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In this article, we study the problem of multiplying two
multivariate polynomials which are somewhat but not too
sparse, typically like polynomials with convex supports. We
design and analyze an algorithm which is based on block-
wise decomposition of the input polynomials, and which
performs the actual multiplication in an FFT model or
some other more general so called “evaluated model”. If the
input polynomials have total degrees at most d, then, under
mild assumptions on the coefficient ring, we show that their
product can be computed with O(s1.5337) ring operations,
where s denotes the number of all the monomials of total
degree at most 2 d.

sparse polynomial multiplication, multivariate power series,
evaluation-interpolation, algorithm
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Let A be an effective ring , which means that we have a
data structure for representing the elements of A and algo-
rithms for performing the ring operations in A, including
the equality test. The complexity for multiplying two uni-
variate polynomials with coefficients in A and of degree d is
rather well understood [11, Chapter 8]. Let us recall that for
small d, one uses the naive multiplication, as learned at high
school, of complexity O(d2). For moderate d, one uses the
Karatsuba multiplication [21], of complexity O(dlog 3/log 2),
or some higher order Toom-Cook scheme [4, 29], of com-
plexity O(dα) with 1<α< log 3/log 2. For large d, one uses
FFT [3, 5, 27] and TFT [14, 15] multiplications, both of com-
plexity O(d log d) whenever A has sufficiently many 2k-th
roots of unity, or the Cantor-Kaltofen multiplication [3, 27]
with complexity in O(d log d log log d) otherwise.

Unfortunately most of the techniques known in the uni-
variate case do not straightforwardly extend to several
variables. Even for the known extensions, the efficiency
thresholds are different. For instance, the naive product
is generally softly optimal when sparse representations are
used, because the size of the output can grow with the pro-

duct of the sizes of the input. In fact, the nature of the
input supports plays a major role in the design of the algo-
rithms and the determination of their mutual thresholds.
In this article, we focus on and analyze an intermediate
approach to several variables, which roughly corresponds
to an extension of the Karatsuba and Toom-Cook strate-
gies, and which turns out to be more efficient than the naive
multiplication for instance if the supports of the input poly-
nomials are rather dense in their respective convex hulls.

The main idea in our blockwise polynomial multiplication
is to cut the supports in blocks of size b1 × × bn and to
rewrite all polynomials as “block polynomials” in z1

b1, , zn
bn

with “block coefficients” in

Bb {P ∈A[z1, , zn]: degz1
P < b1, , degzn

P < bn}.

These block coefficients are then manipulated in a suit-
able “evaluated model”, in which the multiplication is
intended to be faster than with the direct naive approach.
The blockwise polynomials are themselves multiplied in
a naive manner. The precise algorithm is described in
Section 3.1, where we also discuss the expected speedup
compared to the naive product. A precise complexity anal-
ysis is subtle because it depends too much on the nature
of the supports. Although the worse case bound turns out
to be no better than with the naive approach, we detail,
in Section 3.2, a way for quickly determining a good block
size, that suits supports that are not too small, not too
thin, and rather dense in their convex hull.
Our Section 4 is devoted to implementation issues. We

first design a cache-friendly version of our blockwise pro-
duct. Then we adapt a blockwise product for multivariate
power series truncated in total degree. Finally, we discuss
a technique to slightly improve the blockwise approach for
small and thin supports.
In Section 5 we analyze the complexity of the blockwise

product for two polynomials supported by monomials of
degree at most d − 1: if A contains Q in its center, then
we show that their product can be computed with O(s1.5337)
operations in A, where s denotes the number of all the
monomials of degree at most 2(d − 1). Notice that the
constant hidden behind the latter O does not depend nei-
ther on d nor on the number of the variables. With no
hypothesis on A, the complexity bound we reach becomes in
O(s1.5930), by a direct extension of the Karatsuba algorithm.

∗. This work has been partly supported by the French ANR-09-JCJC-0098-01 MaGiX project, and by the Digiteo 2009-36HD grant of
the Région Ile-de-France.
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Finally, we prove similar complexity results for truncated
power series

Algorithms for multiplying multivariate polynomials and
series have been designed since the early ages of computer
algebra [6, 7, 8, 20, 28]. Even those based on the naive
techniques are a matter of constant improvements in terms
of data structures, memory management, vectorization and
parallelization [10, 18, 23, 24, 25, 26, 30].

With a single variable z, the usual way to multiply two
polynomials P and Q of degree d − 1 with the Karat-
suba algorithm begins with splitting P and Q into P0(z) +
zh P1(z) and Q0(z) + zh Q1(z), where h $d/2%. Then
P0 Q0, P1 Q1, and (P0 + P1) (Q0 + Q1) are computed
recursively. This approach has been studied for several vari-
ables [22], but it turns out to be efficient mainly for plain
block supports, as previously discussed in [8, Section 3].

