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A notion of capacity related to elasticity. Applications to
homogenization.

Michel Bellieud

Abstract. We study a notion of capacity related to elasticity which proves convenient
to analyze the concentrations of strain energy caused by the rigid displacements of some
infinitesimal parts of an elastic body in two or three dimensions. By way of application,
we investigate the behavior of solutions to initial boundary value problems describing
vibrations of periodic elastic composites with rapidly varying elastic properties. More
specifically, we analyze a two-phase medium whereby a set of heavy stiff tiny particles
is embedded in a softer matrix. This task is set in the context of linearized elasticity.
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1 Introduction

The study of composites comprising infinitesimal traces of materials with extreme phys-
ical properties has attracted a lot of attention over the past few decades [9], [10], [11],
[12], [13], [14], [22], [25]. The common feature of this body of work is the emergence
of a concentration of energy in a small region of space surrounding the strong compo-
nents. A similar phenomenon occurs when Dirichlet problems in varying domains are
considered [3], [4], [15], [16],[17], [18], [19], [20]. This extra contribution is characterized
by a local density of the geometric perturbations in terms of an appropriate capacity
depending on the type of equations. We are aiming at complementing this extensive
material.

In the spirit of Villaggio [37], we introduce a notion of capacity characterizing the
strain energy associated to the displacement of a bounded rigid body T immersed in
an elastic space V. More precisely, we consider the family (c3((v,w); T; V) (v,w)e(r3)?
defined by

c3((v,w); T; V)= inf{ /Va,oe(¢) ce(Y)dz, e H&(V;R?’),
(1)
b=v+

dia?nTw A(x—2z7) in T},
where ag denotes the elasticity tensor of the medium and zp stands for the geomet-
rical center of gravity of T. We denote by Caps(7T; V) the 6 X 6 symmetric positive
semidefinite matrix associated with the quadratic form (v,w) — c3((v,w); T;V) in the
canonical basis. In dimension 2, we define in the same way a 3 x 3 symmetric positive
semidefinite matrix Capy(T;V).

The novelty of this notion, compared to what is already available on the subject in
the litterature (see [4], [20], [23], [30]), is that the restrictions to 7' of the minimizers
of (1) are helicoidal vector fields instead of constants. This choice is suggested by the
small values presumably taken by the symmetrized gradient of the displacement in the
parts of the body where the elasticity coefficients are large. The underlying purpose of
this tool is to describe, in the setting of homogenization, the concentration of strain
energy caused by the rigid displacements of some minuscule parts of a composite. The
presence of the parameter ﬁ in (1) ensures that, given w # 0 and a sequence (1)
of domains of vanishing size, the norm on 97T, of the minimizers of (1) is bounded
and not uniformly vanishing. As illustrated in the application developed below, this
scaling proves appropriate to study elastic composites comprising small stiff particles
homothetical to some fixed bounded domain of R (see Remark 3 (iv)).

For a given bounded smooth open subset 2 of R™Y (N € {2,3}), we consider the
problem

0%u.

Pe g~ divee = pef in  2x(0,t1),

| =

oc =ace(ur), e(ue)==(Vue+V7iue),

— N

ue € C(0,t); HY(2,RV)) 1 ([0, t1); L2(2,RY)), 2)

Oue , \\
at (0) - CO,

(bo,co) € (C(ZLRY) N HE(2RY)) x C(ZRY),  fe (2% (0,61);RY).

UE(O) - bO,
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The elasticity tensor a. and the mass density p. are supposed to take possibly large
values in some subset T}-. of {2 and constant values ag, po in the surrounding matrix
(see (32), (34)). The set Tr. consists of an e-periodic distribution of tiny grain-like
particles of diameter r << €, homothetical to some bounded connected open subset T’
of RV (see (31)). We show that the homogenized problem associated with (2) depends
on the limit Cn(T") of the sum of the images of the connected components of T, under
Cap (.; £2) per unit volume. The critical case takes place when some eigenvalues of
the matrix Cn(T") are positive and finite: this corresponds to particles of diameter of
order €3 if N = 3 and, if N = 2, of diameter re such that m is of order 1. Then,
a gap between the mean displacement of the constituent parts of the composite arises,
giving rise to the emergence of a concentration of elastic strain energy in a thin zone
enveloping the particles (see Remark 3 (iii)). It turns out that the particles behave, at
a microscopic scale, like rigid bodies. Their effective displacement is characterized by
the limit (v,w) of the sequence (V¢,w.) defined in terms of the solution ue of (2) by
(38), where v describes the effective displacement of their geometrical center of gravity,
and w their effective rescaled rotation vector (see Remarks 5 and 6). We prove that the
effective behavior of the tiny grain-like inclusions is governed by the coupled system of
equations in £2 x (0,¢1)

0t \ (qraaar)” I + qaaar PWG — Y1) A v

= Gotve T3y ng) ~e0 (72"):

displaying rigid vibrations, associated with the boundary and initial conditions given in
(40), the constants p, J?, y, yr being defined by (35). The coupling with the effective
displacement in the matrix u is marked by the second term of the right hand member
of (3), which characterizes the sum of the surface forces applied on the particles by

o2 ( W+ gw ADYG — Y1)
(

®3)

the surrounding medium and their total moment with respect to the center of gravity
of the geometric particle. The effective displacement in the matrix is governed by the
equation

2
ps — diviaoe(w) = +7 (£ - 53 = 520 Anlwe - ).

where the second term of the right hand member represents the total force per unit
volume exerted by the particles on the elastic matrix. We obtain a corrector result (see
Section 7.3).

Computing the matrix Cn(T) requires a study of Capp which reveals strik-
ing differences depending on N. In the three-dimensional case, we obtain C3(T) =
7(3)Cap3 (T; R?’) where 'y(?’) = limg_,q 2—3 and, in the critical case, each eigenvalue of
C3(T) is positive and finite. By contrast, only two of the three eigenvalues of C2(T")
are then positive and finite, whereas (C2(T))33 = 400 regardless of the order of mag-
nitude of r.. This means that the effective concentration of strain energy generated
by a non vanishing rescaled rotation of the particles is infinite. Accordingly, we find
that w = 0 if N = 2. The second distinctive feature of the two-dimensional case lies
in the independence of the upper 2 x 2 submatrix of C2(T") with respect to T: we get
(C2(T))ap = fy(z)(Mg)aﬁ where v(2) = limsﬁom (o, 8 € {1,2}) and Mgy is
defined by (21). The singular behavior of Cap, leads to a significant simplification of
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the limiting problem (3) in the two-dimensional case: the effective rescaled rotation
vector of the particles is then equal to zero and the effective equations, independent of
the choice of T, consist of the system

v _
Poz =Pf = Y My —u),

u . _ 0%
P05z — diviace()) = po +p (f - @”),

associated with the boundary and initial conditions given in (41). The application Cap,
is relevant to the study of fibered structures: if T is made up, instead of particles, of an
e-periodic distribution of parallel cylinders of cross section of size v << € homothetical
to some bounded connected open subset S of R?, then the limiting problem depends
partly on C2(S) (see Section 5.4). Accordingly, the rescaled effective angle of torsion
of the fibers is equal to zero and no torsion effect take place (see Remark 4).

In the elliptic problem associated with (2), which shows the same general features,
the auxiliary variables v,w can be eliminated from the effective equations, yielding a
much simpler homogenized problem which covers the complex behavior of the com-
posite at a microscopic scale (see Section 5.1). This elimination is not possible in the
hyperbolic case, where an interesting memory phenomenon arises (see Remark 3 (ii)).

2 Notations

In this paper, {e1,..,en} stands for the canonical basis of R™Y (N € {2,3}). Points
in RY or in ZV and real-valued functions are represented by symbols beginning
by a lightface minuscule (example x,i,det A...) and vectors and vector-valued func-
tions by symbols beginning by a boldface minuscule (examples: z, 7, i, u, f, g,
divoe,...). Matrices and matrix-valued functions are represented by symbols begin-
ning by a boldface majuscule with the following exceptions: Vu (displacement gradi-
ent), e(u) (linearized strain tensor), ac (elasticity tensor field). We denote by u; or
(u); the components of a vector u and by A;; or (A);; those of a matrix A (that
isu =" ue = XN (w)iei; A = S0 Aije; ®e; = 3 (A)ije; @ ej).
We do not employ the usual repeated index convention for summation. We denote by
A:B = Z?fj:l A;; B;j the inner product of two matrices, by ;;, the three-dimensional
alternator, by u Av = Z?,j,k:l €;jkU;VL€; the exterior product in R3, by M (M eN)
the set of all real symmetric matrices of order M, by < the partial order relation on
SM defined by

A<B, it ¢tAE<¢BE vEeRM. (4)

The symbol I;; represents the M x M identity matrix. The letter B denotes the

open ball of RY of center 0 and radius 1. The letter C' denotes different constants

whose precise values may vary. The symbol ag stands for a fourth order tensor on RN
satisfying

.o 4

(@0)ijrn = (@0)jikh = (@0)kns; V(i,4,k,h) € {1,...,N}7,

(5)
aoM : M > c[M|?> VM esY, (c>0).

Given an open subset V' of RY and a bounded connected open subset T' of V such that
T C V, the symbol Capy(T;V) represents, if N = 3, the 6 x 6 symmetric positive
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semidefinite matrix associated to the quadratic form defined by

€= (Z’) eR}*xR® —  infP3(T;V;€) (= €.Caps(T; V)§E),

P3(T;V;€): inf {GV(¢’¢)’ vl Zet di;mT

bAN(x—2p)inT,,
WeHL(ViR?) (e -2r)in }

where 27 1= 2dx and ay stands for the bilinear form on HE(V;R3) given by

v W.0) = [ ave) :elp)i

If N =2, Capy(T;V) denotes the 3 X 3 symmetric positive semidefinite matrix asso-
ciated to the quadratic form

£ = ((Z) ER’xR — inf Po(T;V;€) (= &.Capy(T;V)E),

(7)

Po(T;V;€):  inf {av(tli,’lﬁ), Y(@)=a+ diamT

bes A\ (x — ) in T}.
YEH (V;R?)

In the context of the heat equation, the same approach leads to the quadratic form
a € R — capy (T} V)a2, where cap denotes the harmonic capacity.

3 Study of Cappy

The main objective of this section is to analyze the behavior of the application Cap
with respect to certain small subsets of RY. In what follows, the letter T' denotes a
bounded connected Lipschitz open subset of RY and V an open subset of RY such
that T C V.

Lemma 1. The problems (6) and (7) have minimizing sequences in D(V; RY).

a

Proof. Assume that N =3 and fix § := (b

) € R? x R®. By (6), there holds

§.Capy(T; V) = inf {av (¥,9), ¢ € A(T3V)},

Ae(T; V) = {’l/) € HY(ViR®), 9(z)=a-+bA dia?nT (x —xr) in T}.

As ay is strongly continuous on H}(V;R3), we just have to check that Ae(T;V) N
D(V;R?) is dense in A¢(T; V) with respect to the strong topology of HY(V;R?). Let
us fix n € Ag(T;V) and ¢ € A (T;V) N D(V;R?). There holds n — ¢ = 0 on 9T
hence, since T is Lipschitz, n — ¢ € H&(V \T; Rg). Therefore, there exists a sequence
(1,,) € D(V \ T;R3) converging strongly to 5 — ¢ in H}(V \ T;R3). We can extend
each 1, to V by setting 9, = 0 in 7. Then t,, + ¢ € A(T;V) N D(V; R3) and the
sequence (1, + ) converges strongly to n in Hg(V;R?). By the same argument, the
problem (7) has a minimizing sequence in D(V;R?). O
The next lemma marks a fundamental difference between Cap, and Caps: the infimum
problem Pa(T; V;€) is not achieved in general if V' is unbounded (see Remark 2 (ii)),
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whereas P3(T; V;€) is always achieved provided we substitute for Hg (V;R?) in (6) the
Banach space Ko(V;R?) defined by

Ko(ViR®) = DIViED 0, iy = ( [ |w|6dx)é+(/v |vw|2dm);, (8)

where D(V;R3)|'|K° denotes the closure of D(V;R3) with respect to the norm ||, .
The space Ko(V;R3) coincides with H(V;R3) if V is bounded and may be strictly
larger otherwise. The discrepancy between the behaviors of Capy and Caps comes in
particular from the fact that Gagliardo-Nirenberg-Sobolev inequality

* N
[a<c [ 9 vrew @) (7= g v )

fails to hold for p = N = 2.

a

Lemma 2. (i) Assume that N = 3, and let § := (b

) € R3 x R%. Then the problem

Pr, (T5V;E) : inf
Ko 3 veK TR

2
{av(%b»’l/)), Y(z)=a+bA m(m —zr)T € T} (10)
has a unique solution, the matriz Caps(T; V) is positive definite, and
§.Cap3(T; V)€ = inf P3(T; V;€) = min P, (T3 V;§).

a

(ii) Assume that N = 2, that V' is bounded in one direction, and let§ := (b

) € R?xR.
Then the problem (7) has a unique solution.

