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Abstract: In this paper, we extend to the complex-valued case a recent result by Nourdin and
Peccati on the gaussian �uctuations of traces of i.i.d. matrices.
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1 Introduction
Let X be a centered random variable with unit variance, taking its values in C and ad-
mitting moments of all orders. Let {Xi,j}i,j>1 be a family of independent and identically
distributed copies of X. We denote by Xn the random matrix de�ned as

Xn =

{
Xi,j√

n

}

16i,j6n

.

In this paper, we aim to �nd the limit (in law) of

trace(Xd
n)− E

[
trace(Xd

n)
]
, (1.1)

where Xd
n denotes the d-th power of Xn. To achieve this goal, we will make use of the

following identity:

trace(Xd
n) = n−

d
2

n∑
i1,...,id=1

Xi1,i2Xi2,i3 . . . Xid,i1 .

In the case where X is real-valued, the problem was solved by Nourdin and Peccati
[1]. The present study extends [1] to the more general case of a complex-valued random
variable X.

When d = 1, the expression (1.1) is very simple; we have indeed

trace(Xn)− E
[
trace(Xn)

]
=

1√
n

n∑
i=1

Xi,i.

As a consequence, if X is real-valued then a straightforward application of the standard
cental limit theorem (CLT) yields the convergence in law to N(0, 1). The case where X
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is complex-valued is not much more di�cult, as one only needs to use the bidimensional
CLT to get the convergence in law to Z = Z1 + iZ2, where (Z1, Z2) is a gaussian vector
with the same covariance matrix as that of (Re(X), Im(X)).

When d > 2, we have:

trace(Xd
n)− E

[
trace(Xd

n)
]

= n−
d
2

n∑
i1,...,id=1

(
Xi1,i2 ....Xid,i1 − E[Xi1,i2 ....Xid,i1 ]

)
. (1.2)

If X is real-valued, it is shown in [1] that there is convergence in law of (1.2) to the
centered normal law with variance d. The idea behind the proof is to separate the sum
in the right-hand side of (1.2) into two parts: a �rst part consisting of the sum over the
diagonal terms, i.e. the terms with indices i1, . . . , id such that there is at least two distinct
integers p and q satisfying (ip, ip+1) = (iq, iq+1); and a second part consisting of the sum
over non-diagonal terms, i.e. the sum over the remaining indices. Using combinatorial
arguments, it is possible to show that the sum over diagonal terms converges to 0 in L2.
Thus, the contribution to the limit comes from the non-diagonal terms only. In order to
tackle the corresponding sum, the idea [1] is to focus �rst on the particular case where the
entries Xi,j are gaussian. Indeed, in this context calculations are much simpler because we
then deal with a quantity belonging to the d-th Wiener chaos, so that the Nualart-Peccati
[3] criterion of asymptotic normality may be applied. Then, we conclude in the general
case (that is, when the entries are no longer supposed to be gaussian) by extending the
invariance principle of Nourdin, Peccati and Reinert [2], so to deduce that it was actually
not a loss of generality to have assumed that the entries were gaussian.

In this paper we study the more general case of complex-valued entries. As we will
see, the obtained limit law is now that of a random variable Z = Z1 + iZ2, where (Z1, Z2)
is a gaussian vector whose covariance matrix is expressed by means of the limits of the
expectations of the square of (1.1), as well as the modulus of the square of (1.1). To show
our result, our strategy consists to adapt, to the complex case, the same method used in
the real case. Speci�cally, we show the following theorem.

Theorem 1.1 Let {Xij}i,j>1 be a family of centered, complex-valued, independent and
identically distributed random variables, with unit variance and admitting moments of all
orders. Set

Xn =

{
Xi,j√

n

}

16i,j6n

.

Then, for any integer k > 1,
{
trace(Xd

n)− E
[
trace(Xd

n)
]}

16d6k

law−→ {Zd}16d6k .

The limit vector {Zd}16d6k takes its values in Ck, and is characterized as follows: the
random variables Z1, . . . , Zk are independent and, for any 1 6 d 6 k, we have Zd =

2



Z1
d + iZ2

d , where (Z1
d , Z

2
d) denotes a gaussian vector with covariance matrix equal to

√
d

(
a c
c b

)
,

with a + b = 1 and a− b + i2c = E(X2
1,1)

d.

The closest result to ours in the existing literature, other than the previously quoted
reference by Nourdin and Peccati [1], is due to Rider and Silverstein [4]. At this stage of
the exposition, we would like to stress that Theorem 1.1 already appears in the paper [4],
but under the following additional assumption on the law of X1,1: Re(X1,1) and Im(X1,1)
must have a joint density with respect to Lebesgue measure, this density must be bounded,
and there exists a positive α such that E((X1,1)

k) 6 kαk for every k > 2. These assump-
tions can sometimes be too restrictive, typically when one wants to deal with discrete laws.
Nevertheless, it is fair to mention that Rider and Silverstein focus more generally on gaus-
sian �uctuations of trace

(
f(Xn)

)−E[trace
(
f(Xn)

)
], when f : C→ C is holomorphic and

satis�es some additional technical assumptions (whereas, in our paper, we `only' discuss
the polynomial case f ∈ C[X]).

The rest of the paper is devoted to the proof of Theorem 1.1. To be in position to do
so in Section 4, we need to establish some preliminary combinatorial results in Section 2,
as well as some results related to the gaussian approximation in Section 3.

2 Some preliminary combinatorial results
As we said, before giving the proof of theorem 1.1 we need to present some combinatorial re-
sults. In what follows, we assume that d > 2 is �xed. Note that the pairs (i1, i2), . . . , (id, i1)
appearing in formula 1.2 are completely determined by the d-tuple (i1, . . . , id). Indeed, it
is straightforward that the set Cn of elements ((i1, i2), .., (id, i1)) in

(
[1, n]2

)d is in bijection
with [1, n]d via the application ((i1, i2), .., (id, i1)) 7→ (i1, . . . , id). The cardinality of Cn is
therefore equal to nd. We denote by Dn the set of diagonal terms of Cn, i.e. the set of
elements of Cn such that there exist (at least) two distinct integers j and k such that
(ij, ij+1) = (ik, ik+1), with the convention that id+1 = i1. We denote by NDn = Cn \ Dn

the set of non-diagonal terms. If i1, . . . , id are pairwise distinct, then ((i1, i2), .., (id, i1)) be-
longs to NDn. Thus, the cardinality of NDn is greater or equal to n(n− 1) . . . (n− d + 1),
or, equivalently, the cardinality of Dn is less or equal to nd − n(n − 1) . . . (n − d + 1). In
particular, the cardinality of Dn is O(nd−1).

For any integer p > 1, any integers α, β ∈ [1, n] and any element Ip having the following
form

Ip =
(
(x1, y1), . . . , (xp, yp)

) ∈ (
[1, n]2

)p
, (2.3)

we denote by mcIp(α, β) the number of times that the pair (α, β) appears in (2.3). Fur-
thermore, we denote by mpIp(α) the number of occurrences of α in {xi, yj}16i,j6p. For
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example, if I4 = ((1, 3), (3, 4), (1, 3), (5, 7)) then mpI4(3) = 3, mpI4(1) = 2, mcI4(1, 3) = 2
and mcI4(3, 4) = 1. For r elements

Jk =
(
(i

(k)
1 , i

(k)
2 ), . . . , (i

(k)
d , i

(k)
1 )

) ∈ Cn, k = 1, . . . , r,

we de�ne the concatenation J1 t . . . t Jr as being
(

(i
(1)
1 , i

(1)
2 ), . . . , (i

(1)
d , i

(1)
1 ), (i

(2)
1 , i

(2)
2 ), . . . , (i

(2)
d , i

(2)
1 ), . . . , (i

(r)
1 , i

(r)
2 ), . . . , (i

(r)
d , i

(r)
1 )

)
.

As such, J1 t . . . t Jr is an element of (Cn)r.
From now on, we denote by #A the cardinality of a �nite set A. The following technical

lemma will allow us to estimate the moments of (1.2). More precisely, (i), (ii), (iii), (iv)
will imply that the variance of the sum of the diagonal terms converges in L2 to 0, (v) and
(vi) will allow us to show that the variance of the sum of the non-diagonal terms converges
to d, and (vii) and (viii) will be used in the computation of the fourth moment of that sum.

