= Cγ

(2)
ε .

(142)

For each i ∈ Iε and α ∈ {1, 2}, the restriction of θθθ
(α)
ε to BiRε

belongs to H1
0 (BiRε

,R2).

By applying Poincaré inequality in H1
0 (BiRε

; R
2) and Korn inequality in H1

0 (BiRε
; R2),

taking (62) and (142) into account, we obtain

Z

Ω

|θθθ(α)
ε |2dx ≤

X

i∈Iε

Z

Bi

Rε

|θθθ(α)
ε |2dx ≤ CR

2
ε

X

i∈Iε

Z

Bi

Rε

| ∇∇∇θθθ(α)
ε |2dx

≤ CR
2
ε

X

i∈Iε

Z

Bi

Rε

| eee(θθθ(α)
ε )|2dx= CR

2
ε

Z

Hε

| eee(θθθ(α)
ε )|2dx ≤ CR

2
εγ

(2)
ε .⊓⊔

Repeating the argument of the case N = 3, we multiply the first line of (2) by φφφε and

integrate by parts, to obtain (120). Then we set

Z

Ω×(0,t1)
aaaεeee(uuuε) : eee(φφφε)dxdt = I1ε + I2ε; I1ε :=

Z

Ω\(Hε∪Trε
)×(0,t1)

aaa0eee(uuuε) : eee(ϕϕϕ)dxdt,

I2ε :=

Z

Hε×(0,t1)
aaa0eee(uuuε) : eee

 

ϕϕϕ+
2
X

α=1

(ψεα − ϕα)θθθ
(α)
ε

!

dxdt.

(143)

In the spirit of Theorem 2, we set

H := (L2(Ω; R2))2, V := H
1
0 (Ω; R2) × L

2(Ω; R2),

((uuu,vvv), (ϕϕϕ,ψψψ))H :=

Z

Ω

ρ0uuu.ϕϕϕ+ ρvvv.ψψψdx,

(((uuu,vvv), (ϕϕϕ,ψψψ)))V := ((uuu,vvv), (ϕϕϕ,ψψψ))H +

Z

Ω

∇∇∇uuu.∇∇∇ϕϕϕdx,

a((uuu,vvv), (ϕϕϕ,ψψψ)) :=

Z

Ω

aaa0eee(uuu) : eee(ϕϕϕ)dxdt

+ γ
(2)4πµ0

λ0 + 2µ0

λ0 + 3µ0

Z

Ω

(ψψψ −ϕϕϕ).(vvv − uuu)dx,

ξ = (uuu,vvv), ξ̃ = (ϕϕϕ,ψψψ), ξ0 = (bbb0, bbb0), ξ1 = (ccc0, ccc0), h = (fff,fff).

(144)
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By the same reasoning used to get (125), (126), (128) in the case N = 3, we find

lim
ε→0

Z

Ω×(0,t1)
ρεuuuε.

∂2φφφε
∂t2

dxdt =

Z t1

0
(ξ, ξ̃”)H ,

lim
ε→0

Z

Ω

ρε

„

bbb0.
∂φφφε
∂t

(0) − ccc0.φφφε(0)

«

dx−
Z

Ω×(0,t1)
ρεfff.φφφεdxdt

= (ξ0, ξ̃
′(0))H − (ξ1, ξ̃(0))H −

Z t1

0
(h, ξ̃)Hdt,

lim
ε→0

I1ε =

Z

Ω×(0,t1)
aaa0eee(uuu) : eee(ϕϕϕ)dxdt.

(145)

We prove below that

lim
ε→0

I2ε = γ
(2)4πµ0

λ0 + 2µ0

λ0 + 3µ0

Z

Ω×(0,t1)
(ψψψ −ϕϕϕ).(vvv − uuu)dxdt. (146)

By passing to the limit as ε→ 0 in (120), thanks to (143), (144), (145), and (146), we

obtain the variational formulation (135) (with data given now by (144)), equivalent to

(98). We deduce from Theorem 2 that ξ = (uuu,vvv) satisfies (95) and is the unique solution

of the problem (94), equivalent to (41). The proof of Theorem 1 is achieved. ⊓⊔
Proof of (146). Setting

I2ε :=

Z

Hε×(0,t1)
aaa0eee(uuuε) : eee(φφφε)dxdt, φφφε :=

2
X

α=1

ϕεα

“

eeeα − θθθ
(α)
ε

”