Proof. (i) Setting

U ™3 _ 2 _ :
Ke(T5V) == {¢€KU(V7R ), Y =a+bA (@ —2r) mT},

0

K
and repeating the argument of the proof of Lemma 1, we find that /C¢ (T'; V) N D(V; R3)
= K¢(T';V) and, noticing that ay is continuous on Ko(V; R3), deduce that

£.Capy(T; V)¢ =inf {ay (¥,9), W€ Ke (T )} (11)

By Gagliardo-Nirenberg-Sobolev inequality in H*(R?; R?) (see (9)), Korn inequality in
H(V;R3), and (5), there holds (extending 9 to R?® by setting ¢ = 0 in R3\ V)

(fotas)’ = (Lotwrae) < ([ motar) =c(f wotar)

) (12)
<c ( / \e(«p)ﬁdm) Y < O lay @)

N

< Clplr, Y€ Ko(V;RY),

hence the application |.|a, := \/ay(,,.) is a norm on Ko(V;R?) equivalent to |.|x,.
Equiped with this norm, KO(V;]Rg) is a Hilbert space on which the bilinear form ay
is continuous and coercive. As Kg(T;V) is a closed convex subset of KQ(V;R?’)7 by
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Stampacchia Theorem the infimum (11) is achieved at a unique point ¢ € K¢ (T; V). If
& # 0, then 9 # 0, hence §.Cap3(T; V)€ = ay (¥, 9) = |'l/)\(21v > 0, therefore the matrix
Cap;(T; V) is positive definite.

(i) If V is bounded in one direction, by Poincaré and Korn inequalities in H{ (V;R?),

Wl <C [ le@)Pde < Cav ) e BVIR). (13

Then we repeat the argument of the case N = 3, substituting (13) for (12) and
HY(V;R?) for Ko(V;RY). O
The next Lemma, whose proof is straightforward, states that in regard to the order
relation (4), the application (T,V) — Capy(T;V) is decreasing with respect to V'
and the N x N upper left submatrix of Cap(7’; V) is increasing with respect to T
However, Capp (7; V) is presumably not increasing with respect to T' (see Remark 2

(i))-
Lemma 3. (i) Let Vi and Va be two open subsets of RY such that T C V4 C Va. Then
Capy (T; V1) > Capy (T; Va).

(i) Let Ty and Ty be two bounded connected open subsets ofRN suchthatT1 C To C V.
Then

(‘5) .Capy (T1;V) (g) < (g) -Capy (T2; V) <‘g) va € RN, (14)

In the following lemma, we investigate the continuity properties of Cap (7, V) with
respect to V.

Lemma 4. Let (Vy,) be an increasing sequence of open subsets of RY such that T C V;
and Uj;g Vn=V.
(i) There holds
lim Capy(T;Vn) = Capy(T; V).

n—-4oo
(it) Assume that N = 3, and let ,, be the solution of Py, (T; Vn;§) (see (10)) extended
to V by setting ¥,, =0 in V \ Vi. Then (¥,,) converges strongly in Ko(V; Rg) to the
unique solution of P, (T;V;E).
(#i1) Assume that N =2 and V is bounded in one direction, and let 9,, be the solution
of P2(T'; Vs €) (see (7))), extended to V in the same way. Then (¥,,) converges strongly
n H&(V;RQ) to the unique solution of Pa(T;V;E).

N(N+1)

Proof. (i) Wefix§ € R™ 2 , a > 0,9 € D(V;RY) N A (T;V) such that
ay (,¥) <€.Capy(T;V)€+a (see Lemma 1) and ng € N such that Suppy C Vi, Vn >
no. We have €.Cap y (T Vo€ < av, ($,%) = ay (4, ) < £.Capy (T3 V)€ +a ¥n > no.
Applying Lemma 3 (i), we infer

£.Capy (T3 V)€ < liminf £.Capy (T; Vn)é
n—-—+0o0o

< limsup§.Capy (T Vn)§ < €.Capy (T3 V)€ + o

n—-+oo
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(ii) By (i), we have (see the proof of Lemma 2 (i))

. 2 . .
nglfoo |¢n|av = nllfrkloo av, (YY) = nETOOE‘CaPB(T; V)€

(15)
= é'CaPS (T7 V)£ < +o0,

hence the sequence (¥,,) is bounded in K (V; ]RB) and converges weakly, up to a sub-
sequence, to some ¥ € Ko(V; R?’). Since each 1, belongs to the convex strongly closed
(thus weakly closed) subset ICg(T;V) of Ko(V;R?), there holds 9 € Ke(T;V). The
functional g — ay(g,9) is convex strongly continuous on KO(V;RS), hence weakly
lower semi-continuous, therefore ay (¥,%) < liminf, 4o ay (¥,,,%,,) = £.Caps(T;
V)€. We deduce that 9 is the unique solution of Pg,(T;V;€) and that |2, =
§.Caps(T; V)E. It follows then from (15) that limy,— 4o [¥,,|ay = [9]ay - As the space
KQ(V;R3), equiped with |.|a, is a Hilbert space, it is uniformly convex, hence the
weak convergence of (3,,) to 9 joined with the convergence of the norms yields the
strong convergence of (¥,,) to ¥ in Ko(V;R?).

(iii) Same argument as in the case N = 3. O
The properties stated below are easily deduced from Lemma 4 and from the change of
variable formula.

Lemma 5. There holds, for A >0

Capy(AT; V) = ANV "2Capy (T; %V) if AT CV,
(16)

Jim Capyy (T; %v) = Capy(T;RY) if 0eV.

Proof. Letusfixé e RO and o > 0. By Lemma 1, there exists ¢ € Ag (AT; V)N
D(V;RY) such that £.Capy(A\T; V)€ + a > ay (,9) = [y ace(®) : e(¥)dz. We set
¢(y) == (Ay). Then ¢ € A¢(T; V), e(p)(y) = Ae(®)(Ay), and

£.Capy (AT;VIE + 0> /V ave(®) : e(@)de = AV / aoe(®) - e($)(\w)dy

TV

=3 [ anele) el iy = AV Capy (T; iv) 3
A
By the arbitrary choice of «, A, T, V, §, the first line of (16) is proved.
If 0 € V, we can assume without loss of generality that B C V. By Lemma 4 we
have limy_,o Cap (7, %B) = Capy(T,RY). By passing to the limit as A — 0 in
the first and third terms of the double inequality Capy(T,RY) < Cap (T, %V) <
Cap (T, %B) (see Lemma 3), we obtain the second line of (16). O

In the next two lemmas, we investigate the asymptotic behavior of Cap n (r:T; Re B),
being (r¢), (Re) any bounded sequences of positive reals such that 7 << Re. The
study is straightforward in the case N = 3:

Lemma 6. Assume that N = 3, let T be a bounded connected Lipschitz open subset of
R3 such that B C T, and let (re) and (Re) be two sequences of positive reals such that
re < Re < C < 400. Then,

limO %Cap3 (reT; R-B) = Caps(T; RB). v
e—0 Te
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Moreover, if

aoM = M tr(M)I yy +2uoM VM €SV, g >0, 3\ + 240 > 0, (18)
then
127 po (Ao + 2120) (I3 0 00
B;R3) = L0120 T 2F0) . 1
Cap3( ) ) (2)\0 +5M0) 00 +87TM0 013 ( 9)

Proof. By Lemma 4 and Lemma 5 we have
. 1 . R 3
lim —Caps(reT; ReB) = lim Caps | T; — B | = Cap3(T;R").
e—0 Te e—0 Te

The Dirichlet problem P, (B ;R3;£) of the spherical cavity in an infinite isotropic
elastic body has been studied by a number of authors (see the bibliography of [29]).
Its infimum £.Caps(B; R*)¢ is given for instance in [29, (8.4.3)]. Alternatively, the real
§.Cap;(T; R3)§ is computed explicitely by Villaggio in [37] for £ € {(e(f) , (eO )}
3
when T is an ellipsoid of revolution along the axis parallel to e3. Then, for T'= B, the
coefficients emerging in (19) are deduced simply by substituting (po, m, 1) for
(G, 0,q0) in [37, line 4, p.347]. O

Remark 1. Under (18), the solution Gép) (resp., ngp)) of the Dirichlet problem for the
homogeneous isotropic elastic hollow sphere P3(re B; Re B; (ep,0)) (resp., P3(reB; Re B;
(0,ep))) were determined by Thomson in [36] after the method developed by Lamé [26]
and are given by (see [29, 8.5.80, 8.5.83]):

0 () = ac(ja|)ep + Be (|2))2pz + e (jz)e,

2 3 (20)
@y =T (Be N A
Tls (33) Rg, _ rg, <‘$|3 ep z,
where
Te Re reRea Tg - Rg 2 2 2 Tg — R? 5 1
= LN - R _le T e, s o
=t () g (ot )
3 3 2 2
reRea re —R: 29,0 2 rTE—RZ 5 3
= - R B =
ﬁE(T) 365(7‘5 _ RE) ( Tg _ Rgrs € +T 7”? —Rgr 7,.5 El
we(r) i TeBe (10N rE-RE(r2-RIreRe r2-RI o)
30e(re — Re) 3 )2 —R3\re—Re 7 e — Re

the constants 0¢, a, b being defined by

5. e ab— 10 reRe(r? — R%)? o 2 Ao + 4po _ 22X0 +5u0
o 9 (re —Re)(r2—R2)” 7 3 Xo+mo’ 3 Xotpo

Deriving Caps(reB; R:B) from (20) and passing to the limit as € — 0 thanks to (17),

we find again (19). We verify in passing that ¢, € {0?),7)?)} satisfies estimates of

the type |p.(z)| < CT5, |V ()| < C=5, similar to (110).

[ IR
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The case N = 2 is appreciably more involved:

Lemma 7. Under (18), for any bounded connected Lipschitz open subset T of R2
such that B C T and any couple ((re), (Re)) of sequences of positive reals such that
re < Re < C < 400, there holds

515%‘ logre|(Capy(reT; ReB))ag= (M2)ag Vac {1,2},

My = 471-“0% 7
Ao + 3uo (21)
lim Cap, (reT; ReB) = Capy(T; R?) = (Capy(T;R?))33e3 © €3,
C
Cap,(T;R?))33 >0, |(Capy(reT; ReB))as| < ———— Vae {1,2}.
(Capy( )33 |(Capy(reT; Re B))as] Togrd] {1,2}
Moreover,
Cap,(B; R?) = 4drppes © es. (22)

Proof. At first we assume that 7" = B. Let 1. (resp., 0&05)) denote the solution of
Pa(reB; Re B; (0,1)) (resp., Pa(reB; ReB; (ea,0)), a € {1,2}) (see Lemma 2 (ii)). A
straightforward computation yields

T R?
N.(z) = ﬁ <ﬁ - 1) esNz,

Rz —rz
RZ
Capy(reB; ReB)33 = e(n.) : ape(n.)dr = 4mpo—5——,
-B Rz — ¢ (23)
Capy(reB; ReB)as = / e(0§a)) s ape(n,)dx
R.B

= ea./ aoe(ng)udHl(x) =0.
d(reB)
The following estimate is established in [10, (5.12)]:

(Capy(r:B; ReB))ap = eﬁ./ aoe(ega))udHl(a:)

B;TEf)Q 1 (24)
0 Ho
= _ 14 0(1))d0ags.
0A0+3,U;0|10g715|( 0( )) Oéﬁ
By Lemma 4 and Lemma 5 we have
lir% Cap,(r:T; R:B) = lirr%) Cap, (T; &B) = Cap,(T;R?). (25)
E— E— Te

Thanks to (23), (24), and (25), the estimates (21), (22) are proved in the case T'= B
(or T'=AB, A\ > 0). If T # B, there holds

B C T C (diamT)B. (26)
Let us fix a € R%. By (14) and (26), we have

|log 7| (g) .Capy(reB; R:B) (g) <|logre| (g) .Cap,(r:T; Re B) <g>

< |logre| (8) .Capy (re(diamT') B; R: B) <8> .
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By passing to the limit as € — 0 in the first and third terms of the last inequalities,
taking (24) into account, we infer

) a a )\0 Ao + 2p0
tiny 1og1re] (§) Capa(reTs 1) (§) = mo 305210
yielding by the arbitrary choice of a
. Ao +2
hmo\ log | (Capy(r: T} REB))ag:47r,uo%6 s Vo,B€{l,2}. (27)
E—

Denoting now by Oga) (o € {1,2}) (resp., m.) the solution of Pa(reT; ReB; (€a,0))
(resp., Pa(reT; ReB; (0,1))), by Cauchy-Schwarz inequality, (25) and (27) we have

N|=

0,6 ap_ p(n..m.)

c (28)

\/|10g7"e|.

|(Capy(reT; ReB))as| = lar. B( 0 )| < ar,B(0e

aR.B
= (Cap, (r=T: R B))3a(Capy (r-T: R-B))3; <

Wl\?h—t

By (7), (26), there holds

(Capy(T;R%))33 = (0> .Cap,(T;R?) ((1))

1/)EH%I(1D£2 ;R2) {aRz ¥ ¥), diamTe3 Al@—ar) in B}
(29)
_2e3 Nz 2 diamB .
= A B
¢6H1(]R2 R2) {QR"’ ¥.¥), diamT | diamB diam7 < T "
_ 26_3/\$T _ 28.3/\.’13'1" diamB 2
= (" gfang" ) .Capy(B;R?) ( diam " ) =4m ( ) > 0.
diam B P2(5; diam B Ko | =3
( diamT ) diamT diamT
Joining (25 ), (27), (28), and (29), the estimates (21) are proved. O