Lemma 2.1 Let the notations previously introduced prevail, and consider the following
sets:

An =
{
I2d = J1 t J2 ∈ (Dn)2 : mcI2d

(α, β) 6= 1 for every α, β ∈ [1, n]
}

Bn =
{
I2d ∈ An : mpI2d

(α) ∈ {0, 4} for every α ∈ [1, n]
}

=
{
I2d ∈ An : mcI2d

(α, β) ∈ {0, 2} for every α, β ∈ [1, n]
}

En =
{
Id ∈ Dn : mcId

(α, β) 6= 1 for every α, β ∈ [1, n]
}

Fn = {Id ∈ En : mpId
(α) ∈ {0, 4} for every α ∈ [1, n]

}

= {Id ∈ En : mcId
(α, β) ∈ {0, 2} for every α, β ∈ [1, n]

}

Gn =
{
I2d = J1 t J2 ∈ (NDn)2 : mcI2d

(α, β) ∈ {0, 2} for every α, β ∈ [1, n]
}

Hn =
{
I2d ∈ Gn : mpI2d

(α) ∈ {0, 4} for every α ∈ [1, n]
}

=
{
I2d ∈ Gn : mcI2d

(α, β) ∈ {0, 2} for every α, β ∈ [1, n]
}

Kn =
{
I4d = J1 t J2 t J3 t J4 ∈ (NDn)4 : mcI4d

(α, β) ∈ {0, 2, 4} for every α, β ∈ [1, n]
}

Ln = {I4d ∈ Hn : mpI4d
(α) ∈ {0, 4} for every α ∈ [1, n]

}

= {I4d ∈ Hn : mcI4d
(α, β) ∈ {0, 2} for every α, β ∈ [1, n]

}
.

As n →∞, we have:

(i) # (An \Bn) = O(nd−1).

(ii) If d is even, #Bn = n . . . (n− d + 1); if d is odd, #Bn = 0.

(iii) #(En \ Fn) = O(n
d−1
2 ).

(iv) If d is even, #Fn = n . . . (n− d
2

+ 1); if d is odd, #Fn = 0.
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(v) #Gn \Hn = O(nd−1).

(vi) #Hn = d× n . . . (n− d + 1).

(vii) #(Kn \ Ln) = O(n2d−1).

(viii) #Ln = 3d2 × n . . . (n− 2d + 1).

Proof.

(i) Let I2d =
(
(i1, i2), . . . , (id, i1), (id+1, id+2), . . . , (i2d, id+1)

) ∈ An \ Bn. By de�nition
of An, we have mpI2d

(ij) > 4 for any j = 1, . . . , 2d. Furthermore, the fact that
I2d /∈ Bn ensures the existence of at least one integer j0 between 1 and 2d such that
mpI2d

(ij0) > 4. Let σ : [1, 2d] → [1, 2d] be de�ned by j 7→ σ(j) = min{k : ik = ij}.
It is readily checked that

4d =
∑

α∈Im(σ)

mpI2d
(iα).

We conclude that #Im(σ) < d. Therefore, # (An \Bn) = O(nd−1).

(ii) Assume that Bn is non-empty. Let

I2d =
(
(i1, i2), . . . , (id, i1), (id+1, id+2), . . . , (i2d, id+1)

) ∈ Bn.

For every integer j ∈ [1, 2d], we have mpI2d
(ij) = 4. De�ning σ and proceeding as in

point (i) above, we obtain that #Im(σ) = d. We set m = min{l ∈ Im(σ) | l + 1 /∈
Im(σ)}. Since #Im(σ) = d, it follows that m 6 d. In fact m 6 d − 1, otherwise
the elements of the d-tuple (i1, . . . , id) would be all distinct, and ((i1, i2), . . . , (id, i1))
could not be in Dn, which would yield a contradiction. In the case d = 2, I2d =(
(i1, i2), (i2, i1), (i3, i4), (i4, i3)

) ∈ Bn if and only if i1 = i2, i3 = i4 and i1 6= i3. Thus,
the cardinality of Bn is equal to n(n− 1).
In what follows we suppose that d > 3.
Let us show that d is even (which will prove that Bn is empty if d is odd) and that
I2d can be written as

(
(l1, l2), . . . , (l d

2
−1, l d

2
), (l d

2
, l1), (l1, l2), . . . , (l d

2
−1, l d

2
), (l d

2
, l1),

(j1, j2) . . . , (j d
2
−1, j d

2
), (j d

2
, j1), (j1, j2) . . . , (j d

2
−1, j d

2
), (j d

2
, j1)

)
,

where l1, . . . , l d
2
, j1, . . . , j d

2
are pairwise distinct integers in [1, n], which will prove that

the formula for #Bn given in (ii) holds true. The proof is divided in several parts.
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(a) Using a proof by contradiction, let us assume that there exists an integer q in
[m + 1, d] such that iq does not belong to {i1, . . . , im}. We denote by γ the smallest
element verifying this. Note that γ > m + 2 necessarily, and that there exists an
integer p 6 m such that iγ−1 = ip. Therefore, iγ−1 appears in the four pairs

(ip−1, ip), (ip, ip+1), (iγ−2, iγ−1), (iγ−1, iγ).

Note that for the four pairs above, it is possible that the two pairs in the middle
are the same. By de�nition of Bn, we have mpI2d

(iγ−1) = 4 so these pairs are the
only pairs of I2d containing the integer iγ−1. Moreover, by de�nition of An, we
have mcI2d

(iγ−1, iγ) > 2. Thus, we necessarily have either (iγ−1, iγ) = (ip, ip+1); or
(iγ−1, iγ) = (iγ−2, iγ−1); or (iγ−1, iγ) = (ip−1, ip). If we had (iγ−1, iγ) = (iγ−2, iγ−1),
then we would have iγ−2 = iγ−1 = iγ and iγ would appear at least six times in the
writing of I2d, which is not possible . Similarly, (iγ−1, iγ) = (ip−1, ip) is impossible.
Thus, it must hold that (iγ−1, iγ) = (ip, ip+1). We can therefore state that iγ = ip+1.
Since we also have that p + 1 6 m + 1 and im+1 ∈ {i1, . . . , im}, we can conclude that
iγ ∈ {i1, . . . , im}, which yields the desired contradiction. Hence,

{im+1, . . . , id} ⊂ {i1, . . . , im}. (2.4)

(b) Let us show that if l, k 6 d − 1 are two distinct integers satisfying ik = il, then
(ik, ik+1) = (il, il+1). Let l, k 6 d − 1 be two integers such that l 6= k et ik = il.
The integer il appears in the four pairs {(il−1, il), (il, il+1), (ik−1, ik), (ik, ik+1)} (or
only in three pairs, if both pairs in the middle are the same, which happens whether
l = k − 1). As mpI2d

(ik) = 4, these pairs are the only pairs of I2d containing the
integer ik. By de�nition of An, all pairs of I2d must have at least two occurrences in
I2d. If we have (ik, ik+1) = (ik−1, ik) then we have ik = ik+1 = ik−1 and ik appears
at least six times in I2d, which cannot be true. Similarly, (ik, ik+1) = (il−1, il) is
impossible. Therefore, it must hold that (ik, ik+1) = (il, il+1).
(c) It follows from the de�nition of m that there exists an integer r ∈ [1, m] satisfying
im+1 = ir. Let us show that

(i1, . . . , id) = (i1, . . . , im, ir, . . . , ir+d−m−1). (2.5)

If m = d−1, then (i1, . . . , id) = (i1, . . . , im, ir) and (2.5) is veri�ed. If m 6 d−2 then,
being given that im+1 = ir and that we already showed in (b) that if l, k 6 d− 1 are
two distinct integers satisfying ik = il then ik+1 = il+1, we can state that im+2 = ir+1.
Thus, if m = d − 2 then (i1, . . . , id) = (i1, . . . , im, ir, ir+1), and (2.5) is once again
veri�ed. Finally, if m 6 d − 3, we iterate this process as many times as necessary
until we get (2.5).
(d) Let us now prove that the elements of (ir, . . . , ir+d−m−1) are all distinct. Once
again, we use a proof by contradiction. Thus, let us assume that there exists an
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integer p in [1, n] which appears at least twice in the uplet (ir, . . . , ir+d−m−1). We
then have {ir, . . . , ir+d−m−1} = {im+1, . . . , id} ⊂ {i1, . . . , im}, see (2.4) and (2.5).
Thus, p appears at least three times overall in the uplet (i1, . . . , id). This latter fact
implies mpI2d

(p) > 6, which contradicts the assumption mpI2d
(p) = 4.

(e) Finally, let us establish that 2m = d and r = 1. The elements of (ir, . . . , ir+d−m−1)
being all distinct, the couple (ir+d−m−1, i1) = (id, i1) cannot belong to the set of pairs

{(ir, ir+1), . . . , (ir+d−m−2, ir+d−m−1)} = {(im+1, im+2), . . . , (id−1, id)}.
(because, by (d), no pair of this set can have ir+d−m−1 as a �rst coordinate.) More-
over, since i1 does not belong to {i2, . . . , im} then the pair (ir+d−m−1, i1) cannot belong
to the set of pairs {(i1, i2), . . . , (im−1, im)} (because no pair of this set can have i1
as a second coordinate). Also, the integer id appearing at least twice in the uplet
(i1, . . . , id), it cannot belong to the uplet (id+1, . . . , i2d) (otherwise, id would appear
at least six times in the pairs of I2d). Thus, the only way for the occurrence of the
pair (id, i1) in I2d to be greater or equal than 2 is that (ir+d−m−1, i1) = (im, im+1).
Therefore, i1 = im+1 = ir. As i1, . . . , im are all distinct and r 6 m, it must hold
that r = 1. Hence, r + d − m − 1 = d − m and id−m = im. Since i1, . . . , id−m are
all distinct, see indeed (d), it must be true that m > d − m. Since id−m = im, we
conclude that d−m = m, that is, d = 2m. As such, we establish that (id+1, . . . , i2d) =
(id+1, . . . , i 3d

2
, id+1, . . . , i 3d

2
). Let us �nally note that i1, . . . , i d

2
, id+1, . . . , i 3d

2
are neces-

sarily distinct because mpI2d
(ij) = 4. This completes the proof of part (ii).