For any kind of support, there exist general purpose sparse
multiplication algorithms [2, 18]. They feature quasi-linear
complexity in terms of the sizes of the supports of the input
and of a given superset for the support of the product. Nev-
ertheless the logarithmic overhead of the latter algorithms is
important, and alternative approaches, directly based on the
truncated Fourier transform, have been designed in [14, 15,
19] for supports which are initial segments of Nn (i.e. sets of
monomials which are complementary to a monomial ideal),
with the same order of efficiency as the FFT multiplication
for univariate polynomials.

To the best of our knowledge, the blockwise technique was
introduced, in a somewhat sketchy manner, in [13, Section
6.3.3], and then refined in [16, Section 6]. In the case of
univariate polynomials, its complexity has been analyzed
in [12], where important applications are also presented.

Throughout this article, we use the sparse representation
for the polynomials, and the computation tree model with
the total complexity point of view [1, Chapter 4] for the
complexity analysis of the algorithms. Informally speaking,
this means that complexity estimates charge a constant cost
for each arithmetic operation and the equality test in A,
and that all the constants are thought to be freely at our
disposal.

Consider a multivariate polynomial P ∈ A[z] = A[z1, ,
zn], also written as

P =
∑

i∈Nn

Pi zi =
∑

i1, ,in∈N

Pi1, ,in z1
i1 zn

in.

We define its support by supp P = {i ∈ Nn: Pi 0}, and
denote its cardinality |suppP | by sP . We interpret sP as the
sparse size of P .

Given a vector b=(b1, , bn)∈ (N>)n of positive integers,
we define the set of block coefficients at order b by

Bb = {P ∈A[z1, , zn]: degz1
P < b1, , degzn

P < bn}.

Any polynomial P can uniquely be rewritten as a block poly-
nomial P̄ =

∑
ı̄∈Nn P̄ı̄ zbı̄ ∈Bb[zb] =Bb[z1

b1, , zn
bn], where

P̄ı̄ =
∑

0!i1<b1, ,0!in<bn

Pb1 ı̄1+i1, ,bn ı̄n+in z
i.

Given P̄ , Q̄∈Bb[zb], we also notice that P̄ Q̄∈B2b−1[zb]. We
let sb= b1 bn represent the size of the block b.

A univariate evaluation-interpolation scheme in size d ∈
N> on A is the data of
• an algorithm for computing an evaluation function

Evald: Bd−1 → AN(d), where Bd is the subset of poly-
nomials in A[z] of degree at most d − 1, and where
N(d) can be seen as the number of evaluation points, and

• an algorithm for computing an interpolation function,
written Evald

−1, but which is not necessarily exactly the
inverse of Evald, Evald

−1:AN(d)→B2d−1,
such that Evald and Evald

−1 are linear and

Evald
−1(Evald(P )'Evald(Q))=PQ

holds for all P and Q in Bd, where ' denotes the entry-wise
product in AN(d). We write E(d) for a common bound on the
complexity of Evald and Evald

−1, so that two polynomials in
Bd can be multiplied in time 3 E(d)+N(d). For convenience
we still write Evald and Evald

−1 for extensions to any Ak seen
as a ring endowed with the entry-wise product.

Example 1. The Karatsuba algorithm for polynomials of
degree 1 corresponds to d=2, N(2)= 3,

Eval2:P0+P1 z (P0, P0+P1, P1),

Eval2
−1: (C0, C1, C2) C0+(C1−C0−C2) z+C2 z2.

Eval2 can be interpreted as the evaluation of a polynomial at
the values 0, 1, and +∞. By induction, the Karatsuba algo-
rithm for polynomials of degree at most d − 1 corresponds
to N(d) = 3 N()d/2*), Evald: P Eval#d/2$(P̄ ), where P̄ is
the block polynomial of P with respect to b=(2), and where
Eval#d/2$(P̄ ) actually corresponds to applying the extension
of Eval#d/2$ to Bb[zb]→A3N(#d/2$). This yields N(2l)=3l and
E(2l)=O(3l).

Univariate evaluation-interpolation schemes can be
extended to several variables as follows: if b = (b1, , bn) ∈
(N>)n then we define N(b)=N(b1) N(bn), define the maps

Evalb:Bb → AN(b)

P Evalb1,1 ◦Evalb2,2 ◦ ◦Evalbn,n(P ),

Evalb
−1:AN(b) → Bb

C Evalbn,1
−1 ◦Evalbn−1,n−1

−1 ◦ ◦Evalb1,1
−1 (C),

and take

E(b)=N(b)
(
E(b1)
b1

+ +
E(bn)
bn

)
, (1)

where Evalbi,i and Evalbi,i
−1 represent the evaluation and

interpolation with respect to the variable zi:

Evalbi,i : AN(bi+1) N(bn)⊗B(b1, ,bi)

→AN(bi) N(bn)⊗B(b1, ,bi−1),

Evalbi,i
−1 : AN(bi) N(bn)⊗B(2b1, ,2bi−1)

→AN(bi+1) N(bn)⊗B(2b1, ,2bi−1,2bi).

In the sequel we will only use multivariate evaluation-inter-
polation schemes constructed in this way.
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For what follows, we first assume that we have a strategy
for picking a suitable evaluation-interpolation scheme for
any given block size b ∈ (N>)n, and that we have a fast
way to compute the corresponding functions N(b) and E(b),
at least approximately. We also assume that N(d)/d and
E(d)/d are increasing functions.