We are in position to determine the asymptotic behavior of the sequence (Cy¢(T))
introduced in Section 1:

Lemma 8. Let {2 be a bounded open subset of RN such that 0 € 2. Assume (18) if
N = 2. Then the estimates deduced by substituting {2 for ReB in (17) and (21) are
satisfied. In particular, setting Cn.(T) := ELNCapN(rET; 2), we have, if 0 < AN <
+oo (see (39))

lim O (7) = 7% Capy (15 ?),
lim (Coe(T))ap =1 (M2)ap, . € {1,2), (30)

lim(Cac ()33 = (Caps (T: R*))z > 0, (Cae(T))as < ——o

=0 Vogre]’
where Mo 1is given by (21).
Proof. Let (¢c,d) € R? be such that ¢cB C £ C dB. Lemma 8 follows from

Lemma 7 (applied with R: € {c,d}) and from the double inequality Cap n (r:T’;cB) >
Capy (reT; 2) > Capy (rT;dB). O
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Remark 2. (i) The application (T, V) — Cappy(T;V) is not increasing with re-
spect to T, as illustrated by the following example: assume that N = 3 and set T: :=
B U C¢, where Ce = (eBg2) X (—2,2) (see fig.1). Then, due to the presence of the
0 0
2 . L . .3 _
parameter g in (1), it is easy to prove that lime .o (63> .Caps(T:; R”) <e3) =
N(N+1)

<e0) .Capg(B;]Rg) (80), although B C T¢. Hence, given § € R~ 2 | the applica-
3 3

N

Fig. 1

tion T — €.Cap 5 (T; V)& is not the restriction of a Choquet capacity to the connected
relatively compact open subsets of V, unless & = <g> for some a € RN (see (14)),

and the application T — Capy(T;V), defined for relatively compact connected open
subsets of V', can presumably not be extended to 2V,

(i) If a € R?\ {0}, then the infimum problem Py (T; R?; <g>) (see (7)) is not

achieved. Otherwise, should 1 € H& (Rz; R2) be a minimum, then by Korn inequality in
H}(R?;R?) and the second line of (21), \Vﬁb\%g(Rz;RQ) < Cagz (¥,9) = £.Capy (T; R?)E =
0, hence ¥ = 0, in contradiction with the fact that ¥ = a in T. This lack of solution is
stmilar to Stokes’ paradox in fluid Mechanics [3/].

4 Application to homogenization

Let 2 and T be bounded Lipschitz domains of RY. Given a sequence of positive reals
(re) such that re << g, we set (see fig. 2)

To= T TL=ei+nTs L={icz" vica}

icl.
1€ (31)

; 1 1\Y
Yo i=e({i}+Y); Y= (—7, 7> .
272
We consider the problem of elastodynamics (2). The elasticity tensor a- and the mass
density pe are supposed to take possibly large values in 7. and constant values in the

matrix 2\ Tr.. More precisely, we assume that
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Fig. 2
Ye () eV .
= fxeTr,
pe(x) =po >0 ife e 2\ Ty, (32)
peC(T), ply)>c>0 VyeT,
where
ye(w) == Y lyi(@) (x — i), (33)
i€zZN
and that

(@c)ijkn = (ac)jirn = (@)pnij Vi, 4, k.h) € {1,.., N}*,
ac(x)M M > d-(z)[M]> VM eSY Vae 2, de(z)>d>0VzeR, (34

a:(z) =ap in 2\ T, lim ce = 400 if N =3, ce = inf de(z).
e—0 €Ty,

We assume also that the elastic material constituting the matrix is isotropic, i. e. that
ao satisfies (18) (see Remark 3 (v)). The scalar p, the vectors yr, yg and the N x N
symmetric matrix J* defined by

ﬁ:=][ pdy, yr :=][ ydy, pyac :=][ pydy,
T T T

o, 2
Jf = 7][ Py —y7)ily —yr)dy if i#j, Jf ::Z][ plty —yr);|"dy,
T gt T
characterize respectively the average mass density, the geometrical center of gravity,

the center of mass and the mass-inertia matrix of the rescaled particle. We suppose
that

T of class C* if N = 3, / ace(by) : e(by)dx < C < 400, (36)
2
and, without loss of generality, that

BcCT. (37)
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Denoting by ue the solution of the problem (2), we introduce the auxiliary sequences
(we) and (ve) defined by (see Remark 5)

NETEDY (cuv) Tl (P hun) dHN—1<s>> Lys(@)

i€l

(38)
Ve (x,t) := Z ( - us(s,t)dHN_l(s)> lyi(z) — we(z,t) Ayr,

i€l
where ¢(2) = 1, ¢(3) = 3 and Bi._ is obtained by substituting B for T in (31). We
show that the limiting problem depends on the parameter fy(N ) defined by

(N) (V) @ _ 1 3 _ e
7= limae € 0,400l e 2llogre]  ° T & (39)

If0 < ’y(N) < 400, we prove that (ue,Ve,we) converges, in the sense defined below, to
the unique solution (u,v,w) of the problem given, if N = 3, by

2u
POHT div(ape(u)) =
_ v 2 Pw .
/)Of+p<f—at2—MatQ/\P(yG—yT)> in £2 x (0,t1),
9% ﬁv;ﬁw Ap(ye —yr)
0 \ (grar)” I W+ G PYG — Y1) AV
of (3) 3, (v —u (40)
= _ — Cap- TR in 2 x 0,%1),
<ﬂ(yG _yT) /\f) vy ap3( ) ( w ) n ( 1)
(u,v,w)e( 0, t1; HY (2;R) x LOO(O,tl;L2(Q;R3))2>
3
n(C(lo, s L2 (2 R?))
ou ov Ow
w(0) =v(0) =bo, 240)= P (0) =er, w(0) = X (0) =0,
and, if N = 2, by
w=0 in 2x(0,t1),
0u . _ 0w .
poﬁ —div(age(u)) = pof +p (f — ﬁ) in 2x(0,t1),
92 .
P = of — 1Mo - w) in 2% (0,4),
(41)

(u,v) € (L‘X’(O, t1; HY(2;R2)) x L0, t1; L2(2; RQ)))
n (Cto, ) P E?)

6u0_8v

a( )= E(O) = cp.

u(0) = v(0) = by,

where My is defined by (21). The following result is partly announced in [8].
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Theorem 1. Assume (18), (32)-(36), and 0 < vV) < 400, Let uc be the solution of
(2) and let v, @ be defined by (38). Then (us) converges weak-star in L (0, t1; Ha (£2;
R™M)) and strongly in L>(0,t1; L2(2;RN)) to u and (ve,@:) converges weak-star in
(L°(0,t1; L2 (2;RN))? to (v,w). If N = 3, (u,v,w) is the unique solution of (40). If
N =2, w =0 and (u,v) is the unique solution of (41).

Remark 3. (i) The conclusions of Theorem 1 can be extended to the cases vy €
{0,400} (see Section 7.4):
- If’y(N) = 400 and if

r2<<e® if N=3 and re<<e® if N=2, (42)

thenue converges weak-star in L™ (0, t1; H3 (2; RY)) and strongly in L%°(0,t1; L?(£2; RY))
to the solution of

_ 0% . _ )
(po + p)@ —div(age(u)) = (po +n)f in 2% (0,t1), 43)
u e L0, t1; H (2;RN)) n ([0, t1]; L2 (2; RY)), u(0) = b, %(0) =cp

In this case, the sequences (ve) and (@e) converge strongly in (L™ (0,t1; L2(£2; R™V)))?
respectively to u and to 0.

-If ’y(N) =0, then ue converges weak-star in L™ (0, t1; H&(Q; RN)) and strongly in
L>2(0,t1; L2(2;RN) to the solution of

2
pgait’l; —div(age(u)) = pof in  $2x(0,t1),
w e (0,0 HY (2 RM)) 0 O ([0, 1) L2 BY)), w(0) = bo, 2(0) = eo

(ii) (Memory effects). Assume for simplicity N =3, T =B, 0 < 7(3) < 400, and that
p 18 constant (that is p = p). Then by (35) there holds yo = yr = 0. We deduce from
(19) and from the second equation of (40) that

9 )
Jpa—t‘;’ 8 Pw =0, in 2x(0,t1), w(0)= a%( ) =0,
therefore w = 0 and v satisfies
0% _ . v
Paz T VO —u)=5f in 2x(0,t1), w(0)= b, 5 (0) =, (44)
12710 (Ao + 2p0) : 73
where (cf. (19 = ———————_ Selting § := —, we find
(cf. (19)) x 2\ + 5710) g X fi
t o _ .
v(z, 1) = / % (@) +0%u(, ) dr +eo(a) S“;‘st +bo(x)cosst.  (45)
0

Subtracting (44) from the first equation of (40), we get

Pu_ 3) _
PO div(age(u)) — v x(v —u) = pof. (46)
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After substitution of (45) in (46), we deduce that u satisfies the equation

) t
POZTT; —div(age(u)) + 552 (’“’ - 6/0 sin(0(t — T))U(T)dT)

t
— pof + 76 /O sin(3(t — 7)) f(r)dr + poeo(x) sin(8t) + 762bo () cos(51),

where the memory term "—po°> fg sin(6(t — 7))u(7)dr” emerges.
(iii) The total mechanical energy stored in the composite at the instant T is given by

(see (96), (117), (118), (144))

1 ou 2
o) =3 [ ml|5 (e
2
1 ov 2 Ow
+ T Jour” 0t + SamT ot (y—yr)| (T)dzdy + D(u,v,w).

where, if N = 3,

P(u,v,w) = %/ane(u) ce(u)(r)dx

+ %7(3) /Q (”;“) .Capy(T;R?) (”;“) (r)dz, o

and, if N =2,

P(u,v,w):= %/Q age(u) : e(u)dr + %7(2)/;2(1; —u).Mo(v—u)dzr if w=0, (48)

P(u,v,w):= +o0 otherwise.

The second term of @ represents the concentration of strain energy, stored in a small
zone enveloping the particles, generated by the discrepancy between the effective dis-
placement in the particles and the effective displacement in the matriz.

(iv) The choice of the parameter ﬁ in (1) may be inappropriate if the particles
have a complicated shape. For instance, in the case of a set T: consisting of three-
dimensional needle-shaped particles parallel to one of the coordinate axes, the variant
of Caps deduced from (1) by replacing the Dirichlet condition on T by

2
¢—a+i§2mbiei/\($—$1"),

where P; denotes the orthogonal projection on the axis Re;, should rather be considered.
If re denotes the length of the “needles”, say re = diamPs (Tg) and qere, Bere charac-
terize the size of their cross-sections (cere = diamPy (T2), Bere = diamPy(T72)), then
for each choice of the sequence (re) (such that ce <re < 5 ), there exists presumably
several critical sizes of the parameter, ae, Be for which some specific microscopic rigid
displacements of the particles should induce the emergence of a concentration of strain
enerqgy in their neighborhood .
(v) The results stated in Theorem 1 are likely to hold true in the anisotropic case:
the assumption (18) is used only in Lemma 11 if N = 3 (resp. in Lemma 7 and
in the proof of (146) if N = 2). However, they may fail to hold if the hypothesis
lime,oce = 400 if N = 3, stated in (34) and used to prove (93), (138), is not
satisfied. In this case, we expect a concentration of strain energy stored inside the
particles to emerge in the effective problem.
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5 Variants of the homogenization results

In this section, we comment the elliptic equations associated with (2), the Dirichlet
problems in varying domains, the scalar case, the fibered case, and the case of particles
distributed on a surface.

5.1 Stationary case

Assuming (31), (32), (34), ’y(N) > 0, we consider the sequence of elliptic problems
—div(ace(us)) = pef in 2, ue € HY(2RY), (f e C(LRY)).  (49)

By mimicking the proof of Theorem 1, it is easy to prove that the sequence (u¢) of the
solution of (49) converges weakly in Hg (£2; RYY) to the unique solution u of

—div(ae()) = (po +p)f in 2, we HH(2RY). (50)

The seeming simplicity of (50) covers the complex behavior of the displacement in the
particles. Indeed, the sequence (¥¢,we) defined by (38) converges weakly to (v,w) in
(L2(2;R))?, where (u,v,w) is the unique solution in H3 (2;RY) x (L2(£2; RN))? of
the problem deduced formally from (40), (41), (43), by substituting 0 for the derivatives
with respect to t. For instance, if N =3 and 0 < ¢ 3 < +00, we obtain the system of
equations

—div(age(u)) = (po in £,
+3) Capy(T; R?) ( ) ( Pf > in 0 51
Ps We —yr)Nf ’ (51)
(w,9,w) € Hy(2;R?) x (L*(2;R%))?,
associated with the minimization problem
min d(u,v,w) — L(u,v,w),
(u,v,.w)EHE (2;R3) x (L2(£2,R?))2
where @ is defined by (47) and L(u,v,w) := — [, pof u+pf v+ (plyc —yr) A f) wdz.

