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The effect of measurement errors in discriminant analysis is investigated. Given observations
Z =X + ε, where ε denotes a random noise, the goal is to predict the density of X among two
possible candidates f and g. We suppose that we have at our disposal two learning samples.
The aim is to approach the best possible decision rule G⋆ defined as a minimizer of the Bayes
risk.

In the free-noise case (ε = 0), minimax fast rates of convergence are well-known under the
margin assumption in discriminant analysis (see (Ann. Statist. 27 (1999) 1808–1829)) or in the
more general classification framework (see (Ann. Statist. 35 (2002) 608–633, Ann. Statist. 32
(2004) 135–166)). In this paper, we intend to establish similar results in the noisy case, that
is, when dealing with errors in variables. We prove minimax lower bounds for this problem and
explain how can these rates be attained, using in particular an Empirical Risk Minimizer (ERM)
method based on deconvolution kernel estimators.

Keywords: classification; deconvolution; minimax theory; fast rates

1. Introduction

In the problem of discriminant analysis, we usually observe two i.i.d. samplesX
(1)
1 , . . . ,X

(1)
n

and X
(2)
1 , . . . ,X

(2)
m . Each observation X

(i)
j ∈ R

d is assumed to admit a density with re-
spect to a σ-finite measure Q, dominated by the Lebesgue measure. This density will be

denoted by f if the observation belongs to the first set (i.e., when i= 1) or g in the other
case. Our aim is to infer the density of a new incoming observation X . This problem can
be considered as a particular case of the more general and extensively studied binary
classification problem (see [13] for a detailed introduction or [7] for a concise survey).
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In this framework, a decision rule or classifier can be identified with a set G ⊂ R
d,

which attributes X to f if X ∈ G and to g otherwise. Then, we can associate to each
classifier G its corresponding Bayes risk RK(G) defined as:

RK(G) =
1

2

[
∫

K/G

f(x) dQ(x) +

∫

G

g(x) dQ(x)

]

, (1.1)

where we restrict the problem to a compact set K ⊂R
d. The minimizer of the Bayes risk

(the best possible classifier for this criterion) is given by:

G⋆K = {x ∈K :f(x)≥ g(x)}, (1.2)

where the infimum is taken over all subsets of K . The Bayes classifier is obviously un-
known since it explicitly depends on the couple (f, g). The goal is thus to estimate G⋆K
thanks to a classifier Ĝn,m based on the two learning samples.
The risk minimizer (1.2) has attracted many attentions in the last two decades because

it involves a quantity of applied motivating examples, including pattern recognition, spam
filtering, or medical diagnostic. However, in many real-world problems, direct observa-
tions are not available and measurement errors occur. As a result, it could be interesting
to take into account this problem into the classification task. In this paper, we propose
to estimate the Bayes classifier G⋆K defined in (1.2) thanks to noisy samples. For all
i ∈ {1,2}, we assume that we observe:

Z
(i)
j =X

(i)
j + ε

(i)
j , j = 1, . . . , ni, (1.3)

instead of the X
(i)
j , where in the sequel n1 = n and n2 = m. The ε

(i)
j denotes i.i.d.

random variables expressing measurement errors. We will see in this work that we are
facing an inverse problem, and more precisely a deconvolution problem. Indeed, assume
that for all x ∈R

d, dQ(x) = µ(x) dx for some bounded function µ. If ε admits a density

η with respect to the Lebesgue measure, then the corresponding density of the Z
(i)
j is

the convolution product (f ·µ) ∗ η if i= 1 or (g ·µ) ∗ η if i= 2. This property gives rise to
a deconvolution step in the estimation procedure. Deconvolution problems arise in many
fields where data are obtained with measurement errors and are at the core of several
nonparametric statistical studies. For a general review of the possible methodologies
associated to these problems, we may mention for instance [28]. More specifically, we refer
to [15] in density estimation, [9] for nonparametric prediction or [8] where goodness-of-fit
tests are constructed in the presence of noise. The main key of all these studies is to
construct a deconvolution kernel which may allow to annihilate the noise ε. More details
on the construction of such objects are provided in Section 3. It is important to note
that in this discriminant analysis setup, or more generally in classification, there is up
to our knowledge no such a work. The aim of this article is to describe minimax rates of
convergence in noisy discriminant analysis under the Margin assumption.
In the free-noise case, that is, when ε= 0, [26] has attracted the attention on minimax

fast rates of convergence (i.e., faster than n−1/2). In particular, they propose a classifier
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Ĝn,m satisfying

sup
G⋆K∈G(α,ρ)