+ ψεαθθθ
(α)
ε ,

and taking (72), (141) and the estimate |ϕϕϕ −ϕϕϕε| ≤ CRε in Hε into account, we infer

(as in (137))

|I2ε − I2ε| ≤ C

v

u

u

u

t

Z

Hε×(0,t1)

˛

˛

˛

˛

˛

eee

 

2
X

α=1

(ϕεα − ϕα)(eeeα − θθθ
(α)
ε )

!˛

˛

˛

˛

˛

2

dxdt

≤ C

v

u

u

t

Z

Hε×(0,t1)

 

R2
ε

2
X

α=1

˛

˛

˛eee
“

θθθ
(α)
ε

”˛

˛

˛

2
+ 1 +

2
X

α=1

|θθθ(α)
ε |2

!

dxdt

≤ C

q

L2(Hε) +R2
εγ

(2)
ε = o(1).

(147)

As ψψψε(., t) and ϕϕϕε(., t) are constant in each cell Y iε , we have (see (101), (140))

I2ε :=
2
X

α=1

Z

BRε
×(0,t1)

(ψεα − ϕεα)aaa0eee(uuuε) : eee
“

θθθ
(α)
ε

”

dxdt. (148)

Let B′ denote the ball of center 0 and radius diamT (by (37), T ⊂ B′) and, for each

α ∈ {1, 2}, let θθθ
(α)
Bε denote the solution of (see (63))

inf
θθθ∈H1

0 (Ω;R2)

(

Z

Ω

aaa0eee(θθθ) : eee(θθθ)dx

˛

˛

˛

˛

˛

θθθ = eeeα in B
′
rε
,

θθθ = 0 in Ω \BRε

)

. (149)
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We prove below that

|I2ε − IB2ε| ≤ C
√
ε
“

γ
(2)
ε

”
3
4

= o(1), (150)

where

IB2ε =
2
X

α=1

Z

BRε
×(0,t1)

(ψεα − ϕεα)aaa0eee(uuuε) : eee
“

θθθ
(α)
Bε

”

dxdt. (151)

The next convergence is established in [10, Formula (5.36)]

lim
ε→0

IB2ε = γ
(2)4πµ0

λ0 + 2µ0

λ0 + 3µ0

Z

Ω×(0,t1)
(ψψψ −ϕϕϕ).(vvv − uuu)dxdt. (152)

Joining (147), (150), (152), we obtain (146). ⊓⊔
Proof of (150). By (72), (101), (148), and (151), there holds

˛

˛I2ε− IB2ε

˛

˛≤C
s

Z

Ω×(0,t1)
|aaa0eee(uuuε)|2dxdt

s

Z

Ω×(0,t1)

˛

˛

˛eee(θθθ
(α)
Bε − θθθ

(α)
ε )

˛

˛

˛

2
dxdt

≤ C

s

Z

Ω

aaa0eee(θθθ
(α)
Bε − θθθ

(α)
ε ) : eee(θθθ

(α)
Bε − θθθ

(α)
ε )dx ≤ C

p

J1ε + J2ε,

J1ε :=

Z

BRε
\B′

rε

aaa0eee(θθθ
(α)
Bε − θθθ

(α)
ε ) : eee(θθθ

(α)
Bε − θθθ

(α)
ε )dx,

J2ε :=

Z

B′

rε
\Trε

aaa0eee(θθθ
(α)
ε ) : eee(θθθ

(α)
ε )dx =

Z

B′

rε
\Trε

eee(θθθ
(α)
ε − eeeα) : aaa0eee(θθθ

(α)
ε )dx.

(153)

By (140) and (149), we have θθθ
(α)
ε = θθθ

(α)
Bε = 0 on ∂BRε

, θθθ
(α)
Bε = eeeα on ∂B′

rε
, θθθ

(α)
ε = eeeα

on ∂Trε
. By integration by parts, denoting by ννν the outward unit normal to ∂B′

rε
, we

infer

J1ε=−
Z

∂B′

rε

(eeeα − θθθ
(α)
ε ).aaa0eee(θθθ

(α)
Bε )νννdH1+

Z

∂B′

rε

(eeeα − θθθ
(α)
ε ).aaa0eee(θθθ

(α)
ε )νννdH1

,

J2ε= −
Z

∂B′

rε

(eeeα − θθθ
(α)
ε ).aaa0eee(θθθ

(α)
ε )νννdH1

.