Let us first assume that we have fixed a block size b.
The first version of our algorithm for multiplying two mul-
tivariate polynomials P , Q∈A[z] summarizes as follows:

Algorithm block-multiply(P , Q, b)
Input: P , Q∈A[z] and b∈ (N>)n.
Output: PQ∈A[z].
1. Rewrite P and Q as block polynomials P̄ , Q̄ ∈Bb[zb].
2. Compute P̂ Evalb P̄

∑
ı̄ Evalb(P̄ı̄) (zb) ı̄ and Q̂

Evalb Q̄.
3. Multiply R̂ P̂ Q̂ ∈AN(b)[zb] using the naive algorithm.
4. Compute R̄ Evalb

−1
(
R̂
) ∑

ı̄ Evalb
−1(R̄ı̄) (zb) ı̄ ∈

B2b−1[zb].
5. Reinterpret R̄ as a polynomial R∈A[z] and return R.

Let sR̄
∗ = |supp P̄ + supp Q̄ |! sR̄ represent the size of R̄ if

there is no coefficient of R̄ which accidentally vanishes.

Proposition 2. The algorithm block-multiply works cor-
rectly as specified, and performs at most

N(b) sP̄ sQ̄+E(b) (sP̄ + sQ̄+2 sR̄
∗ )

operations in A.

Proof. The correctness is clear from the definitions.
Step 1 performs no operation in A. Steps 2 and 4 require
E(b) (sP̄ + sQ̄ + sR̄

∗ ) operations. Step 3 requires N(b) sP̄ sQ̄
operations. Step 5 takes at most 2k sR̄

∗ " E(b) sR̄
∗ opera-

tions in order to add up overlapping block coefficients, where
k= |{i∈ {1, , n}: bi> 1}|. #

Unfortunately, without any structural knowledge about
the supports of P̄ and Q̄, the quantity sR̄

∗ requires a time
sP̄ sQ̄ to be computed. In the next subsection we explain a
heuristic approach to find a good block size b.

In order to complete our multiplication algorithm, we
must explain how to set the block size. Computing quickly
the block size that minimizes the number of operations in
the product of two given polynomials P and Q looks like
a difficult problem. In Section 5 we analyze it for asymp-
totically large simplex supports, but, in this subsection, we
describe a heuristic for the general case.

For approximating a good block size we first need to
approximate the complexity in Proposition 2 by a function,
written T (P , Q, b), which is intended to be easy to com-
pute in terms of N(b), E(b), and the input supports. For
instance one may opt for the formula

T (P , Q, b) = (N(b)+ 2E(b)) (sP̄ +1) (sQ̄+1).

Nevertheless, if P and Q are expected to be not too sparse,
then one may assume sR̄$2n (sP̄ + sQ̄) and use the formula

T (P , Q, b) = N(b) sP̄ sQ̄+2n+1E(b) (sP̄ + sQ̄).

Then we begin the approximating process with b=(1, ,1),
and keep doubling the entry of b which reduces T (P ,Q,b) as
much as possible. We stop as soon as T (P , Q, b) cannot be
further reduced in this way. Given b∈ (N>)n and i∈ {1, ,
n}, we write 2i(b) for (b1, , bi−1, 2 bi, bi+1, , bn). In order
to make explicit the dependency in b during the execution
of the algorithm, we write P [b] instead of P̄ .

Algorithm block-size(P , Q)
Input: P , Q∈A[z].
Output: a block size b∈ (N>)n for multiplying P and Q.

Set b (1, , 1).
While P [b] and Q[b] are supported by at least two mono-
mials repeat:

Let i ∈ {1, , n} be such that T (P , Q, 2i(b)) is
minimal.
If T (P , Q, 2i(b))!T (P , Q, b), then return b.
Set b 2i(b).

In the computation tree model over A, the block-size
algorithm actually performs no operation in A. Its com-
plexity must be analyzed in terms of bit-operations , which
means here computation trees over Z/2 Z. For this pur-
pose we assume that the supports are represented by vectors
of monomials, with each monomial being stored as a vector
of integers in binary representation.

Proposition 3. If P and Q have total degrees at
most d, then the algorithm block-size performs O(n2 (sP +
sQ) log2 d) bit-operations, plus O(n2 log d) calls to the func-
tion T.

Proof. To run the algorithm block-size efficiently, we
maintain the sets SP ,b supp P [b] and SQ,b supp Q[b]

throughout the main loop. Since SP ,2i(b) can be computed
from SP ,b with O(sP [b] log d) bit-operations, each iteration
requires at most O(n (sP [b]+ sQ[b]) log d) bit-operations. The
number of iterations is bounded by O(n log d). #
Remark that in favorable cases the first few iterations are

expected to approximately halve sP [b] at each stage. The
expected total complexity thus becomes closer to O(n (sP +
sQ) log d).