E[RK(Ĝn,m)−RK(G⋆K)]≤C(n∧m)−(α+1)/(2+α+ρα), (1.4)

for some positive constant C. Here, G(α,ρ) denotes a nonparametric set of candidates
G⋆K with complexity ρ > 0 and margin parameter α ≥ 0 (see Section 2.1 for a precise
definition). In (1.4), the complexity parameter ρ > 0 is related to the notion of entropy
with bracketing whereas the margin is used to relate the variance to the expectation.
It allows [26] to get improved bounds using the so-called peeling technique of [32]. This
result is at the origin of a recent and vast literature on fast rates of convergence in
classification (see, for instance, [2, 27]) or in general statistical learning (see [20]). In
these papers, the complexity assumption can be of two forms: a geometric assumption
over the class of candidates G⋆K (such as finite VC dimension, or boundary fragments)
or assumptions on the regularity of the regression function of classification (plug-in type
assumptions). In [27], minimax fast rates are stated for finite VC classes of candidates
whereas plug-in type assumptions have been studied in the binary classification model
in [2] (see also [13, 35]). More generally, [20] proposes to consider ρ > 0 as a complexity
parameter in local Rademacher complexities. It gives general upper bounds generalizing
(1.4) and the results of [26] and [2]. In the present work, a plug-in type complexity
assumption will be considered.
In all these results, empirical risk minimizers appear as good candidates to reach

these fast rates of convergence. Indeed, given a class of candidates G, a natural way to
estimate G⋆K is to consider an Empirical Risk Minimization (ERM) approach. In standard
discriminant analysis (e.g., in the free-noise case considered in [26]), the risk RK(G) in
(1.2) can be estimated by:

Rn,m(G) =
1

2n

n
∑

j=1

1
{X

(1)
j ∈K/G}

+
1

2m

m
∑

j=1

1
{X

(2)
j ∈G}

. (1.5)

It leads to an empirical risk minimizer Ĝn,m, if it exists, defined as:

Ĝn,m = argmin
G∈G

Rn,m(G). (1.6)

Unfortunately, in the errors-in-variables model, since we observe noisy samples Z =
X+ ε, the probability densities of the observed variables w.r.t. the Lebesgue measure are
respectively convolution (f ·µ)∗η and (g ·µ)∗η, where, for instance, f ·µ(x) = f(x)×µ(x)
for all x ∈R

d. As a result, classical ERM principle fails since:

1

2n

n
∑

i=1

1
{Z

(1)
i ∈K/G}

+
1

2m

m
∑

i=1

1
{Z

(2)
i ∈G}

a.s.
−−−−→
n,m→∞

1

2

[
∫

K/G

(f · µ) ∗ η(x) dx+
∫

G

(g · µ) ∗ η(x) dx
]

6=RK(G).



4 S. Loustau and C. Marteau

As a consequence, we add a deconvolution step in the classical ERM procedure and study
the solution of the minimization:

min
G∈G

Rλn,m(G),

where Rλn,m(G) is an asymptotically unbiased estimator of RK(G). This empirical risk
uses kernel deconvolution estimators with smoothing parameter λ. It is called deconvo-
lution empirical risk and will be of the form:

Rλn,m(G) =
1

2n

n
∑

j=1

hK/G,λ(Z
(1)
j ) +

1

2m

m
∑

j=1

hG,λ(Z
(2)
j ), (1.7)

where the hG,λ(·) are deconvoluted versions of indicator functions used in classical ERM
for direct observations (see Section 3 for details).
In this contribution, we would like to describe as precisely as possible the influence of

the error ε on the classification rates of convergence and the presence of fast rates. Our
aim is to use the asymptotic theory of empirical processes in the spirit of [32] (see also
[33]) when dealing with the deconvolution empirical risk (1.7). To this end, we study in
details the complexity of the class of functions {hG,λ,G ∈ G}, given the explicit form of
functions hG,λ. This complexity is related to the imposed complexity over G.
We establish lower and upper bounds and discuss the performances of this decon-

volution ERM estimator under a plug-in complexity assumption. As mentioned earlier,
different complexity assumptions have been developed in the last decades. The boundary
fragment regularity, considered by, e.g., [21, 26] is the core of a future work.
We point out that the definition of the empirical risk (1.7) leads to a new and interest-

ing theory of risk bounds detailed in Section 3 for discriminant analysis. In particular,
parameter λ has to be calibrated to reach a bias/variance trade-off in the decomposition
of the excess risk. Related ideas have been recently introduced in [19] in the Gaussian
white noise model and density estimation setting for more general linear inverse prob-
lems using singular values decomposition. In our framework, up to our knowledge, the
only minimax result is [17] which gives minimax rates in Hausdorff distance for mani-
fold estimation in the presence of noisy variables. [11] gives also consistency and limiting
distribution for estimators of boundaries in deconvolution problems, but no minimax
results are proposed. In the free-error case, we can also apply this methodology. In this
case, the empirical risk is given by the estimation of f and g using simple kernel density
estimators. This idea has been already mentioned in [34] in the general learning context
and called Vicinal Risk Minimization (see also [10]). However, even in pattern recognition
and in the direct case, up to our knowledge, there is no asymptotic rates of convergence
for this empirical minimization principle.
In this contribution, a classifier G is always identified with a subset of Rd. Our aim

is to mimic the set G⋆K from the noisy observations (1.3). In particular, we aim at
understanding the relationship between the spatial position of an input X ∈ R

d and its
affiliation to one of the candidate densities. For this purpose, we give a deconvolution
strategy to minimize the excess risk (1.1). This problematic falls into the general problem
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of prediction with measurement errors (see [9]). This is the classification counterpart of
the more extensively studied model of regression with errors-in-variables (see [16] or more
recently [28]). It is important to note that one could alternatively try to provide the best
classifier for a noisy input Z . In this case, we are faced to a direct problem which is
in some sense already treated in [26]. However, it could be interesting to compare the
performances of the two different approaches.
At this step, remark that similar problems have been considered in the test theory.

Indeed, if we deal with a new incoming (noise free) observation X having density fX ,
our aim is exactly to test one of the following ‘inverse’ hypotheses:

HIP
0 :fX = f, against HIP

1 :fX = g. (1.8)

However, we do not set any kind of order (null and alternative) between H0 and H1. The
risk RK(G) is then related to the sum of the first and second kind error. Alternatively, if
we deal with a noisy input Z having density (fX · µ) ∗ η, this would correspond to test:

HDP
0 : (fX · µ) ∗ η = (f · µ) ∗ η, against HDP

1 : (fX · µ) ∗ η = (g · µ) ∗ η. (1.9)

A natural question then arises: are the both problems (1.8) and (1.9) equivalent or
comparable? This question has already been addressed in [22] or [23] in a slightly different
setting. This could be the core of a future work, but it requires the preliminary study
provided in these papers.
Finally, for practical motivation, we can refer to the monograph of Meister [28] for par-

ticular models with measurement errors, such as in medicine, econometry or astronomy.
In the specific context of classification, we met two explicit examples. The first one is an
example in oncology where we try to classify the evolution of cancer thanks to medical
images (like MRI or X-ray). These images are noisy due to the data collection process
or the interpretation of the practitioner. The second example comes from meteorology
where the weather forecaster wants to predict the future raining day thanks to measures
such as rain gauge or barometer (which have well-studied random errors).
The paper is organized as follows. In Section 2, the model assumptions are explicited

and an associated lower bound is stated. This lower bound generalizes to the indirect
case the well-known lower bound of [2] established in classification. Deconvolution ERM
attaining these rates are presented in Section 3. We also consider in this section standard
kernel estimators, which allow to construct a new minimax optimal procedure in the
direct case. A brief discussion and some perspectives are gathered in Section 4 while
Section 5 is dedicated to the proofs of the main results.

