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A notion of capacity related to elasticity. Applications to homogenization.

Michel Bellieud

Abstract. We study a notion of capacity related to elasticity which proves convenient to analyze the concentrations of strain energy caused by the rigid displacements of some infinitesimal parts of an elastic body in two or three dimensions. By way of application, we investigate the behavior of solutions to initial boundary value problems describing vibrations of periodic elastic composites with rapidly varying elastic properties. More specifically, we analyze a two-phase medium whereby a set of heavy stiff tiny particles is embedded in a softer matrix. This task is set in the context of linearized elasticity.

Introduction

The study of composites comprising infinitesimal traces of materials with extreme physical properties has attracted a lot of attention over the past few decades [START_REF] Bellieud | Homogenization of elliptic problems in a fiber reinforced structure. Non local effects[END_REF], [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers . Non local effects. Memory effects[END_REF], [START_REF] Bouchitte | Homogenization of a wire photonic crystal: the case of small volume fraction[END_REF], [START_REF] Briane | A new approach for the homogenization of high-conductivity periodic problems. Application to a general distribution of one directional fibers[END_REF], [START_REF] Briane | Homogenization of the Stokes equations with high-contrast viscosity[END_REF], [START_REF] Caillerie | A perturbation problem with two small parameters in the framework of the heat conduction of a fiber reinforced body[END_REF], [START_REF] Fenchenko | Asymptotic behavior of solutions of differential equations with a strongly oscillating coefficient matrix that does not satisfy a uniform boundedness condition[END_REF], [START_REF] Khruslov | Homogenized models of composite media[END_REF]. The common feature of this body of work is the emergence of a concentration of energy in a small region of space surrounding the strong components. A similar phenomenon occurs when Dirichlet problems in varying domains are considered [START_REF] Allaire | Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I: Abstract framework, a volume distribution of holes[END_REF], [START_REF] Ansini | Asymptotic analysis of periodically-perforated nonlinear media[END_REF], [START_REF] Diaz | Asymptotic behaviour of nonlinear elliptic systems on varying domains[END_REF], [START_REF] Cioranescu | Un terme étrange venu d'ailleurs, I. Nonlinear Partial Differential Equations and Their Applications[END_REF], [START_REF] Maso | Γ -convergence and µ-capacities[END_REF], [START_REF] Maso | New results on the asymptotic behavior of Dirichlet problems in perforated domains[END_REF], [START_REF] Maso | Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains[END_REF], [START_REF] Maso | A capacity method for the study of Dirichlet problems for elliptic systems in varying domains[END_REF]. This extra contribution is characterized by a local density of the geometric perturbations in terms of an appropriate capacity depending on the type of equations. We are aiming at complementing this extensive material.

In the spirit of Villaggio [START_REF] Villaggio | The main elastic capacities of a spheroid[END_REF], we introduce a notion of capacity characterizing the strain energy associated to the displacement of a bounded rigid body T immersed in an elastic space V . More precisely, we consider the family (c 3 ((v v v, ω ω ω); T ; V )) (v v v,ω ω ω)∈(R 3 ) 2 defined by c 3 ((v v v, ω ω ω); T ; V ) := inf ( Z V a a a 0 e e e(ψ ψ ψ) : e e e(ψ ψ ψ)dx, ψ ψ ψ ∈ H 1 0 (V ; R 3 ),

ψ ψ ψ = v v v + 2 diamT ω ω ω ∧ (x x x -x x x T ) in T ) , (1) 
where a a a 0 denotes the elasticity tensor of the medium and x x x T stands for the geometrical center of gravity of T . We denote by Cap 3 (T ; V ) the 6 × 6 symmetric positive semidefinite matrix associated with the quadratic form (v v v, ω ω ω) → c 3 ((v v v, ω ω ω); T ; V ) in the canonical basis. In dimension 2, we define in the same way a 3 × 3 symmetric positive semidefinite matrix Cap 2 (T ; V ). The novelty of this notion, compared to what is already available on the subject in the litterature (see [START_REF] Ansini | Asymptotic analysis of periodically-perforated nonlinear media[END_REF], [START_REF] Maso | A capacity method for the study of Dirichlet problems for elliptic systems in varying domains[END_REF], [START_REF] Frehse | Capacity methods in the theory of partial differential equations[END_REF], [START_REF] Maz'ya | Uniform asymptotic formulae for Green's tensors in elastic singularly perturbed domains[END_REF]), is that the restrictions to T of the minimizers of (1) are helicoidal vector fields instead of constants. This choice is suggested by the small values presumably taken by the symmetrized gradient of the displacement in the parts of the body where the elasticity coefficients are large. The underlying purpose of this tool is to describe, in the setting of homogenization, the concentration of strain energy caused by the rigid displacements of some minuscule parts of a composite. The presence of the parameter 2 diamT in [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I[END_REF] ensures that, given ω ω ω = 0 and a sequence (Tn) of domains of vanishing size, the norm on ∂Tn of the minimizers of (1) is bounded and not uniformly vanishing. As illustrated in the application developed below, this scaling proves appropriate to study elastic composites comprising small stiff particles homothetical to some fixed bounded domain of R N (see Remark 3 (iv)).

For a given bounded smooth open subset Ω of R N (N ∈ {2, 3}), we consider the problem

8 > > > > > > > > > > > > < > > > > > > > > > > > > : ρε ∂ 2 u u uε ∂t 2 -divσ σ σε = ρεf f f in Ω × (0, t 1 ),
σ σ σε = a a aεe e e(u u uε), e e e(u u uε) = 1 2 (∇ ∇ ∇u u uε + ∇ ∇ ∇ T u u uε),

u u uε ∈ C([0, t 1 ]; H 1 0 (Ω, R N )) ∩ C 1 ([0, t 1 ]; L 2 (Ω, R N )), u u uε(0) = b b b 0 , ∂u u uε ∂t (0) = c c c 0 , (b b b 0 , c c c 0 ) ∈ (C(Ω; R N ) ∩ H 1 0 (Ω; R N )) × C(Ω; R N ), f f f ∈ C(Ω × (0, t 1 ); R N ).
(

) 2 
The elasticity tensor a a aε and the mass density ρε are supposed to take possibly large values in some subset Tr ε of Ω and constant values a a a 0 , ρ 0 in the surrounding matrix (see [START_REF] Oleinik | Mathematical problems in elasticity and homogenization[END_REF], [START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF]). The set Tr ε consists of an ε-periodic distribution of tiny grain-like particles of diameter rε < < ε, homothetical to some bounded connected open subset T of R N (see [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]). We show that the homogenized problem associated with (2) depends on the limit C C C N (T ) of the sum of the images of the connected components of Tr ε under Cap N (.; Ω) per unit volume. The critical case takes place when some eigenvalues of the matrix C C C N (T ) are positive and finite: this corresponds to particles of diameter of order ε 3 if N = 3 and, if N = 2, of diameter rε such that 1 ε 2 | log rε| is of order 1. Then, a gap between the mean displacement of the constituent parts of the composite arises, giving rise to the emergence of a concentration of elastic strain energy in a thin zone enveloping the particles (see Remark 3 (iii)). It turns out that the particles behave, at a microscopic scale, like rigid bodies. Their effective displacement is characterized by the limit (v v v, ω ω ω) of the sequence (ṽ v vε, ω ω ωε) defined in terms of the solution u u uε of ( 2) by (38), where v v v describes the effective displacement of their geometrical center of gravity, and ω ω ω their effective rescaled rotation vector (see Remarks 5 and 6). We prove that the effective behavior of the tiny grain-like inclusions is governed by the coupled system of equations in Ω × (0, t 1 )

∂ 2 ∂t 2 ρv v v + 2
diamT ω ω ω ∧ ρ(y y y Gy y y T ) `2 diamT ´2 J J J ρ ω ω ω + 2 diamT ρ(y y y Gy y y

T ) ∧ v v v ! = " ρf f f ρ(y y y G -y y y T ) ∧ f f f « -C C C N (T ) " v v v -u u u ω ω ω « , (3) 
displaying rigid vibrations, associated with the boundary and initial conditions given in (40), the constants ρ, J J J ρ , y y y G , y y y T being defined by [START_REF] Tartar | H-convergence[END_REF]. The coupling with the effective displacement in the matrix u u u is marked by the second term of the right hand member of (3), which characterizes the sum of the surface forces applied on the particles by the surrounding medium and their total moment with respect to the center of gravity of the geometric particle. The effective displacement in the matrix is governed by the equation ρ 0 ∂ 2 u u u ∂t 2 div(a a a 0 e e e(u u u)) = ρ 0 f f f + ρ

" f f f - ∂ 2 v v v ∂t 2 - 2 diamT ∂ 2 ω ω ω ∂t 2 ∧ ρ(y y y G -y y y T ) « ,
where the second term of the right hand member represents the total force per unit volume exerted by the particles on the elastic matrix. We obtain a corrector result (see Section 7.3).

Computing the matrix C C C N (T ) requires a study of Cap N which reveals striking differences depending on N . In the three-dimensional case, we obtain C C C 3 (T ) = γ (3) Cap 3 (T ; R 3 ) where γ (3) := lim ε→0 rε ε 3 and, in the critical case, each eigenvalue of C C C 3 (T ) is positive and finite. By contrast, only two of the three eigenvalues of C C C 2 (T ) are then positive and finite, whereas (C C C 2 (T )) 33 = +∞ regardless of the order of magnitude of rε. This means that the effective concentration of strain energy generated by a non vanishing rescaled rotation of the particles is infinite. Accordingly, we find that ω ω ω = 0 if N = 2. The second distinctive feature of the two-dimensional case lies in the independence of the upper 2 × 2 submatrix of C C C 2 (T ) with respect to T : we get (C C C 2 (T )) αβ = γ (2) (M M M 2 ) αβ where γ (2) = lim ε→0 1 ε 2 | log rε| (α, β ∈ {1, 2}) and M M M 2 is defined by [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF]. The singular behavior of Cap 2 leads to a significant simplification of the limiting problem (3) in the two-dimensional case: the effective rescaled rotation vector of the particles is then equal to zero and the effective equations, independent of the choice of T , consist of the system

8 > > < > > : ρ ∂ 2 v v v ∂t 2 = ρf f f -γ (2) M M M 2 (v v v -u u u),
ρ 0 ∂ 2 u u u ∂t 2 div(a a a 0 e e e(u u u)) = ρ 0 + ρ

" f f f - ∂ 2 ∂t 2 v v v « ,
associated with the boundary and initial conditions given in (41). The application Cap 2 is relevant to the study of fibered structures: if Tr ε is made up, instead of particles, of an ε-periodic distribution of parallel cylinders of cross section of size rε < < ε homothetical to some bounded connected open subset S of R 2 , then the limiting problem depends partly on C C C 2 (S) (see Section 5.4). Accordingly, the rescaled effective angle of torsion of the fibers is equal to zero and no torsion effect take place (see Remark 4).

In the elliptic problem associated with [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], which shows the same general features, the auxiliary variables v v v, ω ω ω can be eliminated from the effective equations, yielding a much simpler homogenized problem which covers the complex behavior of the composite at a microscopic scale (see Section 5.1). This elimination is not possible in the hyperbolic case, where an interesting memory phenomenon arises (see Remark 3 (ii)).

Notations

In this paper, {e e e 1 , .., e e e N } stands for the canonical basis of R N (N ∈ {2, 3}). Points in R N or in Z N and real-valued functions are represented by symbols beginning by a lightface minuscule (example x, i, det A A A...) and vectors and vector-valued functions by symbols beginning by a boldface minuscule (examples: x x x, x x x T , i i i, u u u, f f f , g g g, divσ σ σε,...). Matrices and matrix-valued functions are represented by symbols beginning by a boldface majuscule with the following exceptions: ∇ ∇ ∇u u u (displacement gradient), e e e(u u u) (linearized strain tensor), a a aε (elasticity tensor field). We denote by u i or (u u u) i the components of a vector u u u and by A ij or (A A A) ij those of a matrix A A A (that is u u u = P N i=1 u i e e e i = P N i=1 (u u u) i e e e i ; A A A = P N i,j=1 A ij e e e i ⊗ e e e j = P N i,j=1 (A A A) ij e e e i ⊗ e e e j ). We do not employ the usual repeated index convention for summation. We denote by A A A :B B B = P N i,j=1 A ij B ij the inner product of two matrices, by ε ijk the three-dimensional alternator, by u u u ∧ v v v = P 3 i,j,k=1 ε ijk u j v k e e e i the exterior product in R 3 , by S M (M ∈ N) the set of all real symmetric matrices of order M , by ≤ the partial order relation on S M defined by

A A A ≤ B B B, if ξ ξ ξ.A A Aξ ξ ξ ≤ ξ ξ ξ.B B Bξ ξ ξ ∀ξ ξ ξ ∈ R M . (4) 
The symbol I I I M represents the M × M identity matrix. The letter B denotes the open ball of R N of center 0 and radius 1. The letter C denotes different constants whose precise values may vary. The symbol a a a 0 stands for a fourth order tensor on

R N satisfying (a a a 0 ) ijkh = (a a a 0 ) jikh = (a a a 0 ) khij ∀(i, j, k, h) ∈ {1, ..., N } 4 , a a a 0 M M M : M M M ≥ c|M M M | 2 ∀M M M ∈ S N , (c > 0). (5) 
Given an open subset V of R N and a bounded connected open subset T of V such that T ⊂ V , the symbol Cap N (T ; V ) represents, if N = 3, the 6 × 6 symmetric positive semidefinite matrix associated to the quadratic form defined by

ξ ξ ξ := " a a a b b b « ∈ R 3 × R 3 → inf P 3 (T ; V ; ξ ξ ξ) (= ξ ξ ξ.Cap 3 (T ; V )ξ ξ ξ), P 3 (T ; V ; ξ ξ ξ) : inf ψ ψ ψ∈H 1 0 (V ;R 3 )  a V (ψ ψ ψ, ψ ψ ψ), ψ ψ ψ(x) = a a a + 2 diamT b b b ∧ (x x x -x x x T ) in T ff , (6) 
where x x x T := R -T x x xdx and a V stands for the bilinear form on H 1 0 (V ; R 3 ) given by a V (ψ ψ ψ, ϕ ϕ ϕ) := Z V a a a 0 e e e(ψ ψ ψ) : e e e(ϕ ϕ ϕ)dx.

If N = 2, Cap 2 (T ; V ) denotes the 3 × 3 symmetric positive semidefinite matrix associated to the quadratic form

ξ ξ ξ := " a a a b « ∈ R 2 × R → inf P 2 (T ; V ; ξ ξ ξ) (= ξ ξ ξ.Cap 2 (T ; V )ξ ξ ξ), P 2 (T ; V ; ξ ξ ξ) : inf ψ ψ ψ∈H 1 0 (V ;R 2 )  a V (ψ ψ ψ, ψ ψ ψ), ψ ψ ψ(x) = a a a + 2 diamT be e e 3 ∧ (x x x -x x x T ) in T ff . (7) 
In the context of the heat equation, the same approach leads to the quadratic form a ∈ R → cap N (T ; V )a 2 , where cap N denotes the harmonic capacity.

3 

« ∈ R 3 × R 3
. By [START_REF] Bellieud | Homogenisation of evolution problems for a composite medium with very small and heavy inclusions[END_REF], there holds

ξ ξ ξ.Cap 3 (T ; V )ξ ξ ξ = inf ˘aV (ψ ψ ψ, ψ ψ ψ), ψ ψ ψ ∈ A ξ ξ ξ (T ; V ) ¯, A ξ ξ ξ (T ; V ) := ( ψ ψ ψ ∈ H 1 0 (V ; R 3 ), ψ ψ ψ(x) = a a a + b b b ∧ 2 diamT (x x x -x x x T ) in T ) .
As a V is strongly continuous on H 1 0 (V ; R 3 ), we just have to check that

A ξ ξ ξ (T ; V ) ∩ D(V ; R 3 ) is dense in A ξ ξ ξ (T ; V ) with respect to the strong topology of H 1 0 (V ; R 3 ). Let us fix η η η ∈ A ξ ξ ξ (T ; V ) and ϕ ϕ ϕ ∈ A ξ ξ ξ (T ; V ) ∩ D(V ; R 3 ). There holds η η η -ϕ ϕ ϕ = 0 on ∂T hence, since T is Lipschitz, η η η -ϕ ϕ ϕ ∈ H 1 0 (V \ T ; R 3 ). Therefore, there exists a sequence (ψ ψ ψ n ) ⊂ D(V \ T ; R 3 ) converging strongly to η η η -ϕ ϕ ϕ in H 1 0 (V \ T ; R 3 ). We can extend each ψ ψ ψ n to V by setting ψ ψ ψ n = 0 in T . Then ψ ψ ψ n + ϕ ϕ ϕ ∈ A ξ ξ ξ (T ; V ) ∩ D(V ; R 3 ) and the sequence (ψ ψ ψ n + ϕ ϕ ϕ) converges strongly to η η η in H 1 0 (V ; R 3 )
. By the same argument, the problem (7) has a minimizing sequence in D(V ; R 2 ).

⊓ ⊔ The next lemma marks a fundamental difference between Cap 2 and Cap 3 : the infimum problem P 2 (T ; V ; ξ ξ ξ) is not achieved in general if V is unbounded (see Remark 2 (ii)), whereas P 3 (T ; V ; ξ ξ ξ) is always achieved provided we substitute for H 1 0 (V ; R 3 ) in ( 6) the Banach space K 0 (V ; R 3 ) defined by

K 0 (V ; R 3 ) := D(V ; R 3 ) |.| K 0 , |ψ ψ ψ| K0 := "Z V |ψ ψ ψ| 6 dx « 1 6 + "Z V |∇ ∇ ∇ψ ψ ψ| 2 dx « 1 2 , (8) 
where

D(V ; R 3 ) |.| K 0 denotes the closure of D(V ; R 3 ) with respect to the norm |.| K0 .
The space K 0 (V ; R 3 ) coincides with H 1 0 (V ; R 3 ) if V is bounded and may be strictly larger otherwise. The discrepancy between the behaviors of Cap 2 and Cap 3 comes in particular from the fact that Gagliardo-Nirenberg-Sobolev inequality 

Z R N |f | p * dx ≤ C Z R N |∇f | p dx ∀f ∈ W 1,p (R N ) (p * := N p N -p , p < N ), (9) 
« ∈ R 3 × R 3 .
Then the problem

P K0 (T ; V ; ξ ξ ξ) : inf ψ ψ ψ∈K0(V ;R 3 ) ( a V (ψ ψ ψ, ψ ψ ψ), ψ ψ ψ(x) = a a a + b b b ∧ 2 diamT (x x x -x x x T )x ∈ T ) ( 10 
)
has a unique solution, the matrix Cap 3 (T ; V ) is positive definite, and

ξ ξ ξ.Cap 3 (T ; V )ξ ξ ξ = inf P 3 (T ; V ; ξ ξ ξ) = min P K0 (T ; V ; ξ ξ ξ).
(ii) Assume that N = 2, that V is bounded in one direction, and let ξ ξ ξ := " a a a b

« ∈ R 2 ×R.
Then the problem (7) has a unique solution.