As the matrix Capg(T; R?) is invertible (see Lemma 2), we deduce from (51) that

@ - <u) + Sy (Capa(TiR) (ﬁ(yc ke Af)'

If N =2, then w = 0 and the effective problem takes the form

min P(u,v,0) — u + pf .vdx,
(ww)EHY (2;R2) x L2(2,R?) ( ) /.O pof 4+ 7f
being & given by (48), yielding v = u + ﬁ(MQ)_l(ﬁf). The intricate behavior of the

composite at a microscopic scale is only revealed, in (50), by the presence of the term

f.
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5.2 Dirichlet problems in varying domains
We consider the sequence of Dirichlet problems in the perforated domain 2\ T,

{ —div(ace(uc)) = pef in 2\Tr., (52)

ue € Ho(2;RY), we=0 in T..

Corollary 1. Under (18), (31)-(36), the sequence (uc) of the solution of (52) converges
weakly in H} (2;RN) to the unique solution in HE(2;RYN) of

—div(age()) + YO M3(T;R*u = pof  in 2,if N=3, 0<~+® < 400,
—div(age(u)) +7(2)M2u =pof m 2, if N=2, 0<7(2) < 400, (53)
— div(aoe(w)) = pof in 2, if vV =0,

u=0 in 2, if fy(N) = +o00,

where M3(T; ]R3) denotes the upper left 3 x 3 submatrix of Caps(T; Rg) and Mo is
defined by (21). This result is obtained simply by substituting 0 for % and ¢ in the
sequence of test functions used in the proof of Theorem 1 (see (119), (139)). The terms
’y(?’)Mg (T R?’)u and 7(2)M2u emerging in (53) are analogous to the so-called ”strange
term” obtained by D. Cioranescu and F. Murat [16] in the context of diffusion equations
and to the linear zero-order term for the velocity in the Brinkman’s law obtained by
G. Allaire in the homogenization of the Stokes and of the Navier-Stokes equations in
a domain containing many tiny solid obstacles [3].

5.3 Scalar case

We consider the scalar evolution equation in L2(£2 x (0,t1); H (£2))

anUQ
Pe"gm

—div(aeVue) = pef in 2 x (0,t1),

+ initial boundary conditions (n € {1,2}).

We assume that ac(z) =1 in 2\ 5., ac(xz) > ce > ¢ > 0 in Ty, where lim._,gce =
+oo if N = 3. The results obtained in [6] in the case of three-dimensional spherical
particles can be easily extended to the case of particles homothetical to an arbitrary
Lipschitz bounded domain 7. The effective equations depend then on the parameter
en(T) == lime EiNcapN(rgT, 12), where cappy (T'; £2) denotes the harmonic capacity
of T' with respect to 2. We find c3(T") = 7(3)cap3(T; R3) and ¢o(T) = v@ 27, being
~+(N) defined by (39). If 0 < ~+(N) < 400, we obtain an effective system of equations of
the type

"u _ v .
pOW—AU:pof—‘,—p( _W> m QX(O,tl),
_0"  _ )

P o =pf —en(T)(v—u) in 2 x(0,t1),

+ initial boundary conditions,

analogous to (40).
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5.4 Fibered case

We consider a cylindrical domain {2 := 7 x (0,L) of R3. Given a bounded Lipschitz
domain S of R%, we define the e-periodic distribution of parallel ”fibers” T;_ of cross
section of size rc homothetical to S by setting

Tr. = Sr. x (0,L), Sr.=|Jei+reS, IL:={ieZ’ Y.CT} (54)
iel.

Under (18), (32)-(36), (54), the problem (2) has been studied by the author with I.
Gruais in [10], assuming that the material constituting the fibers is homogeneous and
isotropic (the Lamé coefficients taking constant values pie, A\1c in Tr.) and that the
rescaled cross section S is a disk. These results can be extended easily to the case of
an arbitrary Lipschitz domain S. The effective problem, which depends partly on the
asymptotic behavior of (a%CapQ(rsS, 7)) (see (21), (30)), is then given in the elliptic
case by

(u,v)G(rE?l?Q;RB))z w.v) /Q pof u+pf wde, (55)
the symbol @ denoting the lower semi-continuous envelop in the strong topology of
(L%(£2;R?))? of the functional

1 1 A 2
D(u,v) = 3 /ane('u,) ce(u)dr + 57(2)47Tu )\O i 353 / Z e — ta|?dx

1 .
+ §“Y(2)2/~007r/Q v — us|*dz + P pipers (),  if (u,v) € D,

d(u,v) = o0, otherwise,
D= HY (O, R x {v e 122, H20, LiR?)), 20 =92 _ ¢ in o x qo,13 ).
Oxs  Oxg
where the functional @ f;pe,s, which describes the strain energy stored in the fibers and
is the only part of & depending on S, is given in terms of the limit v of the sequence
(ve) defined by (38) by

1 31+2
¢fibers(v):§2(l+1) ‘ |

2
L1 L va 023
5 ,BZ l+1 Jap 81‘2 8563 dz,

Jag = ][ (¥ —ys)aly —ys)sdy,

A
k= hm rg,ule, K= hm ra,ulg, [ := lim 21,
—0 —0 e—0 U1e
Moreover, the sequence (we.e3), where we(.,z3) is defined by (38) on each section
x3 = const (setting N = 2), converges to zero: this means that the rescaled effective
angle of rotation of the fibers is equal to zero.

Remark 4. The lack of torsion effects in the effective problem (55) is a consequence
of the specific behavior of Capy, whose singularity originates, in particular, in the fact
that Gagliardo-Nirenberg-Sobolev inequality fails to hold in H 1 (R2) (see the paragraph
preceding Lemma 2). Therefore torsion effects are likely to take place if the strain
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energy density function of the material constituting the matrix has a growth of order
p € (1,2). In linear elasticity, torsion effects are actually obtained in a quite different
context, namely, when an e-periodic distribution of fibers of cross section of size of
order ¢ and of stiffness of order 1, embedded in a very soft matrix of stiffness of order
2 is considered (see [7]).

5.5 Three-dimensional particles periodically distributed on a surface

We suppose that the set T_ consists of three-dimensional particles of size re, e-
periodically distributed on the portion of hyperplane ¥ := 2 N {z1 = 0} (see fig.
3). More precisely, setting

T.= |J T, T, =<(0,4) + 7T, Je={i€Z? P!C X},
i€J.
11

2
Pg_{O}xg(i—i—(—T 5) > 07 =02n{e1 <0}, 2F=02n{z1 >0}, (56)

Ye (2) e?
pe(x) = polonT,, +P< o ) AT g, (z),
we consider the problem (2) under the assumptions (18), (34), (36), (56). The critical
case corresponds then to particles of diameter of order 2. It is easy to prove, by
adapting the argument of the proof of Theorem 1, that if 0 < 7y := lim._¢ ;—3 < 400,
then the solution u of (2) converges weak-star in L (0, t1; H (£2;R?)) and strongly in
L>(0,t1; L? (£2;R?)) to u and the sequence (9¢,@.) deduced from (38) by substituting
1pi () for 1y (x) (see (56)), converges weak-star in (L>(0, t1; L*(2;R3)))? to (v,w),
where ('u,,v,ws) is the unique solution of the system of equations

02 ( W+ gzw A PYG — YT)
(

ot2 diia%nT) Jp“""idifmTﬁ(yG_yT)/\v
of 3. [v—u

=|_ — vCaps(T; R on X x (0,t1),
(P(yG_yT)/\f) 7Caps( )< w ) (0,1)

82u . . _ +

PO diveg = pof in (27UN")x(0,t1), oo = age(u),

(a_—a+)u:ﬁf—ﬁa—2 v+72 wA (Yg —yr) on X x (0,t1)
0 0 ot? diamT G I 01

associated to the initial boundary conditions given by
o0 1 3 oo 2 30) 2
(w,0,w) L0, t1; HY (% BY) x (L (0,41, L° (S R?)))

N CH(0, 1) A2 x (O (0,0 A RY))

%(0) = %(0) =cop, w(0)= %:(0) =0

U(O) = ’l)(O) = b(),
being o, (resp. ag) the restriction of o9 = age(u) to 27 (resp. £27), and v the

outward pointing normal to 27 (hence v = e; on X). The vector field (o, — 0'3')1/

describes the density of the surface forces exerted by the particles on the matrix.
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Fig. 3

6 Technical preliminaries and a priori estimates

This section is devoted mainly to the study of the asymptotic behavior of the sequence
(ue) of the solutions of (2) and of the auxiliary sequences (v¢) and (@) given by
(38). As a means to particularize the oscillatory behavior of the displacement in the
inclusions, we will use the following variant of the two-scale convergence of Allaire [2]
and Nguetseng [31]. Let (me) be the sequence of measures defined by

T

Vg, (57)

me :

where Ty, is given by (31). A sequence (f:) in L?(0,t1; L?(£2)) will be said to two-
scale converge with respect to (me) to fo € L%(0,t1;L?(2 xT)) if, for each ¥ €
D(£2 x (0,t1) x Y'), there holds

1
B |T| 2x(0,t1)xXT

lim fo(z, )Y (x,t, ys(x))dms (z)dt fodadtdy,  (58)

€=0/02x%(0,t1) Te
where ye(z) is given by (33). This convergence will be denoted f= & fo. We have
Lemma 9. (i) Let (f-) be a sequence in L?(0,t1; L?(£2)) such that SUPte(0,t,) J FARG)

dme < C. Then (fe) two-scale converges with respect to (me), up to a subsequence, to
some fo € L>(0,t1; L?(2 x T)). Furthermore, if f- =< fo, then

lim inf / | f=Pdmedt > 1 | fol?dzdtdy. (59)
=0 J2x(0,t1) IT| JoxTx(0,t1)

i
|%|2(t)dm5 < C. Then fo € WH(0,t1; L3(2 x T)) and (86];5) two-scale converges

with respect to (me) to %

(i) Assume in addition that fo =S fo, % € L2(0,t1; L(£2)) and that SUPye(0,41) J

Proof. (i) Let ve be the measure on £2 x (0,t1) x T defined by [ tdve := fgl [ fe(z, 1)
) (m,t, Ye (f)) dme (z)dt Vi € C(£2 x (0,t1) x T). Cauchy-Schwartz inequality yields

g : . b)) :
’/deug S/O dt </Q|f€(1:,t)\ dmg(m)) (/;Z ) (w,t,T>’ dme(x)
t 2 3
< C’/O dt (/Q ’1# <x7t7 yET(f)) dms(@) < Ol Lo (2x(0,1)xT)>

(60)
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hence the sequence (v¢) is bounded in M(£2 x (0,¢1) x T') and converges weak-star, up
to a subsequence, to some v € M(£2 x (0,t1) x T). By passing to the limit as ¢ — 0 in
the first and third terms of (60), thanks to the dominated convergence theorem we get

foo

By (61), the linear form v € C(£2 x (0,t1) X T') — [ 9dv can be extended by density
to a continuous linear form on L(0,t1; L?(2 x T)). We deduce that v = |—%|fo for a

suitable fo € L°°(0,t1; L2(£2 x T))). Then, by the weak-star convergence of (ve) to v,
the sequence (fe) two-scale converges with respect to (me) to fo. Moreover,

ty t1 2
gt [ s Pameonez oy [ i (3, 252) <l (a0, 252 ) o
1

2 fo) — ¢adtdy,

< Cllpi(o,e;e2(2xT)) V¥ € C(2x(0,t1) X T). (61)

B |T‘ 2x(0,t1)xT

for all ¢ € C(2 x (0,¢1) x T). Our sending 1 to fo in L?(£2x(0,t1)xT) yields (59).
(ii) By (i) the sequence (%J;E) two-sale converges with respect to me, up to a subse-
quence, to some & € L°°(0,t1; L2(2 x T)). For all ¢ € D(2 x (0,t1) X Y), there
holds

/ €otbdrdtdy = lim 0fe <x,t, ya(m)) dmedt
2x(0,t1)xT e=0J0x(0,t1) ot Te

= — lim f 9% <x,t, ysr($)> dmedt

g
==0Jox )" Ot e

= - / fo a—1/Jc733r/’d15d3;,
2x(0,t1)xT ot

hence fo € Wl’OO(O,tl; LQ(Q xT)), % = &p, and the entire sequence (%ff) two-scale
converges with respect to (me) to &p. O

By (39) and (42), we can choose a sequence of positive reals (Re) such that

1
Fe << Re << &; Re << ——
(N)
Ye
<R ifN=3  logR| <1 ifN=2.
(Set for instance Re = €2 if N=3and Re =2 if N = 2). We define (see (31))

Bh, =ei+ReB, H.:=Bp \T., Bp =) Bk, H.:=|JH. (63)
i€l i€l

Given a sequence (uz) C H'(£2;RY), we consider the sequences (9:) and (@) intro-
duced in (38) and the sequences (t¢) and (9¢) given by (see (70))

e(a) =Y ( f ua<s>dHN—1<s>) ly: (2),

9By

b:r) = Y ( o us<s>dHN—1<s>) 1y (@),

el
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In the next lemma, we establish a series of estimates which will take a crucial part in
the proof of Theorem 1.