Taking the estimate |aaa0eee(θθθ
(p)
Bε)ννν|L∞(∂(rεB′))≤ C

rε| log rε|
(see [10, (5.12)]) into account,

we deduce

J1ε+J2ε=−
Z

∂B′

rε

(eeeα − θθθ
(α)
ε ).aaa0eee(θθθ

(α)
Bε )νννdH1≤ C

rε| log rε|

Z

∂B′

rε

|eeeα − θθθ
(α)
ε |dH1

≤ C

rε| log rε|

s

Z

∂B′

rε

|eeeα − θθθ
(α)
ε |2dH1

q

H1(∂B′
rε

)

≤ C√
rεε| log rε|

s

Z

∂B′

rε

|eeeα − θθθ
(α)
ε |2dH1.

(154)
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By the continuity of the trace application from H1(B′ \ T ; R2) to L2(∂B′; R2) and by

Poincaré inequality and Korn inequality in H := {www ∈ H1(B′ \ T ; R2),www = 0 on ∂T},
there holds

Z

∂B′

|www|2dH1 ≤ C

Z

B′\T
|∇∇∇www|2dx ≤ C

Z

B′\T
|eee(www)|2dx ∀ www ∈ H.

By making suitable changes of variable (notice that eeeα−θθθ(α)
ε = 0 on ∂T rε

), we deduce
Z

∂B
′i
rε

|eeeα − θθθ
(α)
ε |2dH1 ≤ Crε

Z

B
′i
rε

\T i
rε

|eee(θθθ(α)
ε )|2dx ∀i ∈ Iε. (155)

Summing (155) over i ∈ Iε, taking (141) into account, we obtain
Z

∂B′

rε

|eeeα − θθθ
(α)
ε |2dH1 ≤ C

rε

ε2| log(rε)|
. (156)

Joining (39), (153), (154), and (156), we get (150). ⊓⊔

7.3 Corrector result

The next proposition enhances the results stated in Theorem 1 by displaying an ap-

proximation of the solution uuuε of (2) in the strong topology of L2(0, t1;H
1
0 (Ω; RN )).

Proposition 2. Under the hypotheses of Theorem 1, assume that bbb0 = 0, and that the

solution (uuu,vvv,ωωω) of (40) if N = 3 (resp., of (41) if N = 2) is smooth, say uuu,vvv,ωωω ∈
C2([0, t1];C

1(Ω; RN )). Let uuuε be the solution of (2) and let φφφε denote the field defined

by substituting (uuu,vvv,ωωω) for (ϕϕϕ,ψψψ,ζζζ) in (119) if N = 3 (resp., in (139) if N = 2). Then

lim
ε→0

Z t1

0
|uuuε −φφφε|2H1

0 (Ω;RN )dt = 0. (157)

Remark 6. (i) The approximation φφφε of uuuε introduced in Proposition 2 satisfies φφφε =

vvvε + 2
diamT ωωωε ∧

“

yyyε(x)
rε

− yyyT

”

in Trε
(vvvε, ωωωε being defined by (101)) hence the field

vvv(x, t) + 2
rεdiamT ωωω(x, t)∧

“

yyyε(x)
rε

− yyyT

”

(resp., 2
rεdiamT ωωω) is a local approximation of

the displacement in the inclusions (resp., of the rotation vector of the particles).

(ii) A similar result can be established if γN ∈ {0,+∞} and for equilibrium equations.

Proof. We sketch the proof only in the case N = 3. The proof is similar in the case

N = 2. By (34) and Korn inequality in H1
0 (Ω; R3) we have, for all τ ∈ (0, t1),

|uuuε −φφφε(τ)|2H1
0 (Ω;R3) ≤ C

Z

Ω

aaaεeee(uuuε −φφφε(τ)) : eee(uuuε −φφφε(τ))dx.

We deduce that

Z t1

0
|uuuε −φφφε|2H1

0 (Ω;R3)dt ≤ C (J1ε − 2J2ε + J3ε), where

J1ε :=

Z

Ω×(0,t1)
ρε

˛

˛

˛

˛

∂uuuε

∂t

˛

˛

˛

˛

2

+ aaaεeee(uuuε) : eee(uuuε)dxdt,

J2ε :=

Z

Ω×(0,t1)
ρε
∂uuuε

∂t
.
∂φφφε
∂t

+ aaaεeee(uuuε) : eee(φφφε)dxdt,

J3ε :=

Z

Ω×(0,t1)
ρε

˛

˛

˛

˛

∂φφφε
∂t

˛

˛

˛

˛

2

+ aaaεeee(φφφε) : eee(φφφε)dxdt.