Proof. (i) Setting

K ξ ξ ξ (T ; V ) := ( ψ ψ ψ ∈ K 0 (V ;R 3 ), ψ ψ ψ = a a a + b b b ∧ 2 diamT (x x x -x x x T ) in T ) ,
and repeating the argument of the proof of Lemma 1, we find that K ξ ξ ξ (T ; V ) ∩ D(V ; R 3 )

K0

= K ξ ξ ξ (T ; V ) and, noticing that a V is continuous on K 0 (V ; R 3 ), deduce that

ξ ξ ξ.Cap 3 (T ; V )ξ ξ ξ = inf ˘aV (ψ ψ ψ, ψ ψ ψ), ψ ψ ψ ∈ K ξ ξ ξ (T ; V ) ¯. (11) 
By Gagliardo-Nirenberg-Sobolev inequality in H 1 (R 3 ; R 3 ) (see ( 9)), Korn inequality in H 1 0 (V ; R 3 ), and (5), there holds (extending ψ ψ ψ to R 3 by setting

ψ ψ ψ = 0 in R 3 \ V ) "Z V |ψ ψ ψ| 6 dx « 1 6 = "Z R 3 |ψ ψ ψ| 6 dx « 1 6 ≤ C "Z R 3 |∇ ∇ ∇ψ ψ ψ| 2 dx « 1 2 = C "Z V |∇ ∇ ∇ψ ψ ψ| 2 dx « 1 2 ≤ C "Z V |e e e(ψ ψ ψ)| 2 dx « 1 2 ≤ C (a V (ψ ψ ψ, ψ ψ ψ)) 1 2 ≤ C|ψ ψ ψ| K0 ∀ ψ ψ ψ ∈ K 0 (V ; R 3 ), (12) 
hence the application

|.|a V := p a V (., .) is a norm on K 0 (V ; R 3 ) equivalent to |.| K0 . Equiped with this norm, K 0 (V ; R 3
) is a Hilbert space on which the bilinear form a V is continuous and coercive. As K ξ ξ ξ (T ; V ) is a closed convex subset of K 0 (V ; R 3 ), by Stampacchia Theorem the infimum ( 11) is achieved at a unique point ψ ψ ψ ∈ K ξ ξ ξ (T ; V ). If ξ ξ ξ = 0, then ψ ψ ψ = 0, hence ξ ξ ξ.Cap 3 (T ; V )ξ ξ ξ = a V (ψ ψ ψ, ψ ψ ψ) = |ψ ψ ψ| 2 a V > 0, therefore the matrix Cap 3 (T ; V ) is positive definite. (ii) If V is bounded in one direction, by Poincaré and Korn inequalities in

H 1 0 (V ; R 2 ), |ψ ψ ψ| 2 H 1 0 (V ;R 2 ) ≤ C Z V |e e e(ψ ψ ψ)| 2 dx ≤ Ca V (ψ ψ ψ, ψ ψ ψ) ∀ψ ψ ψ ∈ H 1 0 (V ; R 2 ). ( 13 
)
Then we repeat the argument of the case N = 3, substituting (13) for ( 12) and

H 1 0 (V ; R 2 ) for K 0 (V ; R 3 ).
⊓ ⊔ The next Lemma, whose proof is straightforward, states that in regard to the order relation ( 4), the application (T, V ) → Cap N (T ; V ) is decreasing with respect to V and the N × N upper left submatrix of Cap N (T ; V ) is increasing with respect to T . However, Cap N (T ; V ) is presumably not increasing with respect to T (see Remark 2 (i)).

Lemma 3. (i) Let V 1 and V 2 be two open subsets of R N such that T ⊂ V 1 ⊂ V 2 . Then Cap N (T ; V 1 ) ≥ Cap N (T ; V 2 ). (ii) Let T 1 and T 2 be two bounded connected open subsets of R N such that T 1 ⊂ T 2 ⊂ V . Then " a a a 0 « .Cap N (T 1 ; V ) " a a a 0 « ≤ " a a a 0 « .Cap N (T 2 ; V ) " a a a 0 « ∀a a a ∈ R N . (14) 
In the following lemma, we investigate the continuity properties of Cap N (T, V ) with respect to V . (ii) Assume that N = 3, and let ψ ψ ψ n be the solution of P K0 (T ; Vn; ξ ξ ξ) (see [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers . Non local effects. Memory effects[END_REF]) extended to V by setting ψ ψ ψ n = 0 in V \ Vn. Then (ψ ψ ψ n ) converges strongly in K 0 (V ; R 3 ) to the unique solution of P K0 (T ; V ; ξ ξ ξ). (iii) Assume that N = 2 and V is bounded in one direction, and let ψ ψ ψ n be the solution of P 2 (T ; Vn; ξ ξ ξ) (see [START_REF] Bellieud | Torsion effects in elastic composites with high contrast[END_REF])), extended to V in the same way. Then (ψ ψ ψ n ) converges strongly in H 1 0 (V ; R 2 ) to the unique solution of P 2 (T ; V ; ξ ξ ξ).

Proof.

(i) We fix ξ ξ ξ ∈ R N (N +1) 2 , α > 0, ψ ψ ψ ∈ D(V ; R N ) ∩ A ξ ξ ξ (T ; V ) such that a V (ψ ψ ψ, ψ ψ ψ) ≤ ξ ξ ξ.Cap N (T ; V )ξ ξ ξ+α (see Lemma 1) and n 0 ∈ N such that Supp ψ ψ ψ ⊂ Vn ∀n ≥ n 0 . We have ξ ξ ξ.Cap N (T ; Vn)ξ ξ ξ ≤ a Vn (ψ ψ ψ, ψ ψ ψ) = a V (ψ ψ ψ, ψ ψ ψ) ≤ ξ ξ ξ.Cap N (T ; V )ξ ξ ξ + α ∀n ≥ n 0 . Applying Lemma 3 (i), we infer ξ ξ ξ.Cap N (T ; V )ξ ξ ξ ≤ lim inf n→+∞ ξ ξ ξ.Cap N (T ; Vn)ξ ξ ξ ≤ lim sup n→+∞ ξ ξ ξ.Cap N (T ; Vn)ξ ξ ξ ≤ ξ ξ ξ.Cap N (T ; V )ξ ξ ξ + α.
(ii) By (i), we have (see the proof of Lemma 2 (i))

lim n→+∞ |ψ ψ ψ n | 2 a V = lim n→+∞ a Vn (ψ ψ ψ n , ψ ψ ψ n ) = lim n→+∞ ξ ξ ξ.Cap 3 (T ; Vn)ξ ξ ξ = ξ ξ ξ.Cap 3 (T ; V )ξ ξ ξ < +∞, (15) 
hence the sequence (ψ ψ ψ n ) is bounded in K 0 (V ; R 3 ) and converges weakly, up to a subsequence, to some ψ ψ ψ ∈ K 0 (V ; R 3 ). Since each ψ ψ ψ n belongs to the convex strongly closed (thus weakly closed) subset K ξ ξ ξ (T ; V ) of K 0 (V ; R 3 ), there holds ψ ψ ψ ∈ K ξ ξ ξ (T ; V ). The functional g g g → a V (g g g, g g g) is convex strongly continuous on K 0 (V ; R 3 ), hence weakly lower semi-continuous, therefore a V (ψ ψ ψ, ψ ψ ψ) ≤ lim inf n→+∞ a V (ψ ψ ψ n , ψ ψ ψ n ) = ξ ξ ξ.Cap 3 (T ; V )ξ ξ ξ. We deduce that ψ ψ ψ is the unique solution of P K0 (T ; V ; ξ ξ ξ) and that |ψ ψ ψ| 2 a V = ξ ξ ξ.Cap 3 (T ; V )ξ ξ ξ. It follows then from [START_REF] Diaz | Asymptotic behaviour of nonlinear elliptic systems on varying domains[END_REF] that lim n→+∞ |ψ ψ ψ n |a V = |ψ ψ ψ|a V . As the space K 0 (V ; R 3 ), equiped with |.|a V , is a Hilbert space, it is uniformly convex, hence the weak convergence of (ψ ψ ψ n ) to ψ ψ ψ joined with the convergence of the norms yields the strong convergence of (ψ ψ ψ n ) to ψ ψ ψ in K 0 (V ; R 3 ). (iii) Same argument as in the case N = 3.

⊓ ⊔ The properties stated below are easily deduced from Lemma 4 and from the change of variable formula.

Lemma 5. There holds, for λ > 0

Cap N (λT ; V ) = λ N -2 Cap N " T ; 1 λ V « if λT ⊂ V, lim λ→0 Cap N " T ; 1 λ V « = Cap N (T ; R N ) if 0 ∈ V. ( 16 
) Proof. Let us fix ξ ξ ξ ∈ R N (N +1) 2
and α > 0. By Lemma 1, there exists By the arbitrary choice of α, λ, T , V , ξ ξ ξ, the first line of ( 16) is proved. If 0 ∈ V , we can assume without loss of generality that B ⊂ V . By Lemma 4 we have lim λ→0 Cap N (T, 1 λ B) = Cap N (T, R N ). By passing to the limit as λ → 0 in the first and third terms of the double inequality Lemma 3), we obtain the second line of [START_REF] Cioranescu | Un terme étrange venu d'ailleurs, I. Nonlinear Partial Differential Equations and Their Applications[END_REF]. ⊓ ⊔

ψ ψ ψ ∈ A ξ ξ ξ (λT ; V )∩ D(V ; R N ) such that ξ ξ ξ.Cap N (λT ; V )ξ ξ ξ + α ≥ a V (ψ ψ ψ, ψ ψ ψ) = R V a
Cap N (T, R N ) ≤ Cap N (T, 1 λ V ) ≤ Cap N (T, 1 λ B) (see
In the next two lemmas, we investigate the asymptotic behavior of Cap N (rεT ; RεB), being (rε), (Rε) any bounded sequences of positive reals such that rε << Rε. The study is straightforward in the case N = 3: Lemma 6. Assume that N = 3, let T be a bounded connected Lipschitz open subset of R 3 such that B ⊂ T , and let (rε) and (Rε) be two sequences of positive reals such that rε < < Rε ≤ C < +∞. Then,

lim ε→0 1 rε Cap 3 (rεT ; RεB) = Cap 3 (T ; R 3 ). ( 17 
)
Moreover, if

a a a 0 M M M := λ 0 tr(M M M )I I I N + 2µ 0 M M M ∀M M M ∈ S N , µ 0 > 0, 3λ 0 + 2µ 0 > 0, (18) 
then

Cap 3 (B; R 3 ) = 12πµ 0 (λ 0 + 2µ 0 ) (2λ 0 + 5µ 0 ) " I I I 3 0 0 0 « + 8πµ 0 " 0 0 0 I I I 3 « . ( 19 
)
Proof. By Lemma 4 and Lemma 5 we have lim ε→0

1 rε Cap 3 (rεT ; RεB) = lim ε→0 Cap 3 " T ; Rε rε B « = Cap 3 (T ; R 3 ).
The Dirichlet problem P K0 (B; R 3 ; ξ ξ ξ) of the spherical cavity in an infinite isotropic elastic body has been studied by a number of authors (see the bibliography of [START_REF] Lur | e: Three-dimensional problems of the theory of elasticity[END_REF]). Its infimum ξ ξ ξ.Cap 3 (B; R 3 )ξ ξ ξ is given for instance in [29, (8.4.3)]. Alternatively, the real ξ ξ ξ.Cap 3 (T ; R 3 )ξ ξ ξ is computed explicitely by Villaggio in [START_REF] Villaggio | The main elastic capacities of a spheroid[END_REF] for ξ ξ ξ ∈

" e e e 3 0 « ,

" 0 e e e 3
«ff when T is an ellipsoid of revolution along the axis parallel to e e e 3 . Then, for T = B, the coefficients emerging in [START_REF] Maso | Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains[END_REF] [START_REF] Thomson | Dynamical Problems Regarding Elastic Spheroidal Shells and Spheroids of Incompressible Liquid[END_REF] after the method developed by Lamé [START_REF] Lamé | Leçons sur les coordonnées curvilignes et leurs diverses applications[END_REF] and are given by (see [29, 8.5.30, 8.5.33]):

θ θ θ (p) ε (x) = αε(|x x x|)e e ep + βε(|x x x|)xpx x x + ̟ε(|x x x|)x x x, η η η (p) ε (x) = r 2 ε R 3 ε -r 3 ε " R 3 ε |x x x| 3 -1 « e e ep ∧ x x x, (20) 
where

αε(r) := rε rε -Rε " - Rε r +1 « rεRεa 3δε(rε -Rε) " - r 3 ε -R 3 ε r 5 ε -R 5 ε r 2 ε R 2 ε + r 2 - r 2 ε -R 2 ε r 5 ε -R 5 ε r 5 « 1 r 3 , βε(r) := rεRεa 3δε(rε -Rε) " - r 3 ε -R 3 ε r 5 ε -R 5 ε r 2 ε R 2 ε + r 2 - r 2 ε -R 2 ε r 5 ε -R 5 ε r 5 « " - 3 r 5 « , ̟ε(r) := rεRε 3δε(rε -Rε) " - 10 3 « r 2 ε -R 2 ε r 5 ε -R 5 ε r 2 ε -R 2 ε rε -Rε rεRε r - r 3 ε -R 3 ε rε -Rε + r 2 ! ,
the constants δε, a, b being defined by

δε := ab - 10 9 rεRε(r 2 ε -R 2 ε ) 2 (rε -Rε)(r 5 ε -R 5 ε )
, a := 2 3

λ 0 + 4µ 0 λ 0 + µ 0 , b := 2 3 2λ 0 + 5µ 0 λ 0 + µ 0 .
Deriving Cap 3 (rεB; RεB) from (20) and passing to the limit as ε → 0 thanks to [START_REF] Maso | Γ -convergence and µ-capacities[END_REF], we find again [START_REF] Maso | Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains[END_REF]. We verify in passing that ϕ ϕ ϕ ε ∈ {θ θ θ 

(p) ε , η η η (p) ε } satisfies estimates of the type |ϕ ϕ ϕ ε (x)| ≤ C rε |x x x| , |∇ ∇ ∇ϕ ϕ ϕ ε (x)| ≤ C rε |x x x|
η η η ε (x) = rε R 2 ε -r 2 ε " R 2 ε |x x x| 2 -1 « e e e 3 ∧ x x x,
The following estimate is established in [10, (5.12)]:

(Cap 2 (rεB; RεB)) αβ = e e e β .

Z ∂(rεB)

a a a 0 e e e(θ θ θ

(α) ε )ν ν νdH 1 (x) = 4πµ 0 λ 0 + 2µ 0 λ 0 + 3µ 0 1 | log rε| (1 + o(1))δ αβ . (24) 
By Lemma 4 and Lemma 5 we have

lim ε→0 Cap 2 (rεT ; RεB) = lim ε→0 Cap 2 " T ; Rε rε B « = Cap 2 (T ; R 2 ). ( 25 
)
Thanks to [START_REF] Frehse | Capacity methods in the theory of partial differential equations[END_REF], [START_REF] Gurtin | The Linear Theory of Elasticity[END_REF], and (25), the estimates (21), [START_REF] Fenchenko | Asymptotic behavior of solutions of differential equations with a strongly oscillating coefficient matrix that does not satisfy a uniform boundedness condition[END_REF] are proved in the case T = B (or T = λB, λ > 0). If T = B, there holds

B ⊂ T ⊂ (diamT )B. ( 26 
)
Let us fix a a a ∈ R 2 . By ( 14) and ( 26), we have

| log rε| " a a a 0 « .Cap 2 (rεB; RεB) " a a a 0 « ≤ | log rε| " a a a 0 « .Cap 2 (rεT ; RεB) " a a a 0 « ≤ | log rε| " a a a 0 « .Cap 2 (rε(diamT )B; RεB)
" a a a 0 « .

By passing to the limit as ε → 0 in the first and third terms of the last inequalities, taking [START_REF] Gurtin | The Linear Theory of Elasticity[END_REF] into account, we infer

lim ε→0 | log rε| " a a a 0 « .Cap 2 (rεT ; RεB) " a a a 0 « = 4πµ 0 λ 0 + 2µ 0 λ 0 + 3µ 0 |a a a| 2 ,
yielding by the arbitrary choice of a a a

lim ε→0 | log rε|(Cap 2 (rεT ; RεB)) αβ = 4πµ 0 λ 0 + 2µ 0 λ 0 + 3µ 0 δ αβ ∀α, β ∈ {1, 2}. (27) 
Denoting now by θ θ θ

(α) ε (α ∈ {1, 2}) (resp.
, η η η ε ) the solution of P 2 (rεT ; RεB; (e e eα, 0)) (resp., P 2 (rεT ; RεB; (0, 1))), by Cauchy-Schwarz inequality, ( 25) and ( 27) we have

|(Cap 2 (rεT ; RεB)) α3 | = |a RεB (θ θ θ (α) ε , η η η ε )| ≤ a RεB (θ θ θ (α) ε , θ θ θ (α) ε ) 1 2 a RεB (η η η ε , η η η ε ) 1 2 = (Cap 2 (rεT ; RεB)) 1 2 αα (Cap 2 (rεT ; RεB)) 1 2 33 ≤ C p | log rε| . (28) 
By ( 7), ( 26), there holds

(Cap 2 (T ; R 2 )) 33 = " 0 1 « .Cap 2 (T ; R 2 ) " 0 1 « ≥ inf ψ ψ ψ∈H 1 0 (R 2 ;R 2 ) ( a R 2 (ψ ψ ψ, ψ ψ ψ), ψ ψ ψ = 2 diamT e e e 3 ∧ (x x x -x x x T ) in B ) = inf ψ ψ ψ∈H 1 0 (R 2 ;R 2 ) ( a R 2 (ψ ψ ψ, ψ ψ ψ), ψ ψ ψ = - 2e e e 3 ∧ x x x T diamT + 2 diamB diamB diamT e e e 3 ∧ x x x in B ) = " -2e e e3∧x x x T diamT diamB diamT « .Cap 2 (B; R 2 ) " -2e e e3∧x x x T diamT diamB diamT « = 4πµ 0 " diamB diamT « 2 > 0. (29) 
Joining ( 25), ( 27), [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF], and ( 29), the estimates (21) are proved. ⊓ ⊔ We are in position to determine the asymptotic behavior of the sequence (C C C N ε (T )) introduced in Section 1:

Lemma 8. Let Ω be a bounded open subset of R N such that 0 ∈ Ω. Assume (18) if N = 2.
Then the estimates deduced by substituting Ω for RεB in ( 17) and ( 21) are satisfied. In particular, setting

C C C N ε (T ) := 1 ε N Cap N (rεT ; Ω), we have, if 0 < γ (N ) < +∞ (see (39)) lim ε→0 C C C 3ε (T ) = γ (3) Cap 3 (T ; R 3 ), lim ε→0 (C C C 2ε (T )) αβ = γ (2) (M M M 2 ) αβ , α, β ∈ {1, 2}, lim ε→0 (C C C 2ε (T )) 33 = (Cap 2 (T ; R 3 )) 33 > 0, (C C C 2ε (T )) α3 ≤ C p | log rε| , (30) 
where M M M 2 is given by [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF].

Proof.