2. Lower bound

2.1. Model setting

In this section, we detail some common assumptions (complexity and margin) on the
pair (f, g). We then propose a lower bound on the corresponding minimax rates.
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First of all, given a set G⊂K , simple algebra indicates that the excess risk RK(G)−
RK(G⋆K) can be written as:

RK(G)−RK(G⋆K) = 1
2df,g(G,G

⋆
K),

where the pseudo-distance df,g over subsets of K ⊂R
d is defined as:

df,g(G1,G2) =

∫

G1∆G2

|f − g|dQ,

and G1∆G2 = [Gc1 ∩ G2] ∪ [Gc2 ∩ G1] is the symmetric difference between two sets G1

and G2. In this context, there is another natural way of measuring the accuracy of a
decision rule G through the quantity:

d∆(G,G
⋆
K) =

∫

G∆G⋆K

dQ,

where d∆ defines also a pseudo-distance on the subsets of K ⊂R
d.

In this paper, we are interested in the minimax rates associated to these pseudo-
distances. In other words, given a class F , one would like to quantify as precisely as
possible the corresponding minimax risks defined as

inf
Ĝn,m

sup
(f,g)∈F

Ef,gd�(Ĝn,m,G
⋆
K),

where the infimum is taken over all possible estimators of G⋆K and d� stands for df,g or

d∆ following the context. In particular, we will exhibit classification rules Ĝn,m attaining
these rates. In order to obtain a satisfying study of the minimax rates mentioned above,
one needs to detail the considered classes F . Such a class expresses some conditions on
the pair (f, g). They are often separated into two categories: margin and complexity
assumptions.
A first condition is the well-known Margin assumption. It has been introduced in

discriminant analysis (see [26]) as follows.

Margin assumption. There exists positive constants t0, c2, α≥ 0 such that for 0< t <
t0:

Q{x ∈K : |f(x)− g(x)| ≤ t} ≤ c2t
α. (2.1)

This assumption is related to the behavior of |f−g| at the boundary of G⋆K . It may give
a variety of minimax fast rates of convergence which depends on the margin parameter
α. A large margin corresponds to configurations where the slope of |f − g| is high at the
boundary of G⋆K . The most favorable case arises when the margin α = +∞. In such a
situation, f − g has a discontinuity at the boundary of G⋆K .
From a practical point of view, this assumption provides a precise description of the

interaction between the pseudo distance df,g and d∆. In particular, it allows a control of
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the variance of the empirical processes involved in the upper bounds, thanks to Lemma 2
in [26]. More general assumptions of this type can be formulated (see, for instance, [5] or
[20]) in a more general statistical learning context.
For the sake of convenience, we will require in the following an additional assumption

on the noise ε. We assume in the sequel that ε= (ε1, . . . , εd)
′ admits a bounded density

η with respect to the Lebesgue measure satisfying:

η(x) =

d
∏

i=1

ηi(xi) ∀x ∈R
d. (2.2)

In other words, the entries of the vector ε are independent. The assumption below de-
scribes the difficulty of the considered problems. It is often called the ordinary smooth
case in the inverse problem literature.

Noise assumption. There exist (β1, . . . , βd)
′ ∈R

d
+ and C1,C2,C3 positive constants such

that for all i ∈ {1, . . . , d}, βi > 1/2,

C1|t|−βi ≤ |F [ηi](t)| ≤ C2|t|−βi , and

∣

∣

∣

∣

d

dt
F [ηi](t)

∣

∣

∣

∣

≤ C3|t|−βi as |t| →+∞,

where F [ηi] denotes the Fourier transform of ηi. Moreover, we assume that F [ηi](t) 6= 0
for all t ∈R and i ∈ {1, . . . , d}.