Lemma 10. Assume (37), let ue be a sequence in H* (2, R™) and let me, (), (ve),
(Ve), (We) be defined by (38), (57), (64). Then the following estimates hold true:

3
/ lue — e |*da < ci/ |Vue|*dz,
Q Re Jo

3
/ e — b |2da < ci/ V| dz,
n Te Jn

/ lue — e |*de < Ce?|log Rg|/ \Vue|?da, (65)
2 £ if N=2,

if N=3,

/ e — be|2de < Cz-:2|logrg|/ \Vue|2dz,

n )
/ |<p6\2dx:/\<p€|2dmg V. € {iie, Ve, Ve, @e},
2

and

/ lue — ve|2de < C’r?/ |Vue |2dz,
Ty TTE

/ lue — ac|2dHY "L(z) < ORE/ \Vuc|*dz,
OBr,

BRE
~ 2 - ye(2)
/Trs Ue — Ve diamTu)E A ( re yr
~ 2 ye(x) 2 N_1 2
/E;‘T,«s Ue — Ve — diamTwE A . —yr || dH (2)<Cre| le(ue)| dx,

g
where Ty, and Br_ are given, respectively, by (31) and (63).

2

dz < crg/ le(uc)|dz,

Te

Te

Proof. If N = 3, the estimates (65) are established in [6, Lemma 3.1]. If N = 2, the
estimate [, [ue —iie|2de < Ce?|log Re| Jo |V |2dz is deduced by freezing the variable
x3 in the estimate obtained in [9, p. 420, 1. 7-10]. We get, in the same way, [, [ue —
be|?dw < Ce?|logre| [, |[Vue|*dr and infer [, |G —9:|*dz < Ce?|logre| [o, [Vuc|*da.
The last line of (65) can be checked easily. To prove (66), we establish that V w €

HY(T;RY),
A

/aT ’w — ][an(s)dHN_l(s)

yielding the first two lines of (66) by making suitable changes of variables (set T'= B
to get the second line of (66)). To that aim, assume that the first line of (67) is false,
then there exists a sequence (wy,) C H(T;R"Y) such that

J:

2
dx < C/ \V'w|2dx,
T

N—-1
w — ][an(s)dH (s)

) (67)
dHN " (z) < C/ \Vw|*da,
T

wn — F wn(s)dHY " (s)

2
dx =1, /wndx =0, lim / |an|2dm:0.
B T n—+oo Jr
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Taking Poincaré-Wirtinger inequality [ |wn — [ wn(y)dy|2d;r < C[r |Vw,|? da
into account, we infer that (wn) converges strongly to 0 in H! (T; ]RN) and then, by
the strong continuity of the trace application from Hl(T; RN) to Ll(aB;RN), that
limn_>+oojfann(S)dHN_1(S) = 0. By the continuous embedding of H'(T;R") into
L3(T;RYN), we get limp,— 4o f 7 [wn —j(ann(s)dHNfl(s)Fd:c = 0, a contradiction.
The second line of (67) can be obtained in a similar manner.

The last two lines of (66) remain to be proved. To this purpose, given u € Hl(T; RN),
we consider the problem

%
min {(/ |u,—w|2 d'HN_l) },
weER OB

where R denotes the space of rigid displacements. This minimum problem is achieved
at the point p(u) € R defined by

B B

p(u)(z) = ][8 u(s)dHY " Y(s)+ ( ][6 c(N)(s A u(s))dHN_l(s)> Az, (68)

where ¢(2) := 1 and ¢(3) := % The linear subspace of H*(T; R™) defined by V := {u €
HY(T;RY), p(u) = 0} satisfies V N R = {0}, hence by Korn inequality there holds

[ulgi(rryy < Cle)|p2(rry)y Vu e V.

Noticing that u — p(u) € V and e(u) = e(u — p(u)) Yu € HY(T;RY), we infer from
the continuous embedding of H*(T;R"Y) into L?(T;RY) and from the continuity of
the trace from H'(T;RY) into L?(T; RY) that

lu —p(u)|L2(rrry + [u = P(w)| L2 (o Ry < Cle(w)|p2 7Ry, (69)

for allu € Hl(T; ]RN). By making appropriate changes of variables in (69), taking (38)

and (68) into account (see also (70)), we find the last two lines of (66). O

Remark 5. Given u: € H'(2;R%), the field # + -27@- A (M - yT) defined by

(88) coincides in each cell Y; with the best approximation of ue in R with respect to
1

the seminorm (faBi |\2 dHNfl) > The simplifying assumption yr = 0 would induce

a loss of generality, iiue to the hypothesis (37). Notice that

. 2 . ye(z) _ - 2 . ye ()
Ve + diamTw‘E A re Ve + diamT‘uE A re yr)- (70)

The main results of Section 6 are stated in the next proposition, where the asymptotic
behavior of several sequences associated to the sequence (u¢) of the solutions of (2) is
specified.

Proposition 1. Assume (34), let ue be the solution of (2), and let Ve, @e, Ue be defined
by (38), (64). Then

ue € O([0,t1], Ho (2,RV) n ' ([0,t1], L*(2,RY)),

82u 2 —1 N (71)
at; € L(0,t1; HH(2,R™Y)).
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Moreover, the following estimates hold ((ce), ('yéN)) being introduced in (34)), (39))

_ due |
/ <|'U/E|2 + \u5|2 + |e(ug)\2 + |V'U:5|2 + aug > (r)dz < C,
0 t
2
/ Re ™ Hydme < C, / le(ue) 2 (r)da < &, (72)
ot T,. Ce

2 1
/|'U,5| (T)dmg S C <1 +4 ’yé]\])> s

and the next convergences take place, up to a subsequence, for some suitable u €
whoo(o, t1; HY (2;RY), L2(2;RY)), wg € WH0(0,t1; L2 (2 x T; RYN)) (see (58))
ue S u weak-star in L°°(0,t1; H&(Q; ]RN))7
Jue « Ou
ot ot
e —u and U —u strongly in L°(0,t1; LQ(Q; RN))7
Oue mg Oug
ot ot

weak-star in L°°(0,t1; Lg((); ]RN)),
(73)

u: Sy and two-scale with respect to (me).

In addition, we have
~ 12 ~ 2 &‘N
[ el e = [ oo (r)dme (o) < 55,
2 Te

. (74)
/Q oc|?(7)dx = / |2 (7)dme(z) < C (1 + w) ,

and, up to a subsequence,

@e — 0 strongly in L™(0,t1; L*(£2;R%)) if N =2,
Be 2 v weak-star in L™(0,t1; L*(£2; ]RN)),

@e S w weak-star in L(0,t1; L*(12;R%)), (75)
if v >0,

~ m ~ m
Ve —=v, W:—Sw, wug= v+

dug _ w2 dw
ot ot diamT ot

Ay —y7),
for a suitable (v,w) € WH2°(0,t1; L2(2; RY)) x WH2(0, t1; L2(2;R?)). Moreover,

w=0 if N =2,
(V) (76)
w=0 and v=1u if = +o00.

Proof. The assertion (71) follows from the regularity result (95) stated below. Fixing
t € [0, 1], we multiply (2) by a[;‘ts and integrate by parts over 2. We find

il/
a\2/,""

6“5

2 1
dr + 3 /_;Zaae(UE) :e(ue)(t)dx> = /;ZPEf-ﬁ(t)d% (77)

a'ulg

5 ()
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Then, we fix 7 € [0,¢1] and integrate (77) with respect to ¢ over [0, 7]. We get

2

1 o
: ( [ oG] ot [ acetue) :e(uexf)da:)
10, t 0
(78)
1 o
-2 (/ pe |c0\2dm+/ ace(bo) :e(bo)d:r> +/ pef 22 dudt.
2\Jo 17 2%(0,7) ot
y (32) and (57), there holds
e (LN +me) < peN < eo(N + me), (79)

for some suitable positive constants cq, cg, thus (pe) is bounded in M(2). Since ¢q is
continuous on {2 (see (2)), taking (36) into account we deduce from (78 ) that

2

1 Oue
(80)
Oue 2
<c <1+ \//Qx(o,tl)ps 5 dxdt) v reo,t].

By integrating (80) with respect to 7 over (0,¢1), we infer that f(zx(o t) Pe %
dzdt < C, and then deduce from (80) that

2
/ Pe %(7) dx +/ ace(ue) : e(us)(t)de < C V7 €10,t1], (81)
Q ot Q
yielding, by (79),
2
/ ’6’“‘5 T) / 85’: (1) dme < C V1 €10,t1]. (82)

Applying Poincaré and Korn inequalities in Hg (£2; RY), we obtain (see (34))
/Q e 2 () e < c/ Ve |2(r)dz < c/ le(ue)[2(r)de
<C/ le(ue)| dm+C/ cele( ug)\ (r)dz (83)
< C/Qase(ug) s e(ue)(r)dx.

By the last line of (65) and the first line of (66) we have (see (57))

/|u5|2(7)dmg < 2/|u5 — oo Pdme +2/|'f)g\2(7')dm5

N (84)
<c N_Q/ \Vu5|2(r)dm+2/ (o2 |2(7)da.
Te re (0]
By (39) and (65), there holds
/ o2 (7)da < c/ e — e |? + fite — uel? + Jue|?(r)dz
“ (85)

2 2
< W/Q|Vug| (T)das—l—C/Q|ug| (r)dz
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Joining (84) and (85), we infer (see (39))

/\u5| T)dme < (N)/ Ve | ( dac—l—C/ fue % ( (86)

Collecting (81), (82), (83), (86), taking (34)) into account, we obtain the estimates
(72). We infer, up to a subsequence, the convergences stated in two first lines of (73).
By (72), the sequence (uc) is bounded in both spaces W°(0,¢; L?(£2;RY)) and
L>(0,t1; HA(22;RY)), hence by the compact embedding Theorem of Aubin and Si-
mon (see [5], [33]) it is strongly relatively compact in L(0,¢1; L2(2;RY)) and in
C(0,t1; L2(£2;RN)). The first convergence in third line of (73) is proved. By (39) and
(65), we have

/ e — |2 (r )dm<0—%/ Vue|?(r)da it N =3,
E
log Re| .
f e P <o [ wul@ i v =2 )

/ |@67a5|2(7>dms@ | vu(r)de

y (39) and (62) there holds
lim LEL:O if N =3, lim 08 Rl L o (88)
e—0 Re é ) e—0 |10g7'g\ ’Y§2)

The strong convergence of (@) in L™ (0,¢1; L?(£2; RY)) stated in (73) follows from
that of (uc), and from (87) and (88). The two scale convergences with respect to (me)
stated in the last line of (73) result from (72) and from Lemma 9.

We turn now to the study of the asymptotic behavior of the sequences (we) and ()
defined by (38). We start from the elementary inequality

2§C/|b/\y|2d£N(y) WweR?, Ne{23}, TcRrRY
T

By making simple changes of variables, we deduce (see (33))

C ye(z)
b2<—/ bA

We can apply (89) for each i € I to b = we(ei, 7). Taking the first and third lines of
(66), (70) and (72) into account, we infer

2
dr  VbeR? Viel.. (89)

2
N ( )
w dx = <C d
/‘E |:c Za |wgaz7' ZTE/ we(et, T) i
i€l i€l
N 2
— ot o)A =B gy
N T, Te
e (90)
eV 2 - 2 ye(z) 2
A R e I

eV 5 N
SCW/ Ve () + e(ue) 2(r)dz < O,

Te

Te
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and, noticing that TJEV—IL < % (see (39)), deduce from (66), (72) and (90) that
e il

/Q 5|2 (r)da = /Q (522 (7)dme

2
~ 2 - y=(z)
Ue — Ve dia,mTw6 A ( Te yr

(r)dme (91

gc/ e |2+ @ 2+
2

1
Ve

Joining (90) and (91), we obtain (74) and deduce the convergences stated the three first
lines of (75). 1fv") > 0, by Lemma 9 and (74) the sequence (v¢) (resp., (we)) two-scale
converges with respect to (me), up to a subsequence, to some vg € L°(0,1; LQ(Q X
T;RN)) (resp. wo € L*(0,t1; L?(£2 x T;R%))). We prove below that

vo(z,t,y) =v(z,t) and  wo(x,t,y) =w(z,t) in £2x(0,t)xT,
(92)

2 .
IU'O(CE7 t, y) - ’U(i’,t) + dlamTw(x’t) A (y - yT) in £2x (Ovtl) xT.

It follows then from the last line of (73) that % € L>®(0,t1; L2 (2;RN)), %—‘2’ €
L®(0,t1; L3 (2;R3)) and o = v 4 20w 5\ (y _yr)in 2 x (0,¢1) x T. As-
sertion (75) is proved.