Let (c, d) ∈ R 2 be such that cB ⊂ Ω ⊂ dB. Lemma 8 follows from Lemma 7 (applied with Rε ∈ {c, d}) and from the double inequality

Cap N (rεT ; cB) ≥ Cap N (rεT ; Ω) ≥ Cap N (rεT ; dB). ⊓ ⊔ Remark 2.
(i) The application (T, V ) → Cap N (T ; V ) is not increasing with respect to T , as illustrated by the following example: assume that N = 3 and set Tε := B ∪ Cε, where Cε := (εB R 2 ) × (-2, 2) (see fig. 1). Then, due to the presence of the , the applica- (ii) If a a a ∈ R 2 \ {0}, then the infimum problem P 2 " T ; R 2 ; " a a a 0 «« (see [START_REF] Bellieud | Torsion effects in elastic composites with high contrast[END_REF]) is not achieved. Otherwise, should ψ ψ ψ ∈ H 1 0 (R 2 ; R 2 ) be a minimum, then by Korn inequality in H 1 0 (R 2 ; R 2 ) and the second line of [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF],

|∇ ∇ ∇ψ ψ ψ| 2 L 2 (R 2 ;R 2 ) ≤ Ca R 2 (ψ ψ ψ, ψ ψ ψ) = ξ ξ ξ.Cap 2 (T ; R 2
)ξ ξ ξ = 0, hence ψ ψ ψ = 0, in contradiction with the fact that ψ ψ ψ = a a a in T . This lack of solution is similar to Stokes' paradox in fluid Mechanics [START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF].

Application to homogenization

Let Ω and T be bounded Lipschitz domains of R N . Given a sequence of positive reals (rε) such that rε < < ε, we set (see fig. 2)

Tr ε := [ i∈Iε T i rε ; T i rε := εi i i + rεT ; Iε := n i ∈ Z N , Y i ε ⊂ Ω o ; Y i ε := ε({i i i} + Y ); Y := " - 1 2 , 1 2 
« N . (31) 
We consider the problem of elastodynamics [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]. The elasticity tensor a a aε and the mass density ρε are supposed to take possibly large values in Tr ε and constant values in the matrix Ω \ Tr ε . More precisely, we assume that

Fig. 2 8 > > > > < > > > > : ρε(x) = ρ " yε(x) rε « ε N r N ε |T | if x ∈ Tr ε , ρε(x) = ρ 0 > 0 if x ∈ Ω \ Tr ε , ρ ∈ C(T ), ρ(y) > c > 0 ∀y ∈ T , (32) 
where

y y yε(x) := X i∈Z N 1 Y i ε (x) (x x x -εi i i) , (33) 
and that

(a a aε) ijkh = (a a aε) jikh = (a a aε) khij ∀(i, j, k, h) ∈ {1, ..., N } 4 , a a aε(x)M M M : M M M ≥ dε(x)|M M M | 2 ∀M M M ∈ S N , ∀x ∈ Ω, dε(x) > d > 0 ∀x ∈ Ω, a a aε(x) = a a a 0 in Ω \ Tr ε , lim ε→0 cε = +∞ if N = 3, cε := inf x∈Tr ε dε(x). (34) 
We assume also that the elastic material constituting the matrix is isotropic, i. e. that a a a 0 satisfies (18) (see Remark 3 (v)). The scalar ρ, the vectors y y y T , y y y G and the N × N symmetric matrix J J J ρ defined by

ρ := Z - T ρdy, y y y T := Z - T y y ydy, ρy y y G := Z - T ρy y ydy, J ρ ij := - Z - T ρ(y y y -y y y T ) i (y y y -y y y T ) j dy if i = j, J ρ ii := X j =i Z - T ρ|(y y y -y y y T ) j | 2 dy, (35) 
characterize respectively the average mass density, the geometrical center of gravity, the center of mass and the mass-inertia matrix of the rescaled particle. We suppose that 

T of class C 3 if N = 3,
)dx < C < +∞, (36) 
and, without loss of generality, that

B ⊂ T. (37) 
Denoting by u u uε the solution of the problem (2), we introduce the auxiliary sequences (ω ω ωε) and (ṽ v vε) defined by (see Remark 5)

ω ω ωε(x, t) := X i∈Iε c(N ) diamT 2 Z - ∂B i rε " y y yε(s) rε ∧ u u uε(s, t) « dH N -1 (s) ! 1 Y i ε (x), ṽ v vε(x, t) := X i∈Iε Z - ∂B i rε u u uε(s, t)dH N -1 (s) ! 1 Y i ε (x) -ω ω ωε(x, t) ∧ y y y T , (38) 
where c(2) = 1, c(3) = 3 2 and B i rε is obtained by substituting B for T in [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. We show that the limiting problem depends on the parameter γ (N ) defined by

γ (N ) := lim ε→0 γ (N ) ε ∈ [0, +∞], γ (2) 
ε := 1 ε 2 | log rε| , γ (3) 
ε := rε ε 3 . ( 39 
)
If 0 < γ (N ) < +∞, we prove that (u u uε, ṽ v vε, ω ω ωε) converges, in the sense defined below, to the unique solution (u u u, v v v, ω ω ω) of the problem given, if N = 3, by

8 > > > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > > : ρ 0 ∂ 2 u u u ∂t 2 -div(a a a 0 e e e(u u u)) = ρ 0 f f f + ρ f f f - ∂ 2 v v v ∂t 2 - 2 diamT ∂ 2 ω ω ω ∂t 2 ∧ ρ(y y y G -y y y T ) ! in Ω × (0, t 1 ), ∂ 2 ∂t 2 ρv v v+ 2 diamT ω ω ω ∧ ρ(y y y G -y y y T ) `2 diamT ´2 J J J ρ ω ω ω+ 2 diamT ρ(y y y G -y y y T ) ∧ v v v ! = " ρf f f ρ(y y y G -y y y T ) ∧ f f f « -γ (3) Cap 3 (T ; R 3 ) " v v v -u u u ω ω ω « in Ω × (0, t 1 ), (u u u, v v v, w w w) ∈ " L ∞ (0, t 1 ; H 1 0 (Ω; R 3 )) × L ∞ (0, t 1 ; L 2 (Ω; R 3 )) 2 " ∩ " C 1 ([0, t 1 ]; L 2 (Ω; R 3 )) " 3 , u u u(0) = v v v(0) = b b b 0 , ∂u u u ∂t (0) = ∂v v v ∂t (0) = c c c 0 , ω ω ω(0) = ∂ω ω ω ∂t (0) = 0, (40) 
and, if N = 2, by

8 > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > : ω ω ω = 0 in Ω × (0, t 1 ), ρ 0 ∂ 2 u u u ∂t 2 -div(a a a 0 e e e(u u u)) = ρ 0 f f f + ρ " f f f - ∂ 2 v v v ∂t 2 « in Ω × (0, t 1 ), ρ ∂ 2 v v v ∂t 2 = ρf f f -γ (2) M M M 2 (v v v -u u u) in Ω × (0, t 1 ), (u u u, v v v) ∈ " L ∞ (0, t 1 ; H 1 0 (Ω; R 2 )) × L ∞ (0, t 1 ; L 2 (Ω; R 2 )) " ∩ " C 1 ([0, t 1 ]; L 2 (Ω; R 2 )) " 2 , u u u(0) = v v v(0) = b b b 0 , ∂u u u ∂t (0) = ∂v v v ∂t (0) = c c c 0 . ( 41 
)
where M M M 2 is defined by [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF]. The following result is partly announced in [START_REF] Bellieud | Vibrations d'un composite élastique comportant des inclusions granulaires très lourdes : effets de mémoire[END_REF].

Theorem 1. Assume ( 18), ( 32)-( 36), and 0 < γ (N ) < +∞. Let u u uε be the solution of (2) and let ṽ v vε, ω ω ωε be defined by (38). Then (u u uε) converges weak-star in L ∞ (0,

t 1 ; H 1 0 (Ω; R N )) and strongly in L ∞ (0, t 1 ; L 2 (Ω; R N )) to u u u and (ṽ v vε, ω ω ωε) converges weak-star in (L ∞ (0, t 1 ; L 2 (Ω; R N ))) 2 to (v v v, ω ω ω). If N = 3, (u u u, v v v, ω ω ω) is the unique solution of (40). If N = 2, ω ω ω = 0 and (u u u, v v v)
is the unique solution of (41).

Remark 3. (i)

The conclusions of Theorem 1 can be extended to the cases γ N ∈ {0, +∞} (see Section 7.4):

-If γ (N ) = +∞ and if

r 2 ε << ε 3 if N = 3 and rε << ε 2 if N = 2, ( 42 
)
then u u uε converges weak-star in L ∞ (0, t 1 ; H 1 0 (Ω; R N )) and strongly in L ∞ (0, t 1 ; L 2 (Ω; R N )) to the solution of 8 > > < > > : (ρ 0 + ρ) ∂ 2 u u u ∂t 2 -div(a a a 0 e e e(u u u)) = (ρ 0 + ρ)f f f in Ω × (0, t 1 ), u u u ∈ L ∞ (0, t 1 ; H 1 0 (Ω; R N )) ∩ C 1 ([0, t 1 ]; L 2 (Ω; R N )), u u u(0) = b b b 0 , ∂u u u ∂t (0) = c c c 0 . (43) 
In this case, the sequences (ṽ v vε) and (ω ω ωε) converge strongly in (L ∞ (0,

t 1 ; L 2 (Ω; R N ))) 2
respectively to u u u and to 0.

-If γ (N ) = 0, then u u uε converges weak-star in L ∞ (0,

t 1 ; H 1 0 (Ω; R N )) and strongly in L ∞ (0, t 1 ; L 2 (Ω; R N )) to the solution of 8 > > < > > : ρ 0 ∂ 2 u u u ∂t 2 -div(a a a 0 e e e(u u u)) = ρ 0 f f f in Ω × (0, t 1 ), u u u ∈ L ∞ (0, t 1 ; H 1 0 (Ω; R N )) ∩ C 1 ([0, t 1 ]; L 2 (Ω; R N )), u u u(0) = b b b 0 , ∂u u u ∂t (0) = c c c 0 .
(ii) (Memory effects). Assume for simplicity N = 3, T = B, 0 < γ (3) < +∞, and that ρ is constant (that is ρ = ρ). Then by [START_REF] Tartar | H-convergence[END_REF] there holds y y y G = y y y T = 0. We deduce from [START_REF] Maso | Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains[END_REF] and from the second equation of (40) that

J J J ρ ∂ 2 ω ω ω ∂t 2 + 8πµ 0 γ (3) ω ω ω = 0, in Ω × (0, t 1 ), ω ω ω(0) = ∂ω ω ω ∂t (0) = 0, therefore ω ω ω = 0 and v v v satisfies ρ ∂ 2 v v v ∂t 2 + γ (3) χ(v v v -u u u) = ρf f f in Ω × (0, t 1 ), v v v(0) = b b b 0 , ∂v v v ∂t (0) = c c c 0 , (44) 
where (cf. (

)) χ := 12πµ 0 (λ 0 + 2µ 0 ) (2λ 0 + 5µ 0 ) . Setting δ := s χ γ (3) ρ , we find v v v(x, t) = Z t 0 sin δ(t -τ ) δ " f f f (x, τ )+δ 2 u u u(x, τ ) " dτ + c c c 0 (x) sin δt δ + b b b 0 (x) cos δt. ( 19 
) 45 
Subtracting (44) from the first equation of (40), we get

ρ 0 ∂ 2 u u u ∂t 2 -div(a a a 0 e e e(u u u)) -γ (3) χ(v v v -u u u) = ρ 0 f f f . ( 46 
)
After substitution of (45) in (46), we deduce that u u u satisfies the equation

ρ 0 ∂ 2 u u u ∂t 2 -div(a a a 0 e e e(u u u)) + ρδ 2 " u u u -δ Z t 0 sin(δ(t -τ ))u u u(τ )dτ « = ρ 0 f f f + ρδ Z t 0 sin(δ(t -τ ))f f f (τ )dτ + ρδc c c 0 (x) sin(δt) + ρδ 2 b b b 0 (x) cos(δt),
where the memory term "-ρδ 3 R t 0 sin(δ(tτ ))u u u(τ )dτ " emerges. (iii) The total mechanical energy stored in the composite at the instant τ is given by (see ( 96), ( 117), ( 118), ( 144))

e(τ ) = 1 2 Z Ω ρ 0 ˛∂u u u ∂t ˛2 (τ )dx + 1 |T | Z Ω×T ρ ˛∂v v v ∂t + 2 diamT ∂ω ω ω ∂t ∧ (y y y -y y y T ) ˛2 (τ )dxdy + Φ(u u u, v v v, ω ω ω).
where, if N = 3,

Φ(u u u, v v v, ω ω ω) := 1 2
Z Ω a a a 0 e e e(u u u) : e e e(u u u)(τ )dx

+ 1 2 γ (3) Z Ω " v v v -u u u ω ω ω « .Cap 3 (T ; R 3 ) " v v v -u u u ω ω ω « (τ )dx, (47) 
and, if N = 2,

Φ(u u u, v v v, ω ω ω) := 1 2
Z Ω a a a 0 e e e(u u u) : e e e(u u u)dx

+ 1 2 γ (2) Z Ω (v v v -u u u).M M M 2 (v v v -u u u)dx if ω ω ω = 0, Φ(u u u, v v v, ω ω ω) := +∞ otherwise. (48) 
The second term of Φ represents the concentration of strain energy, stored in a small zone enveloping the particles, generated by the discrepancy between the effective displacement in the particles and the effective displacement in the matrix.

(iv) The choice of the parameter 2 diamT in (1) may be inappropriate if the particles have a complicated shape. For instance, in the case of a set Tε consisting of threedimensional needle-shaped particles parallel to one of the coordinate axes, the variant of Cap 3 deduced from (1) by replacing the Dirichlet condition on T by

ψ ψ ψ = a a a + X i=1,2 2 diamP i (T )
b i e e e i ∧ (x x xx x x T ),

where P i denotes the orthogonal projection on the axis Re e e i , should rather be considered.

If rε denotes the length of the "needles", say rε = diamP 3 (T i ε ) and αεrε, βεrε characterize the size of their cross-sections (αεrε = diamP 1 (T i ε ), βεrε = diamP 2 (T i ε )), then for each choice of the sequence (rε) (such that cε 3 ≤ rε < ε 2 ), there exists presumably several critical sizes of the parameter, αε, βε for which some specific microscopic rigid displacements of the particles should induce the emergence of a concentration of strain energy in their neighborhood . (v) The results stated in Theorem 1 are likely to hold true in the anisotropic case: the assumption ( 18) is used only in Lemma 11 if N = 3 (resp. in Lemma 7 and in the proof of (146) if N = 2). However, they may fail to hold if the hypothesis lim ε→0 cε = +∞ if N = 3, stated in [START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF] and used to prove (93), (138), is not satisfied. In this case, we expect a concentration of strain energy stored inside the particles to emerge in the effective problem.

Variants of the homogenization results

In this section, we comment the elliptic equations associated with (2), the Dirichlet problems in varying domains, the scalar case, the fibered case, and the case of particles distributed on a surface.

Stationary case

Assuming [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF], [START_REF] Oleinik | Mathematical problems in elasticity and homogenization[END_REF], [START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF], γ (N ) > 0, we consider the sequence of elliptic problems div(a a aεe e e(u u uε)

) = ρεf f f in Ω, u u uε ∈ H 1 0 (Ω; R N ), (f f f ∈ C(Ω; R N )). ( 49 
)
By mimicking the proof of Theorem 1, it is easy to prove that the sequence (u u uε) of the solution of (49) converges weakly in H 1 0 (Ω; R N ) to the unique solution u u u of div(a a a 0 e e e(u u u))

= (ρ 0 + ρ)f f f in Ω, u u u ∈ H 1 0 (Ω; R N ). ( 50 
)
The seeming simplicity of (50) covers the complex behavior of the displacement in the particles. Indeed, the sequence (ṽ v vε, ω ω ωε) defined by (38) converges weakly to 2 of the problem deduced formally from (40), ( 41), (43), by substituting 0 for the derivatives with respect to t. For instance, if N = 3 and 0 < γ (3) < +∞, we obtain the system of equations

(v v v, ω ω ω) in (L 2 (Ω; R N )) 2 , where (u u u, v v v, ω ω ω) is the unique solution in H 1 0 (Ω; R N ) × (L 2 (Ω; R N ))
8 > > > > < > > > > :
div(a a a 0 e e e(u u u))

= (ρ 0 + ρ)f f f in Ω, γ (3) Cap 3 (T ; R 3 ) " v v v -u u u ω ω ω « = " ρf f f ρ(y y y G -y y y T ) ∧ f f f « in Ω, (u u u, v v v, w w w) ∈ H 1 0 (Ω; R 3 ) × (L 2 (Ω; R 3 )) 2 , (51) 
associated with the minimization problem min

(u u u,v v v,ω ω ω)∈H 1 0 (Ω;R 3 )×(L 2 (Ω,R 3 )) 2 Φ(u u u, v v v, ω ω ω) -L(u u u, v v v, ω ω ω),
where Φ is defined by (47) and

L(u u u, v v v, ω ω ω) := - R Ω ρ 0 f f f .u u u + ρf f f .v v v + (ρ(y y y G -y y y T ) ∧ f f f ).ω ω ωdx. As the matrix Cap 3 (T ; R 3 ) is invertible (see Lemma 2), we deduce from (51) that " v v v ω ω ω « = " u u u 0 « + 1 γ (3) (Cap 3 (T ; R 3 )) -1 " ρf f f ρ(y y y G -y y y T ) ∧ f f f « .
If N = 2, then ω ω ω = 0 and the effective problem takes the form min

(u u u,v v v)∈H 1 0 (Ω;R 2 )×L 2 (Ω,R 2 ) Φ(u u u, v v v, 0) - Z Ω ρ 0 f f f .u u u + ρf f f .v v vdx, being Φ given by (48), yielding v v v = u u u + 1 γ (2) (M M M 2 ) -1 (ρf f f ).
The intricate behavior of the composite at a microscopic scale is only revealed, in (50), by the presence of the term ρf f f .

Dirichlet problems in varying domains

We consider the sequence of Dirichlet problems in the perforated domain Ω \ Tr ε ,

(

div(a a aεe e e(u u uε)

) = ρεf f f in Ω \ Tr ε , u u uε ∈ H 1 0 (Ω; R N ), u u uε = 0 in Tr ε . (52) 
Corollary 1. Under ( 18), ( 31)-( 36), the sequence (u u uε) of the solution of (52) converges weakly in H 1 0 (Ω; R N ) to the unique solution in H 1 0 (Ω; R N ) of div(a a a 0 e e e(u u u))

+ γ (3) M M M 3 (T ; R 3 )u u u = ρ 0 f f f in Ω, if N = 3, 0 < γ (3) < +∞,
div(a a a 0 e e e(u u u)

) + γ (2) M M M 2 u u u = ρ 0 f f f in Ω, if N = 2, 0 < γ (2) < +∞,
div(a a a 0 e e e(u u u)

) = ρ 0 f f f in Ω, if γ (N ) = 0, u u u = 0 in Ω, if γ (N ) = +∞, (53) 
where M M M 3 (T ; R 3 ) denotes the upper left 3 × 3 submatrix of Cap 3 (T ; R 3 ) and M M M 2 is defined by ( 21). This result is obtained simply by substituting 0 for ψ ψ ψ and ζ ζ ζ in the sequence of test functions used in the proof of Theorem 1 (see ( 119), ( 139)). The terms γ (3) M M M 3 (T ; R 3 )u u u and γ (2) M M M 2 u u u emerging in (53) are analogous to the so-called "strange term" obtained by D. Cioranescu and F. Murat [START_REF] Cioranescu | Un terme étrange venu d'ailleurs, I. Nonlinear Partial Differential Equations and Their Applications[END_REF] in the context of diffusion equations and to the linear zero-order term for the velocity in the Brinkman's law obtained by G. Allaire in the homogenization of the Stokes and of the Navier-Stokes equations in a domain containing many tiny solid obstacles [START_REF] Allaire | Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I: Abstract framework, a volume distribution of holes[END_REF].