Classical results in deconvolution (see, e.g., [15, 16] or [8] among others) are stated
for d = 1. Two different settings are then distinguished concerning the difficulty of the
problem which is expressed through the shape of F [η]. One can consider alternatively the
case where C1|t|−β ≤ |F [η](t)| ≤ C2|t|−β as |t| →+∞, which yet corresponds to mildly ill-

posed inverse problem or C1e−γ|t|
β ≤ |F [η](t)| ≤ C2e−γ|t|

β

, γ > 0 as |t| →+∞ which leads
to a severely ill-posed inverse problem. This last setting corresponds to a particularly
difficult problem and is often associated to low minimax rates of convergence.
In this contribution, we only deal with d-dimensional mildly ill-posed deconvolution

problems. For the sake of brevity, we do not consider severely ill-posed inverse problems
or possible intermediates (e.g., a combination of polynomial and exponential decreasing
functions). Nevertheless, the rates in these cases could be obtained through the same
steps.
The Margin assumption is ‘structural’ in the sense that it describes the difficulty to

distinguish an observation having density f from an other with density g. In order to
provide a complete study, one also needs to set an assumption on the difficulty to find
G⋆K in a possible set of candidates, namely a complexity assumption. In the classification
framework, two different kinds of complexity assumptions are often introduced in the
literature. The first kind concerns the regularity of the boundary of the Bayes classifier.
Indeed, our aim is to estimate G⋆K , which yet corresponds to a nonparametric set esti-
mation problem. In this context, it seems natural to traduce the difficulty of the learning
process by condition on the shape of G⋆K . Another way to describe the complexity of the
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problem is to impose condition on the regularity of the underlying densities f and g. Such
kind of condition is originally related to plug-in approaches and will be the investigated
framework. Remark that these two assumptions are quite different and are convenient
for distinct problems. In particular, a set G⋆K with a smooth boundary is not necessarily
associated to smooth densities, and vice-versa.
In the rest of this section, lower bounds for the associated minimax rates of convergence

are stated in the noisy setting. Corresponding upper bounds are presented and discussed
in Section 3.

2.2. Lower bound for the Plug-in assumption

The Plug-in assumption considered in this paper is related to the regularity of the func-
tion f − g, expressed in terms of Hölder spaces. It corresponds to the same kind of
assumption as in [2] for classification.
Given γ,L > 0, Σ(γ,L) is the class of isotropic Hölder continuous functions ν having

continuous partial derivatives up to order ⌊γ⌋, the maximal integer strictly less than γ
and such that:

|ν(y)− pν,x(y)| ≤L‖x− y‖γ , ∀x, y ∈R
d,

where pν,x is the Taylor polynomial of ν at order ⌊γ⌋ at point x and ‖ · ‖ stands for the
Euclidean norm on R

d.

Plug-in assumption. There exist positive constants γ and L such that f − g ∈Σ(γ,L).

We then call Fplug(Q) the set of all pairs (f, g) satisfying both the Margin (with respect
to Q) and the Plug-in assumptions, since the previous assumption is often associated to
plug-in rules in the statistical learning literature. The following theorem proposes a lower
bound for the noisy discriminant analysis problem in such a setting.

Theorem 1. Suppose that the Noise assumption is satisfied. Then, there exists a measure
Q0 such that for all α≤ 1,

lim inf
n,m→+∞

inf
Ĝn,m

sup
(f,g)∈Fplug(Q0)

(n ∧m)τd(α,β,γ)Ef,gd�(Ĝn,m,G
⋆
K)> 0,

where the infinimum is taken over all possible estimators of the set G⋆K and

τd(α,β, γ) =















γα

γ(2 + α) + d+2
∑d
i=1 βi

for d� = d∆,

γ(α+1)

γ(2 + α) + d+2
∑d
i=1 βi

for d� = df,g.

Remark that we obtain exactly the same lower bounds as [2] in the direct case, which
yet corresponds to the situation where βj = 0 for all j ∈ {1, . . . , d}.
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In the presence of noise in variables, the rates obtained in Theorem 1 are slower. The
price to pay is an additional term of the form:

2

d
∑

i=1

βi.