Several problems arise if one tries to implement the basic
blockwise multiplication algorithm from Section 3.1 without
any modification:
• The mere storage of P̂ , Q̂ and R̂ involves

(
sP̂ + sQ̂ +

sR̂
∗ )

N(b) coefficients in A. This number is usually much
larger than sP + sQ+ sR

∗ .
• Coefficients in AN(b) usually will not fit into cache

memory, which makes the algorithm highly cache inef-
ficient.

Both drawbacks can be removed by using a recursive multi-
plication algorithm instead, where the evaluation-interpola-
tion technique is applied sequentially with respect to zi1, ,
zik for suitable pairwise distinct i1, , ik∈ {1, , n}.

Algorithm improved-block-multiply(P , Q, b, i1, , ik)
Input: P , Q ∈A[z], b ∈ (N>)n and pairwise distinct i1, ,
ik∈ {1, , n}.
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Output: PQ∈A[z].
1. If k=0 then return block-multiply(P , Q, b).
2. Let c

(
1, (i1−1)×, 1, bi1, 1, , 1

)
and

rewrite P and Q as block polynomials P̄ , Q̄ ∈Bc[zc].
3. Compute P̂ Evalc P̄ and Q̂ Evalc Q̄.
4. For each j ∈ {1, ,N(c)} do

R̂j improved-block-multiply
(
P̂j , Q̂j , b, i2, , ik

)
,

where R̂j is identified to
∑

ı̄∈Nn (R̂ı̄)j (zc) ı̄.

5. Compute R̄ Evalc
−1

(
R̂
)
∈B2c−1[zc].

6. Reinterpret R̄ as a polynomial R∈A[z] and return R.

It is not hard to check that the improved algorithm has
the same complexity as the basic algorithm in terms of the
number of operations in A. Let us now examine how to
choose i1, , ik in order to increase the performance. Setting
c=(c1, , cn) with

cj =

{
1 if j ∈ {i1, , ik}
bj otherwise ,

we first choose the set {i1, , ik} in such a way that ϑN(c)
constants in A fit into cache memory for a certain threshold
ϑ!1. The idea is that the same coefficients should be reused
as much as possible in the inner multiplication, so ϑ should
not be taken to small, e.g. ϑ!64. For a fixed set {i1, , ik} of
indexes, we next take i1, , ik such that bi1! ! bik, thereby
minimizing the memory consumption of the algorithm.

Let P ∈ A[z] and S ⊆ Nn. We define the truncation
of PS to S by PS

∑
i∈S Pi zi. Notice that PS =P if, and

only if, P ∈ A[z]S with A[z]S {P ∈ A[z]: supp P ⊆ S}.
It is sometimes convenient to represent finite sets S ⊆ Nn

by polynomials U ∈ A[z] with supp U = S, for instance by
taking U =uS

∑
i∈S

u zi, for a given u ∈A \ {0}. Given
P , Q ∈A[z] and a fixed support S ⊆Nn, the computation
of (P Q)S is called the truncated multiplication . The basic
blockwise multiplication algorithm is adapted as follows:

Algorithm truncated-block-multiply(P , Q,U , b)
Input: P , Q,U ∈A[z]supp U and b∈ (N>)n.
Output: (PQ)supp U ∈A[z]supp U.
1. Rewrite P , Q and U as block polynomials P̄ , Q̄, Ū ∈

Bb[zb].
2. Compute P̂ Evalb P̄ and Q̂ Evalb Q̄.
3. Multiply R̂

(
P̂ Q̂

)
supp Ū ∈ AN(b)[zb] using a naive

algorithm.
4. Compute R̄ Evalb

−1
(
R̂
)
∈B2b−1[zb]supp Ū .

5. Reinterpret R̄ as a polynomial R ∈ A[z] and return
Rsupp U.

In a similar way as in Proposition 2, we can show that
truncated-block-multiply requires at most

N(b) sP̄ sQ̄+E(b) (sP̄ + sQ̄+2 sŪ) (2)

operations in A. However, this bound is very pessimistic
since S= suppU usually has a special form which allows us
to perform the naive truncated multiplication in step 3 in
much less than sP̄ sQ̄ operations. For instance, in the special
and important case of truncated power series at order d, we
have

S=Sn,d {i∈Nn: i1+ + in" d− 1},

and, by [16, Section 6], |Sn,d| =
(
n+ d − 1

n

)
. The naive

truncated power series multiplication at order d can be per-
formed using only

Mn,d

∑

k=0

d−1 ∑

l1+l2=k

|Sn,l1| |Sn,l2| =
(
2n+ d− 1

2n

)
= |S2n,d|

. |Sn,d|2 =
(
n+ d− 1

n

)
2

operations, as shown in [16, Section 6]. Hence, if S = Sn,d

and b = (β , , β), so that S̄ = supp Ū = Sn,#d/β$, then
sP̄ sQ̄ can be replaced by

(
2n+ #d/β$− 1

2n

)
in our complexity

bound (2).
Assuming that we have a way to estimate the number of

operations in AN(b) necessary to compute the truncated pro-
duct R̂ using the naive algorithm, we can adapt the heuristic
of Section 3.2 to determine a candidate block size. Finally let
us mention that the additional implementation tricks from
Section 4.1 also extend to the truncated case in a straight-
forward way.