Scalar case

We consider the scalar evolution equation in L 2 (Ω × (0, t 1 );

H 1 0 (Ω)) ρε ∂ n uε ∂t n -div(aε∇uε) = ρεf in Ω × (0, t 1 ), + initial boundary conditions (n ∈ {1, 2}).
We assume that aε(x) = 1 in Ω \ Tr ε , aε(x) > cε > c > 0 in Tr ε , where lim ε→0 cε = +∞ if N = 3. The results obtained in [START_REF] Bellieud | Homogenisation of evolution problems for a composite medium with very small and heavy inclusions[END_REF] in the case of three-dimensional spherical particles can be easily extended to the case of particles homothetical to an arbitrary Lipschitz bounded domain T . The effective equations depend then on the parameter c N (T ) := lim ε→0 1 ε N cap N (rεT, Ω), where cap N (T ; Ω) denotes the harmonic capacity of T with respect to Ω. We find c 3 (T ) = γ (3) cap 3 (T ; R 3 ) and c 2 (T ) = γ (2) 2π, being γ (N ) defined by (39). If 0 < γ (N ) < +∞, we obtain an effective system of equations of the type

ρ 0 ∂ n u ∂t n -∆u = ρ 0 f + ρ " f - ∂ n v ∂t n « in Ω × (0, t 1 ), ρ ∂ n v ∂t n = ρf -c N (T )(v -u) in Ω × (0, t 1 ),
+ initial boundary conditions, analogous to (40).

Fibered case

We consider a cylindrical domain Ω := Υ × (0, L) of R 3 . Given a bounded Lipschitz domain S of R 2 , we define the ε-periodic distribution of parallel "fibers" Tr ε of cross section of size rε homothetical to S by setting

Tr ε = Sr ε × (0, L), Sr ε = [ i∈Iε εi + rεS, Iε := {i ∈ Z 2 , Y i ε ⊂ Υ }. (54) 
Under ( 18), ( 32)-( 36), (54), the problem (2) has been studied by the author with I.

Gruais in [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers . Non local effects. Memory effects[END_REF], assuming that the material constituting the fibers is homogeneous and isotropic (the Lamé coefficients taking constant values µ 1ε , λ 1ε in Tr ε ) and that the rescaled cross section S is a disk. These results can be extended easily to the case of an arbitrary Lipschitz domain S. The effective problem, which depends partly on the asymptotic behavior of `1 ε 2 Cap 2 (rεS, Υ ) ´(see [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF], ( 30)), is then given in the elliptic case by min

(u u u,v v v)∈(L 2 (Ω;R 3 )) 2 Φ(u u u, v v v) - Z Ω ρ 0 f f f .u u u + ρf f f .v v vdx, (55) 
the symbol Φ denoting the lower semi-continuous envelop in the strong topology of (L 2 (Ω; R 3 )) 2 of the functional

Φ(u u u, v v v) := 1 2
Z Ω a a a 0 e e e(u u u) : e e e(u u u)dx

+ 1 2 γ (2) 4πµ 0 λ 0 + 2µ 0 λ 0 + 3µ 0 Z Ω 2 X α=1 |vα -uα| 2 dx + 1 2 γ (2) 2µ 0 π Z Ω |v 3 -u 3 | 2 dx + Φ f ibers (v v v), if (u u u, v v v) ∈ D, Φ(u u u, v v v) := +∞, otherwise , 
D := H 1 0 (Ω, R 3 ) ×  v v v ∈ L 2 (Ω, H 2 0 (0, L; R 3 )), ∂v 1 ∂x 3 = ∂v 2 ∂x 3 = 0 in Ω × {0, L} ff .
where the functional Φ f ibers , which describes the strain energy stored in the fibers and is the only part of Φ depending on S, is given in terms of the limit v v v of the sequence (ṽ v vε) defined by (38) by Moreover, the sequence (ω ω ωε.e e e 3 ), where ω ω ωε(., x 3 ) is defined by (38) on each section x 3 = const (setting N = 2), converges to zero: this means that the rescaled effective angle of rotation of the fibers is equal to zero.

Φ f ibers (v v v) = 1 2 3l + 2 2(l + 1) k|S| Z Ω ˛∂v 3 ∂x 3 ˛2 dx + 1 2 2 X α,β=1 κ|S| 3l + 2 l + 1 J αβ Z Ω ∂ 2 vα ∂x 2 3 ∂ 2 v β ∂x 2 
Remark 4. The lack of torsion effects in the effective problem (55) is a consequence of the specific behavior of Cap 2 , whose singularity originates, in particular, in the fact that Gagliardo-Nirenberg-Sobolev inequality fails to hold in H 1 (R 2 ) (see the paragraph preceding Lemma 2). Therefore torsion effects are likely to take place if the strain energy density function of the material constituting the matrix has a growth of order p ∈ (1, 2). In linear elasticity, torsion effects are actually obtained in a quite different context, namely, when an ε-periodic distribution of fibers of cross section of size of order ε and of stiffness of order 1, embedded in a very soft matrix of stiffness of order ε 2 is considered (see [START_REF] Bellieud | Torsion effects in elastic composites with high contrast[END_REF]).

Three-dimensional particles periodically distributed on a surface

We suppose that the set Tr ε consists of three-dimensional particles of size rε, εperiodically distributed on the portion of hyperplane Σ := Ω ∩ {x 1 = 0} (see fig. 3). More precisely, setting

Tr ε = [ i∈Jε T i rε , T i rε = ε(0, i i i) + rεT, Jε = {i ∈ Z 2 , P i ε ⊂ Σ}, P i ε = {0} × ε i i i + " - 1 2 , 1 2 
« 2 ! , Ω -= Ω ∩ {x 1 < 0}, Ω + = Ω ∩ {x 1 > 0}, ρε(x) = ρ 0 1 Ω\Tr ε + ρ " yε(x) rε « ε 2 r 3 ε |T | 1 Tr ε (x), (56) 
we consider the problem (2) under the assumptions ( 18), ( 34), ( 36), (56). The critical case corresponds then to particles of diameter of order ε 2 . It is easy to prove, by adapting the argument of the proof of Theorem 1, that if 0 < γ := lim ε→0 rε ε 2 ≤ +∞, then the solution u u uε of (2) converges weak-star in L ∞ (0, t 1 ; H 1 0 (Ω; R 3 )) and strongly in L ∞ (0, t 1 ; L 2 (Ω; R 3 )) to u u u and the sequence (ṽ v vε, ω ω ωε) deduced from (38) by substituting

1 P i ε (x) for 1 Y i ε (x) (see (56)), converges weak-star in (L ∞ (0, t 1 ; L 2 (Σ; R 3 ))) 2 to (v v v, ω ω ω)
, where (u u u, v v v, ω ω ω) is the unique solution of the system of equations

8 > > > > > > > > > > > > > < > > > > > > > > > > > > > : ∂ 2 ∂t 2 ρv v v+ 2 diamT ω ω ω ∧ ρ(y y y G -y y y T ) `2 diamT ´2 J J J ρ ω ω ω+ 2 diamT ρ(y y y G -y y y T ) ∧ v v v ! = " ρf f f ρ(y y y G -y y y T ) ∧ f f f « -γCap 3 (T ; R 3 ) " v v v -u u u ω ω ω « on Σ × (0, t 1 ), ρ 0 ∂ 2 u u u ∂t 2 -divσ σ σ 0 = ρ 0 f f f in (Ω -∪ Ω + ) × (0, t 1 )
, σ σ σ 0 = a a a 0 e e e(u u u),

(σ σ σ - 0 -σ σ σ + 0 )ν ν ν = ρf f f -ρ ∂ 2 ∂t 2 " v v v + 2 diamT
ω ω ω ∧ (y y y Gy y y T ) « on Σ × (0, t 1 ), associated to the initial boundary conditions given by

8 > > > > > < > > > > > : (u u u, v v v, w w w) ∈L ∞ (0, t 1 ; H 1 0 (Ω; R 3 )) × " L ∞ (0, t 1 ; L 2 (Σ; R 3 )) " 2 ∩ C 1 ([0, t 1 ]; L 2 (Ω; R 3 ) × " C 1 ([0, t 1 ]; L 2 (Σ; R 3 )) " 3 , u u u(0) = v v v(0) = b b b 0 , ∂u u u ∂t (0) = ∂v v v ∂t (0) = c c c 0 , ω ω ω(0) = ∂ω ω ω ∂t (0) = 0,
being σ σ σ - 0 (resp. σ σ σ + 0 ) the restriction of σ σ σ 0 = a a a 0 e e e(u u u) to Ω -(resp. Ω + ), and ν ν ν the outward pointing normal to Ω -(hence ν ν ν = e e e 1 on Σ). The vector field (σ σ σ - 0σ σ σ + 0 )ν ν ν describes the density of the surface forces exerted by the particles on the matrix. Fig. 3 6 Technical preliminaries and a priori estimates This section is devoted mainly to the study of the asymptotic behavior of the sequence (u u uε) of the solutions of (2) and of the auxiliary sequences (ṽ v vε) and (ω ω ωε) given by (38). As a means to particularize the oscillatory behavior of the displacement in the inclusions, we will use the following variant of the two-scale convergence of Allaire [START_REF] Allaire | Homogenization and two-scale convergence[END_REF] and Nguetseng [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. Let (mε) be the sequence of measures defined by

mε := ε N r N ε |T | L N ⌊ Tr ε , (57) 
where Tr ε is given by [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF]. A sequence (fε) in L 2 (0, t 1 ; L 2 (Ω)) will be said to twoscale converge with respect to (mε) to

f 0 ∈ L 2 (0, t 1 ; L 2 (Ω ×T )) if, for each ψ ∈ D(Ω × (0, t 1 ) × Y ), there holds lim ε→0 Z Ω×(0,t1) fε(x, t)ψ " x, t, yε(x) rε « dmε(x)dt = 1 |T | Z Ω×(0,t1)×T f 0 ψdxdtdy, (58) 
where yε(x) is given by [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]. This convergence will be denoted fε mε ⇀ ⇀ f 0 . We have Lemma 9. (i) Let (fε) be a sequence in L 2 (0, t 1 ; L 2 (Ω)) such that sup t∈(0,t1) R |fε| 2 (t) dmε ≤ C. Then (fε) two-scale converges with respect to (mε), up to a subsequence, to some

f 0 ∈ L ∞ (0, t 1 ; L 2 (Ω × T )). Furthermore, if fε mε ⇀ ⇀ f 0 , then lim inf ε→0 Z Ω×(0,t1) |fε| 2 dmεdt ≥ 1 |T | Z Ω×T ×(0,t1) |f 0 | 2 dxdtdy. ( 59 
) (ii) Assume in addition that fε mε ⇀ ⇀ f 0 , ∂fε ∂t ∈ L 2 (0, t 1 ; L 2 (Ω)) and that sup t∈(0,t1) R | ∂fε ∂t | 2 (t)dmε ≤ C. Then f 0 ∈ W 1,∞ (0, t 1 ; L 2 (Ω × T ))
and

" ∂fε ∂t
" two-scale converges with respect to (mε) to ∂f0 ∂t .

Proof. (i) Let νε be the measure on Ω × (0, t 1 ) × T defined by

R ψdνε := R t1 0 R fε(x, t) ψ " x, t, yε(x) rε " dmε(x)dt ∀ψ ∈ C(Ω × (0, t 1 ) × T ). Cauchy-Schwartz inequality yields ˛Z ψdνε ˛≤ Z t1 0 dt "Z Ω |fε(x, t)| 2 dmε(x) « 1 2 Z Ω ˛ψ " x, t, yε(x) rε «˛2 dmε(x) ! 1 2 ≤ C Z t1 0 dt Z Ω ˛ψ " x, t, yε(x) rε «˛2 dmε(x) ! 1 2 ≤ C|ψ| L ∞ (Ω×(0,t1)×T ) , (60) 
hence the sequence (νε) is bounded in M(Ω × (0, t 1 ) × T ) and converges weak-star, up to a subsequence, to some ν ∈ M(Ω × (0, t 1 ) × T ). By passing to the limit as ε → 0 in the first and third terms of (60), thanks to the dominated convergence theorem we get

˛Z ψdν ˛≤ C|ψ| L 1 (0,t1;L 2 (Ω×T )) ∀ψ ∈ C(Ω × (0, t 1 ) × T ). (61) 
By (61), the linear form ψ ∈ C(Ω × (0, t 1 ) × T ) → R ψdν can be extended by density to a continuous linear form on L 1 (0, t 1 ; L 2 (Ω × T )). We deduce that ν = 1 |T | f 0 for a suitable f 0 ∈ L ∞ (0, t 1 ; L 2 (Ω × T )). Then, by the weak-star convergence of (νε) to ν, the sequence (fε) two-scale converges with respect to (mε) to f 0 . Moreover,

lim inf ε→0 Z t1 0 Z |fε| 2 dmε(x)dt ≥ lim ε→0 Z t1 0 Z 2fεψ " x, t, yε(x) rε « - ˛ψ " x, t, yε(x) rε «˛2 dmε(x)dt = 1 |T | Z Ω×(0,t1)×T 2f 0 ψ -ψ 2 dxdtdy,
for all ψ ∈ C(Ω × (0, t 1 ) × T ). Our sending ψ to f 0 in L 2 (Ω ×(0, t 1 )×T ) yields ( 59). (ii) By (i) the sequence ( ∂fε ∂t ) two-sale converges with respect to mε, up to a subsequence, to some ξ 0 ∈ L ∞ (0, t 1 ; L 2 (Ω × T )). For all ψ ∈ D(Ω × (0, t 1 ) × Y ), there holds

Z Ω×(0,t1)×T ξ 0 ψdxdtdy = lim ε→0 Z Ω×(0,t1) ∂fε ∂t ψ " x, t, yε(x) rε « dmεdt = -lim ε→0 Z Ω×(0,t1) fε ∂ψ ∂t " x, t, yε(x) rε « dmεdt = - Z Ω×(0,t1)×T f 0 ∂ψ ∂t dxdtdy, hence f 0 ∈ W 1,∞ (0, t 1 ; L 2 (Ω × T ))
, ∂f0 ∂t = ξ 0 , and the entire sequence ( ∂fε ∂t ) two-scale converges with respect to (mε) to ξ 0 . ⊓ ⊔ By (39) and (42), we can choose a sequence of positive reals (Rε) such that rε < < Rε < < ε; Rε < < 1

γ (N ) ε ; ε 3 < < Rε if N = 3; ε 2 | log Rε| < < 1 if N = 2. ( 62 
) (Set for instance Rε = ε 3 2 if N = 3 and Rε = ε 2 if N = 2)
. We define (see [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF])

B i Rε := εi i i + RεB, H i ε := B i Rε \ T i rε , B Rε := [ i∈Iε B i Rε , Hε := [ i∈Iε H i ε . (63) 
Given a sequence (u u uε) ⊂ H 1 (Ω; R N ), we consider the sequences (ṽ v vε) and (ω ω ωε) introduced in (38) and the sequences (ũ u uε) and (v v vε) given by (see (70))

ũ u uε(x) := X i∈Iε Z - ∂B i Rε u u uε(s)dH N -1 (s) ! 1 Y i ε (x), v v vε(x) := X i∈Iε Z - ∂B i rε u u uε(s)dH N -1 (s) ! 1 Y i ε (x). (64) 
In the next lemma, we establish a series of estimates which will take a crucial part in the proof of Theorem 1.

Lemma 10. Assume (37), let u u uε be a sequence in H 1 (Ω, R N ) and let mε, (ũ u uε), (v v vε), (ṽ v vε), (ω ω ωε) be defined by ( 38), (57), (64). Then the following estimates hold true:

Z Ω |u u uε -ũ u uε| 2 dx ≤ C ε 3 Rε Z Ω |∇ ∇ ∇u u uε| 2 dx, Z Ω |ũ u uε -v v vε| 2 dx ≤ C ε 3 rε Z Ω |∇ ∇ ∇u u uε| 2 dx, 9 > > > = > > > ; if N = 3, Z Ω |u u uε -ũ u uε| 2 dx ≤ Cε 2 | log Rε| Z Ω |∇ ∇ ∇u u uε| 2 dx, Z Ω |ũ u uε -v v vε| 2 dx ≤ Cε 2 | log rε| Z Ω |∇ ∇ ∇u u uε| 2 dx, 9 > > = > > ; if N = 2, Z Ω |ϕ ϕ ϕ ε | 2 dx = Z |ϕ ϕ ϕ ε | 2 dmε ∀ϕ ϕ ϕ ε ∈ {ũ u uε, v v vε, ṽ v vε, ω ω ωε}, (65) 
and

Z Tr ε |u u uε -v v vε| 2 dx ≤ Cr 2 ε Z Tr ε |∇ ∇ ∇u u uε| 2 dx, Z ∂B Rε |u u uε -ũ u uε| 2 dH N -1 (x) ≤ CRε Z B Rε |∇ ∇ ∇u u uε| 2 dx, Z Tr ε ˛u u uε -ṽ v vε - 2 diamT ω ω ωε ∧ " y y yε(x) rε -y y y T «˛2 dx ≤ Cr 2 ε Z Tr ε |e e e(u u uε)| 2 dx, Z ∂Tr ε ˛u u uε -ṽ v vε - 2 diamT ω ω ωε ∧ " y y yε(x) rε -y y y T «˛2 dH N -1 (x) ≤ Crε Z Tr ε |e e e(u u uε)| 2 dx, (66) 
where Tr ε and B Rε are given, respectively, by [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF] and (63). 