(iii) Consider I =
(
(i1, i2), . . . , (id, i1)

) ∈ En \ Fn. Let ξ : [1, d] → [1, d] be de�ned by
j 7→ ξ(j) = min{k | ik = ij}. From the equation 2d =

∑
α∈Im(ξ)

mpI(iα), and using the

fact that all mpI(iα) are greater or equal than 4, as well as there exists an α in Im(ξ)
satisfying mpI(iα) > 4, we conclude that #Im(ξ) < d

2
. Therefore, the cardinality of

En \ Fn is equal to O(n
d−1
2 ).

(iv) Let us assume that Fn is not empty. Consider Id =
(
(i1, i2), . . . , (id, i1)

) ∈ Fn.
Proceeding as in point (ii) above, we conclude that Fn is empty in the case where d
is odd, and that the elements of Fn have the following form when d is even:

(
(l1, l2), . . . , (l d

2
−1, l d

2
)(l d

2
, l1), (l1, l2), . . . , (l d

2
−1, l d

2
)(l d

2
, l1)

)
.

Here, l1, . . . , l d
2
are pairwise distinct integers in [1, n]. The formula of #Fn given in

(iv) follows directly from that.

(v) Consider I =
(
(i1, i2), . . . , (id, i1), (id+1, id+2), . . . , (i2d, id+1)

) ∈ Gn \ Hn. Let ζ :
[1, 2d] → [1, 2d] be de�ned by j 7→ ζ(j) = min{k | ik = ij}. From the identity
4d =

∑
α∈Im(ζ)

mpI(iα), and using the fact that mpI(iα) are greater or equal than 4, as

well as that there exists an α in Im(ζ) satisfying mpI(iα) > 4, we conclude as in (i)
that #Im(ζ) < d. Therefore, the cardinality of Gn \Hn is O(nd−1).

7



(vi) Consider I =
(
(i1, i2), . . . , (id, i1), (id+1, id+2), . . . , (i2d, id+1)

) ∈ Hn.
(a) By de�nition of NDn, there is no redundancy neither among the pairs (i1, i2), . . . , (id, i1)
nor among the pairs (id+1, id+2), . . . , (i2d, id+1). Therefore, to satisfy the constraint
de�ning Hn, it is necessary and su�cient that each couple of (i1, i2), . . . , (id, i1)
matches one and only one couple among (id+1, id+2), (id+2, id+3), . . . , (i2d, id+1).
(b) Using a proof by contradiction, let us show that the elements of {i1, . . . , id} are
pairwise distinct. If p and q were two distinct integers in [1, d] such that ip = iq then,
according to (a), there would exist k ∈ [d + 1, 2d] satisfying (ip, ip+1) = (ik, ik+1),
which would yield ip = iq = ik and, consequently, mpI(ip) > 6. This would contra-
dict the fact that mpI(ip) = 4.
(c) Let us establish that, for every p ∈ [1, d] and q ∈ [d + 1, 2d] such that ip = iq, we
have ip+1 = iq+1. Using a proof by contradiction, let us assume that there exists an
integer q′ ∈ [d + 1, 2d] di�erent from q such that (ip, ip+1) = (iq′ , iq′+1). Then it must
hold that ip = iq = iq′ and mpI(ip) > 6, which contradicts the fact that mpI(ip) = 4.

The results (a), (b) et (c) allow us to conclude that there exists an integer k ∈ [1, d]
satisfying (i1, . . . , id) = (id+k, id+k+1, . . . , i2d, id+1, . . . , id+k−1). Thus, the elements
of Gn are completely characterized by a given integer k ∈ [1, d] and a given set
{i1, . . . , id} where ij are pairwise distinct integers in [1, n]. We can therefore conclude
that #Hn = d× n . . . (n− d + 1).

(vii) Consider I =
(
(i1, i2), . . . , (id, i1), . . . , (i3d+1, i3d+2), . . . , (i4d, i3d+1)

) ∈ Kn \ Ln. Let
η : [1, 4d] −→ [1, 4d] be the application de�ned by η(j) = min{k| ik = ij}. From
the identity 8d =

∑
α∈Im(η)

mpI(iα), and using the fact that mpI(iα) are all greater or

equal than 4, as well as for at least one α ∈ Im(η) it must hold that mpI(iα) > 4, we
conclude that #Im(η) < 2d. Therefore, the cardinality of Kn \ Ln is O(n2d−1).

(viii) Consider I =
(
(i1, i2), . . . , (id, i1), . . . , (i3d+1, i3d+2), . . . , (i4d, i3d+1)

) ∈ Ln. For every
j 6 4d, we have mpI(ij) = 4. Then 2d = #Im(η), with η as in point (vii).
(a) Using a proof by contradiction, let us show that, for every k ∈ [0, 3], the integers
ikd+1, . . . , i(k+1)d are all distinct. Assume that there exist two distinct integers l and
h in [1, d], as well as an integer k ∈ [0, 3], satisfying ikd+l = ikd+h. By de�nition of
the set Ln, we have

(
(ikd+1, ikd+2), . . . , (i(k+1)d, ikd+1)

) ∈ NDn. Then, the pairs
{
(ikd+1, ikd+2), . . . , (i(k+1)d, ikd+1)

}

are all distinct, and we have mcI(ikd+h, ikd+h+1) = 2, which implies that there exists
k′ ∈ [0, 3], di�erent from k, and h′ ∈ [1, d] satisfying ikd+h = ik′d+h′ . It follows that
ikd+h appears at least six times in I, which contradicts the fact that mpI(ikd+h) = 4.
(b) For any p = 0, . . . , 3, let us introduce Mp = {ipd+1, . . . , i(p+1)d}. For any integers
p, q in [0, 3], we have either Mp

⋂
Mq = ∅ or Mp = Mq. Otherwise there would exist

an integer j such that iqd+j ∈ Mp and iqd+j+1 /∈ Mp and, since mcI(iqd+j, iqd+j+1) =
2, there would exist q′ ∈ [0, 3], di�erent from p and q, and j′ ∈ [1, d] such that
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(iqd+j, iqd+j+1) = (iq′d+j′ , iq′d+j′+1); therefore iqd+j would appear at least six times in
I, which would yield a contradiction.
(c) If Mp = Mq, then proceeding as in point (vi), we show that there exists j ∈ [1, d]
such that

(ipd+1, . . . , i(p+1)d) = (iqd+j, . . . , i(q+1)d, iqd+1, . . . , idq+j−1).

The results (a), (b) et (c) allow us to conclude that a generic element of Ln is char-
acterized by:
- the choice of one case among the following three cases: either M0 = M1 and
M2 = M3; or M0 = M2 and M1 = M3; or M0 = M3 and M1 = M2. In what follows,
we consider the case M0 = M1 and M2 = M3 (we can proceed similarly in the other
two cases);
- the choice of 2d integers i1, . . . , id, i2d+1, . . . , i3d that are pairwise distinct in [1, n];
- the choice of an integer k ∈ [1, d] such that (id+1, . . . , i2d) = (ik, . . . , id, i1, . . . , ik−1);
- the choice of an integer k′ ∈ [1, d] such that

(i3d+1, . . . , i4d) = (i2d+k′ , . . . , i3d, i2d+1, . . . , i2d+k′−1).

It is now easy to deduce that #Ln = 3d2n . . . (n− 2d + 1).

3 Gaussian approximations
Let X = {X i}i>1 be a family of centered independent random variables taking values in Rr

and having pairwise uncorrelated components with unit variance. Let G = {Gi}i>1 be a
family of independent standard gaussian random variables taking values in Rr and having
independent components. Suppose also that X and G are independent, and set

X = (X1
1 , . . . , X1

r , X2
1 , . . . , X

2
r , . . .) = (X1, . . . , Xr, Xr+1, . . . , X2r, . . .).

i.e., Xj+(i−1)r = X i
j.

Consider integers m > 1, dm > . . . > d1 > 2, N1, . . . , Nm, as well as real symmetric
functions f1, . . . , fm such that each function fi is de�ned on [1, rNi]

di and vanishes at the
points (i1, ..., idi

) such that ∃j 6= k for which dij/re = dik/re (we remind that dxe means
the unique integer k such that k < x 6 k + 1). Let us de�ne

Qi(X) = Qdi
(fi, X) =

rNi∑
i1,...,id=1

fi(i1, . . . , idi
) Xi1 . . . Xidi

.