If we increase the block size b in block-multiply, then the
block coefficients P̄ı̄ , Q̄ı̄ get sparser and sparser. At a certain
point, this makes it pointless to further increase b. One final
optimization which can often be applied is to decompose
P = Pint + Pborder and Qint + Qborder in a such a way that
the multiplication Pint Qint can be done using a larger block
size than the remaining part Pint Qborder + Pborder Qint +
Pborder Qborder of the multiplication P Q. Instead of pro-
viding a full and rather technical algorithm, let us illustrate
this idea with the example

P Q 1+ z1+ z1
2+(1+ z1) z2+ z2

2.

The naive multiplication performs 36 products in A. The
direct use of the Karatsuba algorithm with b=(2,2), reduces
to the naive product of two polynomials of 3 terms with
coefficients in A9, which amounts to 3× 3×9= 81 multipli-
cations in A. If we decompose P and Q into

Pint = Qint = 1+ z1+(1+ z1) z2
Pborder = Qborder = z1

2+ z2
2,

then Pint Qint takes 9 products in A, and the naive multipli-
cation for Pint Qborder+Pborder Qint+Pborder Qborder uses 20
products in A. In this example, the separate treatment of
the border saves 7 products in A out of the 36 of the naive
algorithm, and is faster than the direct use of the blockwise
algorithm.

In this section we focus on the specific and important
problems of multiplying polynomials P , Q ∈ A[z] of total
degree at most d−1, and truncated power series at order d.
Recall from Section 4.2 that Sn,d {i ∈Nn: i1 + + in "
d− 1}. Let

λ(α) (1+α) log (1+α)−α log α,

φβ(α)
log (2 β − 1)+ 2λ(α/β)

λ(2α)
.
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Let η > 0 be the first value of α such that φ1(α) = φ4(α),
and define ζ φ1(η). Numeric computations yield 2.1454<
η < 2.1455 and 1.5336< ζ < 1.5337.

Theorem 4. Let ε> 0, and assume that A admits eval-
uation-interpolation schemes with N(d) = 2 d − 1 and
E(d) = O(d logν (d + 1)), for all d ! 1, and for some
constant ν ! 0. Then two polynomials in A[z] of degree
at most d − 1 can be multiplied with block-multiply using
at most O (|Sn,2d−1|ζ+ε) operations in A, if the sizes of
the blocks b=(β , , β) are chosen as follows:

• β =1, if d/n" η,

• β =4, if η <d/n" 8,

• β = )α/2*, if 8<d/n.

Proof. We introduce α d/n. By Stirling’s formula,
there exists a constant K0 such that

∣∣∣∣log n!−n (log n− 1)+
log n
2

∣∣∣∣"K0, for all n! 1.

From log |Sn,d| = log
(
n+ d − 1

n

)
= log

(
d

n+ d

(
n+ d

n

))
, we

obtain the existence of a constant K1 such that the following
inequality holds for all n! 1 and d! 1:

∣∣∣∣log |Sn,d|−nλ(α)− log n+ log (1+n/d)
2

∣∣∣∣"K1.

Therefore there exists a constant K2 such that
∣∣∣∣
log |Sn,d|

n
−λ(α)

∣∣∣∣ " K2
log n
n∣∣∣∣

log |Sn,2d−1|
n

−λ(2α)

∣∣∣∣ " K2
log n
n

hold for all d ! 1 and n ! 1. By Proposition 2, the cost of
the multiplication is bounded by T =T1+T2 with

T1 = N(b) sP̄ sQ̄=N(b) |Sn,d̄ |2,
T2 = E(b) (sP̄ + sQ̄+2 sR̄

∗ )= 2E(b) (|Sn,d̄ |+ |Sn,2d̄−1|),

where d̄ )d/β*, since deg P̄ " d̄ − 1, deg Q̄ " d̄ − 1, and
deg R̄ " 2 d̄ − 1. With ᾱ d̄/n, *(β) log (2 β − 1), and
using (1), there exists a constant K3 such that:

∣∣∣∣
log T1

n
− *(β)− 2λ(ᾱ)

∣∣∣∣ " K3
log n
n

,
∣∣∣∣
log T2

n
− *(β)−λ(2 ᾱ)

∣∣∣∣ " K3
log n
n

+ ν
log log (β +1)

n
.

Since λ′(α)= log (1+1/α) and since |ᾱ−α/β |"1/n, we can
bound |λ(ᾱ)−λ(α/β)| by log (1+n)

n
"2 log n

n
, and deduce the

existence of an other constant K4 such that
∣∣∣∣
log T1

n
− *(β)− 2 λ(α/β)

∣∣∣∣ " K4
log n
n

,
∣∣∣∣
log T2

n
− *(β)−λ(2α/β)

∣∣∣∣ " K4
log n
n

+ ν
log log (β +1)

n
.