R Ω |ũ u uε -v v vε| 2 dx ≤ Cε 2 | log rε| R Ω |∇ ∇ ∇u u uε| 2 dx.
The last line of (65) can be checked easily. To prove (66), we establish that ∀ w w w ∈ H 1 (T ; R N ),

Z T ˛w w w - Z - ∂B w w w(s)dH N -1 (s) ˛2 dx ≤ C Z T |∇ ∇ ∇w w w| 2 dx, Z ∂T ˛w w w - Z - ∂B w w w(s)dH N -1 (s) ˛2 dH N -1 (x) ≤ C Z T |∇ ∇ ∇w w w| 2 dx, (67) 
yielding the first two lines of (66) by making suitable changes of variables (set T = B to get the second line of (66)). To that aim, assume that the first line of (67) is false, then there exists a sequence (w w wn)

⊂ H 1 (T ; R N ) such that Z - T ˛w w wn - Z - ∂B w w wn(s)dH N -1 (s) ˛2 dx = 1, Z T w w wndx = 0, lim n→+∞ Z T |∇ ∇ ∇w w wn| 2 dx = 0.
Taking Poincaré-Wirtinger inequality R T ˛w w wn -R T w w wn(y)dy ˛2 dx ≤ C R T |∇ ∇ ∇w w wn| 2 dx into account, we infer that (w w wn) converges strongly to 0 in H 1 (T ; R N ) and then, by the strong continuity of the trace application from H 1 (T ; R N ) to L 1 (∂B; R N ), that lim n→+∞ R -∂B w w wn(s)dH N -1 (s) = 0. By the continuous embedding of H 1 (T ; R N ) into L 2 (T ; R N ), we get lim n→+∞ R -T |w w wn -R -∂B w w wn(s)dH N -1 (s)| 2 dx = 0, a contradiction. The second line of (67) can be obtained in a similar manner. The last two lines of (66) remain to be proved. To this purpose, given u u u ∈ H 1 (T ; R N ), we consider the problem min w w w∈R

( "Z ∂B |u u u -w w w| 2 dH N -1 « 1 2 ) ,
where R denotes the space of rigid displacements. This minimum problem is achieved at the point p p p(u u u) ∈ R defined by

p p p(u u u)(x) := Z - ∂B u u u(s)dH N -1 (s)+ "Z - ∂B c(N )(s s s ∧ u u u(s))dH N -1 (s) « ∧ x x x, (68) 
where c(2) := 1 and c(3) := 3 2 . The linear subspace of H 1 (T ; R N ) defined by V := {u u u ∈ H 1 (T ; R N ), p p p(u u u) = 0} satisfies V ∩ R = {0}, hence by Korn inequality there holds

|u u u| H 1 (T ;R N ) ≤ C|e e e(u u u)| L 2 (T ;R N ) ∀u u u ∈ V.
Noticing that u u up p p(u u u) ∈ V and e e e(u u u) = e e e(u u up p p(u u u)) ∀u u u ∈ H 1 (T ; R N ), we infer from the continuous embedding of H 1 (T ; R N ) into L 2 (T ; R N ) and from the continuity of the trace from

H 1 (T ; R N ) into L 2 (∂T ; R N ) that |u u u -p p p(u u u)| L 2 (T ;R N ) + |u u u -p p p(u u u)| L 2 (∂T ;R N ) ≤ C|e e e(u u u)| L 2 (T ;R N ) , (69) 
for all u u u ∈ H 1 (T ; R N ). By making appropriate changes of variables in (69), taking (38) and (68) into account (see also (70)), we find the last two lines of (66). ⊓ ⊔ Remark 5. Given u u uε ∈ H 1 (Ω; R 3 ), the field ṽ v vε + 2 diamT ω ω ωε ∧ " 1 2 . The simplifying assumption y y y T = 0 would induce a loss of generality, due to the hypothesis [START_REF] Villaggio | The main elastic capacities of a spheroid[END_REF]. Notice that

v v vε + 2 diamT ω ω ωε ∧ y y yε(x) rε = ṽ v vε + 2 diamT ω ω ωε ∧ " y y yε(x) rε -y y y T « . (70) 
The main results of Section 6 are stated in the next proposition, where the asymptotic behavior of several sequences associated to the sequence (u u uε) of the solutions of (2) is specified.

Proposition 1. Assume (34), let u u uε be the solution of (2), and let ṽ v vε, ω ω ωε, ũ u uε be defined by ( 38), (64). Then

u u uε ∈ C([0, t 1 ], H 1 0 (Ω, R N )) ∩ C 1 ([0, t 1 ], L 2 (Ω, R N )), ∂ 2 u u uε ∂t 2 ∈ L 2 (0, t 1 ; H -1 (Ω, R N )). (71)
Moreover, the following estimates hold ((cε), (γ

(N ) ε ) being introduced in (34)), (39)) Z Ω |ũ u uε| 2 + |u u uε| 2 + |e e e(u u uε)| 2 + |∇ ∇ ∇u u uε| 2 + ˛∂u u uε ∂t ˛2! (τ )dx ≤ C, Z ˛∂u u uε ∂t ˛2 (τ )dmε ≤ C, Z Tr ε |e e e(u u uε)| 2 (τ )dx ≤ C cε , Z |u u uε| 2 (τ )dmε ≤ C 1 + 1 γ (N ) ε ! , (72) 
and the next convergences take place, up to a subsequence, for some suitable (73)

u u u ∈ W 1,∞ (0, t 1 ; H 1 0 (Ω; R N ), L 2 (Ω; R N )), u u u 0 ∈ W 1,∞ (0, t 1 ; L 2 (Ω × T ; R N )) (see (58)) u u uε ⋆ ⇀ u u u weak-star in L ∞ (0, t 1 ; H 1 0 (Ω; R N )), ∂u u uε ∂t ⋆ ⇀ ∂u u u ∂t weak-star in L ∞ (0, t 1 ; L 2 (Ω; R N )), u u uε → u u u and ũ u uε → u u u strongly in L ∞ (0, t 1 ; L 2 (Ω; R N )),
In addition, we have

Z Ω |ω ω ωε| 2 (τ )dx = Z |ω ω ωε| 2 (τ )dmε(x) ≤ ε N r N -2 ε , Z Ω |ṽ v vε| 2 (τ )dx = Z |ṽ v vε| 2 (τ )dmε(x) ≤ C 1 + 1 γ (N ) ε ! , (74) 
and, up to a subsequence,

ω ω ωε → 0 strongly in L ∞ (0, t 1 ; L 2 (Ω; R 3 )) if N = 2, ṽ v vε ⋆ ⇀ v v v weak-star in L ∞ (0, t 1 ; L 2 (Ω; R N )), ω ω ωε ⋆ ⇀ ω ω ω weak-star in L ∞ (0, t 1 ; L 2 (Ω; R 3 )), ṽ v vε mε ⇀ ⇀ v v v, ω ω ωε mε ⇀ ⇀ ω ω ω, u u u 0 = v v v + 2 diamT
ω ω ω ∧ (y y yy y y T ),

∂u u u 0 ∂t = ∂v v v ∂t + 2 diamT
∂ω ω ω ∂t ∧ (y y yy y y T ),

9 > > > > > > > = > > > > > > > ; if γ (N ) > 0, ( 75 
)
for a suitable (v v v, ω ω ω) ∈ W 1,∞ (0, t 1 ; L 2 (Ω; R N )) × W 1,∞ (0, t 1 ; L 2 (Ω; R 3 )). Moreover, ω ω ω = 0 if N = 2, ω ω ω = 0 and v v v = u u u if γ (N ) = +∞. ( 76 
)
Proof. The assertion (71) follows from the regularity result (95) stated below. Fixing t ∈ [0, t 1 ], we multiply (2) by ∂u u uε ∂t and integrate by parts over Ω. We find

d dt 1 2 Z Ω ρε ˛∂u u uε ∂t (t) ˛2 dx + 1 2
Z Ω a a aεe e e(u u uε) : e e e(u u uε)(t)dx

! = Z Ω ρεf f f . ∂u u uε ∂t (t)dx. ( 77 
)
Then, we fix τ ∈ [0, t 1 ] and integrate (77) with respect to t over [0, τ ]. We get (78) By ( 32) and (57), there holds

c 1 (L N + mε) ≤ ρεL N ≤ c 2 (L N + mε), (79) 
for some suitable positive constants c 1 , c 2 , thus (ρε) is bounded in M(Ω). Since c c c 0 is continuous on Ω (see ( 2)), taking ( 36) into account we deduce from (78 ) that 1 2

Z Ω ρε ˛∂u u uε ∂t (τ ) ˛2dx + Z Ω
a a aεe e e(u u uε) : e e e(u u uε)(τ )dx

! ≤ C 0 @ 1 + s Z Ω×(0,t1) ρε ˛∂u u uε ∂t ˛2 dxdt 1 A ∀ τ ∈ [0, t 1 ]. ( 80 
)
By integrating (80) with respect to τ over (0, t 1 ), we infer that R Ω×(0,t1) ρε ˛∂u u uε ∂t ˛2 dxdt ≤ C, and then deduce from (80) that

Z Ω ρε ˛∂u u uε ∂t (τ ) ˛2 dx + Z Ω
a a aεe e e(u u uε) : e e e(u u uε)(τ

)dx ≤ C ∀τ ∈ [0, t 1 ], (81) 
yielding, by (79),

Z Ω ˛∂u u uε ∂t (τ ) ˛2 dx + Z ˛∂u u uε ∂t (τ ) ˛2 dmε ≤ C ∀τ ∈ [0, t 1 ]. ( 82 
)
Applying Poincaré and Korn inequalities in H 1 0 (Ω; R N ), we obtain (see [START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF]) Z (83) By the last line of (65) and the first line of (66) we have (see (57))

Z |u u uε| 2 (τ )dmε ≤ 2 Z |u u uε -v v vε| 2 dmε + 2 Z |v v vε| 2 (τ )dmε ≤ C ε N r N -2 ε Z Tr ε |∇ ∇ ∇u u uε| 2 (τ )dx + 2 Z Ω |v v vε| 2 (τ )dx. (84) 
By ( 39) and ( 65), there holds

Z Ω |v v vε| 2 (τ )dx ≤ C Z Ω |v v vε -ũ u uε| 2 + |ũ u uε -u u uε| 2 + |u u uε| 2 (τ )dx ≤ C γ (N ) ε Z Ω |∇ ∇ ∇u u uε| 2 (τ )dx + C Z Ω |u u uε| 2 (τ )dx. ( 85 
)
Joining ( 84) and (85), we infer (see (39))

Z |u u uε| 2 (τ )dmε ≤ C γ (N ) ε Z Ω |∇ ∇ ∇u u uε| 2 (τ )dx + C Z Ω |u u uε| 2 (τ )dx. ( 86 
)
Collecting ( 81), ( 82), ( 83), (86), taking [START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF]) into account, we obtain the estimates (72). We infer, up to a subsequence, the convergences stated in two first lines of (73). By (72), the sequence (u u uε) is bounded in both spaces W 1,∞ (0, t 1 ; L 2 (Ω; R N )) and L ∞ (0, t 1 ; H 1 0 (Ω; R N )), hence by the compact embedding Theorem of Aubin and Simon (see [START_REF] Aubin | Un Théorème de compacité[END_REF], [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]) it is strongly relatively compact in L ∞ (0, t 1 ; L 2 (Ω; R N )) and in C(0, t 1 ; L 2 (Ω; R N )). The first convergence in third line of (73) is proved. By (39) and (65), we have

Z Ω |u u uε -ũ u uε| 2 (τ )dx ≤ C rε Rε 1 γ (3) ε Z Ω |∇ ∇ ∇u u uε| 2 (τ )dx if N = 3, Z Ω |u u uε -ũ u uε| 2 (τ )dx ≤ C | log Rε| | log rε| 1 γ (2) ε Z Ω |∇ ∇ ∇u u uε| 2 (τ )dx if N = 2, Z Ω |v v vε -ũ u uε| 2 (τ )dx ≤ C γ (N ) ε Z Ω |∇ ∇ ∇u u uε| 2 (τ )dx. ( 87 
)
By ( 39) and ( 62) there holds lim ε→0 rε Rε

1 γ (3) ε = 0 if N = 3, lim ε→0 | log Rε| | log rε| 1 γ (2) ε = 0 if N = 2. ( 88 
)
The strong convergence of (ũ u uε) in L ∞ (0, t 1 ; L 2 (Ω; R N )) stated in (73) follows from that of (u u uε), and from ( 87) and ( 88). The two scale convergences with respect to (mε) stated in the last line of (73) result from (72) and from Lemma 9.

We turn now to the study of the asymptotic behavior of the sequences (ω ω ωε) and (ṽ v vε) defined by (38). We start from the elementary inequality

|b b b| 2 ≤ C Z T |b b b ∧ y y y| 2 dL N (y) ∀b b b ∈ R 3 , N ∈ {2, 3}, T ⊂ R N .
By making simple changes of variables, we deduce (see [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF])

|b b b| 2 ≤ C r N ε Z T i rε ˛b b b ∧ y y yε(x) rε ˛2 dx ∀b b b ∈ R 3 , ∀i ∈ Iε. ( 89 
)
We can apply (89) for each i ∈ Iε to b b b = ω ω ωε(εi, τ ). Taking the first and third lines of (66), ( 70) and (72) into account, we infer

Z Ω |ω ω ωε(τ )| 2 dx = X i∈Iε ε N |ω ω ωε(εi, τ )| 2 ≤ C X i∈Iε ε N r N ε Z T i rε ˛ω ω ωε(εi, τ ) ∧ y y yε(x) rε ˛2 dx = C ε N r N ε Z Tr ε ˛ω ω ωε(τ ) ∧ y y yε(x) rε ˛2 dx ≤ C ε N r N ε Z Tr ε |u u uε -v v vε| 2 (τ ) + ˛u u uε -ṽ v vε - 2 diamT ω ω ωε ∧ " y y yε(x) rε -y y y T «˛2 (τ )dx ≤ C ε N r N -2 ε Z Tr ε |∇ ∇ ∇u u uε| 2 (τ ) + |e e e(u u uε)| 2 (τ )dx ≤ C ε N r N -2 ε , (90) 
and, noticing that

ε N r N -2 ε ≤ 1 γ (N ) ε
(see (39)), deduce from (66), ( 72) and (90) that

Z Ω |ṽ v vε| 2 (τ )dx = Z Ω |ṽ v vε| 2 (τ )dmε ≤ C Z Ω |u u uε| 2 +|ω ω ωε| 2 + ˛u u uε -ṽ v vε - 2 diamT ω ω ωε ∧ " y y yε(x) rε -y y y T «˛2 (τ )dmε ≤ C 1 + 1 γ (N ) ε ! . (91) 
Joining ( 90) and ( 91), we obtain (74) and deduce the convergences stated the three first lines of (75). If γ (N ) > 0, by Lemma 9 and (74) the sequence (ṽ v vε) (resp., (ω ω ωε)) two-scale converges with respect to (mε), up to a subsequence, to some

v v v 0 ∈ L ∞ (0, t 1 ; L 2 (Ω × T ; R N )) (resp. ω ω ω 0 ∈ L ∞ (0, t 1 ; L 2 (Ω × T ; R 3 ))). We prove below that v v v 0 (x, t, y) = v v v(x, t) and ω ω ω 0 (x, t, y) = ω ω ω(x, t) in Ω × (0, t 1 ) × T, u u u 0 (x, t, y) = v v v(x, t) + 2 diamT ω ω ω(x, t) ∧ (y y y -y y y T ) in Ω × (0, t 1 ) × T. ( 92 
)
It follows then from the last line of (73

) that ∂v v v ∂t ∈ L ∞ (0, t 1 ; L 2 (Ω; R N )), ∂ω ω ω ∂t ∈ L ∞ (0, t 1 ; L 2 (Ω; R 3 )) and ∂u u u0 ∂t = ∂v v v ∂t + 2 diamT
∂ω ω ω ∂t ∧ (y y yy y y T ) in Ω × (0, t 1 ) × T . Assertion (75) is proved. If γ (N ) = +∞, then by ( 70), ( 75) and ( 90) there holds ω ω ω = 0 and (v v vε) converges weak-star to v v v in L ∞ (0, t 1 ; L 2 (Ω; R N )). By ( 65) and (72), 

Z Ω×(0,t1) |u u u -v v v| 2 dxdt ≤ lim inf ε→0 Z Ω×(0,t1) |ũ u uε -v v vε| 2 dxdt ≤ C lim inf
˛ZΩ×(0,t1) ϕ ϕ ϕ.ṽ v vεdxdt - Z Ω×(0,t1) ϕ ϕ ϕ.ṽ v vεdmεdt ˛≤ Cε Z Ω×(0,t1) |ṽ v vε(τ )| 2 dxdt ! 1 2 ≤ Cε.
Taking into account the last inequalities, the weak-star convergence of (ṽ v vε) to v v v in L ∞ (0, t 1 ; L 2 (Ω; R N )) and its two-scale convergence with respect to (mε) to v v v 0 , we deduce that

Z Ω×(0,t1) v v v.ϕ ϕ ϕdxdt = lim ε→0 Z Ω×(0,t1) ṽ v vε.ϕ ϕ ϕdxdt = lim ε→0 Z Ω×(0,t1) ṽ v vε.ϕ ϕ ϕdmεdt = lim ε→0 Z Ω×(0,t1) ṽ v vε(x, t). " ϕ ϕ ϕ(x, t)η " yε(x) rε «« dmεdt = 1 |T | Z Ω×(0,t1)×T v v v 0 (x, t) .ϕ ϕ ϕ (x, t) η(y)dxdtdy = Z Ω×(0,t1) v v v 0 .ϕ ϕ ϕdxdt, thus, by the arbitrariness of ϕ ϕ ϕ, v v v 0 = v v v.
Likewise we find that ω ω ω 0 = ω ω ω. Fixing ψ ψ ψ ∈ D(Ω × (0, t 1 ) × Y ; R N ), and testing the two-scale convergence with respect to (mε) of (ω ω ωε) to ω ω ω with the test field (y y yy y y T ) ∧ ψ ψ ψ, we obtain

lim ε→0 Z Ω×(0,t1) " ω ω ωε ∧ " y y yε(x) rε -y y y T «« .ψ ψ ψ " x, t, yε(x) rε « dmεdt = lim ε→0 Z Ω×(0,t1) ω ω ωε. "" y y yε(x) rε -y y y T « ∧ ψ ψ ψ " x, t, yε(x) rε «« dmεdt = 1 |T | Z Ω×(0,t1)×T ω ω ω.((y y y -y y y T ) ∧ ψ ψ ψ)dxdtdy = 1 |T | Z Ω×(0,t1)×T
(ω ω ω ∧ (y y yy y y T )).ψ ψ ψdxdtdy.