If v\N) = 400, then by (70), (75) and (90 ) there holds w = 0 and (9.) converges

weak-star to v in L°°(0,¢1; L2(£;R™)). By (65) and (72),

/ lu — v|?dzdt < liminf e — 0| 2dudt
2%(0,t1) =0 J0x(0,t1)

< Climinf i/ Ve 2dz = 0,
e—0 ’Y,gN) Q

thus u = v. Taking (74) into account, Assertion (76) is proved. O
Proof of (92). Since . is constant in each connected component of Tj_, for any
matrix-valued field @ € D(2 x (0,¢1) x T; RY x RY) we have / Ve divy ¥ (:c, t,
2% (O,tl)
yer—(z))dmsdt = 0. By passing to the limit as ¢ — 0, we get 1 vo.divy, ¥
N T 02x(0,t1)xT
dxdtdy = 0, and deduce from the arbitrary choice of ¥ that vg is independent of y.
Let us fix ¢ € D(2 x (0,1); RY) and n € D(Y) such that n(y) = 1 Vy € T. It is easy
to prove that

1
2
/ Q. Vedrdt — / @ dedmedt| < Ce ( / |6E(T)|2dxdt> < Ce.
QX(O,tl) QX(O,tl) .QX(O,tl)

Taking into account the last inequalities, the weak-star convergence of (v¢) to v in
LOO(O,tl;LQ(Q; RN)) and its two-scale convergence with respect to (me) to g, we
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deduce that

/ v.pdrdt = lim Ve.pdrdt = lim Ve.pdmedt
2% (0,t1) e=0J02x(0,t1) e=0J02x(0,t1)
= lim Ve(z, t). (tp(nt)n (M>) dmedt
e=0J0x(0,t1) Te
1

= T vo ("Ev t) P (‘Tv t) W(y)dl’dtdy
|T| 2x(0,t1)xT

= / vo.pdxdt,
QX(O,tl)

thus, by the arbitrariness of ¢, vg = v. Likewise we find that wg = w. Fixing ¥ €
D(2 x (0,t1) x Y;RY), and testing the two-scale convergence with respect to (me) of
(We) to w with the test field (y —y7) A9, we obtain

lim

<<:;5 A <y5—(:"’) —yT)> P (x,t, ys(“”)) dmedt

e=0J0x(0,t1) Te Te

— lim Pe. ((M —yT) A (w,t, M)) dmedt
=0 /0% (0,t1) Te Te

1
=7 w.((y —yr) ANY)dzdtdy
| | 2x(0,t1)xT

_ L
|T| 2x(0,t1)xT

(W A (y —yr))pdrdtdy.

We infer that («IJE A (yar—(f) — yT)) two-scale converges to (w A (y —yr)) with respect
to (me). It follows that (ug — Ve — ﬁ&g A (% — yT)) two-scale converges to

wy —V — 2w A (y — y7)) with respect to (me). Since () > 0, we deduce from
diamT v
(59), the third line of (66) and (72) that

1 2
e lup —v — ———w A (y — yr)| dzdtdy
|| 2x(0,t1)xXT diamT
2
N 2
< lim inf/ Ue — Ve — — we A (ye () _ yT) dmedt (93)
=0 Jox(0,t) diamT Te
N
< liminf C — 2i =0,
e—0 Tz T4 Ce
hence u():erﬁw/\(yfyT). O

We collect in the next theorem some abstract classical results which will be appropriate
to check the uniqueness of the solution of the homogenized problem (40). Furthermore,
the energy equation (97) is the key to the proof of the corrector result (see Proposition
2). The proof of Theorem 2 can be found in [28, Theorem 8.1 p. 287, Theorem 8.2 and
Lemma 8.3 p. 298], [21, Formula (5.20) p. 667, and Theorem 1 p. 670], [27, Remark
1.3 p. 155]. Henceforth, the derivatives in D/(O7 T; H) are identified with the time
derivatives in D'(§2 x (0,T) x Y) and are denoted both by % or by ¢’.
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Theorem 2. Let V and H be separable Hilbert spaces such that V.C H = H' C
V', with continuous and dense embeddings. Let ||.|lv, |-la, ((v)v, (,.)g denote
their respective norm and inner product. Let a : V X V —>~]R be a continuous bili?}ear
symmetric form on V. Let A € L(V, V") be defined by a(£,€) = (A8, v vy Y (§,6) €
V2. Assume that
I ) € Ry xRY, al€,6) + Melf > allélly vV Ee V.
Let h € LQ(O, t1; H), &0 €V, & € H. Then there exists a unique solution & of
AL() +€"(1) = h(1), €€ LP(0,t1;V), o

¢ e L0t H), £0)=¢&, €£(0)=¢é,
where £ = %, &= % What is more,

¢eC(o,ul;V)nCl(0,u]: H), £ € L*(0,t1;V), £ € L*(0,41;V").  (95)

Furthermore, setting

e(r) == % [(€'(7), €' (7)) g+ al&(7),&()] ¥ 7€ [0,11], (96)
there holds
e(t) = e(0) + /OT (h,&)ydt V7 e[0,t]. (97)

Moreover, (94) is equivalent to

t1 ~ - ~
| (atete) ) + (€0, ")) + (€0, )00 0

t
(€1, O un(0) = /0 h a0

VEeV, VneD(-oot1]); €€L?(0,t1;V), & €L?(0,t1; H).

7 Proof of Theorem 1

Besides the demonstration of Theorem 1, this section contains the statement and the
proof of a corrector result (see Section 7.3) and a justification of Remark 3 (i) (see
Section 7.4).

Let us briefly outline the proof of Theorem 1. In the spirit of Tartar’s method
[35], we will multiply (2) by an appropriate sequence of oscillating test fields (¢,) and,
by passing to the limit as € — 0 in accordance with the convergences (73) and (75)
established in proposition 1, obtain a variational problem of the type (98) satisfied by
the triple (u,v,w). Theorem 2 will yield then the uniqueness and the regularity of the
solution and the initial boundary conditions. We will deduce also that the convergences
established in (73) and (75) for subsequences, take place for the entire sequences.

The underlying idea of the construction of (¢, ) is to mimic the asymptotic behavior,
studied in Proposition 1, of the sequence (u¢) of the solutions of (2). Accordingly, the
field ¢, depends on three smooth fields ¢, %, { designed to identify, by their arbitrary
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nature, the system of equations satisfied by (u,v,w) (if N = 2, we can set { = 0 because
we know by (76) that w = 0). It coincides in each particle with the rigid displacement
associated to the rotation vector rsdiﬁc‘f and taking the value 9. at the geometric
center of gravity of the particle, being ¢, and %, suitable approximations of ¢ and ¥
taking constant values in Y2 (see (101)). The field ¢ coincides with ¢ outside some
neighborhood of the particles consisting of an e-periodic distribution Bg_ of balls of
radius Re (see (63)), being (R:) a sequence of positive reals such that r << Re << €.
In the set Br_ \ Tr., the field ¢, takes approximately the value of the displacement
minimizing the stored energy corresponding to the elastic state associated to the Lamé
coefficients Ag, 110, to vanishing body forces and to the Dirichlet boundary conditions
on O(Bpr, \ Tr.) determined by the values taken by ¢, in 2\ (Bg, \ Tr.) as described
above. The simplest candidate coping with these conditions is the field given by (139)
if N =2 and, if N = 3, by

3
¢ = Z $p (ep - egp)) + wﬁpegp) + Cépngp)7
p=1
where 0? ) (resp., n?’ )) coincides in each set B}éz with the solution of the problem
Pg(TﬁE;BfQE; (ep, 0)) (vesp., P3(T}_; B}_EE; (0,ep)), see (6)) and is equal to zero in 2\
Bpr_ . However, this choice of ¢, would lead to technical complications, because at some
stage of the proof, to be precise in (138) if N = 3 and in the proof of (146) if N = 2,
in order to compute the limit of (see (63))

/ ape(ue) : e(¢,)dxdt, (99)
H:x (O,tl)

we would have to establish some uniform upper bounds for the norm of the gradients
of 6) and ) in the matrix 2\ Tr_, like (18) if N = 3 and like [10, (5.11)] if N = 2.
Such estimates mean that the stress vectors associated to the solution of the problem
Pn (reT; Re B;€) defined by (6), (7) do not concentrate on small parts of the connected
components of the boundary of Re B\ r:T as ¢ — 0. They are plausibly satisfied if 0T
is sufficiently smooth and can actually be checked under (18) if 7" is a ball by means of
explicit computations (see Remark 1 and [10, (5.11)]). In the setting of scalar diffusion
equations, the corresponding upper bounds can be deduced for a sufficiently smooth set
T from the maximum principle which unfortunately fails to hold in linear elasticity. We
circumvent this difficulty by assuming that the matrix is homogeneous and isotropic

(i.e. that ag is given by (18)) and by substituting in (99) suitable approximations of

the fields 08’ ) and né” ) for which the last mentioned upper bounds can be proved. A

similar approach has been taken by Allaire in [3] in the context of Stokes equations.
The choice of these approximations depends on N € {2, 3}.

-If N = 3, we substitute the fields 0§p) and né”), in each set B}és \TriE (i € I.), for the
respective solutions P, (TfE;R?’; (ep,0)) and PKO(T,Z;R?’; (0,ep)), whose existences
are guaranteed by Lemma 2 (i). By using suitable arguments of potential analysis (see

Lemma 11), we check that under (18), these approximations of the restrictions of 0?7 )
and nff ) to B r. \ Tr. satisfy the required estimates provided that 0T is of class c3.
As they don’t vanish on 0Bp_, we link them up to zero in the set Bap, \ Br, (see
(103)) in a way such that the integral f(BmE \Br.)x(0,t1) ape(uc) : e(¢,)dzdt converges

to zero as € — 0 (see (127), (129)). This method doesn’t fit to the case N = 2 because
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the existence of a solution to Ps (Tﬁi; R?, (a,0)) in a suitable functional space fails to
hold if @ # 0 (see Remark 2 (ii)).

-If N = 2, we prove that the limit of (99) stays the same if we substitute 0%’2 for
Gép) in (139), where, setting B’ := (diamT)B (by (37), T C B’), 0%)5) coincides in each
set B}éa with the solution of PN(B’L;B}‘%; (ep,0)) and is equal to zero in 2\ qus.
As the last mentioned upper bounds hold true under (18) if 7" is a ball, the technical

difficulty is overcome. This method is appropriate to the case N = 2, because then the
effective problem does not depend on the choice of T, unlike the case N = 3.

7.1 Case N=3,0< 7(3) < 400
We fix three arbitrary fields ¢, % and ¢ such that

90711}7( S COO(Q X (07t1)’R3)7

(100)
p=p=c=20_ T _ %o @0x)0,n) U@ x (1)
and set
Xe(z,t) = > <][ - x(y, t)dy> lyi(z),  x€{e¥,(h (101)
ier. \’ Tr

For each p € {1,2,3}, we denote by 0((,1:)) (resp., nég)) the solution of the problem
Pr, (T R3; (ep,0)) (resp., P, (T R3;(0,ep))) (see (10)). We fix a sequence (Re) of
positive reals satisfying (62), set

1 if0<r <R,
9e(r)i={—@; +2 if Re <r < 2R, (102)
0 if r > 2R.,
and define (see (33))
0L)(a) = ge () o) (L2 )
(5 ) (103)
= (x
n2o(0) = g (el n ().

The next equations, satisfied for each p, g € {1,2,3}, i € I, will be used to prove (112)
and to pass from (130) to (132):

re(Caps (T R3))pq = /RJ\TZ ape (0&2) <$;7€EZ>) re (Og‘é) (%)) dx
_ eq./ ave (e(og) (ﬂ)) vdH? (104)
oT; Te

:eq./ aoe(ﬂgg),s)udTl2 = —eq./ aoe(eg%s)udHQ,
OT; . OB,
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re(Caps(T; R3))p(q+3) :/Ra\TiaOe (9535) <7x ;sz)) e (ngfé) (L ;El)) dx

:ep./ ape(nsd (q) vdH= — / ape(nyl (q) vdH? (105)
ot} oBi

Re

= dirjnT /6T;' (eq N <yET(f) *yT)).(aoe(Bg),g)u)de,
re(Capy (T3 R?)) ()13)(g43)

el () ()

- ﬁep’/m (yET(f) —yT) A (aoe(nSd) w)dH®.

Proof of (104), (105), (106). By (33), (102), (103), the field 8%, (vesp., n{%)) coin-
cides in each set H: = B}és \Tfs with the solution 0(02) (‘”;—:’) of Pk, (T,EE ;R3: (ep,0))

(resp., n) (Z551) of Pic, (T1,; R (0,€))), therefore

div (aoe(of,i;{g)) = div (aoe(nggp) =0 in Bk \Ti.. (107)

Denoting by v the outward unit normal to 8(3%6 \T}.), we deduce from the divergence
formula that (by Lemma 11 below, the next integrals are well defined)

/ aoe(egg%s)ude = —/ aoe(t9((£)75)1/d7-l27
OT; OB

(108)
/ aoe(ng)’e)ud?[z = —/ ape(nd (p) vdH?.
aT; OB _
By (16) we have
Caps(T;_;R*) = Cap;(r-T;R*) = r-Caps(T; R?). (109)

The equations (104), (105), (106) are deduced by integration by parts, taking (107),
(108), (109), and the definition of Caps(T;_; R?) into account (see (6)). O
In the next Lemma, we establish some suitable uniform upper bounds for the norm of

the gradients of Og),a and né{;)ﬁ in the matrix 2\ Ty, .