In the case of complex-valued matrices, the real and imaginary parts of the entries Xi,j

are not necessarily independent. Therefore, we will need to modify the results used by
Nourdin and Peccati in the paper [3]. The following lemma is a variant, weaker in terms
of assumptions, of the hypercontractivity property.
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Lemma 3.1 Let the notations previously introduced prevail. Assume that α = sup
i

E(|Xi|4) <

∞ and set K = 36× 25r × (1 + 2α
3
4 )2. Then

E(Qd(X)4) 6 KdE(Qd(X)2)2. (3.6)

Proof. Set



U =
∑

∀k: ik /∈{(N−1)r+1,...,Nr}
f(i1, . . . , id)Xi1 . . . Xid

Vj =
∑

∃!k:ik=(N−1)r+j

f(i1, . . . , id)Xi1 . . . ̂X(N−1)r+j . . . Xid

The notation ̂X(N−1)r+j means that this term is removed from the product. Observe that
X(N−1)r+j = XN

j according to the notation that we adopted previously, and that the
quantity Qd(X) is given by:

Qd(X) = U +
r∑

j=1

XN
j Vj

(as f vanishes at the previously speci�ed points). Note that, for every p 6 N and every
i, j ∈ [1, r], Xp

j is independent from U and Vi. Thus, by choosing p = N , we have

E(Qd(X)4) =
∑

s0+...+sr=4

24

s0! . . . sr!
E(U s0

r∏
j=1

(VjX
N
j )sj)

= E(U4) +
∑

s1+...+sr=2

12

s1! . . . sr!
E(U2

r∏
j=1

V
sj

j )E(
r∏

(
j=1

XN
j )sj)

+
∑

s1+...+sr=3

24

s1! . . . sr!
E(U

r∏
j=1

V
sj

j )E(
r∏

j=1

(XN
j )sj)

+
∑

s1+...+sr=4

24

s1! . . . sr!
E(

r∏
j=1

V
sj

j )E(
r∏

j=1

(XN
j )sj).

In the equation above, we used that
∑

s1+...+sr=1

4
s1!...sr!

E(U3
r∏

j=1

(VjX
N
j )sj) = 0 since XN

j are

centered. By using the generalized Hölder inequality, we obtain:

E(U s0

r∏
j=1

V
sj

j ) 6 E
(
U4

) s0
4

r∏
j=1

E(V 4
j )

sj
4 .

Since the terms E(V 4
j )

sj
4 are upper bounded by

(∑r
j=1 E(V 4

j )
1
2

) sj
2 , we obtain:

∑
s1+...+sr=4−s0

E(U s0

r∏
j=1

V
sj

j ) 6 5rE
(
U4

) s0
4

(
r∑

j=1

E(V 4
j )

1
2

) 4−s0
2

.
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Using the generalized Hölder inequality again, we have E(
r∏

j=1

(XN
j )sj) 6

r∏
j=1

E
(
(XN

j )4
) sj

4 6

α
∑

sj
4 . Therefore:

E(Qd(X)4) 6 E(U4) + 12× 5rE(U4)
1
2

r∑
j=1

E(V 4
j )

1
2 (3.7)

+24× 5rα
3
4 E(U4)

1
4

(
r∑

j=1

E(V 4
j )

1
2

) 3
2

+24× 5rα

(
r∑

j=1

E(V 4
j )

1
2

)2

.

Note that α does not appear in the second term of the right-hand side of the inequality
above because XN

j are random variable with unit variance and zero covariance. Using the
inequality x

1
4 y

3
2 6 x

1
2 y + y2, obtained by separating the cases x 6 y2 and x > y2, we get:

E(U4)
1
4

(
r∑

j=1

E(V 4
j )

1
2

) 3
2

6 E(U4)
1
2

r∑
j=1

E(V 4
j )

1
2 +

(
r∑

j=1

E(V 4
j )

1
2

)2

.

Then

E(Qd(X)4) 6 E(U4) + 12× 5r(1 + 2α
3
4 )E(U4)

1
2

r∑
j=1

E(V 4
j )

1
2 (3.8)

+24× 5r(α
3
4 + α)

(
r∑

j=1

E(V 4
j )

1
2

)2

.

To prove the hypercontractivity property (3.6), we will use an induction on N . When
N = 1, because f vanishes at the previously speci�ed points, then the only case where
the value taken by Qd(X) is not zero is when d = 1, that is, when Qd(X) has the form∑r

j=1 ajX
1
j . In this case, U = 0 and Vj = aj. Thus, by (3.7), we have E(Qd(X)4) 6

24 × 5rα
(∑r

j=1 a2
j

)2

. It follows that E(Qd(X)4) 6 KE(Qd(X)2)2. Let us now assume
that the result holds for N − 1. Then, because U and Vj are functions of X1, . . . , XN−1,
we can apply the recursive hypothesis to E(U4) and E(V 4

j ), and obtain that:
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E(Qd(X)4) 6 Kd

[
E(U2)2 +

12× 5r(1 + 2α
3
4 )

K
1
2

E(U2)
r∑

j=1

E(V 2
j )

]

+Kd 24× 5r(α + α
3
4 )

K

(
r∑

j=1

E(V 2
j )

)2

6 Kd


E(U2)2 + 2E(U2)

r∑
j=1

E(V 2
j ) +

(
r∑

j=1

E(V 2
j )

)2



= Kd

[
E(U2) +

r∑
j=1

E(V 2
j )

]2

.

Furthermore, since the XN
j are centered, unit-variance and independent of U and of Vj,

we have

E(Qd(X)2) = E((U +
r∑

j=1

XN
j Vj)

2)

= E(U2) + 2
r∑

j=1

E(UVj)E(XN
j ) +

∑
i,j=1,...,r

E(ViVj)E(XN
i XN

j )

= E(U2) +
r∑

j=1

E(V 2
j ),

which completes the proof.

The following two lemmas will be used to prove the convergence in law of the sum of the
non-diagonal terms in (1.2), and to show that the limit does not depend on the common
law of Xi,j.

Lemma 3.2 Let {X i}i>1, {Gi}i>1 and Qi(X) be as in the beginning of section 3. Let us
assume that β = sup

i
E(|Xi|3) < ∞, E(Qi(X)2) = 1, and that V is the symmetric matrix

de�ned as V (i, j) = E(Qi(X)Qj(X)). Consider ZV = (Z1
V , . . . , Zm

V ) ∼ Nm(0, V ) (i.e. ZV

is a gaussian vector with a covariance matrix equal to V ).

1. If ϕ : Rm → R is a function of class C3 such that
∥∥ϕ

′′′∥∥
∞ < ∞ then

∣∣E(ϕ(Q1(X), . . . , Qm(X)))− E(ϕ(Q1(G), . . . , Qm(G)))
∣∣

6
∥∥∥ϕ

′′′
∥∥∥
∞

(
β +

√
8

π

)
K

3
4
(dm−1)r3m4 dm!3

d1!(d1 − 1)!

√
max

16k6m
max

16j6Nk

infjfk,
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where

infjfk =

rNk∑
i1,...,idk−1=1

fk(j, i1, . . . , idk−1)
2.

2. If ϕ : Rm → R is a function of class C3 such that
∥∥ϕ

′′′∥∥
∞ < ∞ then

∣∣E(ϕ(Q1(X), . . . , Qm(X)))− E(ϕ(ZV )
∣∣ 6

∥∥∥ϕ
′′
∥∥∥
∞

(
m∑

i=1

∆i,i + 2
∑

16i<j6m

∆i,j

)

+

∥∥ϕ
′′′∥∥

∞ m4dm!3

d1!(d1 − 1)!

((
β +

√
8

π

)
K

3
4
(dm−1)r3 +

√
32

π

(
64

π

)dm−1
)√

max
16k6m

max
16j6Nk

infjfk

where infjfk as above and ∆i,j given by

dj

di−1∑
s=1

(s−1)!

(
di − 1
s− 1

)(
dj − 1
s− 1

) √
(di + dj − 2s)!

(‖fi ?di−s fi‖2 +
∥∥fj ?dj−s fj

∥∥
2

)

+1di<dj

√
dj!

(
dj

di

) ∥∥fj ?dj−di
fj

∥∥
2
,

with

fj?rfj(i1, . . . , i2dj−2r) =

rNj∑

k1,...,kr=1

fj(k1, . . . , kr, i1, . . . , idj−r)fj(k1, . . . , kr, idj−r+1, . . . , i2dj−2r).

Proof. Set Q(X) = (Q1(X), . . . , Qm(X)) and, for any 1 6 p 6 N + 1, consider




Z(p) =
(
G1, . . . , G(p−1)r, X(p−1)r+1, . . . , XrN

)

U
(i)
p =

∑
∀k: ik /∈{(p−1)r+1,...,pr}

fi(i1, . . . , id)Z
(p)
i1

. . . Z
(p)
id

V
(i)
p,j =

∑
∃!k:ik=(p−1)r+j

fi(i1, . . . , id)Z
(p)
i1

. . .
̂

Z
(p)
(p−1)r+j . . . Z

(p)
id

The notation ̂
Z

(p)
(p−1)r+j means that this term is removed from the product. Let us set

Up = (U
(1)
p , . . . , U

(m)
p ) and Vp,j = (V

(1)
p,j , . . . , V

(m)
p,j ). Note that Q(Z(p)) can be written as

Q(Z(p)) = Up +
r∑

j=1

Xp
j Vp,j.