We infer that

" ω ω ωε ∧ " y y yε(x)
rεy y y T "" two-scale converges to (ω ω ω ∧ (y y yy y y T )) with respect to (mε). It follows that

" u u uε -ṽ v vε -2 diamT ω ω ωε ∧ " y y yε(x)
rεy y y T "" two-scale converges to

(u u u 0 -v v v -2
diamT ω ω ω ∧ (y y yy y y T )) with respect to (mε). Since γ (N ) > 0, we deduce from (59), the third line of (66) and (72) that

1 |T | Z Ω×(0,t1)×T |u u u 0 -v v v - 2 diamT ω ω ω ∧ (y y y -y y y T )| 2 dxdtdy ≤ lim inf ε→0 Z Ω×(0,t1) ˛u u uε -ṽ v vε - 2 diamT ω ω ωε ∧ " y y yε(x) rε -y y y T «˛2 dmεdt ≤ lim inf ε→0 C ε N r N -2 ε 1 cε = 0, ( 93 
) hence u u u 0 = v v v + 2 diamT ω ω ω ∧ (y y y -y y y T ). ⊓ ⊔
We collect in the next theorem some abstract classical results which will be appropriate to check the uniqueness of the solution of the homogenized problem (40). Furthermore, the energy equation ( 97) is the key to the proof of the corrector result (see Proposition 2). The proof of Theorem 2 can be found in [ 

: V × V → R be a continuous bilinear symmetric form on V . Let A ∈ L(V, V ′ ) be defined by a(ξ, ξ) = (Aξ, ξ) (V ′ ,V ) ∀ (ξ, ξ) ∈ V 2 . Assume that ∃(λ, α) ∈ R + × R * + , a(ξ, ξ) + λ|ξ| 2 H ≥ α||ξ|| 2 V ∀ ξ ∈ V. Let h ∈ L 2 (0, t 1 ; H), ξ 0 ∈ V , ξ 1 ∈ H.
Then there exists a unique solution ξ of

Aξ(t) + ξ ′′ (t) = h(t), ξ ∈ L 2 (0, t 1 ; V ), ξ ′ ∈ L 2 (0, t 1 ; H), ξ(0) = ξ 0 , ξ ′ (0) = ξ 1 , (94) 
where

ξ ′ = ∂ξ ∂t , ξ ′′ = ∂ 2 ξ ∂t 2 . What is more, ξ ∈ C([0, t 1 ]; V ) ∩ C 1 ([0, t 1 ]; H), ξ ′ ∈ L 2 (0, t 1 ; V ), ξ ′′ ∈ L 2 (0, t 1 ; V ′ ). (95) 
Furthermore, setting

e(τ ) := 1 2 ˆ`ξ ′ (τ ), ξ ′ (τ ) ´H + a(ξ(τ ), ξ(τ )) ˜∀ τ ∈ [0, t 1 ], (96) 
there holds

e(τ ) = e(0) + Z τ 0 `h, ξ ′ ´H dt ∀ τ ∈ [0, t 1 ]. (97) 
Moreover, (94) is equivalent to

Z t1 0 " a(ξ(t), ξ)η(t) + (ξ(t), ξ) H η ′′ (t) " dt + (ξ 0 , ξ) H η ′ (0) -(ξ 1 , ξ) H η(0) = Z t1 0 (h, ξ) H η(t)dt ∀ ξ ∈ V, ∀ η ∈ D(] -∞, t 1 [); ξ ∈ L 2 (0, t 1 ; V ), ξ ′ ∈ L 2 (0, t 1 ; H). (98) 
7 Proof of Theorem 1

Besides the demonstration of Theorem 1, this section contains the statement and the proof of a corrector result (see Section 7.3) and a justification of Remark 3 (i) (see Section 7.4). Let us briefly outline the proof of Theorem 1. In the spirit of Tartar's method [START_REF] Tartar | H-convergence[END_REF], we will multiply (2) by an appropriate sequence of oscillating test fields (φ φ φ ε ) and, by passing to the limit as ε → 0 in accordance with the convergences (73) and (75) established in proposition 1, obtain a variational problem of the type (98) satisfied by the triple (u u u, v v v, ω ω ω). Theorem 2 will yield then the uniqueness and the regularity of the solution and the initial boundary conditions. We will deduce also that the convergences established in ( 73) and (75) for subsequences, take place for the entire sequences.

The underlying idea of the construction of (φ φ φ ε ) is to mimic the asymptotic behavior, studied in Proposition 1, of the sequence (u u uε) of the solutions of (2). Accordingly, the field φ φ φ ε depends on three smooth fields ϕ ϕ ϕ, ψ ψ ψ, ζ ζ ζ designed to identify, by their arbitrary nature, the system of equations satisfied by (u u u, v v v, ω ω ω) (if N = 2, we can set ζ ζ ζ = 0 because we know by (76) that ω ω ω = 0). It coincides in each particle with the rigid displacement associated to the rotation vector 101)). The field φ φ φ ε coincides with ϕ ϕ ϕ outside some neighborhood of the particles consisting of an ε-periodic distribution B Rε of balls of radius Rε (see (63)), being (Rε) a sequence of positive reals such that rε < < Rε < < ε. In the set B Rε \ Tr ε , the field φ φ φ ε takes approximately the value of the displacement minimizing the stored energy corresponding to the elastic state associated to the Lamé coefficients λ 0 , µ 0 , to vanishing body forces and to the Dirichlet boundary conditions on ∂(B Rε \ Tr ε ) determined by the values taken by φ φ φ ε in Ω \ (B Rε \ Tr ε ) as described above. The simplest candidate coping with these conditions is the field given by (139) if N = 2 and, if N = 3, by

φ φ φ ε := 3 X p=1 ϕp " e e ep -θ θ θ (p) ε " + ψεpθ θ θ (p) ε + ζεpη η η (p) ε ,
where θ θ θ

(p) ε (resp., η η η (p) ε ) coincides in each set B i
Rε with the solution of the problem P 3 (T i rε ; B i Rε ; (e e ep, 0)) (resp., P 3 (T i rε ; B i Rε ; (0, e e ep)), see ( 6)) and is equal to zero in Ω \ B Rε . However, this choice of φ φ φ ε would lead to technical complications, because at some stage of the proof, to be precise in (138) if N = 3 and in the proof of (146) if N = 2, in order to compute the limit of (see (63)) Z Hε×(0,t1) a a a 0 e e e(u u uε) : e e e(φ φ φ ε )dxdt, (

we would have to establish some uniform upper bounds for the norm of the gradients of θ θ θ

ε and η η η

ε in the matrix Ω \ Tr ε , like [START_REF] Maso | New results on the asymptotic behavior of Dirichlet problems in perforated domains[END_REF] if N = 3 and like [10, (5.11)] if N = 2. Such estimates mean that the stress vectors associated to the solution of the problem P N (rεT ; RεB; ξ ξ ξ) defined by ( 6), [START_REF] Bellieud | Torsion effects in elastic composites with high contrast[END_REF] do not concentrate on small parts of the connected components of the boundary of RεB \ rεT as ε → 0. They are plausibly satisfied if ∂T is sufficiently smooth and can actually be checked under [START_REF] Maso | New results on the asymptotic behavior of Dirichlet problems in perforated domains[END_REF] if T is a ball by means of explicit computations (see Remark 1 and [10, (5.11)]). In the setting of scalar diffusion equations, the corresponding upper bounds can be deduced for a sufficiently smooth set T from the maximum principle which unfortunately fails to hold in linear elasticity. We circumvent this difficulty by assuming that the matrix is homogeneous and isotropic (i.e. that a a a 0 is given by ( 18)) and by substituting in (99) suitable approximations of the fields θ θ θ (p) ε and η η η (p) ε for which the last mentioned upper bounds can be proved. A similar approach has been taken by Allaire in [START_REF] Allaire | Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I: Abstract framework, a volume distribution of holes[END_REF] in the context of Stokes equations. The choice of these approximations depends on N ∈ {2, 3}.

-If N = 3, we substitute the fields θ θ θ (p) ε and η η η

(p) ε , in each set B i Rε \T i rε (i ∈ Iε),
for the respective solutions P K0 (T i rε ; R 3 ; (e e ep, 0)) and P K0 (T i rε ; R 3 ; (0, e e ep)), whose existences are guaranteed by Lemma 2 (i). By using suitable arguments of potential analysis (see Lemma 11), we check that under [START_REF] Maso | New results on the asymptotic behavior of Dirichlet problems in perforated domains[END_REF], these approximations of the restrictions of θ θ θ As they don't vanish on ∂B Rε , we link them up to zero in the set B 2Rε \ B Rε (see (103)) in a way such that the integral R (B 2Rε \B Rε )×(0,t1) a a a 0 e e e(u u uε) : e e e(φ φ φ ε )dxdt converges to zero as ε → 0 (see (127), ( 129)). This method doesn't fit to the case N = 2 because the existence of a solution to P 2 (T i rε ; R 2 ; (a a a, 0)) in a suitable functional space fails to hold if a a a = 0 (see Remark 2 (ii)).

-If N = 2, we prove that the limit of (99) stays the same if we substitute θ θ θ

(p) Bε for θ θ θ (p)
ε in (139), where, setting B ′ := (diamT )B (by [START_REF] Villaggio | The main elastic capacities of a spheroid[END_REF]

, T ⊂ B ′ ), θ θ θ (p) Bε coincides in each set B i
Rε with the solution of P N (B ′ i rε ; B i Rε ; (e e ep, 0)) and is equal to zero in Ω \ B ′ Rε . As the last mentioned upper bounds hold true under [START_REF] Maso | New results on the asymptotic behavior of Dirichlet problems in perforated domains[END_REF] if T is a ball, the technical difficulty is overcome. This method is appropriate to the case N = 2, because then the effective problem does not depend on the choice of T , unlike the case N = 3. 

ϕ ϕ ϕ, ψ ψ ψ, ζ ζ ζ ∈ C ∞ (Ω × (0, t 1 ), R 3 ), ϕ ϕ ϕ = ψ ψ ψ = ζ ζ ζ = ∂ϕ ϕ ϕ ∂t = ∂ψ ψ ψ ∂t = ∂ζ ζ ζ ∂t = 0 on (∂Ω×]0, t 1 ]) ∪ (Ω × {t 1 }), (100) 
and set

χ χ χ ε (x, t) := X i∈Iε Z - T i rε χ χ χ(y, t)dy ! 1 Y i ε (x), χ χ χ ∈ {ϕ ϕ ϕ, ψ ψ ψ, ζ ζ ζ}. (101) 
For each p ∈ {1, 2, 3}, we denote by θ θ θ

∞ ) the solution of the problem P K0 (T ; R 3 ; (e e ep, 0)) (resp., P K0 (T ; R 3 ; (0, e e ep))) (see [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers . Non local effects. Memory effects[END_REF]). We fix a sequence (Rε) of positive reals satisfying (62), set gε(r) := 8 > < > :

1 if 0 ≤ r ≤ Rε, -t Rε + 2 if Rε ≤ r ≤ 2Rε, 0 if r ≥ 2Rε, (102) 
and define (see [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF])

θ θ θ (p) ∞,ε (x) := gε (|yε(x)|) θ θ θ (p) ∞ " yε(x) rε « , η η η (p) ∞,ε (x) := gε (|yε(x)|) η η η (p) ∞ " yε(x) rε « . (103) 
The next equations, satisfied for each p, q ∈ {1, 2, 3}, i ∈ Iε, will be used to prove (112) and to pass from (130) to (132): 

rε(Cap 3 (T ; R 3 ))pq = Z R 3 \T i rε a a a 0 e e e " θ θ θ (p) ∞ " x -εi rε «« : e e e " θ θ θ (q) ∞ " x -εi rε «« dx = e e eq.
∞,ε )ν ν νdH 2 , (104) 
rε(Cap 3 (T ; R 3 )) p(q+3) = Z R 3 \T i rε a a a 0 e e e " θ θ θ (p) ∞ " x -εi rε «« :e e e " η η η (q) ∞ " x -εi rε «« dx =e e ep.

Z

∂T i rε a a a 0 e e e(η η η (q) ∞,ε )ν ν νdH 2 = -e e ep.

Z ∂B i

Rε a a a 0 e e e(η η η

(q) ∞,ε )ν ν νdH 2 = 2 diamT Z ∂T i rε "
e e eq ∧ " y y yε(x) rε y y y T «« .(a a a 0 e e e(θ θ θ

(p) ∞,ε )ν ν ν)dH 2 , (105) 
rε(Cap 3 (T ; R 3 )) (p+3)(q+3) = Z R 3 \T i rε a a a 0 e e e " η η η (p) ∞ " x -εi rε «« : e e e " η η η (q) ∞ " x -εi rε «« dx = 2 diamT e e ep.
Z

∂T i rε " y y yε(x) rε -y y y T « ∧ (a a a 0 e e e(η η η (q) ∞,ε )ν ν ν)dH 2 . ( 106 
)
Proof of ( 104), ( 105), (106). By ( 33), ( 102), (103), the field θ θ θ 

(p) ∞,ε (resp., η η η (p) ∞,ε ) coin- cides in each set H i ε = B i Rε \ T i
" = 0 in B i Rε \ T i rε . (107) 
Denoting by ν ν ν the outward unit normal to ∂(B i Rε \T i rε ), we deduce from the divergence formula that (by Lemma 11 below, the next integrals are well defined) (108)

Z ∂T i
By [START_REF] Cioranescu | Un terme étrange venu d'ailleurs, I. Nonlinear Partial Differential Equations and Their Applications[END_REF] we have

Cap 3 (T i rε ; R 3 ) = Cap 3 (rεT ; R 3 ) = rεCap 3 (T ; R 3 ). ( 109 
)
The equations ( 104), (105), (106) are deduced by integration by parts, taking (107), (108), (109), and the definition of Cap 3 (T i rε ; R 3 ) into account (see [START_REF] Bellieud | Homogenisation of evolution problems for a composite medium with very small and heavy inclusions[END_REF]). ⊓ ⊔ In the next Lemma, we establish some suitable uniform upper bounds for the norm of the gradients of θ θ θ Lemma 11. Under [START_REF] Maso | New results on the asymptotic behavior of Dirichlet problems in perforated domains[END_REF], there holds

˛θ θ θ (p) ∞,ε (x) ˛+ ˛η η η (p) ∞,ε (x) ˛≤ C rε |yε(x)| ∀x ∈ Ω \ Tr ε , ˛∇ ∇ ∇θ θ θ (p) ∞,ε (x) ˛+ ˛∇ ∇ ∇η η η (p) ∞,ε (x) ˛≤ C rε |yε(x)| 2 ∀x ∈ Ω \ Tr ε . (110) 
In particular, we have |a a a 0 e e e(η η η

(p) ∞,ε )ν ν ν| L ∞ (∂Tr ε ) ≤ C rε , |a a a 0 e e e(η η η (p) ∞,ε )ν ν ν| L ∞ (∂B Rε ) ≤ C rε R 2 ε ,
|a a a 0 e e e(θ θ θ

(p) ∞,ε )ν ν ν| L ∞ (∂Tr ε ) ≤ C rε ,
|a a a 0 e e e(θ θ θ

(p) ∞,ε )ν ν ν| L ∞ (∂B Rε ) ≤ C rε R 2 ε , (111) 
and (see [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers . Non local effects. Memory effects[END_REF]). The field w w w, which represents a displacement in the homogeneous isotropic elastic space R 3 \ T corresponding to zero body forces, is biharmonic in R 3 \ T (see [24, p. 133]), therefore it satisfies the following mean value formula (see [24, p. 21 On the other hand, as ∂T is of class C 3 (see [START_REF] Thomson | Dynamical Problems Regarding Elastic Spheroidal Shells and Spheroids of Incompressible Liquid[END_REF]), by the classical boundary regularity results for solutions to elliptic systems of partial differential equations (see [START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I[END_REF]) there holds w w w ∈ C 1 (R 3 \ T ; R 3 ), therefore the last mentioned estimates hold true in R 3 \ T (by [START_REF] Villaggio | The main elastic capacities of a spheroid[END_REF] ∞ }), we obtain, by making suitable changes of variables, the following estimates in R 3 \ Tr ε (see [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF])

Z Ω |θ θ θ (p) ∞,ε | 2 + |η η η (p) ∞,ε | 2 dx ≤ CRεrεγ
˛θ θ θ (p) ∞ " yε(x) rε «˛+ ˛η η η (p) ∞ " yε(x) rε «˛≤ C rε |yε(x)| , ˛∇ ∇ ∇ " θ θ θ (p) ∞ " yε(x) rε ««˛+ ˛∇ ∇ ∇ " η η η (p) ∞ " yε(x) rε ««˛≤ C rε |yε(x)| 2 .
Taking (102) and (103) into account, we deduce (110), (111), and (112).

⊓ ⊔

With a view to applying Theorem 2, we adopt the following notations 

H := (L 2 (Ω; R 3 )) 3 , V := H 1 0 (Ω; R 3 ) × (L 2 (Ω; R 3 )) 2 , ((u u u, v v v, ω ω ω), (ϕ ϕ ϕ, ψ ψ ψ, ζ ζ ζ)) H := Z Ω ρ 0 u u u.ϕ ϕ ϕdx + 1 |T | Z Ω×T ρ " v v v + 2ω ω ω diamT ∧ (
and consider the continuous bilinear symmetric form a on V and the fields ξ, ξ ∈ L 2 (0, 

t 1 ; V ), h ∈ L 2 (0, t 1 ; H), ξ 0 ∈ V , ξ
+ γ (3) Z Ω " ψ ψ ψ -ϕ ϕ ϕ ζ ζ ζ « .Cap 3 (T ; R 3 ) " v v v -u u u ω ω ω « (τ )dx, ξ = (u u u, v v v, ω ω ω), ξ = (ϕ ϕ ϕ, ψ ψ ψ, ζ ζ ζ), ξ 0 = (b b b 0 , b b b 0 , 0), ξ 1 = (c c c 0 , c c c 0 , 0), h = (f f f , f f f , 0). ( 118 
)
Setting

φ φ φ ε := 3 X p=1 ϕp " e e ep -θ θ θ (p) ∞,ε " + ψεpθ θ θ (p) ∞,ε + ζεpη η η (p) ∞,ε , (119) 
we multiply the first line of (2) by φ φ φ ε and integrate by parts over Ω × (0, t 1 ): 

Z Ω×(0,t1) ρεu u uε. ∂ 2 φ φ φ ε ∂t 2 dxdt + Z Ω ρε " b b b 0 ∂φ φ φ ε (0) ∂t dx -c c c 0 φ φ φ ε (0) « dx + Z Ω×(0,
ρ 0 u u uε. ∂ 2 φ φ φ ε ∂t 2 dxdt + Z t1 0 Z ρ " yε rε « u u uε. " ∂ 2 ψ ψ ψ ε ∂t 2 + 2 diamT ∂ 2 ζ ζ ζ ε ∂t 2 ∧ " y y yε(x) rε -y y y T «« dmεdt. (121) 
The sequence

" ∂ 2 φ φ φ ε ∂t 2 1 Ω\Tr ε " converges strongly to ∂ 2 ϕ ϕ ϕ ∂t 2 in L 2
(Ω × (0, t 1 ); R 3 ), hence by the strong convergence of (u u uε) to u u u in L 2 (Ω × (0, t 1 ); R 3 ) (see ( 73)), we have

lim ε→0 Z (Ω\Tr ε )×(0,t1) ρ 0 u u uε. ∂ 2 φ φ φ ε ∂t 2 dxdt = Z Ω×(0,t1) ρ 0 u u u. ∂ 2 ϕ ϕ ϕ ∂t 2 dxdt. (122) 
By ( 72) and (101) there holds

˛Z t1 0 Z ρ " yε rε « u u uε. " " ∂ 2 ψ ψ ψ ε ∂t 2 + 2 diamT ∂ 2 ζ ζ ζ ε ∂t 2 ∧ " y y yε(x) rε -y y y T «« - " ∂ 2 ψ ψ ψ ∂t 2 + 2 diamT ∂ 2 ζ ζ ζ ∂t 2 ∧ " y y yε(x) rε -y y y T «« # dmεdt ≤ Crε s Z t1 0 Z |u u uε| 2 dmεdt ≤ Crε. (123) 
By testing the two-scale convergence of (u u uε) to v v v + ω ω ω ∧ (y y yy y y T ) with respect to (mε) (see ( 58), ( 75)) with the test field ρ (y) (

∂ 2 ψ ψ ψ ∂t 2 + 2 diamT ∂ 2 ζ ζ ζ
∂t 2 ∧ (y y yy y y T )), taking ( 35) and (123) into account, we obtain

lim ε→0 Z t1 0 Z ρ " yε rε « u u uε. " ∂ 2 ψ ψ ψ ε ∂t 2 + 2 diamT ∂ 2 ζ ζ ζ ε ∂t 2 ∧ " y y yε rε -y y y T «« dmεdt = 1 |T | Z Ω×(0,t1)×T ρ " v v v + 2 diamT
ω ω ω ∧ (y y yy y y T )