Lemma 11. Under (18), there holds

’0((31;), ‘4—’77(13) )‘Sc‘ygrﬁ Vo e Q\ Ty,

A v ()| <c—E vien\T o)
‘ o0, "f“'ﬂ ()‘7 Toe (@2 € 2\ Tr..
In particular, we have
T
laoemEwli=or,.) < =0 laoe@EVlLx(o5,,) < C
c (111)

,
\aoe(ag),e)'/hoo(ane) < |a03(0<(>g),6)V|L°°(8BRE) <C—,
€
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/|o Pt @) 2de < CReren /|e OL) )2+ lem® ) 2de < 7Y (112)

a
b
(see (10)). The field w, which represents a displacement in the homogeneous isotropic
elastic space R3 \ T corresponding to zero body forces, is biharmonic in R3 \T (see [24,
p. 133]), therefore it satisfies the following mean value formula (see [24, p. 21, (4)])

w(y) = — (5/ wdz f/ wdH2> , (113)
8 y+B y+0B

provided y + B € R3\ T. Let us fix ¢ > 0. Since |w| g (r3;R3) < +00 (see (8)), there
exists rg > 0 such that 7" C r¢B and

Proof. Let us fix £ = < > € (R®)? and let w be the solution of P, (T} R3:£)

/ lw|® + |Vw|?dz < e. (114)
R3\roB

If |y > ro + 1, then y + B C R3\ 79B and by (114) and Hélder inequality we have

1
/ wdz| < C (/ |'w|6dx> < Cs%
y+B y+B
2 6 5 3
/ lw|"de < C / lw|’dx | < Ce3,
y+B y+B

yielding, by the continuity of the trace application from Hl(y + B) to Ll(y + 0B),

/y+aB

Joining (113), (115), (116), we infer that |w(y)| < Ced provided |y| > 7o, hence
limyy| 4 [w(y)| = 0. Being biharmonic in a neighborhood of infinity and vanishing
at infinity, the field w satibfies the following estimates in a neighborhood of infinity (see
[24, p. 23]): Jw(y)| < Il ‘, [Vw(y)| < ﬁ On the other hand, as T is of class C®
(see (36)), by the classical boundary regularity results for solutions to elliptic systems
of partial differential equations (see [1]) there holds w € C(R3 \ T;R?), therefore the
last mentioned estimates hold true in R3 \T (by (37) there holds 0 € T'). Choosing
(a,b) € {(ep,0),(0,ep)} (that is w € {000 ,ng,)}) we obtain, by making suitable
changes of variables, the following estimates in R3 \ T;_ (see (33))

o (5] + ’”g) <y($)>‘ <Ch@n

w2 (52 (02 () <ot

Taking (102) and (103) into account, we deduce (110), (111), and (112). O

(115)

2
<cC w|? + |Vw|?dz < C(e5 +¢). (116)
y+B
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With a view to applying Theorem 2, we adopt the following notations
H:= (L(QRY)®, V= Ho (2 R®) x (L} (2 R?))?,
(.0.0). (0. 9.0)ir = [ pospda

2 (117)

1 2w
TiamT W YT)) Ay —yr)) dad
T Qpr(v+diamT (v yT)) (¢+d1amT ¢/ yT)> zdy,

((1,0,0), (0,9,0))v = ((,9,0), (0,%,0)) 1 / Vu.Vdr,

and consider the continuous bilinear symmetric form a on V and the fields {,é S
L%(0,t1; V), h e L2(0,t1; H), & € V, & € H defined by

a(€(r),&(r)) = /Q ave(w) : e(p) (r)dz

43 /Q (d)zw) Capy(T; R®) (v;u) (r)dz, (118)

¢ = (u,v,w), £=(p,9,¢), & = (bo,bo,0), & = (co,¢0,0), h = (f, £,0).
Setting

3
=Y b (o —02.) 4 02+ o2, (119

we multiply the first line of (2) by ¢, and integrate by parts over 2 x (0,¢1):

2
/ pgug.a (gsd;r:dt—k/ pa( 8¢€( )dx—c 09 (0 )) dx
2x(0,1) ot Q

+ / a-e(u:) : e(¢p.)dzdt — / pef-¢.dxdt = 0.
2x(0,t1) 2x(0,t1)

(120)

It is easy to check that ¢, = 9, + dia2mTC€ A (M fyT) in Tr_. Taking (32) and

Te

(57) into account, we infer

2 2
/ p 8 ‘gs dxdt :/ POU 8 ‘é dxdt
02x(0,t1) ot (\T. )% (0,t1) ot

! £ 82 € 2 8245 e
/ / <y ) ( 62@ T famT 012 /\(yr(a) yT))dmsdt.

2 82
The sequence (aagf IQ\TTE) converges strongly to 8—(2'0 in L2(2 x (0,t1); R®), hence
by the strong convergence of (u:) to u in L2(§2 x (0,1); R?) (see (73)), we have

(121)

2 2

. [ / 9
lim PolUe. dxdt = pou. ——dxdt. 122
=0T, ) x01) O Ox(0ty)  Ot? (122)
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By (72) and (101) there holds
Ye 321/)5 9 3245 v (z)
( > [( 52 " diamr a2 M\ o YT
% 2 9%¢  (ye(x)
B (W * GamT 02 (T —w)) dmedt

t1
< C’f’a\// /|ug|2dm5dt < Cre.
0

By testing the two-scale convergence of (Ug) to v +w A (y —yr) with respect to (me)

(see (58), (75)) with the test field p (y) (%t’f + dlanT Btg/\ (y —yr)), taking (35) and
(123) into account, we obtain

t1 2 2
: Ye on ) 2 0
1 = . £ = = — dmedt
8% 0 /p (7‘5 ) Ue ( ot? erlamT ot? A yr e
P (’U + 2 wA(y—y ))
= — . -yr) )
|T| 2x(0,t1)xXT diamT'

(8, 2 o

ty

(123)

a2 " Tamr o "W yT)) dedidy —(124)

_ _ 0% 2 9%
a ~/Q><(O,t1) <p'u o (e —yr) Av). diamT 8t2

2 _ %P 2 \* ., 0%
+ (diamTw NPlyG _yT)> oz (diamT> 7 Yo drdt.

Joining (117), (118), (121), (122), and (124), we get

2

t1 -
lim psug.agsdxdt: /0 (£(t), € (1)) prdt. (125)

=0/ 0% (0,t1) 0

By repeating the same argument, replacing ue by the continuous fields bg, ¢, f and
the sequence (282) by (%£(0)), (9:(0)), (9.), we find

lim (bo 9. (0) —co-9, (0)) dx — / pef P dxdt
2% (O,tl)

=0 N (126)
= (€. €0 = (€. 60)m — | (hle). £
Noticing that e(¢.) = 0 on T, we set (see (63))
/ase(us) ce(p.)dedt = I + Ioe + 132, Iie := / ape(ue) : e(p)dxzdt,
.QX(O,tl) ‘Q\(BQRE)X(Ovtl) (127)

Ioe == /B ape(ue) : e(p,)dxzdt, I3 := /H ape(uc) : e(¢p,)dzdt.

(B2r\Br,)x(0,t1) ex(0,t1)

By (73) the sequence (age(uc)) converges weakly to age(u) in L2(2 x (0,t1);S%). As
(e(@)1\(B,p,)) converges strongly to e(p) in L2(2 x (0,t1); SN), we infer
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lim I1. = / aoe(u) : e(p)dxdt. (128)
e—0 2%(0,t1)

y (72), (110), (119), and (127), there holds

I <C / le(é,)|2dzdt
(B2r: \Br,)x(0,t1)

3
< OJ > /B 14102 2+ 19® 2+ V0L ) (2) 2+ V2 ) ()2 de (129)

\Br,

2 3

T re (3), B2 _
< —= )3 < — — =o(1).
C\/<1+ Ré)E (B2r.) C\/Rs% + 3 o(1)

Denoting by v the outward unit normal to (Bg_ \ Tr.), we set (see (38), (64))

2w, Ye
B2 o (2 i (2 07))
35 Z aTTEX(O tl) dlamT yr

(Wep = wep)aoe®@Peev + Cpaoem®)Jv) ar™ " ar (130)

3
+Z/ Ue. qwap—<P6p)a0€(9<(>g),s)V+Cspaoe(ngg)a) )dHN_ldt.
OBR, x(0

sU1

We establish below that
e — Ise| = o(1). (131)

For a fixed t € (0,t1), the fields ¢, ¥, ., Ve, @e, and G, are constant in each connected
components of He. By (16), (104)-(106), and (130), we have

Ty = / " 3 ("’E <€%> Caps (r-T; R%) (”‘; ) (ei, t)dt

i€l

e Z/ o m( Cg%) Caps(T: RY) ('78;6’15) dadt (132)

i€l

= ’Y§3) (1/)6 . <P5) .Cap;(T; R3) <f)€ - 17,5) dxdt.
2%(0,t1) ¢e We

By passing to the limit as ¢ — 0 in (132), thanks to the uniform convergence of
(per¥.,€.) to (p,9,¢) in £2 % (0,¢1) (see (101)) and to the convergences stated in (73)
and (75), we obtain

lim I ~3) (’/’ N “’) .Cap,(T;R?) (” - “) dadt. (133)
2x(0,t1) ¢ w

Joining (118), (127), (128), (129), (131), and (133), we get

lim ae(u:) : e(¢.)dzdt = /tl a(&, §)dt. (134)
0

€e=0J02x(0,t1)
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We deduce from (120), (125), (126), and (134) that

t . . N -
/0 (€ &)+ a(€. &) — (h &) prdt + (€0, ()7 — (61,60 = 0. (135)

By the arbitrary choice of £ = (p,%,¢) and by a density argument, the variational
formulation (135) is equivalent to (98). It is easy to check that under (117) and (118)
the assumptions of Theorem 2 are satisfied. We infer that & = (u,v,w) satisfies (95) and
is the unique solution of the problem (94), equivalent to (40). The proof of Theorem 1
is achieved in the case N = 3. O
Proof of (131). We set

735 = / ape(uc) :e($6)dmdt,
H,.x (O t])
3 (136)
=3 pep (o0 —02) +0epb Ll + Cepm2)..
p=1

Thanks to (72), (112), and to the estimate |[¢ — .| < CRe in He (easily deduced from
(101)), we get

2
3

lge — Tae| < C / e[S (pep — wp)en— 020 || daat
HEX(O tl) p=1

3
2
<C / R2 e 0(p)
% (0,t1) 5;‘ (‘X”E)
< CVRH®) 4 £3(H.) = o(1).

As for fixed t the fields ¢, , ¥., (. are constant in each connected components of He,
by (136) there holds

(137)

3
+1+ Z \0&’,)75|2 dzdt
p=1

135—2 / (Wep — o) Jage(ue) : e(8L):) + (epace(uc) : e(n?).)dudt.
t1)

By integration by parts, taking (107) into account, we infer

Ty = Z /@ . (Otwsp pep)ace(®L) o) + Cpaoe(n®) w)dr ~ ()dt
rax 1

+Z / ((tep — pep)aoe®P o + Copaoem®) ) dr™ ~ (@),
OBR, X Otl)
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where v denotes the outward unit normal to dHe. It follows then from (130) that
yel) _ yT) — uc|2dH2dt

<
CZ /BTrgX Otl)dlamT 8/\< Te

‘135 135
2 (p) (p)
% +/H (aTrE) (‘aoe(GOO’E)V‘LOO(TET) + ‘aoe(ﬂm,s)V‘Lw(rsT))
3
N B
Pz::l \/ BBRS X(O’tl) \/7
(p) (p)
8 (‘aoe(eooﬁ)y)Loc(RsB) + ‘aoe("‘”’s)y‘m(ﬁ!em) '
Thanks to (66), (72), and (111) we infer (by (34) we have lim._,g ce = +00)
B } r2 1
‘135 —I| <C / re le(ue) | dedt .
TTEX(O,M) =T
Rs re (138)

+C,/R / |Vue|2dzdt

\/ : Br. x(0,t1) e 3 R2
<C\/E<\f W) AT <\f f)

The estimate (131) follows from (137) and (138). O

7.2 Case N =2, 0 < +? < 400

We fix ¢, such that
(2 % (0,11), RY),

pped
_p_ e _ 0% _
p=9%= %= ot 0 on (002x]0,t1]) U (2 x {t1}),
and set )
= > ¢a (ea —01) + peabl (139)
where 1, is defined by (101) and 02“) (@ € {1,2}) denotes the solution of
inf / (6) - e(0)d f=eain Tr, (140)
in Qage ce(@)dx 6—0in 2\Bp |

0cHL(2,R?)
Hence the field 8*) coincides in each set B}és with the solution of P2(T7._; By ; (ea, 0))
(see (7)) and is equal to zero in 2\ Br_. We have Cap, (Tﬁ; ; B}és) = Capy(r:T; ReB)
and the next formula (similar to (107)-(104)) hold true («a, 8 € {1,2}, i € I¢)

div (aoe(og“))) =0 in H. (=B \T:)

/ aoe(@ga))udH1 = —/ aoe(eéa))udHl,
o OB,
aoe(ega) ywdH!,

(Capy(reT; ReB))og = eﬁ./ aoe(0 ) wdH! = —eﬁ./
aT;. OB,
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where v denotes the outward unit normal to d(Bpg, \ Tr.). There holds

2
/ \ewgw)\ dz < AP, / 10 24z < CR24?. (141)

=

Proof of (141). By (5), (21) and (39), we have

/ ‘ (0(‘” e Z/ ape(0'Y) : (0 da
€ ClGI o (142)
) _ (2
< = (5 £ ar K 57— =
= "5 (CaPQ(T TvR B)) = 62|10gr5| CVE

For each i € I and « € {1, 2}, the restriction of 020‘) to Bizg belongs to H&(BEE,RQ).
By applying Poincaré inequality in H& (B}{E; R2) and Korn inequality in H& (Bf{a ; ]RQ),
taking (62) and (142) into account, we obtain