Similarly, we have: Q(Z(p+1)) = Up +
r∑

j=1

Gp
jVp,j. For a vector Y = (Y1, . . . , Ym) in Rm and

a vector s = (s1, . . . , sm) in Nm, we set Y s =
∏m

i=1 Y si
i .
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1. Let ϕ be a function of class C3. The Taylor formula gives:
∣∣∣∣∣∣
E

(
ϕ(Q(Z(p)))

)− E


∑

|s|62

1

s!
∂sϕ(Up)

(
r∑

j=1

Xp
j Vp,j

)s



∣∣∣∣∣∣
6

∥∥∥ϕ
′′′
∥∥∥
∞

∣∣∣∣∣∣
E


∑

|s|=3

(
r∑

j=1

Xp
j Vp,j

)s



∣∣∣∣∣∣
.

Note that, for every p, Xp
j is independent from Up and from Vp,i. Thus, we have:

∣∣∣E
(∑

|s|=3

(∑r
j=1 Xp

j Vp,j

)s)∣∣∣) =

∣∣∣∣∣E
(

m∑

k,l,q=1

r∑
j1=1

Xp
j1

V
(k)
p,j1

r∑
j2=1

Xp
j2

V
(l)
p,j2

r∑
j3=1

Xp
j3

V
(q)
p,j3

)∣∣∣∣∣

=

∣∣∣∣∣
m∑

k,l,q=1

r∑
j1=1

r∑
j2=1

r∑
j3=1

E
(
Xp

j1
Xp

j2
Xp

j3

)
E

(
V

(k)
p,j1

V
(l)
p,j2

V
(q)
p,j3

)∣∣∣∣∣ .

The Hölder inequality ensures that:
∣∣E (

Xp
j1

Xp
j2

Xp
j3

)∣∣ 6 E
(∣∣Xp

j1

∣∣3
) 1

3
E

(∣∣(Xp
j2

)
∣∣3

) 1
3
E

(∣∣(Xp
j3

)
∣∣3

) 1
3 6 β.

Using the Hölder inequality, as well as the lemma 3.1 and the relation E
(
(V

(k)
p,n )2

)
=

dk!
2infpr+nfk, we obtain

∣∣∣E
(
V

(k)
p,j1

V
(l)
p,j2

V
(q)
p,j3

)∣∣∣ 6 E

(∣∣∣V (k)
p,j1

∣∣∣
4
) 1

4

E

(∣∣∣V (l)
p,j2

∣∣∣
4
) 1

4

E

(∣∣∣V (q)
p,j3

∣∣∣
4
) 1

4

6 K
3
4
(dm−1)E

(∣∣∣V (k)
p,j1

∣∣∣
2
) 1

2

E

(∣∣∣V (l)
p,j2

∣∣∣
2
) 1

2

E

(∣∣∣V (q)
p,j3

∣∣∣
2
) 1

2

6 K
3
4
(dm−1)

(
dm!2 max

16j6r
max

16k6m
infpr+jfk

) 3
2

.

Then, ∣∣∣∣∣∣
E

(
ϕ(Q(Z(p)))

)− E


∑

|s|62

1

s!
∂sϕ(Up)

(
r∑

j=1

Xp
j Vp,j

)s



∣∣∣∣∣∣

6
∥∥∥ϕ

′′′
∥∥∥
∞

βK
3
4
(dm−1)(r m)3

(
dm!2 max

16j6r
max

16k6m
infpr+jfk

) 3
2

.

By writing the same formula for Q(Z(p+1)) we obtain this time
∣∣∣∣∣∣
E

(
ϕ(Q(Z(p+1)))

)− E


∑

|s|62

1

s!
∂sϕ(Up)

(
r∑

j=1

Gp
jVp,j

)s



∣∣∣∣∣∣

6
∥∥∥ϕ

′′′
∥∥∥
∞

√
8

π
K

3
4
(dm−1)(r m)3

(
dm!2 max

16j6r
max

16k6m
infpr+jfk

) 3
2

.
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In the last inequality, the term
√

8
π
comes from the fact that Gp

j are standard gaussian

which implies that E
(∣∣Gp

j

∣∣3
)

=
√

8
π
. Since the vectors Xp and Gp are centered, have the

same covariance matrix and are independent from Up and from V p
j , then by putting the

two inequalities together, we obtain:
∣∣E (

ϕ
(
Q(Z(p+1))

))− E
(
ϕ

(
Q(Z(p))

))∣∣

6
∥∥∥ϕ

′′′
∥∥∥
∞

(
β +

√
8

π

)
K

3
4
(dm−1)(r m)3

(
dm!2 max

16j6r
max

16k6m
infpr+jfk

) 3
2

. (3.9)

Since
r max

i
Ni∑

j=1

infjfk =
E((Qk(X))2)

dk!(dk−1)!
then

max
i

Ni∑
p=1

max
16j6r

max
16k6m

infpr+jfk 6
max

i
Ni∑

p=1

r∑
j=1

m∑

k=1

infpr+jfk

6
m∑

k=1

r max
i

Ni∑
j=1

infjfk 6
m∑

k=1

E
(
(Qk(X))2

)

dk!(dk − 1)!
6 m

d1!(d1 − 1)!
.

By summing over p in (3.9), we �nally obtain that:

|E (ϕ (Q(X)))− E (ϕ (Q(G)))|

6
∥∥∥ϕ

′′′
∥∥∥
∞

(
β +

√
8

π

)
K

3
4
(dm−1)r3m4 dm!3

d1!(d1 − 1)!

√
max

16k6m
max

16j6Nk

infjfk.

2. Let ϕ be a function of class C3. We have

|E (ϕ(Q(X)))− E (ϕ(ZV )))| 6 |E (ϕ(Q(X)))− E (ϕ(Q(G))))|+|E (ϕ(Q(G)))− E (ϕ(ZV )))| .

For the �rst term we use the point 1 of lemma 3.2 to �nd an upper bound. For the second
term we observe that the vector G have independent components, which allows us to use
Theorem 7.2 in [2] to get the following inequality :

∣∣E(ϕ(Q1(X), . . . , Qm(X)))− E(ϕ(ZV )
∣∣ 6

∥∥∥ϕ
′′
∥∥∥
∞

(
m∑

i=1

∆i,i + 2
∑

16i<j6m

∆i,j

)

+C
∥∥∥ϕ

′′′
∥∥∥
∞

√
32

π

[
m∑

j=1

(
64

π
)

dj−1

3 dj!

]3 √
max

16k6m
max

16j6Nk

infjfk.
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The constant C is such that
max

k
Nk∑

i=1

max
16j6m

infifj 6 C and since

max
k

Nk∑
i=1

max
16j6m

infifj 6
m∑

j=1

max
k

Nk∑
i=1

infifj 6
m∑

j=1

E ((Qj(X))2)

dj!(dj − 1)!
6 m

d1!(d1 − 1)!

then we can choose the constant C equal to m
d1!(d1−1)!

. Thus, we obtain

∣∣E(ϕ(Q1(X), . . . , Qm(X)))− E(ϕ(ZV )
∣∣ 6

∥∥∥ϕ
′′
∥∥∥
∞

(
m∑

i=1

∆i,i + 2
∑

16i<j6m

∆i,j

)

+
∥∥∥ϕ

′′′
∥∥∥
∞

√
32

π

(
64

π

)dm−1

m4 (dm!)3

d1!(d1 − 1)!

√
max

16k6m
max

16j6Nk

infjfk.

Lemma 3.3 Let the notations used in lemma 3.2 prevail. Consider the class H of indicator
functions on measurable convex sets in Rm. Let us de�ne

B1 =

(
m∑

i=1

∆i,i + 2
∑

16i<j6m

∆i,j

)

B2 =
m4dm!3

d1!(d1 − 1)!

((
β +

√
8

π

)
K

3
4
(dm−1)r3 +

√
32

π

(
64

π

)dm−1
)√

max
16k6m

max
16j6Nk

infjfk

1. Let us assume that the covariance matrix V is the m-dimensional identity matrix.
Then

sup
h∈H(Rm)

∣∣E [
h(Q1(X), . . . , Qm(X))

]− E [h(ZV )]
∣∣ 6

(
8

3
6
7

+
4

3
13
7

)
(5B1 + 5B2)

1
7 m

3
7 .

2. Let us assume that the covariance matrix V is invertible and let Λ = diag(λ1, . . . , λk)
be the diagonal matrix of the eigenvalues of V . Let B be an orthogonal matrix (i.e.
BT B = Im and BBT = Im) such that V = BΛBT , and let b = maxi,j(Λ

− 1
2 BT ).

Then

sup
h∈H(Rm)

∣∣E [
h(Q1(X), . . . , Qm(X))

]− E [h(ZV )]
∣∣ 6

(
8

3
6
7

+
4

3
13
7

)
(5b2B1+5b3B2)

1
7 m

3
7 .