« . " ∂ 2 ψ ψ ψ ∂t 2 + 2 diamT ∂ 2 ζ ζ ζ ∂t 2 ∧ (y y y -y y y T ) « dxdtdy = Z Ω×(0,t1) ρv v v. ∂ 2 ψ ψ ψ ∂t 2 + (ρ(y y y G -y y y T ) ∧ v v v). 2 diamT ∂ 2 ζ ζ ζ ∂t 2 + " 2 diamT ω ω ω ∧ ρ(y y y G -y y y T ) « . ∂ 2 ψ ψ ψ ∂t 2 + " 2 diamT « 2 J J J ρ ω ω ω. ∂ 2 ζ ζ ζ ∂t 2 ! dxdt. (124) 
Joining ( 117), ( 118), ( 121 

. ∂φ φ φ ε ∂t (0) -c c c 0 .φ φ φ ε (0) « dx - Z Ω×(0,t1) ρεf f f .φ φ φ ε dxdt = (ξ 0 , ξ′ (0)) H -(ξ 1 , ξ(0)) H - Z t1 0 (h(t), ξ(t)) H dt. (126) 
Noticing that e e e(φ φ φ ε ) = 0 on Tr ε , we set (see (63)) 

Z Ω×(0,
By ( 72), ( 110), (119), and (127), there holds 

I 2ε ≤ C s Z (B 2Rε \B Rε )×(0,t1) |e e e(φ φ φ ε )| 2 dxdt ≤ C v u u t 3 X p=1 Z B 2Rε \B Rε 1+|θ θ θ (p) ∞,ε | 2 +|η η η (p) ∞,ε | 2 +|∇ ∇ ∇(θ θ θ (p) ∞,ε )(x)| 2 +|∇ ∇ ∇(η η η (p) ∞,ε )(x)| 2 dx ≤ C s " 1 + r 2 ε R 4 ε « L 3 (B 2Rε ) ≤ C s rε Rε γ (3) ε + R 3 ε ε 3 = o(1). (129 
We establish below that

|I 3ε -Ĩ3ε | = o(1). (131) 
For a fixed t ∈ (0, t 1 ), the fields ϕ ϕ ϕ ε , ψ ψ ψ ε , ζ ζ ζ ε , ṽ v vε, ω ω ωε, and ũ u uε are constant in each connected components of Hε. By ( 16), ( 104)-(106), and (130), we have Ĩ3ε

= Z t1 0 X i∈Iε " ψ ψ ψ ε -ϕ ϕ ϕ ε ζ ζ ζ ε « .Cap 3 (rεT ; R 3 ) " ṽ v vε -ũ u uε ω ω ωε « (εi, t)dt = rε ε 3 X i∈Iε Z Y i ε ×(0,t1) " ψ ψ ψ ε -ϕ ϕ ϕ ε ζ ζ ζ ε « .Cap 3 (T ; R 3 ) " ṽ v vε -ũ u uε ω ω ωε « dxdt = γ (3) ε Z Ω×(0,t1) " ψ ψ ψ ε -ϕ ϕ ϕ ε ζ ζ ζ ε « .Cap 3 (T ; R 3 ) " ṽ v vε -ũ u uε ω ω ωε « dxdt. (132) 
By passing to the limit as ε → 0 in (132), thanks to the uniform convergence of ( 101)) and to the convergences stated in (73) and (75), we obtain

ϕ ϕ ϕ ε , ψ ψ ψ ε , ζ ζ ζ ε ) to (ϕ ϕ ϕ, ψ ψ ψ, ζ ζ ζ) in Ω × (0, t 1 ) (see (
lim ε→0 Ĩ3ε = γ (3) Z Ω×(0,t1) " ψ ψ ψ -ϕ ϕ ϕ ζ ζ ζ « .Cap 3 (T ; R 3 ) " v v v -u u u ω ω ω « dxdt. (133) 
Joining ( 118), ( 127), ( 128), ( 129 « .

Thanks to (66), (72), and (111) we infer (by [START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF] we have lim ε→0 cε = +∞)

˛I3ε -Ĩ3ε ˛≤ C s Z Tr ε ×(0,t1) rε |e e e(u u uε)| 2 dxdt r r 2 ε ε 3 1 rε + C s Rε Z B Rε ×(0,t1) |∇ ∇ ∇u u uε| 2 dxdt r R 2 ε ε 3 rε R 2 ε ≤ C r rε ε 3 r 1 cε + r rε Rε ! = C q γ (3) ε r 1 cε + r rε Rε ! = o(1). (138) 
The estimate (131) follows from ( 137) and (138).

⊓ ⊔ 7.2 Case N = 2, 0 < γ (2) < +∞ We fix ϕ ϕ ϕ, ψ ψ ψ such that ϕ ϕ ϕ, ψ ψ ψ ∈ C ∞ (Ω × (0, t 1 ), R 2 ), ϕ ϕ ϕ = ψ ψ ψ = ∂ϕ ϕ ϕ ∂t = ∂ψ ψ ψ ∂t = 0 on (∂Ω×]0, t 1 ]) ∪ (Ω × {t 1 }),
and set

φ φ φ ε := 2 X α=1 ϕα " e e eα -θ θ θ (α) ε " + ψεαθ θ θ (α) ε , (139) 
where ψ ψ ψ ε is defined by (101) and θ θ θ 

Hence the field θ θ θ (α) ε coincides in each set B i Rε with the solution of P 2 (T i rε ; B i Rε ; (e e eα, 0)) (see [START_REF] Bellieud | Torsion effects in elastic composites with high contrast[END_REF]) and is equal to zero in Ω \ B Rε . We have Cap 2 (T i rε ; B i Rε ) = Cap 2 (rεT ; RεB) and the next formula (similar to (107)-( 104 

(α) ε ) ˛2dx ≤ Cγ (2) ε , Z Ω |θ θ θ (α) ε | 2 dx ≤ CR 2 ε γ (2) ε . (141) 
Proof of (141). By ( 5), ( 21) and (39), we have 

(α) ε )dx ≤ C ε 2 (Cap 2 (rεT ; RεB))αα ≤ C ε 2 | log rε| = Cγ (2) ε . (142) 
For each i ∈ Iε and α ∈ {1, 2}, the restriction of θ θ θ 

(α) ε to B i Rε belongs to H 1 0 (B i Rε , R 2
Z Ω |θ θ θ (α) ε | 2 dx ≤ X i∈Iε Z B i Rε |θ θ θ (α) ε | 2 dx ≤ CR 2 ε X i∈Iε Z B i Rε | ∇ ∇ ∇θ θ θ (α) ε | 2 dx ≤ CR 2 ε X i∈Iε Z B i Rε | e e e(θ θ θ (α) ε )| 2 dx = CR 2 ε Z Hε | e e e(θ θ θ (α) ε )| 2 dx ≤ CR 2 ε γ (2 
In the spirit of Theorem 2, we set

H := (L 2 (Ω; R 2 )) 2 , V := H 1 0 (Ω; R 2 ) × L 2 (Ω; R 2 ), ((u u u, v v v), (ϕ ϕ ϕ, ψ ψ ψ)) H := Z Ω ρ 0 u u u.ϕ ϕ ϕ + ρv v v.ψ ψ ψdx, (((u u u, v v v), (ϕ ϕ ϕ, ψ ψ ψ))) V := ((u u u, v v v), (ϕ ϕ ϕ, ψ ψ ψ)) H + Z Ω ∇ ∇ ∇u u u.∇ ∇ ∇ϕ ϕ ϕdx, a((u u u, v v v), (ϕ ϕ ϕ, ψ ψ ψ)) := Z Ω
a a a 0 e e e(u u u) : e e e(ϕ ϕ ϕ)dxdt

+ γ (2) 4πµ 0 λ 0 + 2µ 0 λ 0 + 3µ 0 Z Ω (ψ ψ ψ -ϕ ϕ ϕ).(v v v -u u u)dx, ξ = (u u u, v v v), ξ = (ϕ ϕ ϕ, ψ ψ ψ), ξ 0 = (b b b 0 , b b b 0 ), ξ 1 = (c c c 0 , c c c 0 ), h = (f f f , f f f ). ( 144 
)
By the same reasoning used to get (125), ( 126), (128) in the case N = 3, we find

lim ε→0 Z Ω×(0,t1) ρεu u uε. ∂ 2 φ φ φ ε ∂t 2 dxdt = Z t1 0 (ξ, ξ") H , lim ε→0 Z Ω ρε " b b b 0 . ∂φ φ φ ε ∂t (0) -c c c 0 .φ φ φ ε (0) « dx - Z Ω×(0,t1) ρεf f f .φ φ φ ε dxdt = (ξ 0 , ξ′ (0)) H -(ξ 1 , ξ(0)) H - Z t1 0 (h, ξ) H dt, lim ε→0 I 1ε = Z Ω×(0,t1)
a a a 0 e e e(u u u) : e e e(ϕ ϕ ϕ)dxdt.

(

) 145 
We prove below that lim ε→0

I 2ε = γ (2) 4πµ 0 λ 0 + 2µ 0 λ 0 + 3µ 0 Z Ω×(0,t1) (ψ ψ ψ -ϕ ϕ ϕ).(v v v -u u u)dxdt. (146) 
By passing to the limit as ε → 0 in (120), thanks to (143), ( 144), (145), and (146), we obtain the variational formulation (135) (with data given now by ( 144)), equivalent to (98). We deduce from Theorem 2 that ξ = (u u u, v v v) satisfies (95) and is the unique solution of the problem (94), equivalent to (41). The proof of Theorem 1 is achieved. ⊓ ⊔ Proof of (146). Setting 

(α) ε ) !˛2 dxdt ≤ C v u u t Z Hε×(0,t1) R 2 ε 2 X α=1 ˛e e e " θ θ θ (α) ε "˛2 + 1 + 2 X α=1 |θ θ θ (α) ε | 2 ! dxdt ≤ C q L 2 (Hε) + R 2 ε γ (2) 
ε = o(1). (147) 
As ψ ψ ψ ε (., t) and ϕ ϕ ϕ ε (., t) are constant in each cell Y i ε , we have (see (101), (140)) 

I 2ε := 2 X α=1 Z B Rε ×(0,t1) (ψεα - 
We prove below that

|I 2ε -I B2ε | ≤ C √ ε " γ (2) ε " 3 4 = o(1), (150) 
where

I B2ε = 2 X α=1 Z B Rε ×(0,t1)
(ψεαϕεα)a a a 0 e e e(u u uε) : e e e " θ θ θ

(α) Bε " dxdt. (151) 
The next convergence is established in [START_REF] Bellieud | Homogenization of an elastic material reinforced by very stiff or heavy fibers . Non local effects. Memory effects[END_REF]Formula (5.36)]

lim ε→0 I B2ε = γ (2) 4πµ 0 λ 0 + 2µ 0 λ 0 + 3µ 0 Z Ω×(0,t1) (ψ ψ ψ -ϕ ϕ ϕ).(v v v -u u u)dxdt. (152) 
Joining ( 147), ( 150), (152), we obtain (146). ⊓ ⊔ Proof of (150). By (72), ( 101 

Joining (39), ( 153), (154), and (156), we get (150). ⊓ ⊔

Corrector result

The next proposition enhances the results stated in Theorem 1 by displaying an approximation of the solution u u uε of (2) in the strong topology of L 2 (0, t 1 ; H 1 0 (Ω; R N )). Proof. We sketch the proof only in the case N = 3. The proof is similar in the case N = 2. By [START_REF] Stokes | On the effect of the internal friction of fluids on the motion of pendulums[END_REF] and Korn inequality in H 1 0 (Ω; R 3 ) we have, for all τ ∈ (0, t 1 ), By( 73) and (75), the sequence " ∂u u uε ∂t " converges weak-star to ∂u u u ∂t in L ∞ (0, t 1 ; L 2 (Ω; R 3 )) and two-scale with respect to (mε) to ∂v v v ∂t + 2 diamT ∂ω ω ω ∂t ∧ (y y y Gy y y T ). We easily deduce that for each t ∈ (0, t 1 ), there holds `ξ′ , ξ ′ ´H + a(ξ, ξ)dt.

|u u uε -φ φ φ ε (τ )| 2
To compute the limit of (J 2ε ), we repeat the argument used to pass to the limit in (120), choosing (ϕ ϕ ϕ, ψ ψ ψ, ζ ζ ζ) = (u u u, v v v, ω ω ω), that is ξ = ξ. The assumption of the second line of (100) is not required, because we don't need to integrate by parts with respect to t. We get (see (134)) lim ε→0 R Ω×(0,t1) a a aεe e e(u u uε) : e e e(φ φ φ ε )dxdt = R t1 0 a(ξ, ξ)dt. Thanks to the second line of (73) and the fourth line of (75), by mimicking the proof of ( 122) and (124) we find lim ε→0 R Ω×(0,t1) ρε ∂u u uε ∂t .

∂φ φ φ ε ∂t dxdt = R t1 0 `ξ′ , ξ ′ ´H dt, and deduce that lim ε→0 J 2ε = lim ε→0 J 1ε . In order to determine lim ε→0 J 3ε , we check that Proposition 1 stays the same if we substitute φ φ φ ε for u u uε, and deduce that the limit of (J 2ε ) is unchanged if we substitute φ φ φ ε for u u uε in the second line of (158), therefore lim ε→0 J 3ε = lim ε→0 J 2ε . ⊓ ⊔ 

Lemma 1 ."

 1 Study of Cap NThe main objective of this section is to analyze the behavior of the application Cap N with respect to certain small subsets of R N . In what follows, the letter T denotes a bounded connected Lipschitz open subset of R N and V an open subset of R N such that T ⊂ V . The problems (6) and[START_REF] Bellieud | Torsion effects in elastic composites with high contrast[END_REF] have minimizing sequences in D(V ; R N ).Proof. Assume that N = 3 and fix ξ ξ ξ :=

fails to hold for p = N = 2 ."

 2 Lemma 2. (i) Assume that N = 3, and let ξ ξ ξ :=

Lemma 4 .

 4 Let (Vn) be an increasing sequence of open subsets of R N such that T ⊂ V 1 and S +∞ n=1 Vn = V . (i) There holds lim n→+∞ Cap N (T ; Vn) = Cap N (T ; V ).

1 λ 2 Z 1 λ

 121 a a 0 e e e(ψ ψ ψ) : e e e(ψ ψ ψ)dx. We set ϕ ϕ ϕ(y) := ψ ψ ψ(λy). Then ϕ ϕ ϕ ∈ A ξ ξ ξ (T ; 1 λ V ), e e e(ϕ ϕ ϕ)(y) = λe e e(ψ ψ ψ)(λy), and ξ ξ ξ.Cap N (λT ; V )ξ ξ ξ + α ≥ Z V a a a 0 e e e(ψ ψ ψ) : e e e(ψ ψ ψ)dx = λ N Z V a a a 0 e e e(ψ ψ ψ) : e e e(ψ ψ ψ)(λy)dy = λ N -V a a a 0 e e e(ϕ ϕ ϕ) : e e e(ϕ ϕ ϕ)(y)dy ≥ λ N -2 ξ ξ ξ.Cap N

Cap 2 (

 2 rεB; RεB) 33 = Z RεB e e e(η η η ε ) : a a a 0 e e e(η η η ε )dx = 4πµ 0 a a a 0 e e e(η η η ε )dx = e e eα. Z ∂(rεB) a a a 0 e e e(η η η ε )ν ν νdH 1 (x) = 0.

parameter 2 diamTe e e 3 « .Cap 3 ( 3 «

 2333 in[START_REF] Agmon | Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I[END_REF], it is easy to prove that lim ε→0 " 0 Tε; R 3 ) , although B ⊂ Tε. Hence, given ξ ξ ξ ∈ R N (N +1) 2

Fig. 1 tion" a a a 0 «

 10 Fig. 1

  e e(b b b 0 ) : e e e(b b b 0

  yy y y S )α(y y yy y y S ) β dy, k := lim ε→0 r 2 ε µ 1ε , κ := lim ε→0 r 4 ε µ 1ε , l := lim ε→0 λ 1ε µ 1ε .

Proof. If N = 3 ,

 3 the estimates (65) are established in [6, Lemma 3.1]. If N = 2, the estimate R Ω |u u uε -ũ u uε| 2 dx ≤ Cε 2 | log Rε| R Ω |∇ ∇ ∇u u uε| 2 dx is deduced by freezing the variable x 3 in the estimate obtained in [9, p. 420, l. 7-10]. We get, in the same way, R Ω |u u uεv v vε| 2 dx ≤ Cε 2 | log rε| R Ω |∇ ∇ ∇u u uε| 2 dx and infer

"

  coincides in each cell Y i ε with the best approximation of u u uε in R with respect to 2 dH N -1

  0 ∂t two-scale with respect to (mε).

Ω

  e e(u u uε) : e e e(u u uε)(τ )dx ρε |c c c 0 | 2 dx + Z Ω a a aεe e e(b b b 0 ) : e e e(b b b 0 )dx

Ω

  |u u uε| 2 (τ )dx ≤ C Z Ω |∇ ∇ ∇u u uε| 2 (τ )dx ≤ C Z Ω |e e e(u u uε)| 2 (τ )dx ≤ C Z Ω |e e e(u u uε)| 2 (τ )dx + C Z Tr ε cε|e e e(u u uε)| 2 (τ )dx ≤ C Z Ω a a aεe e e(u u uε) : e e e(u u uε)(τ )dx.

  u uε| 2 dx = 0, thus u u u = v v v. Taking (74) into account, Assertion (76) is proved.⊓ ⊔ Proof of (92). Since ṽ v vε is constant in each connected component of Tr ε , for anymatrix-valued field Ψ Ψ Ψ ∈ D(Ω × (0, t 1 ) × T ; R N × R N ) we have Z Ω×(0,t1) ṽ v vε.divyΨ Ψ Ψ " x, t, yε(x) rε" dmεdt = 0. By passing to the limit as ε → 0, we get1 |T | Z Ω×(0,t1)×T v v v 0 .divyΨ Ψ Ψdxdtdy = 0, and deduce from the arbitrary choice of Ψ Ψ Ψ that v v v 0 is independent of y.Let us fix ϕ ϕ ϕ ∈ D(Ω × (0, t 1 ); R N ) and η ∈ D(Y ) such that η(y) = 1 ∀y ∈ T . It is easy to prove that

2

  rεdiamT ζ ζ ζ ε and taking the value ψ ψ ψ ε at the geometric center of gravity of the particle, being ζ ζ ζ ε and ψ ψ ψ ε suitable approximations of ζ ζ ζ and ψ ψ ψ taking constant values in Y i ε (see (

  to B Rε \ Tr ε satisfy the required estimates provided that ∂T is of class C 3 .

7. 1

 1 Case N = 3, 0 < γ (3) < +∞ We fix three arbitrary fields ϕ ϕ ϕ, ψ ψ ψ and ζ ζ ζ such that

  )ν ν νdH 2 = -e e eq.

  0 e e e(η η η(p) ∞,ε )ν ν νdH 2 = -Z ∂B i Rε a a a 0 e e e(η η η (p) ∞,ε )ν ν νdH 2 .

  and η η η (p) ∞,ε in the matrix Ω \ Tr ε .