/ 10824 < Z/ 102z <oR22/ | V6 24z

el i€l
<CRZ |eo(“ |dx—C’R/|e N2dz < CRZP o

i€l

Repeating the argument of the case N = 3, we multiply the first line of (2) by ¢. and
integrate by parts, to obtain (120). Then we set

/ ace(uc) : e(¢p.)dxdt = I1e + Ioe; Iie = / ape(uc) : e(p)dzdt,
QX(O,tl) Q\(HEUTTE)X(Ostl)

(143)
fae = / X (0,41) aoelue): (w " Z Yo 9<a>> ot
In the spirit of Theorem 2, we set
H = (L* (2 R%)%, V i= Hy(2;R?) x L*(12;R?),
((uvv)v (‘PH‘#))H = / pou.p + pv.apdz,
2

(((w.0). (o)) = (@), (0. 9D + | VuTepd,

2 (144)

a((w,v), (p,9)) == /Q ave(u) : elp)dadt

@)y L%o/ _ _wd
RS werer yys Q(¢ ¢).(v —u)dz,

£ = (u,v), £=(p,%), & = (bo,bo), &1 = (co,c0), h = (£, f).
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By the same reasoning used to get (125), (126), (128) in the case N = 3, we find

i 0°¢. "
50 S T 082 dmdtf/o &,
. O\
lim [ pe (bo. ;;E (0) — co.¢5(0)> dz — / pef-@ dxdt
e—0 0N QX(O,tl) , (145)
~ ~ 1 ~.
= (@€ O — (€.E0)n = [ (&,
lim I, :/ ape(u) : e(p)dzdt.
e—0 2x(0,t1)
We prove below that
. Ao + 2p0
lim Ip. = +?4 07/ — ¢).(v — u)dwdt. 146
oy T MLO/\0+3M0 _(2><(0,t1)(¢ #)-( )z (146)

By passing to the limit as € — 0 in (120), thanks to (143), (144), (145), and (146), we
obtain the variational formulation (135) (with data given now by (144)), equivalent to
(98). We deduce from Theorem 2 that £ = (u,v) satisfies (95) and is the unique solution
of the problem (94), equivalent to (41). The proof of Theorem 1 is achieved. O
Proof of (146). Setting

2
oo o3 < _p@ (@
Too = /H EX(Oth,(l);s(ug).e@s)dxda ®. ._az::lsom (ea X )+¢m05 ,

and taking (72), (141) and the estimate |¢p — .| < CRe in He into account, we infer
(as in (137))

2
|[Ioe — Toc| < C /st(o,tl) e (ai_l(@aa — pa)(ea — 02‘”)) dxdt
<o 225 |, (o) [ Sor (147)
< \/HEX(O,M) < E;’e (06 )‘ +1+O;|05 | )dxdt
< C\/L2(H:) + R = o(1).
As9_(.,t) and @_(.,t) are constant in each cell Y2, we have (see (101), (140))
7 - (@)
Iy := g::l ‘/BRE x(O,tl)(wm — ea)ape(ue) : e (05 ) dzdt. (148)

Let B’ denote the ball of center 0 and radius diam7 (by (37), T C B’) and, for each
a€{1,2}, let 0%)2 denote the solution of (see (63))

inf 9):e(0)d 149
BGH?Q;RQ){ /Q age(0) : e(B)dx (149)

6 =eq in B;.E,
0=0in 2\Bp_ [
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We prove below that

3
[Toe = Tl < OVE (7)) = o0(1), (150)
where
Tpoe = Z / — pea)ace(us) s e (og‘g) duwdt. (151)
BRE X(O tl)
The next convergence is established in [10, Formula (5.36)]
- Ao + 2
lim Ty = ~P4 07“0/ —).(v — u)dzdt. 152
lim oz = 7 mpoy —— QX(O,tl)(ﬂl) ¢).(v —u)dz (152)
Joining (147), (150), (152), we obtain (146). O
Proof of (150). By (72), (101), (148), and (151), there holds
7. _T 2 (@) _ pla)y|?
|T2e— I poc| <C laoe(us)|dzdt e(0)5) —0:")| dadt
02x(0,t1) 02x(0,t1)
< c\// aoe(0'%) — 0Ly : €8 — 61 )de < C\/Tre + Jo,
(153)
He= [ ane(®l) 0 s el — 1),
BRE\B’
Joe 1= / ape(8')) : e(0L))da = / 6 —eq) : age(6)
B! \T. B, \T:
By (140) and (149), we have 0&0‘) 0( ) =0 on 0Bpg,, 0( ) =eq on 0B;._, 020‘) =eq

on 0Tr_. By integration by parts, denotlng by v the outward unit normal to 8345, we

infer

== [ (e 0 ane®5 wart's [ (e 0))ane(®l war’
oB,

9B/,
€

Jog = — / (ea — 6'Y).a0e(0° \wdH.
8B._

Taking the estimate |age( 0( ))V‘Loo(a(rsB/)) < W (

we deduce

_¢
re|logre| Jop;_

_ 0 2q11. [ HL(OB.
—r€|1ogre|\//83, 01 part [ (051.)
< ¢ / lea — 0L 2dM1.

reellogre|\| Jom;,

R — / (ea — 01)).a0e(0') wdr' <
8B’

lea — 6% |aH!

see [10, (5.12)]) into account,

(154)
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By the continuity of the trace application from H*(B'\ T;R?) to L?(dB'; R?) and by
Poincaré inequality and Korn inequality in H := {w € H'(B'\ T;R?),w = 0 on T},
there holds

/ w|2dHt < c/ Vw|2de < 0/ le(w)|?dz Y w € H.
oB’ B'\T B\T

By making suitable changes of variable (notice that eq —0&“) = 0on 9Ty, ), we deduce

/ lea — 6% PdH" < O / e(0C)2d Vi€ L. (155)
oB,} Bi\T}
Summing (155) over ¢ € I¢, taking (141) into account, we obtain
()2 1 Te
e —0 dH < C——"——. 156
/aB;S o =027 = &?[log(re)| (156)
Joining (39), (153), (154), and (156), we get (150). O

7.3 Corrector result
The next proposition enhances the results stated in Theorem 1 by displaying an ap-
proximation of the solution ue of (2) in the strong topology of L? (0,t1; H&(.Q; ]RN)).

Proposition 2. Under the hypotheses of Theorem 1, assume that by = 0, and that the
solution (u,v,w) of (40) if N = 3 (resp., of (41) if N = 2) is smooth, say u,v,w €
C2([0,t1]; CL(2;RN)). Let ue be the solution of (2) and let ¢. denote the field defined
by substituting (u,v,w) for (p,¥,¢) in (119) if N =3 (resp., in (139) if N = 2). Then

ty
. 2
51%/0 s — 631 oyt = 0. (157)
Remark 6. (i) The approzimation ¢, of ue introduced in Proposition 2 satisfies ¢, =
ve + ﬁwa A (yj—(f) fyT) in Tr, (ve, we being defined by (101)) hence the field

v(z,t) + Tsdi%w(x,t) A (ysri(f) — yT) (resp., Qdiﬁw) is a local approzimation of
the displacement in the inclusions (resp., of the rotation vector of the particles).
(i1) A similar result can be established if yn € {0,400} and for equilibrium equations.

Proof. We sketch the proof only in the case N = 3. The proof is similar in the case
N = 2. By (34) and Korn inequality in H&(Q;Rg) we have, for all 7 € (0,¢1),

e = .y < C [ azelue = .(7) s elue — 8.(r))d.

ty
We deduce that / lue — ¢E|§{01(Q,R3)dt < C(J1e — 2J2¢ + J3¢), where
0 ;

Oue |?
J1e ::/ Pe a—: + ace(ue) : e(ue)dzdt,
QX(O,tl)

N Oue O, .
Soim [ g ace(ue) el du (158)
0. |”

+ace(d,) : e(p,)dzdt.

J3 ::/
: Qx(O,tl)pE ot
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We prove below that (see (117), (118))

ty
li =l =1 = T 159
Jimy e = lim Joe = lim e = [ (€.€) + ate. 0, (159)

yielding (157). O
Proof of (159). By (78) we have, since bg = 0,

ty
Jls :/ pg|CO|2dl‘dt+2/ (/ Pe
2x(0,t1) 0 2x(0,t)

By (32) there holds

ue
5 ) dt. (160)

8“5 Ye (.’Z’) ) 8’"45
2= dxds —/ ——dxds +/ (7 . dmeds.
/Qx(g Et{ ot O\T,, x(g,%)f ot T,. x(O,t/)) Te f ot

By(73) and (75), the sequence (aat ) converges Weak star to 2 Ge in L0, 1; L%(2;R3))

and two-scale with respect to (meg) to 8t + dlamT dt A (Y — yr). We easily deduce
that for each ¢ € (0,t1), there holds

lim Pe
e—0 /% (0,t) 6t

161
ov 2 O (161)

ou w
- /m(o,t) oo ¢ 71 <6t + JamT ot WG~ yT)> davds.

Since | f] is bounded in £2 x (0,¢1) (see (2)), by (72) and (79) we have, for all ¢ € [0, ¢1]

ou 2 \3 3
/ D s < / pe i / pelfiPds) <. (162)
2x(0,) Ot 2x(0,t) 2x(0,8)

Joining (160), (161), (162), thanks to the dominated convergence theorem and to the
weak-star convergence in the sense of measures of (pe) to (po+p), taking the continuity
of ¢p into account (see (2)), we get, by (117), (118),

Oue
ot

lim Ji. = / (po+p) |co|2 dxdt
02x(0 tl)

e—0
" 2 Ow
* 2/ /_QX (0 Ft))()f + pf ( diamT at (yG - yT)> dxdsdt

/ (&1,&1)m + 2(/0(h, §/)Hds> dt.

Since bg = 0 there holds £y = 0 (see (118)) and, by (96), (£1,&1) g = 2e(0). We deduce

from (97) that
t1 t ,
lim 1 :2/0 (e(O)—l— (/0 (h &) ds)) dt

t1 ty
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To compute the limit of (Ja2. ), we repeat the argument used to pass to the limit in (120),
choosing (¢,%,¢) = (u,v,w), that is &€ = £&. The assumption of the second line of (100)
is not required, because we don’t need to integrate by parts with respect to t. We get
(see (134)) lim.—o fo(O,tl) ace(ue) : e(p,)dzdt = Otl a(&, €)dt. Thanks to the second
line of (73) and the fourth line of (75), by mimicking the proof of (122) and (124) we
find lim._q fo(O,tl) pg%.%dmdt = Otl (ﬁl,ﬁl)H dt, and deduce that lim._,q Jo. =
lime_,0 J1c. In order to determine lim._.g J3¢, we check that Proposition 1 stays the
same if we substitute ¢, for u., and deduce that the limit of (Ja2¢) is unchanged if we
substitute ¢, for u. in the second line of (158), therefore lim._,¢ J3. = lim._,¢ Jo.. O

7.4 Case vV) € {0, 400}

We sketch the proof of the results stated in Remark 3 in the cases N = 2, 7(2) =0 and
N =3, 7(3) = 400. The other cases are similar.

Case N =2 and 7(2) = 0. We repeat the argument of the proof of the case N = 2
of Theorem 1, setting (¢,{) = (0,0). We get (145). By (72) and (141) there holds

2
|Ioe| = /HEX(Oth)aOe <; Yalea — 8L ))> : e(ue)dzdt
2
<C / e (Z Vo (ea — 0&0‘))) dxdt
Hex(0,t1) a=1 (163)
<C 22:/ e(oéa))]2+1+|9£“)\2dmdt
=17 Hex(0,t1)

< C\A + L2(He) = o(1).

By passing to the limit in (120), thanks to (145) and (163), we obtain the variational
formulation

9? 0
/ pou.—f + ape(u) : e(p)dzdt + / pobo.—‘p(O) — poco-p(0)dx
2%(0,t1) ot Q ot
= / pop.fdzdt,
2% (O,tl)

equivalent to the the limit problem stated in Remark 3 (i). O
Case N = 3, v® = 400. By (76) we have (v,w) = (u,0), accordingly we set
(1,¢) = (¢,0) and, following the argument of the proof of the case 0 < 78 < o0,
we find (125), (126), (128). Thanks to (42) we can choose a sequence (Re) satisfying

(62) and R5’y§3) = o(1). We infer from (62), (72), and (112), that
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3

elp+ Z(Sosp - @p)eg),s
p=1

) 2
2 3 2
dz + C|pe — p|pee Z/ ‘e (08?,5)] d
p=179

[Ioe| + [I3¢] < C dxdt

/B2RE \Tr. x(0,t1)

3
< C‘/£3(B2Rs)+C\J Zl/_(l ’0<(>€),6
p=

RS
< O\ 5 + OV Rerenr” + RV = o(1).

Our sending € — 0 in (120) yields the variational formulation

8290
/ (po + E)UW + ape(u) : e(p)dzdt
02x(0,t1)

0
+ [ o0+ 900 520) = (o + DeopO)do = [ (oo -+ ) o,
2 2x (O,tl)

which, joined with Proposition 1, is equivalent to (43). Furthermore, by (73) and
(87) there holds (9:) — u strongly in L>(0,¢1; L2(£2; R™)) and, by (90), (@) — 0
strongly in L(0,¢1; L2(12; RY)). O
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