Proof. 1. Let us assume that the covariance matrix V is the m-dimensional iden-
tity matrix. Denote by Φ the standard normal distribution in Rm, and by φ the cor-
responding density function. Consider h ∈ H(Rm) and de�ne the following function:
ht(x) =

∫
Rm h(

√
ty +

√
1− tx)Φ(dy), 0 < t < 1. The key result is Lemma 2.11 in [5]

16



which states that, for every probability measure Q on Rm, every random variables W ∼ Q
and Z ∼ Φ, and any 0 < t < 1, we have

sup
h∈H(Rm)

|E [h(W )]− E [h(ZV )]| 6 4

3

[
sup

h∈H(Rm)

|E [ht(W )]− E [ht(ZV )]|+ 2
√

m
√

t

]
.

(3.10)

Let us de�ne u(x, t, z) = (2πt)−
m
2 exp

(
−

m∑
i=1

(zi−
√

1−txi)
2

2t

)
. Using the change of variable

z =
√

ty +
√

1− tx in ht(x) leads to

ht(x) =

∫

Rm

h(z)u(x, t, z)dz.

By the dominated convergence theorem, we may di�erentiate under the integral sign and
obtain

∂2ht

∂x2
i

(x) = −1− t

t

∫

Rm

h(z)u(x, t, z)dz +
1− t

t2

∫

Rm

h(z)(zi −
√

1− txi)
2u(x, t, z)dz.

Since ‖h‖∞ 6 1 then we have
∣∣∣∣
∂2ht

∂x2
i

(x)

∣∣∣∣ 6 1− t

t
+

1− t

t2

∫

Rm

(zi −
√

1− txi)
2u(x, t, z)dz.

If (Y1, . . . , Ym) is a gaussian vector with covariance matrix tIm then
∫
Rm(zi−

√
1− txi)u(x, t, z)dz =

E(Y 2
i ) = t. Therefore, we have

∣∣∣∣
∂2ht

∂x2
i

(x)

∣∣∣∣ 6 2
1− t

t
.

Furthermore, for i 6= j we have

∂2ht

∂xi∂xj

(x) =
1− t

t2

∫

Rm

h(z)(zi −
√

1− txi)(zj −
√

1− txj)u(x, t, z)dz,

so that
∣∣∣ ∂2ht

∂xi∂xj
(x)

∣∣∣ 6 1−t
t2

E(|Yi|)E(|Yi|) = 2(1−t)
πt

. We conclude that
∥∥h

′′∥∥
∞ 6 2

t
6 5

t3
.

Similarly, for i, j, k in [1,m] it holds that:
∣∣∣∣

∂3ht

∂xi∂xj∂xk

(x)

∣∣∣∣

6 (1− t)
3
2

t3
max 3E(|Yi|)t + E(|Yi|3); E(|Yj|)t + E(|Yi|2)E(|Yj|); E(|Yi|)E(|Yj|)E(|Yk|).

17



Therefore
∥∥h

′′′∥∥
∞ 6 5

t3
. Combining the latter inequality with the result (3.10) and point 2

of Lemma 3.2, we obtain

sup
h∈H(Rm)

|E [h(Q(X))]− E [h(ZV )]|

6 4

3

[
sup

h∈H(Rm)

|E [ht(Q(X))]− E [ht(ZV )]|+ 2
√

m
√

t

]

6 8

3

√
m
√

t +
4

3
(5B1 + 5B2)t

−3.

The function in the right-hand side of the inequality reaches its minimum at t =
(

15(B1+B2)√
m

) 2
7 ,

hence
sup

h∈H(Rm)

|E [h(Q(X))]− E [h(ZV )]| 6
(

8

3
6
7

+
4

3
13
7

)
(5B1 + 5B2)

1
7 m

3
7 .

2. Set Q(X) = (Q1(X), . . . , Qm(X)). For any h ∈ H(Rm), we have

E(h(Q(X)))− E(h(Zv)) = E(h(BΛ
1
2 Λ−

1
2 BT Q(X)))− E(h(BΛ

1
2 Λ−

1
2 BT Zv)).

De�ne g(x) = h(BΛ
1
2 x), x ∈ Rm. Since g ∈ H(Rm) then, using inequality (3.10), we get

sup
h∈H(Rm)

|E [h(Q(X))]− E [h(ZV )]|

6 sup
g∈H(Rm)

∣∣∣E
[
g(Λ−

1
2 BT Q(X))

]
− E

[
g(Λ−

1
2 BT ZV )

]∣∣∣

6 4

3

[
sup

g∈H(Rm)

∣∣∣E
[
gt(Λ

− 1
2 BT Q(X))

]
− E

[
gt(Λ

− 1
2 BT ZV )

]∣∣∣ + 2
√

m
√

t

]
.

We can �nd an upper bound for the second and third derivatives of ft(x) = gt(Λ
− 1

2 BT x).
Indeed,

∥∥f
′′
t

∥∥
∞ 6 5b2t−3 and

∥∥f
′′′
t

∥∥
∞ 6 5b3t−3. By using the same reasoning as in point 1

and replacing B1 by b2B1 and B2 by b3B2 in (3.10), we obtain the result.

4 Proof of Theorem 1.1
We use hereafter the notation adopted in the beginning of Section 2. If we separate the
diagonal terms from the non-diagonal terms in (1.2), we obtain

trace(Xd
n)− E(trace(Xd

n)) =
1

n
d
2

∑

((i1,i2),...,(id,i1))∈Dn

(Xi1,i2 . . . Xid,i1 − E(Xi1,i2 . . . Xid,i1))

+
1

n
d
2

∑

((i1,i2),...,(id,i1))∈NDn

Xi1,i2 . . . Xid,i1 .

18



The expectation in the second sum is equal to zero because the Xi,j are independent
and centered. The variance of the term containing the diagonal terms is upper bounded by
O

(
1√
n

)
and, therefore, goes to 0 as n goes to in�nity. Indeed, if we set M = sup

i,j
E(|Xi,j|2d),

then

Var


 1

n
d
2

∑

((i1,i2),...,(id,i1))∈Dn

Xi1,i2 . . . Xid,i1




=
1

nd


E





 ∑

((i1,i2),...,(id,i1))∈Dn

Xi1,i2 . . . Xid,i1




2
−


E


 ∑

(i1,i2),...,(id,i1)∈Dn

Xi1,i2 . . . Xid,i1







2
 .

Keeping the notation introduced in lemma 2.1, we have:

E




(
∑

((i1,i2),...,(id,i1))∈Dn

Xi1,i2 . . . Xid,i1

)2



=
∑

((i1,i2),...,(id,i1),(id+1,id+2),...,(i2d,id+1))∈An

E
(
Xi1,i2 . . . Xid,i1Xid+1,id+2

. . . Xi2d,id+1

)
.

Since E
(
Xi1,i2 . . . Xid,i1Xid+1,id+2

. . . Xi2d,id+1

)
is equal to 1 over the subset Bn of An, and is

upper bounded by M over the subset An \Bn, then we can state that:
∣∣∣∣∣∣
E





 ∑

((i1,i2),...,(id,i1))∈Dn

Xi1,i2 . . . Xid,i1




2
−#Bn

∣∣∣∣∣∣
6 M#(An \Bn). (4.11)

Furthermore, since the Xi,j are centered and independent, then E(Xi1,i2 . . . Xid,i1) = 0 if
((i1, i2), . . . , (id, i1)) ∈ Dn \ En. Thus,

E


 ∑

((i1,i2),...,(id,i1))∈Dn

Xi1,i2 . . . Xid,i1


 =

∑

((i1,i2),...,(id,i1))∈En

E(Xi1,i2 . . . Xid,i1).

On the other hand, E(Xi1,i2 . . . Xid,i1) is equal to 1 over the subset Fn of En, and bounded
by
√

M over En \ Fn. Then,
∣∣∣∣∣∣
E


 ∑

((i1,i2),...,(id,i1))∈Dn

Xi1,i2 . . . Xid,i1


−#Fn

∣∣∣∣∣∣
6
√

M#(En \ Fn). (4.12)
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Finally, by combining the estimations (4.11) and (4.12), and using points (i) to (iv) of
Lemma 2.1 and the fact that #Dn = O(nd−1), we get the following result, with Zn de�ned
by Zn =

∑
((i1,i2),...,(id,i1))∈Dn

Xi1,i2 . . . Xid,i1 :

Var (Zn) = E(Z2
n)− E(Zn)2

= #Bn +
(
E(Z2

n)−#Bn

)− (#Fn)2 +
(
(#Fn)2 − E(Zn)2

= #Bn − (#Fn)2 +
(
E(Z2

n)−#Bn

)
+

(
#Fn − E(Zn)

)(
#Fn + E(Zn)

)
.

From points (ii) and (iv) of Lemma 2.1, it follows that #Bn − (#Fn)2 = O(nd−1). Using
point (i) and the relation (4.11), we obtain the estimation E(Z2

n) − #Bn = O(nd−1).
Finally, using points (iii)− (iv) and the relation (4.12), we get the following estimations:
E(Zn)−#Fn = O(n

d−1
2 ) and E(Zn)+#Fn = O(n

d
2 ). From these estimations, we conclude

that:

Var


 1

n
d
2

∑

((i1,i2),...,(id,i1))∈Dn

Xi1,i2 . . . Xid,i1


 = O

(
1√
n

)
.