φ
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φ
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Figure 1. Illustration of the curves φβ(α) for various β, together with ψ(α).
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From λ′(α) = log (1 + 1/α) we have that (2 λ(α) −
λ(2 α))′ > 0, and since limα→0 λ(α) = 0 it follows that
2 λ(α)−λ(2 α)>0, and that there exists a constant K5 such
that
∣∣∣∣
log T
n

− *(β)− 2λ(γ)

∣∣∣∣"K5
log n+ log log (d+1)

n
. (3)

In order to express the execution time in terms of the output
size, we thus have to study the function

ψ(α) min
β∈{1,2,3, }

φβ(α).

The first φβ are plotted in Figure 1. The right limit of φ1

when α tends to 0 is 1, while the same limit for the other φβ

is +∞. Since λ(α)> 0 whenever α> 0, the sign of φβ − φ1

is the same as the one of

δβ(α) *(β)+ 2λ(α/β)− 2λ(α).

From δβ
′ (α) = 2/β log (1 + β/α) − 2 log (1 + 1/α) < 0 and

limα→+∞ δβ(α) = log (2 β − 1) − 2 log β < 0, it follows
that there exists a unique zero, written ρβ, of φβ − φ1 for
each β ! 2. These zeros can be approximated by classical
ball arithmetic techniques. We used the numerix package
(based on Mpfr [9]) of Mathemagix [17] to obtain ρ2 >
2.5, ρ3 > 2.16, and ρ4 = η ∈ (2.1454, 2.1455). Still using
ball arithmetic, one checks that min (φ1(α), φ4(α)) ! ψ(α)
achieves its maximum for α ∈ (0, 8] at α = η. Given α > 8,
Lemma 9 of the appendix shows that φ#α/2$(α)< ζ.

Finally, we have obtained so far that taking β = 1 for
α " η, β = 4 for η < α " 8 and β = )α/2* for larger α, the
inequality φβ(α) " ζ holds for all α > 0. Therefore there
exists a constant A, such that log T/log |Sn,2d−1|< ζ + ε for
all d! 3 and n!A log log d, or d" 2 and n!A.

It remains to bound log T/log |Sn,2d−1| for n"A log log d
and d sufficiently large. There exists a constant K6 such
that:

|log |Sn,d|−n log d| =

∣∣∣∣∣
∑

i=0

n−1

log (1+ i/d)− log n!

∣∣∣∣∣
" 2n log n"K6 (log log d)2,

|log |Sn,2d−1|−n log d| " K6 (log log d)2.

Therefore, taking β )α/2*, there exists a contant K7 with

log T " n *(β)+ 2n log (d/β)+ ν log log d+K7 (log log d)2

" n log (d/n + 1) + 2 n log (2 n) + ν log log d +

K7(log log d)2,

which implies that log T/log |Sn,2d−1|" 1+ ε< ζ when d is
sufficiently large. #

Remark 5. In the proof of Theorem 4, it was convenient
for computational purposes to explicitly chose β in terms
of α. However our choice of β is suboptimal. For instance,
taking β = )2.5 α* for α! 4 is generally better whenever n
remains in O(log log d). In fact, we think that algorithm
block-size will do the choice of the block size just as well and
maybe even a little bit better from the latter bounds when
using a function T precise enough. A detailed proof of this
claim sounds quite technical, so we have not pursued this

direction any further in the present article. Nevertheless, the
claim is plausible for the following reasons:

• For symmetry reasons, the block size b computed by
block-size should usually be of the form b = (2k+1, i×,
2k+1, 2k, , 2k) for some k ∈ N (and modulo permu-
tation of the indeterminates).

• The complexity of block-multiply for b of the above
form is close to what we would obtain by taking
β = b1 bn

n
√

= 2k+i/n in the proof of Theorem 4.
When allowing for real β, the maximum of ψ =
maxβ∈[1,∞) φβ(α) is now reached at η ≈ 2.1438, with
φ1(η)= φβ(η)= ζ ≈ 1.5336 and β ≈ 3.7866.

For rings which do not support large evaluation-inter-
polation schemes we propose the following extension of The-
orem 4.

Theorem 6. Let ε>0, and assume that A admits a unit.
Then two polynomials in A[z] of degree at most d−1 can be
multiplied using at most O (|Sn,2d−1|ζ+ε) operations in A.

Proof. We use the Chinese remaindering technique
from [3]. It suffices to prove the theorem for n!2. The unit
of A is written 1, and we introduce Bk A[ω]/

(
ω2k − 1

)

and Tl A[ω]/
(
ω3l−1

)
. By using the aforementioned TFT

algorithm, we can multiply P and Q in Bk (resp. in Tl)
via Theorem 4, with 2k (resp. with 3l) being the next power
of 2 (resp. of 3) of β if we do not perform the divisions
by 2 (resp. by 3). We thus obtain 2k R and 3l R. If u 2k +
v 3l=1 then we deduce R as u 2kR+ v 3lR.
Replacing all arithmetic operations in A by arithmetic

operations in Bk×Tl gives rise to an additional overhead of
O(β log β log log β) with respect to the complexity analysis
from the proof of Theorem 4. More precisely, we have a new
constant K5 such that

∣∣∣∣
log T
n

− *(β)− 2λ(γ)

∣∣∣∣"K5
log n+ log d

n

The result is thus proved for when n > A log d for a suffi-
ciently large constant A. It remains to examine the case
when n"A logd. Again, we use a similar proof as at the end
of Theorem 4, with new constants K7 and K8 such that

log T " n *(β)+2n log (d/β)+ log d+K7 (log log d)2

" n log (d/n + 1) + 2 n log (2 n) + log d +

K7 (log log d)2,
" (n+1) log d+K8n log log d+K7 (log log d)2.