2 + 3 ) 2

 232 |e e e(η η η (p) ∞,ε )| 2 dx ≤ Cγ and let w w w be the solution of P K0 (T ; R 3 ; ξ ξ ξ)

1 3 1 6

 11 y + B ⊂ R 3 \ T . Let us fix ε > 0. Since |w w w| K0(R 3 ;R 3 ) < +∞ (see (8)), there exists r 0 > 0 such that T ⊂ r 0 B and Z R 3 \r0B |w w w| 6 + |∇ ∇ ∇w w w| 2 dx ≤ ε. (114) If |y| > r 0 + 1, then y + B ⊂ R 3 \ r 0 B and by (114) and Hölder inequality we have ˛Zy+B w w wdx ˛≤ C the continuity of the trace application from H 1 (y + B) to L 1 (y + ∂B), ˛Zy+∂B w w wdH 2 ˛2 ≤ C Z y+B |w w w| 2 + |∇ ∇ ∇w w w| 2 dx ≤ C(ε + ε). (116) Joining (113), (115), (116), we infer that |w w w(y)| < Cε provided |y| > r 0 , hence lim |y|→+∞ |w w w(y)| = 0. Being biharmonic in a neighborhood of infinity and vanishing at infinity, the field w w w satisfies the following estimates in a neighborhood of infinity (see [24, p. 23]): |w w w(y)| ≤ C |y| , |∇ ∇ ∇w w w(y)| ≤ C |y| 2 .

  there holds 0 ∈ T ). Choosing (a a a, b b b) ∈ {(e e ep, 0), (0, e e ep)} (that is w w w ∈ {θ θ θ (p) ∞ , η η η (p)

  y y yy y y T )«." ψ ψ ψ + 2ζ ζ ζ diamT ∧ (y y yy y y T ) « dxdy, (((u u u, v v v, ω ω ω), (ϕ ϕ ϕ, ψ ψ ψ, ζ ζ ζ))) V := ((u u u, v v v, ω ω ω), (ϕ ϕ ϕ, ψ ψ ψ, ζ ζ ζ)) H + Z Ω ∇ ∇ ∇u u u.∇ ∇ ∇ϕ ϕ ϕdx,

1 ∈

 1 H defined by a(ξ(τ ), ξ(τ )) := Z Ω a a a 0 e e e(u u u) : e e e(ϕ ϕ ϕ)(τ )dx

  t1) a a aεe e e(u u uε) : e e e(φ φ φ ε )dxdt -Z Ω×(0,t1) ρεf f f .φ φ φ ε dxdt = 0. (120) It is easy to check that φ φ φ ε = ψ ψ ψ ε + 2 diamT ζ ζ ζ ε ∧ " y y yε(x) rεy y y T " in Tr ε . Taking (32) and (57) into account, we infer Z Ω×(0,t1) ρεu u uε. ∂ 2 φ φ φ ε ∂t 2 dxdt = Z (Ω\Tr ε )×(0,t1)

"∂ 2 φ φ φ ε ∂t 2 "

 2 t), ξ"(t)) H dt. (125) By repeating the same argument, replacing u u uε by the continuous fields b b b 0 , c c c 0 , f f f and the sequence φ φ ε (0)), (φ φ φ ε ), we find lim ε→0

  t1) a a aεe e e(u u uε) : e e e(φ φ φ ε )dxdt = I 1ε + I 2ε + I 3ε ; I 1ε := Z Ω\(B 2Rε )×(0,t1) a a a 0 e e e(u u uε) : e e e(ϕ ϕ ϕ)dxdt, I 2ε := Z (B 2Rε \B Rε )×(0,t1) a a a 0 e e e(u u uε) : e e e(φ φ φ ε )dxdt, I 3ε := Z Hε×(0,t1) a a a 0 e e e(u u uε) : e e e(φ φ φ ε )dxdt. (127) By (73) the sequence (a a a 0 e e e(u u uε)) converges weakly to a a a 0 e e e(u u u) in L 2 (Ω × (0, t 1 ); S 3 ). As (e e e(ϕ ϕ ϕ)1 Ω\(B 2Rε ) ) converges strongly to e e e(ϕ ϕ ϕ) in L 2 (Ω × (0, t 1 ); S N ), we infer lim ε→0 I 1ε = Z Ω×(0,t1) a a a 0 e e e(u u u) : e e e(ϕ ϕ ϕ)dxdt.

) 3 X p=1 Z

 3p=1 Denoting by ν ν ν the outward unit normal to ∂(B Rε \ Tr ε ), we set (see (38), (64)) ϕεp)a a a 0 e e e(θ θ θ (p) ∞,ε )ν ν ν + ζεpa a a 0 e e e(η η η (p) ∞,ε )ν ν ν " dH N -1 dt + ∂B Rε ×(0,t1) ũ u uε. " (ψεp -ϕεp)a a a 0 e e e(θ θ θ (p) ∞,ε )ν ν ν +ζεpa a a 0 e e e(η η η (p) ∞,ε )ν ν ν " dH N -1 dt.

« -u u uε| 2 dH 2 dt × q H 2 (∂B

 2 e e(u u uε) : e e e(φ φ φ ε )dxdt = Z t1 0 a(ξ, ξ)dt. (134) where ν ν ν denotes the outward unit normal to ∂Hε. It follows then from (130) that ˛I3ε -Ĩ3ε ˛≤ C ∂Tr ε ) " ˛a a a 0 e e e(θ θ θ (p) ∞,ε )ν ν ν ˛L∞ (rεT ) + ˛a a a 0 e e e(η η η (p) ∞,ε )ν ν ν ˛L∞ (rεT ) Rε ×(0,t1) |ũ u uε -u u uε| 2 dH 2 dt q H 2 (∂B Rε ) × " ˛a a a 0 e e e(θ θ θ (p) ∞,ε )ν ν ν ˛L∞ (RεB) + ˛a a a 0 e e e(η η η (p) ∞,ε )ν ν ν ˛L∞ (RεB)

  0 e e e(θ θ θ) : e e e(θ θ θ)dx ˛θ θ θ = e e eα in Tr ε , θ θ θ = 0 in Ω \ B Rε).

ε )ν ν νdH 1 ,(ε )ν ν νdH 1 =ε )ν ν νdH 1 ,

 111 )) hold true (α, β ∈ {1, 2}, i ∈ Iε) Hε (= B Rε \ Tr ε ), Cap 2 (rεT ; RεB)) αβ = e e e β . -e e e β . where ν ν ν denotes the outward unit normal to ∂(B Rε \ Tr ε ). There holds Z Hε ˛e e e(θ θ θ

  ) ε .⊓ ⊔ Repeating the argument of the case N = 3, we multiply the first line of (2) by φ φ φ ε and integrate by parts, to obtain (120). Then we set Z Ω×(0,t1) a a aεe e e(u u uε) : e e e(φ φ φ ε )dxdt = I 1ε + I 2ε ; I 1ε := Z Ω\(Hε∪Tr ε )×(0,t1) a a a 0 e e e(u u uε) : e e e(ϕ ϕ ϕ)dxdt, I 2ε := Z Hε×(0,t1) a a a 0 e e e(u u uε) : e e e ϕ ϕ ϕ +

I

  2ε := Z Hε×(0,t1) a a a 0 e e e(u u uε) : e e e(φ φ φ ε )dxdt, φ φ φ ε := 72), (141) and the estimate |ϕ ϕ ϕϕ ϕ ϕ ε | ≤ CRε in Hε into account, we infer (as in (137)) |I 2ε -I 2ε | ≤ C ϕα)(e e eαθ θ θ

"

  ϕεα)a a a 0 e e e(u u uε) : e e e B ′ denote the ball of center 0 and radius diamT (by (37), T ⊂ B ′ ) and, for each α ∈ {1, 2}, let θ θ θ 0 e e e(θ θ θ) : e e e(θ θ θ)dx ˛θ θ θ = e e eα in B ′ rε , θ θ θ = 0 in Ω \ B Rε).

Bε 2

 2 ), (148), and (151), there holds ˛I2ε -I B2ε ˛≤ C s Z Ω×(0,t1) |a a a 0 e e e(u u uε)| 2 dxdt s Z Ω×(0,t1)˛e e e(θ θ θ 0 e e e(θ θ θ(α) Bεθ θ θ (α)ε ) : e e e(θ θ θ(α) Bεθ θ θ (α) ε )dx ≤ C p J 1ε + J 2ε , J 1ε := Z Rε \B ′rε a a a 0 e e e(θ θ θ (α) Bεθ θ θ (α) ε ) : e e e(θ θ θ e e eα) : a a a 0 e e e(θ θ θ Bε = 0 on ∂B Rε , θ θ θ (α) Bε = e e eα on ∂B ′ rε , θ θ θ (α) ε= e e eα on ∂Tr ε . By integration by parts, denoting by ν ν ν the outward unit normal to ∂B ′ rε , we inferJ 1ε = -Z ∂B ′ rε (e e eαθ θ θ (α) ε ).a a a 0 e e e(θ θ θ (α) Bε )ν ν νdH 1 + Z ∂B ′ rε (e e eαθ θ θ (α) ε ).a a a 0 e e e(θ θ θ (α) ε )ν ν νdH 1 , J 2ε = -Z ∂B ′ rε (e e eαθ θ θ (α) ε ).a a a 0 e e e(θ θ θ (α) ε )ν ν νdH 1 .Taking the estimate |a a a 0 e e e(θ θ θ(p) Bε )ν ν ν| L ∞ (∂(rεB ′ )) ≤ C rε| log rε| (see[10, (5.12)]) into account, we deduceJ 1ε +J 2ε = -Z ∂B ′ rε (e e eαθ θ θ (α) ε ).a a a 0 e e e(θ θ θ of the trace application from H 1 (B ′ \ T ; R 2 ) to L 2 (∂B ′ ; R 2 ) and by Poincaré inequality and Korn inequality in H := {w w w ∈ H 1 (B ′ \ T ; R 2 ), w w w = 0 on ∂T }, there holdsZ ∂B ′ |w w w| 2 dH 1 ≤ C Z B ′ \T |∇ ∇ ∇w w w| 2 dx ≤ C Z B ′ \T|e e e(w w w)| 2 dx ∀ w w w ∈ H.By making suitable changes of variable (notice that e e eα -θ θ θ (α) ε = 0 on ∂T rε ), we deduce Z dx ∀i ∈ Iε. (155) Summing (155) over i ∈ Iε, taking (141) into account, we obtain Z ∂B ′ rε |e e eαθ θ θ (α) ε | 2 dH 1 ≤ C rε ε 2 | log(rε)| .

Proposition 2 .Z t1 0 |u u uε -φ φ φ ε | 2 H 1 0 2 rεdiamT 2 rεdiamT

 202122 Under the hypotheses of Theorem 1, assume that b b b 0 = 0, and that the solution(u u u, v v v, ω ω ω) of (40) if N = 3 (resp., of (41) if N = 2) is smooth, say u u u, v v v, ω ω ω ∈ C 2 ([0, t 1 ]; C 1 (Ω; R N )).Let u u uε be the solution of (2) and let φ φ φ ε denote the field defined by substituting(u u u, v v v, ω ω ω) for (ϕ ϕ ϕ, ψ ψ ψ, ζ ζ ζ) in (119) if N = 3 (resp., in (139) if N = 2). Then lim ε→0 (Ω;R N ) dt = 0. (157) Remark 6. (i) The approximation φ φ φ ε of u u uε introduced in Proposition 2 satisfies φ φ φ ε = v v vε + 2 diamT ω ω ωε ∧ " y y yε(x) rεy y y T " in Tr ε (v v vε, ω ω ωε being defined by (101)) hence the field v v v(x, t) + ω ω ω) is a local approximation of the displacement in the inclusions (resp., of the rotation vector of the particles).(ii) A similar result can be established if γ N ∈ {0, +∞} and for equilibrium equations.

H 1 0 2 H 1 0`

 121 (Ω;R 3 ) ≤ C Z Ω a a aεe e e(u u uεφ φ φ ε (τ )) : e e e(u u uεφ φ φ ε (τ ))dx.We deduce thatZ t1 0 |u u uεφ φ φ ε | (Ω;R 3 ) dt ≤ C (J 1ε -2J 2ε + J 3ε ),where J 1ε := Z Ω×(0,t1) ρε ˛∂u u uε ∂t ˛2 + a a aεe e e(u u uε) : e e e(u u uε)dxdt, ε ∂t + a a aεe e e(u u uε) : e e e(φ φ φ ε )dxdt, J 3ε := Z Ω×(0,t1) ρε ˛∂φ φ φ ε ∂t ˛2 + a a aεe e e(φ φ φ ε ) : e e e(φ φ φ ε )dxdt. ξ′ , ξ ′ ´H + a(ξ, ξ)dt, Proof of (159). By (78) we have, since b b b 0 = 0,

(ξ 1 , ξ 1 ) H + 2 "Z t 0 (

 1120 y y Gy y y T ) « dxds.Since |f f f | is bounded in Ω × (0, t 1 ) (see (2)), by (72) and (79) we have, for all t ∈ [0, t 1 ] ), (161), (162), thanks to the dominated convergence theorem and to the weak-star convergence in the sense of measures of (ρε) to (ρ 0 +ρ), taking the continuity of c c c 0 into account (see (2)), we get, by (117), (118),lim ε→0 J 1ε = Z Ω×(0,t1) (ρ 0 + ρ) |c c c 0 | 2 dxdt ∂t ∧ (y y y Gy y y T ) h, ξ ′ ) H ds « dt.Since b b b 0 = 0 there holds ξ 0 = 0 (see (118)) and, by (96), (ξ 1 , ξ 1 ) H = 2e(0). We deduce from (

7. 4 2 Xε + L 2 (

 422 Case γ (N ) ∈ {0, +∞} We sketch the proof of the results stated in Remark 3 in the cases N = 2, γ (2) = 0 and N = 3, γ (3) = +∞. The other cases are similar. Case N = 2 and γ (2) = 0. We repeat the argument of the proof of the case N = 2 of Theorem 1, setting (ψ ψ ψ, ζ ζ ζ) = (0, 0). We get (145). By (72) and (141) there holds |I 2ε | = ˛ZHε×(0,t1) a a a 0 e e e α=1 ϕα(e e eαθ θ θ Hε) = o(1).

  the limit in (120), thanks to (145) and (163), we obtain the variational formulation Z Ω×(0,t1) ρ 0 u u u. ∂ 2 ϕ ϕ ϕ ∂t 2 + a a a 0 e e e(u u u) : e e e(ϕ ϕ ϕ)dxdt + Z Ω ρ 0 b b b 0 . ∂ϕ ϕ ϕ ∂t (0)ρ 0 c c c 0 .ϕ ϕ ϕ(0)dx = Z Ω×(0,t1) ρ 0 ϕ ϕ ϕ.f f f dxdt, equivalent to the the limit problem stated in Remark 3 (i). ⊓ ⊔ Case N = 3, γ (3) = +∞. By (76) we have (v v v, ω ω ω) = (u u u, 0), accordingly we set (ψ ψ ψ, ζ ζ ζ) = (ϕ ϕ ϕ, 0) and, following the argument of the proof of the case 0 < γ (3) < +∞, we find (125), (126), (128). Thanks to (42) we can choose a sequence (Rε) satisfying (62) and Rεγ

( 3 )

 3 ε = o(1). We infer from (62), (72), and (112), that

  2 , similar to (110).

	The case N = 2 is appreciably more involved:	
	Lemma 7. Under (18), for any bounded connected Lipschitz open subset T of R 2
	such that B ⊂ T and any couple ((rε), (Rε)) of sequences of positive reals such that rε < < Rε ≤ C < +∞, there holds
	lim ε→0	| log rε|(Cap 2 (rεT ; RεB)) αβ = (M M M 2 ) αβ ∀α ∈ {1, 2},
	M M M 2 := 4πµ 0 lim ε→0 Cap 2 (rεT ; RεB) = Cap 2 (T ; R 2 ) = (Cap 2 (T ; R 2 )) 33 e e e 3 ⊗ e e e 3 , λ 0 + 2µ 0 I I I 2 , λ 0 + 3µ 0	(21)
	(Cap 2 (T ; R 2 )) 33 > 0, |(Cap 2 (rεT ; RεB)) α3 | ≤	C | log rε| p	∀α ∈ {1, 2}.
	Moreover,	
		Cap 2 (B; R 2 ) = 4πµ 0 e e e 3 ⊗ e e e 3 .	(22)
	Proof. At first we assume that T = B. Let η η η ε (resp., θ θ θ	(α) ε ) denote the solution of
	P 2 (rεB; RεB; (0, 1)) (resp., P 2 (rεB; RεB; (e e eα, 0)), α ∈ {1, 2}) (see Lemma 2 (ii)). A straightforward computation yields

  28, Theorem 8.1 p. 287, Theorem 8.2 and Lemma 8.3 p. 298], [21, Formula (5.20) p. 667, and Theorem 1 p. 670], [27, Remark 1.3 p. 155]. Henceforth, the derivatives in D ′ (0, T ; H) are identified with the time derivatives in D ′ (Ω × (0, T ) × Y ) and are denoted both by ∂ζ ∂t or by ζ ′ . Theorem 2. Let V and H be separable Hilbert spaces such that V ⊂ H = H ′ ⊂ V ′ , with continuous and dense embeddings. Let ||.|| V , |.| H , ((., .)) V , (., .) H denote their respective norm and inner product. Let a

  rε with the solution θ θ θ

	(resp., η η η	(p) ∞	"	x-εi rε	"	(p) ∞ rε ; R 3 ; (0, e e ep))), therefore of P K0 (T i	"	x-εi rε	"	rε ; R 3 ; (e e ep, 0)) of P K0 (T i
			div	" a a a 0 e e e(θ θ θ	(p) ∞,ε ) "	= div	" a a a 0 e e e(η η η (p) ∞,ε )
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We deduce from (120), (125), (126), and (134) that Z t1 0 (ξ, ξ") H + a(ξ, ξ) -(h, ξ) H dt + (ξ 0 , ξ′ (0)) H -(ξ 1 , ξ(0)) H = 0.

(135)

By the arbitrary choice of ξ = (ϕ ϕ ϕ, ψ ψ ψ, ζ ζ ζ) and by a density argument, the variational formulation (135) is equivalent to (98). It is easy to check that under (117) and (118) the assumptions of Theorem 2 are satisfied. We infer that ξ = (u u u, v v v, ω ω ω) satisfies (95) and is the unique solution of the problem (94), equivalent to (40). The proof of Theorem 1 is achieved in the case N = 3. ⊓ ⊔ Proof of (131). We set

a a a 0 e e e(u u uε) : e e e(φ φ φ ε )dxdt,

Thanks to (72), (112), and to the estimate |ϕ ϕ ϕϕ ϕ ϕ ε | ≤ CRε in Hε (easily deduced from (101)), we get By integration by parts, taking (107) into account, we infer

u u uε. `(ψεpϕεp)a a a 0 e e e(θ θ θ

u u uε. `(ψεpϕεp)a a a 0 e e e(θ θ θ

˛e e e 0 @ ϕ ϕ ϕ

Our sending ε → 0 in (120) yields the variational formulation

+ a a a 0 e e e(u u u) : e e e(ϕ ϕ ϕ)dxdt

which, joined with Proposition 1, is equivalent to (43). Furthermore, by ( 73) and (87) there holds (ṽ v vε) → u u u strongly in L ∞ (0, t 1 ; L 2 (Ω; R N )) and, by (90), (ω ω ωε) → 0 strongly in L ∞ (0, t 1 ; L 2 (Ω; R N )). ⊓ ⊔