Consider now a bijection σ : [1, n2] → [1, n] × [1, n]. Let us de�ne Xi = Xσ(i) and
R = E(Re(Xi)

2). When R = 1, the Xi are real-valued, which corresponds exactly to the
result of Nourdin et Peccati [1] (there is then nothing more to prove). By contrast, when
R = 0, the Xi are purely imaginary-valued; factoring out by id in the trace formula shows
that the result in this case can be derived from the case R = 1. In what follows, we can
then freely assume that R ∈ (0, 1). Set ρ = E(Re(Xi)Im(Xi))

R
√

1−R
, and de�ne:





X0
i = Re(Xi)− ρ

√
R

1−R
Im(Xi)

X1
i = Im(Xi)

X0
i,j = Re(Xi,j)− ρ

√
R

1−R
Im(Xi,j)

X1
i,j = Im(Xi,j)

,

fn(i1, . . . , id) =
1

n
d
2

1{(σ(i1),...,σ(id))∈NDn},

and

Qd(fn, X) =
n2∑

i1,...,id=1

fn(i1, . . . , id) Xi1 . . . Xid .

We have:

Xi1 . . . Xid =
d∏

k=1

(
X0

ik
+ ρ

√
R

1−R
X1

ik
+ iX1

ik

)
=

d∏

k=1

(
X0

ik
+

(
ρ

√
R

1−R
+ i

)
X1

ik

)
.
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Hence

Xi1 . . . Xid =
∑

j1,...,jd∈{0,1}d

(
i + ρ

√
R

1−R

)∑
jk

Xj1
i1

. . . Xjd
id

,

which yields

Qd(fn, X) =
d∑

k=0

(
i + ρ

√
R

1−R

)k ∑

(j1,...,jd)∈{0,1}d

j1+...+jd=k

∑

(i1,...,id)∈[1,n2]d

fn(i1, . . . , id)X
j1
i1

. . . Xjd
id

=
d∑

k=0

(
i + ρ

√
R

1−R

)k ∑

(j1,...,jd)∈{0,1}d

j1+...+jd=k

∑
(
(i1,i2),...,(id,i1)

)
∈NDn

1

n
d
2

Xj1
i1,i2

. . . Xjd
id,i1

.

We de�ne for any two elements (i1, . . . , id), (j1, . . . , jd) of [1, n]d, and (p1, . . . , pd) ∈ {0, 1}d

the quantity gk
n [((i1, j1), p1), . . . ((id, jd), pd)] as follows: gk

n [((i1, j1), p1), . . . ((id, jd), pd)] =

1

n
d
2
if ((i1, j1), . . . , (id, jd)) ∈ NDn and

d∑
l=1

pl = k, and gk
n [((i1, j1), p1), . . . ((id, jd), pd)] = 0

otherwise. Set R0 =
√

Var(X0
i ), R1 =

√
Var(X1

i ), and Y = (Y k
i,j)(i,j)∈[1,n]2

k∈{0,1}
a family of

random variables de�ned by Y k
i,j =

Xk
i,j

Rk
. Then

Qd(g
k
n, Y ) =

∑

(x1,...,xd)∈[1,n]d

(y1,...,yd)∈[1,n]d

(p1,...,pd)∈{0,1}d

gk
n [((x1, y1), p1), . . . , ((xd, yd), pd)] Y

p1
x1,y1

. . . Y pd
xd,yd

=
1

(R0)d−k(R1)k

∑

(j1,...,jd)∈{0,1}d
∑

jp=k

∑
(
(i1,i2),...,(id,i1)

)
∈NDn

1

n
d
2

Xj1
i1,i2

. . . Xjd
id,i1

.

We can then conclude that

Qd(fn, X) =
d∑

k=0

(
i + ρ

√
R

1−R

)k

(R0)
d−k(R1)

kQd(g
k
n, Y ).

If g̃k
n stands for the symmetrization of gk

n then Qd(g̃k
n, Y ) = Qd(g

k
n, Y ), where g̃k

n =
∑

σ∈Sd

gk,σ
n

and gk,σ
n [((x1, y1), p1), . . . , ((xd, yd), pd)] = gk

n

[
((xσ(1), yσ(1)), pσ(1)), . . . , ((xσ(d), yσ(d)), pσ(d))

]
.

To establish that Qd(fn, X) converge in law to the variable Z1
d + iZ2

d where Zd = (Z1
d , Z

2
d)

is a gaussian vector, it is su�cient to show that the Qd(g
k
n, Y ), k = 0, . . . , d, converge in

law to a gaussian vector having independent components. Using part 2 of Lemma 3.3 (in
the particular case r = 2), we show that Qd(g

k
n, Y ) converges in law to a gaussian vector
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whose covariance matrix V is given by V (k, k′) = lim
∞

E(Qd(g
k
n, Y )Qd(g

k′
n , Y )). To do so, it

is su�cient to check the assumptions of Lemma 3.3, that is, (i) max
i=1,...,2N

inf(a,b),p g̃k
N → 0,

(ii) for every 1 6 s 6 d− 1,
∥∥∥g̃k

N ?s g̃k
N

∥∥∥
2
→ 0, (iii) E(Qd(g

k
n, Y )Qd(g

k′
n , Y ) → δi,j (with δi,j

the Kronecker symbol), and (iv) E(Qd(g
k
n, Y )2) → σ2. We can rewrite Qd(g

k
n, Y ) as

Qd(g
k
n, Y ) =

1

n
d
2

∑

(j1,...,jd)∈{0,1}n

j1+...+jd=k

∑

(i1,...,id)∈NDn

Y j1
i1,i2

. . . Y jd
id,i1

.

The second-order moment of Qd(g
k
n, Y ) is equal to

1

nd

∑

(j1,...,j2d)∈{0,1}n

j1+...+jd=jd+1+...+j2d=k

∑
(
(i1,i2),...,(id,i1)

)
∈NDn(

(id+1,id+2),...,(i2d,id+1)

)
∈NDn

E(Y j1
i1,i2

. . . Y jd
id,i1

Y
jd+1

id+1,id+2
. . . Y j2d

i2d,id+1
).

(4.13)

For the expectation corresponding to the indices i1, . . . , i2d, j1, . . . , j2d in (4.13) to be
di�erent from zero, it must hold that (i1, . . . , i2d) belongs to Gn, where Gn has been de-
�ned in Lemma 2.1. Furthermore, since the subset Gn \ Hn is of cardinality O(nd−1),
its contribution to the moment of order 2 of Qd(g

k
n, Y ) is O( 1

n
). It remains then to see

what happens when (i1, . . . , i2d) belongs to Hn. In this case, let us recall from the proof
of point (vi) of Lemma 2.1 that the elements of the set Hn are completely characterized
by d given pairwise distinct integers i1, . . . , id ∈ [1, n] and a given integer k ∈ [1, d] such
that (id+1, . . . , i2d) = (ik, . . . , id, i1, . . . , ik−1). Moreover, if the expectation corresponding
to the indices i1, . . . , i2d, j1, . . . , j2d in (4.13) is di�erent from zero, then it must hold that
(jd+1, . . . , j2d) = (jk, . . . , jd, j1, . . . , jk−1) and this expectation is equal to 1. Thus,

E
(
Qd(g

k
n, Y )2

)
=

1

nd

∑

(j1,...,jd)∈{0,1}n

j1+...+jd=k

d× n . . .× (n− d + 1) + O

(
1

n

)

=
dCk

d × n . . .× (n− d + 1)

nd
+ O(

1

n
),

which yields E
(
Qd(g

k
n, Y )2

) −→
n→∞

dCk
d . Moreover, E(Qd(g

k
N , Y )Qd(g

j
N , Y )) is equal to

1

nd

∑

(j1,...,j2d)∈{0,1}n

j1+...+jd=k,jd+1+...+j2d=j

∑
(
(i1,i2),...,(id,i1)

)
∈NDn(

(id+1,id+2),...,(i2d,id+1)

)
∈NDn

E(Y j1
i1,i2

. . . Y jd
id,i1

Y
jd+1

id+1,id+2
. . . Y j2d

i2d,id+1
).