Hence log T/log |Sn,2d−1| " 3/2 + ε < ζ for d sufficiently
large. #

For rings which do not have a unit, we can use a Karat-
suba evaluation-interpolation scheme. For this purpose we
introduce

Φβ(α)

log 3

log 2
log β +2λ(α/β)

λ(2α)
,

∆(α)
log 3
2

+λ(τ )−λ(2 τ).
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Let τ be the unique positive zero of ∆, and let ζ2
Φ32(32 τ). Numeric computations lead to 1.2621 < τ <
1.2622 and 1.5929< ζ2< 1.5930.

Theorem 7. Let ε > 0, let A be any ring. Then two
polynomials in A[z] of degree at most d−1 can be multiplied
using at most O (|Sn,2d−1|ζ2+ε) operations in A.

Proof. We use the Karatsuba scheme [16, Section 2] with
N(2l)=3l and E(2l)=O(3l) for all l!1. We follow the proof
of Theorem 4 and begin with a new constant K5 such that

∣∣∣∣
log T
n

− log 3
log 2

log β − 2λ(γ)

∣∣∣∣"K5
log n+ log β

n
.

In order to express the execution time in terms of the output
size, we thus have to study the function

Ψ(α) min
β∈{1,2,4,8, }

Φβ(α).

The right limit of Φ1 when α tends to 0 is 1, while the same
limit for the other Φβ is +∞. Since λ(α)>0 whenever α>0,
the sign of Φβ −Φβ ′ is the same as the one of

δβ,β ′(α)
log 3
2 log 2

log (β/β ′)+λ(α/β)−λ(α/β ′).

If β > β ′, then δβ,β ′
′ (α)< 0 and limα→+∞ δβ(α) =

(
log 3

2 log 2
−

1
)
log (β/β ′) < 0, which implies the existence of a unique

zero of Φβ−Φβ ′, written ρβ,β ′. In particular, with β ′= β/2,
we obtain ρβ,β/2= β τ . For convenience we let ρβ ρβ,β/2,
and display the first few values:

β 4 8 16 32 64 128
ρβ 5.04855 10.0971 20.1942 40.3884 80.7768 161.554

Φβ(ρβ) 1.57811 1.58853 1.59208 1.59297 1.59286 1.59242

One can verify that log 3

2 log 2
log (B/β) + λ(β τ/B) − λ(τ) =

log 3

2 log 2
log (1/t) + λ(τ t) − λ(τ ) > 0 holds for all t β/B <

1, which implies that ΦB(ρβ) > Φβ(ρβ) for all B ! 2 β.
Therefore Ψ(α)=Φβ(α) with β such that ρβ<α" ρ2β (with
the convention that ρ0 = 0). Lemma 10 of the appendix
provides us with Ψ(α)"Φ32(ρ32)= ζ2. Therefore there exists
a constant A, such that log T/log |Sn,2d−1| < ζ2 + ε for all
d! 2 and n!A log d, or d" 1 and n!A.

It remains to bound log T/log |Sn,2d−1| for n " A log d
and d sufficiently large, as in the end of the proof of The-

orem 4. In this range we take β =2l with l
⌊

log α

0.3 log 2

⌋
, so

that β"α1/0.3. There exist constants K7 and K8 such that:

log T "
(
(n+1)

log 3
log 2

− 1

)
log β +2n log (d/β)

+K7n (log log d)2.

Therefore, using n! 2, we have

log T
log |Sn,2d−1|

< 1.5915< ζ2

whenever d is sufficiently large. #

Theorem 8. Let ε> 0, and assume that A admits evalu-
ation-interpolation schemes with N(d) = 2 d− 1 and E(d) =
O(d logν (d + 1)), for all d! 1, and for some constant ν !
0. Then two power series in A[z] truncated at order d can
be multiplied with truncated-block-multiply using at most
O (|Sn,d|ζ+ε) operations in A, if the sizes of the blocks b=
(β , , β) are chosen as follows:
• β =1, if d/n" 2 η,
• β =4, if 2 η <d/n" 16,
• β = )d/n*, if 16<d/n.

Proof. The proof is similar to the one of Theorem 4. In
the present case, for a suitable new constantK2 the following
inequalities hold:

∣∣∣∣
log |Sn,d|

n
−λ(α)

∣∣∣∣ " K2
log n
n

,
∣∣∣∣
log |S2n,d|

n
− 2 λ(α/2)

∣∣∣∣ " K2
log n
n

.