(158)



44 Michel Bellieud

We prove below that (see (117), (118))

lim
ε→0

J1ε = lim
ε→0

J2ε = lim
ε→0

J3ε =

Z t1

0

`

ξ
′
, ξ

′´

H
+ a(ξ, ξ)dt, (159)

yielding (157). ⊓⊔
Proof of (159). By (78) we have, since bbb0 = 0,

J1ε =

Z

Ω×(0,t1)
ρε|ccc0|2dxdt+ 2

Z t1

0

 

Z

Ω×(0,t)
ρεfff.

∂uuuε

∂t
dxds

!

dt. (160)

By (32) there holds

Z

Ω×(0,t)
ρεfff.

∂uuuε

∂t
dxds =

Z

Ω\Trε
×(0,t)
ρ0fff.

∂uuuε

∂t
dxds+

Z

Trε
×(0,t)

ρ

„

yε(x)

rε

«

fff.
∂uuuε

∂t
dmεds.

By(73) and (75), the sequence
“

∂uuuε

∂t

”

converges weak-star to ∂uuu
∂t in L∞(0, t1;L

2(Ω; R3))

and two-scale with respect to (mε) to ∂vvv
∂t + 2

diamT
∂ωωω
∂t ∧ (yyyG − yyyT ). We easily deduce

that for each t ∈ (0, t1), there holds

lim
ε→0

Z

Ω×(0,t)
ρεfff.

∂uuuε

∂t
dxds

=

Z

Ω×(0,t)
ρ0fff.

∂uuu

∂t
+ ρfff.

„

∂vvv

∂t
+

2

diamT

∂ωωω

∂t
∧ (yyyG − yyyT )

«

dxds.

(161)

Since |fff | is bounded in Ω × (0, t1) (see (2)), by (72) and (79) we have, for all t ∈ [0, t1]

Z

Ω×(0,t)
ρεfff.

∂uuuε

∂t
dxds ≤ C

 

Z

Ω×(0,t)
ρε

˛

˛

˛

˛

∂uuuε

∂t

˛

˛

˛

˛

2

dx

!
1
2
 

Z

Ω×(0,t)
ρε|fff |2dx

!
1
2

≤ C. (162)

Joining (160), (161), (162), thanks to the dominated convergence theorem and to the

weak-star convergence in the sense of measures of (ρε) to (ρ0+ρ), taking the continuity

of ccc0 into account (see (2)), we get, by (117), (118),

lim
ε→0

J1ε =

Z

Ω×(0,t1)
(ρ0 + ρ) |ccc0|2 dxdt

+ 2

Z t1

0

Z

Ω×(0,t)
ρ0fff.

∂uuu

∂t
+ ρfff.

„

∂vvv

∂t
+

2

diamT

∂ωωω

∂t
∧ (yyyG − yyyT )

«

dxdsdt

=

Z t1

0
(ξ1, ξ1)H + 2

„Z t

0
(h, ξ′)Hds

«

dt.

Since bbb0 = 0 there holds ξ0 = 0 (see (118)) and, by (96), (ξ1, ξ1)H = 2e(0). We deduce

from (97) that

lim
ε→0

J1ε =2

Z t1

0

„

e(0)+

„Z t

0

`

h, ξ
′´

H
ds

««

dt

= 2

Z t1

0
e(t)dt =

Z t1

0

`

ξ
′
, ξ

′´

H
+ a(ξ, ξ)dt.
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To compute the limit of (J2ε), we repeat the argument used to pass to the limit in (120),

choosing (ϕϕϕ,ψψψ,ζζζ) = (uuu,vvv,ωωω), that is ξ = ξ̃. The assumption of the second line of (100)

is not required, because we don’t need to integrate by parts with respect to t. We get

(see (134)) limε→0
R

Ω×(0,t1)
aaaεeee(uuuε) : eee(φφφε)dxdt =

R t1
0 a(ξ, ξ)dt. Thanks to the second

line of (73) and the fourth line of (75), by mimicking the proof of (122) and (124) we

find limε→0
R

Ω×(0,t1)
ρε
∂uuuε

∂t .
∂φφφ

ε

∂t dxdt =
R t1
0

`

ξ′, ξ′
´

H
dt, and deduce that limε→0 J2ε =

limε→0 J1ε. In order to determine limε→0 J3ε, we check that Proposition 1 stays the

same if we substitute φφφε for uuuε, and deduce that the limit of (J2ε) is unchanged if we

substitute φφφε for uuuε in the second line of (158), therefore limε→0 J3ε = limε→0 J2ε. ⊓⊔

7.4 Case γ(N) ∈ {0,+∞}

We sketch the proof of the results stated in Remark 3 in the cases N = 2, γ(2) = 0 and

N = 3, γ(3) = +∞. The other cases are similar.