Similarly to the computation of the second-order moment of Qd(g
k
n, Y ), the set of ele-

ments for which the expectation in (4.14) is di�erent from zero is the set Gn of Lemma
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2.1. The subset Gn \ Hn is of cardinality O(nd−1), which implies that its contribution to
E(Qd(g

k
N , Y )Qd(g

j
N , Y )) is O( 1

n
). Furthermore, the elements of the set Hn are character-

ized by d given pairwise distinct integers i1, . . . , id ∈ [1, n] and a given integer k ∈ [1, d] such
that (id+1, . . . , i2d) = (ik, . . . , id, i1, . . . , ik−1). Moreover, for E(Y j1

i1,i2
. . . Y jd

id,i1
Y

jd+1

id+1,id+2
. . . Y j2d

i2d,id+1
)

to be di�erent from zero, it must hold that (jd+1, . . . , j2d) = (jk, . . . , jd, j1, . . . , jk−1), which
is impossible in the case j 6= k. We conclude that E(Qd(g

k
N , Y )Qd(g

j
N , Y )) → 0 for every

j 6= k.
From the de�nition of g̃k

n, it is clear that
∥∥∥g̃k

n

∥∥∥
∞

6
∥∥gk

n

∥∥
∞ 6 1

n
d
2
. Then,

inf(a,b),p g̃k
N =

∑

(x1,...,xd−1)∈[1,n]d−1

(y1,...,yd−1)∈[1,n]d−1

(p1,...,pd−1)∈{0,1}d−1

g̃k
n (((a, b), p), ((x1, y1), p1), . . . , ((xd−1, yd−1), pd−1))

2

6
∑

(i1,...,id)∈[1,n]d

(p1,...,pd)∈{0,1}d

σ∈Sd

gk
n

(
((iσ(1), iσ(1)+1), pσ(1)), . . . , ((iσ(d), iσ(d)+1), pσ(d))

)2

×1{a=iσ(1)} × 1{b=iσ(1)+1} × 1{p=pσ(1)}

6 2d−1(d)!nd−2
∥∥∥g̃k

n

∥∥∥
2

∞
6 2d−1(d)!

n2
.

Therefore max
i=1,...,2N

inf(a,b),p g̃k
N 6 2d−1(d)!

n2 → 0.
Now, let 1 6 s 6 d− 1 and σ1, σ2 ∈ Sd. Then

gk,σ1
n ?s gk,σ2

n

[
((x1, y1), p1), . . . , ((xd−s, yd−s), pd−s), ((x

′
1, y

′
1), p

′
1), . . . , ((x

′
d−s, y

′
d−s), p

′
d−s)

]

=
∑

(xd−s+1,...,xd)∈[1,n]s

(yd−s+1,...,yd)∈[1,n]s

(pd−s+1,...,pd)∈{0,1}s

gk,σ1
n [((x1, y1), p1), . . . , ((xd−s, yd−s), pd−s), ((xd−s+1, yd−s+1), pd−s+1), . . . , ((xd, yd), pd)]

×gk,σ2
n

[
((x′1, y

′
1), p

′
1), . . . , ((x

′
d−s, y

′
d−s), p

′
d−s), ((xd−s+1, yd−s+1), pd−s+1), . . . , ((xd, yd), pd)

]
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so that∥∥∥g̃k
n ?s g̃k

n

∥∥∥
2

2

=
1

(d!)4

∑

σ1,σ2,σ3,σ4∈Sd

∑

(x1,...,xd−s)∈[1,n]d−s

(y1,...,yd−s)∈[1,n]d−s

(p1,...,pd−s)∈{0,1}d−s

∑

(x′1,...,x′d−s)∈[1,n]d−s

(y′1,...,y′
d−s

)∈[1,n]d−s

(p′1,...,p′
d−s

)∈{0,1}d−s

∑

(xd−s+1,...,xd)∈[1,n]s

(yd−s+1,...,yd)∈[1,n]s

(pd−s+1,...,pd)∈{0,1}s

∑

(x′d−s+1,...,x′d)∈[1,n]s

(y′
d−s+1

,...,y′
d
)∈[1,n]s

(p′
d−s+1

,...,p′
d
)∈{0,1}s

×gk,σ1
n [((x1, y1), p1), . . . , ((xd−s, yd−s), pd−s), ((xd−s+1, yd−s+1), pd−s+1), . . . , ((xd, yd), pd)]

×gk,σ2
n

[
((x′1, y

′
1), p

′
1), . . . , ((x

′
d−s, y

′
d−s), p

′
d−s), ((xd−s+1, yd−s+1), pd−s+1), . . . , ((xd, yd), pd)

]

×gk,σ3
n

[
((x1, y1), p1), . . . , ((xd−s, yd−s), pd−s), ((x

′
d−s+1, y

′
d−s+1), p

′
d−s+1), . . . , ((x

′
d, y

′
d), p

′
d)

]

×gk,σ4
n

[
((x′1, y

′
1), p

′
1), . . . , ((x

′
d−s, y

′
d−s), p

′
d−s), ((x

′
d−s+1, y

′
d−s+1), p

′
d−s+1), . . . , ((x

′
d, y

′
d), p

′
d)

]
.

For the sake of notational simplicity and because this case is representative of the dif-
�culty, in the rest of the proof we assume that σ1 = σ2 = σ3 = σ4 = Id, where
Id stands for the identity permutation over [1, d]. Since gk

n is equal to zero at point
[((x1, y1), p1), . . . , ((xd, yd), pd)] if yi 6= xi+1 or yd 6= x1, then∑

(x1,...,xd−s)∈[1,n]d−s

(y1,...,yd−s)∈[1,n]d−s

(p1,...,pd−s)∈{0,1}d−s

∑

(x′1,...,x′d−s)∈[1,n]d−s

(y′1,...,y′
d−s

)∈[1,n]d−s

(p′1,...,p′
d−s

)∈{0,1}d−s

∑

(xd−s+1,...,xd)∈[1,n]s

(yd−s+1,...,yd)∈[1,n]s

(pd−s+1,...,pd)∈{0,1}s

∑

(x′d−s+1,...,x′d)∈[1,n]s

(y′
d−s+1

,...,y′
d
)∈[1,n]s

(p′
d−s+1

,...,p′
d
)∈{0,1}s

×gk,Id
n [((x1, y1), p1), . . . , ((xd−s, yd−s), pd−s), ((xd−s+1, yd−s+1), pd−s+1), . . . , ((xd, yd), pd)]

×gk,Id
n

[
((x′1, y

′
1), p

′
1), . . . , ((x

′
d−s, y

′
d−s), p

′
d−s), ((xd−s+1, yd−s+1), pd−s+1), . . . , ((xd, yd), pd)

]

×gk,Id
n

[
((x1, y1), p1), . . . , ((xd−s, yd−s), pd−s), ((x

′
d−s+1, y

′
d−s+1), p

′
d−s+1), . . . , ((x

′
d, y

′
d), p

′
d)

]

×gk,Id
n

[
((x′1, y

′
1), p

′
1), . . . , ((x

′
d−s, y

′
d−s), p

′
d−s), ((x

′
d−s+1, y

′
d−s+1), p

′
d−s+1), . . . , ((x

′
d, y

′
d), p

′
d)

]

=
∑

(α1,...,αd−s+1)∈[1,n]d−s+1

(p1,...,pd−s)∈{0,1}d−s

∑

(α′1,...,α′d−s+1)∈[1,n]d−s+1

(p′1,...,p′
d−s

)∈{0,1}d−s

∑

(i1,...,is−1)∈[1,n]s−1

(pd−s+1,...,pd)∈{0,1}s

∑

(i′1,...,i′s−1)∈[1,n]s−1

(p′
d−s+1

,...,p′
d
)∈{0,1}s

×1{α1=α′1} × 1{αd−s+1=α′d−s+1}

×gk
n [((α1, α2), p1), . . . , ((αd−s, αd−s+1), pd−s), ((αd−s+1, i1), pd−s+1), . . . , ((is−1, x1), pd)]

×gk
n

[
((α′1, α

′
2), p

′
1), . . . , ((α

′
d−s, α

′
d−s+1), p

′
d−s), ((α

′
d−s+1, i1), pd−s+1), . . . , ((is−1, x

′
1), pd)

]

×gk
n

[
((α1, α2), p1), . . . , ((αd−s, αd−s+1), pd−s), ((αd−s+1, i

′
1), p

′
d−s+1), . . . , ((i

′
s−1, x1), p

′
d)

]

×gk
n

[
((α′1, α

′
2), p

′
1), . . . , ((α

′
d−s, α

′
d−s+1), p

′
d−s), ((α

′
d−s+1, i

′
1), p

′
d−s+1), . . . , ((i

′
s−1, x

′
1), p

′
d)

]

6 22dn2d−2
∥∥gk

n

∥∥4

∞ 6 22dn−2.

We conclude that
∥∥∥g̃k

n ?s g̃k
n

∥∥∥
2

2
→ 0.

Then, all the assumptions of Lemma 3.3 are ful�lled by Qd(g
k
N , Y ). Therefore,

Qd(fN , Y )
law−→

d∑

k=1

(
i + ρ

√
R

1−R

)k

Rk
0 Rd−k

1

√
dCk

dGk,
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where the Gk's are independent standard gaussian random variables. We can rewrite this
result as:

Qd(fN , Y )
law−→ Z1

d + iZ2
d ,

where Zd = (Z1
d , Z

2
d) is a gaussian vector; its covariance matrix is

(
σ2

1 σ1,2

σ1,2 σ2
2

)
, with

d = σ2
1 + σ2

2 and dE(X2
1 )d = σ2

1 − σ2
2 + i 2σ1,2.

This completes the proof of Theorem 1.1.
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