The cost of the multiplication is bounded by T = T1 + T2

with T1=N(b) S2n,d̄ and T2=4 E(b) Sn,d̄. There exists a new
constant K4 such that:
∣∣∣∣
log T1

n
− *(β)− 2λ

(
α
2 β

)∣∣∣∣ " K4
log n
n

,
∣∣∣∣
log T2

n
− *(β)−λ

(
α
β

)∣∣∣∣ " K4
log n
n

+ ν
log log (β +1)

n
.

The present situation is similar to the one of the proof of
Theorem 4, with α/2 instead of α. Therefore by taking β=1
for α< 2 η, β =4 for 2 η <α" 16 and β = )α* for larger α,
there exists a constant A, such that log T/log |Sn,d|< ζ + ε
for all d! 3 and n!A log log d, or d" 2 and n!A.
It remains to bound log T/log |Sn,d| for n " A log log d

and d sufficiently large. There exists a new constant K6 such
that:

|log |Sn,d|−n log d| " K6 (log log d)2,
|log |S2n,2d−1|− 2n log d| " K6 (log log d)2.

Taking β )α*, we thus have a contant K7 with

log T " n *(β)+2n log (d/β)+ ν log log d+K7 (log log d)2

" n log (d/n + 1) + 2 n log (n) + ν log log d +

K7(log log d)2.

We conclude that logT/log |Sn,d|"1+ε< ζ for d sufficiently
large. #
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This appendix contains details on how one can bound
the functions φ#α/2$(α) and Ψ(α) used in Section 5. We
first prove the bounds in an explicit neighbourhood of
infinity and then we rely on certified ball arithmetic for the
remaining compact set.

Lemma 9. For all α> 8 we have φ#α/2$(α)< ζ.

Proof. Let ϕ(α) φ#α/2$(α) and ϕ̃(α) φα/2(α). We
shall first show that ϕ̃ ′(α) < 0 for all α > 0. Let ϕ̂(α)
(α − 1) ϕ̃ ′(α) λ2(2 α) = λ(2 α) − 2 λ′(2 α) (α − 1) (log (α −
1)+2 λ(2)). Since ϕ̂(8)< 0, it suffices to show that ϕ̂ ′(α)<
0. Since ϕ̂ ′(α) = −2 (2 λ′′(2 α) (α − 1) + λ′(2 α)) (log (α −
1) + 2 λ(2)), we let ϕ̌(α) 2 λ′′(2α) (α − 1) + λ′(2α), and
have to prove that ϕ̌(α)!0. The latter inequality is correct
since limα→+∞ ϕ̌(α) = 0, and ϕ̌ ′(α) = − 5α+1

α2 (2α+1)2
" 0 for

α! 8. On the other hand, for α! 16 we have

|ϕ(α)− ϕ̃(α)| " log (2 )α/2*− 1)− log (α− 1)
λ(2α)

+
2 λ(2)− 2λ(α/)α/2*)

λ(2α)

" log (1+ 3/15)+2
(
λ(2)−λ

(
2 16

17

))

λ(32)
< 0.07.

Since ϕ̃(16)< 1.39, we have shown that ϕ(α)< ζ for α! 16.
For α between 8 and 16, we appeal to numeric computations
to verify that ϕ(α)< ζ still holds. #

Lemma 10. For all α> 0 we have Ψ(α)" ζ2.

Proof. Let κ log 3/log 2, and ς 2 λ(τ) − κ log τ 1
2.7365. Let ϕ̃(α) Φα/τ(α). We shall first show that
ϕ̃ ′(α) < 0 for all α ! 100. Let ϕ̂(α) α ϕ̃ ′(α) λ2(2 α) =
κ λ(2 α)− 2 λ′(2α)α (κ log α+ ς). Since ϕ̂(100)< 0, it suf-
fices to show that ϕ̂ ′(α)<0. Since ϕ̂ ′(α)=−2 (2 α λ′′(2 α)+
λ′(2 α)) (κ log α + ς), we let ϕ̌(α) α λ′′(α) + λ′(α),
and have to prove that ϕ̌(α)!0. The latter inequality is cor-
rect since limα→+∞ ϕ̌(α)=0, and ϕ̌ ′(α)=− α

α2 (2α+1)2
" 0.

Let l
⌊

log (d/n)− log τ

log 2

⌋
and βl 2l. We introduce

ϕ(α) Φβl(α). Since α/(2 τ) < βl " α/τ , for α ! 2256,
we have

|ϕ(α)− ϕ̃(α)| " 2
λ(α/βl)−λ(τ )

λ(2α)

" log 3
λ(2257)

< 0.0062.

Since ϕ̃(2256) < 1.5853, we have shown that ϕ(α) < ζ2 for
α! 2256.
For 216 " α < 2256, we symbolically computed Φβ

′′(α)
and straightforwardly lower bounded it by a function Γ(β)
in the domain β τ " α " 2β τ . For each value of β = 216,
217, , 2255, we used ball arithmetic to show that Γ(β)> 0.
For smaller values of α, we could directly compute that
Φβ

′′(α) > 0 whenever β τ " α " 2β τ . Finally we computed
that Φβ(β τ )" ζ2 for all β =2, 4, 8, , 256, which concludes
the proof. #
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