Case N = 2 and γ(2) = 0. We repeat the argument of the proof of the case N = 2

of Theorem 1, setting (ψψψ,ζζζ) = (0, 0). We get (145). By (72) and (141) there holds

|I2ε| =

˛

˛

˛

˛

˛

Z

Hε×(0,t1)
aaa0eee

 

2
X

α=1

ϕα(eeeα − θθθ
(α)
ε )

!

: eee(uuuε)dxdt

˛

˛

˛

˛

˛

≤ C

v

u

u

u

t

Z

Hε×(0,t1)

˛

˛

˛

˛

˛

eee

 

2
X

α=1

ϕα(eeeα − θθθ
(α)
ε )

!˛

˛

˛

˛

˛

2

dxdt

≤ C

v

u

u

t

2
X

α=1

Z

Hε×(0,t1)

˛

˛

˛eee
“

θθθ
(α)
ε

”˛

˛

˛

2
+ 1 + |θθθ(α)

ε |2dxdt

≤ C

q

γ
(2)
ε + L2(Hε) = o(1).

(163)

By passing to the limit in (120), thanks to (145) and (163), we obtain the variational

formulation

Z

Ω×(0,t1)
ρ0uuu.

∂2ϕϕϕ

∂t2
+ aaa0eee(uuu) : eee(ϕϕϕ)dxdt+

Z

Ω

ρ0bbb0.
∂ϕϕϕ

∂t
(0) − ρ0ccc0.ϕϕϕ(0)dx

=

Z

Ω×(0,t1)
ρ0ϕϕϕ.fffdxdt,

equivalent to the the limit problem stated in Remark 3 (i). ⊓⊔
Case N = 3, γ(3) = +∞. By (76) we have (vvv,ωωω) = (uuu, 0), accordingly we set

(ψψψ,ζζζ) = (ϕϕϕ, 0) and, following the argument of the proof of the case 0 < γ(3) < +∞,

we find (125), (126), (128). Thanks to (42) we can choose a sequence (Rε) satisfying

(62) and Rεγ
(3)
ε = o(1). We infer from (62), (72), and (112), that



46 Michel Bellieud

|I2ε| + |I3ε| ≤ C

v

u

u

u

t

Z

B2Rε
\Trε

×(0,t1)

˛

˛

˛

˛

˛

˛

eee

0

@ϕϕϕ+

3
X

p=1

(ϕεp − ϕp)θθθ
(p)
∞,ε

1

A

˛

˛

˛

˛

˛

˛

2

dxdt

≤ C

q

L3(B2Rε
) + C

v

u

u

t

3
X

p=1

Z

Ω

˛

˛

˛θθθ
(p)
∞,ε

˛

˛

˛

2
dx+ C|ϕε − ϕ|L∞

v

u

u

t

3
X

p=1

Z

Ω

˛

˛

˛eee
“

θθθ
(p)
∞,ε
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2
dx

≤ C

r

R3
ε

ε3
+ C

q

Rεrεγ
(3)
ε + CRε

q

γ
(3)
ε = o(1).

Our sending ε→ 0 in (120) yields the variational formulation

Z

Ω×(0,t1)
(ρ0 + ρ)uuu.

∂2ϕϕϕ

∂t2
+ aaa0eee(uuu) : eee(ϕϕϕ)dxdt

+

Z

Ω

(ρ0 + ρ)bbb0.
∂ϕϕϕ

∂t
(0) − (ρ0 + ρ)ccc0.ϕϕϕ(0)dx =

Z

Ω×(0,t1)
(ρ0 + ρ)fff.ϕϕϕdxdt.

which, joined with Proposition 1, is equivalent to (43). Furthermore, by (73) and

(87) there holds (ṽvvε) → uuu strongly in L∞(0, t1; L
2(Ω; RN )) and, by (90), (ω̃ωωε) → 0

strongly in L∞(0, t1; L
2(Ω; RN )). ⊓⊔
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