This term clearly connects the difficulty of the problem to the tail behavior of the char-
acteristic function of the noise distribution. This price to pay is already known in density
estimation, regression with errors in variables or goodness-of-fit testing. Last step is to
get a corresponding upper bound to validate this lower bound in the presence of noise in
variables.
Remark that this lower bound is valid only for α ≤ 1. This restriction appears for

some technical reasons in the proof (see Section 5). The main difficulty here is to use
standard arguments from lower bounds in classification (see [1, 2]) in this deconvolution
setting. More precisely, we have to take advantage of the Noise assumption, related to
the Fourier transform of the noise distribution η. To this end, we use in the proof of
Theorem 1 an algebra based on standard Fourier analysis tools, and we have to con-
sider sufficiently smooth objects. As a consequence in the lower bounds, we can check
the Margin assumption only for values of α ≤ 1. Nevertheless, we conjecture that this
restriction is only due to technical reasons and that our result remains pertinent for all
α≥ 0. In particular, an interesting direction is to consider a wavelet basis which provides
an isometric wavelet transform in L2 in order to obtain the desired lower bound in the
general case.
The measure Q0 that we mention in Theorem 1 is explicitly constructed in the proof.

For the sake of convenience, the construction of this measure is not reproduced here (we
refer to Section 5.1 for an interested reader).

3. Upper bounds

3.1. Estimation of G⋆

K

In the free-noise case (ε
(i)
j = (0, . . . ,0) for all j ∈ {1, . . . , n}, i ∈ {1,2}), we deal with two

samples (X
(1)
1 , . . . ,X

(1)
n ), (X

(2)
1 , . . . ,X

(2)
m ) having respective densities f and g. A standard

way to estimate G⋆K = {x ∈K :f(x)≥ g(x)} is to estimate RK(·) thanks to the data. For
all G⊂K , the risk RK(G) can be estimated by the empirical risk defined in (1.5). Then
the Bayes classifier G⋆K is estimated by Ĝn,m defined as a minimizer of the empirical risk
(1.5) over a given family of sets G. We know for instance from [26] that the estimator
Ĝn,m reaches the minimax rates of convergence in the direct case when G = G(γ,L)
corresponds to the set of boundary fragments with γ > d − 1. For larger set G(γ,L),
as proposed in [26], the minimization can be restricted to a δ-net of G(γ,L). With an
additional assumption over the approximation power of this δ-net, the same minimax
rates can be achieved in a subset of G(γ,L).
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If we consider complexity assumptions related to the smoothness of f − g, we can
show easily with [2] that an hybrid plug-in/ERM estimator reaches the minimax rates
of convergence of [2] in the free-noise case. The principle of the method is to consider
the empirical minimization (1.6) over a particular class G based on plug-in type decision
sets. More precisely, following [2] for classification, we can minimize in the direct case
the empirical risk over a class G of the form:

G = {{f − g ≥ 0}, f − g ∈Nn,m},

whereNn,m is a well-chosen δ-net. With such a procedure, minimax rates can be obtained
with no restriction over the parameter γ, α and d.
In noisy discriminant analysis, ERM estimator (1.6) is no longer available as mentioned

earlier. Hence, we have to add a deconvolution step to the classical ERM estimator. In
this context, we can construct a deconvolution kernel, provided that the noise has a
nonnull Fourier transform, as expressed in the Noise assumption. Such an assumption is
rather classical in the inverse problem literature (see, e.g., [8, 15] or [28]).

Let K =
∏d
j=1Kj :Rd → R be a d-dimensional function defined as the product of d

unidimensional functions Kj . The properties of K leading to satisfying upper bounds
will be made precise later on. Then, if we denote by λ = (λ1, . . . , λd) a set of (positive)
bandwidths and by F [·] the Fourier transform, we define Kη as:

Kη :Rd → R,
(3.1)

t 7→ Kη(t) =F−1

[ F [K](·)
F [η](·/λ)

]

(t).

In this context, for all G⊂K , the risk RK(G) can be estimated by

Rλn,m(G) =
1

2

[

1

n

n
∑

j=1

hK/G,λ(Z
(1)
j ) +

1

m

m
∑

j=1

hG,λ(Z
(2)
j )

]

,

where for a given z ∈R
d:

hG,λ(z) =

∫

G

1

λ
Kη
(

z − x

λ

)

dx. (3.2)

In the following, we study ERM estimators defined as:

Ĝλn,m = argmin
G∈G

Rλn,m(G), (3.3)

where parameter λ = (λ1, . . . , λd) ∈ R
d
+ has to be chosen explicitly. Functions hG,λ in

equation (3.2) are at the core of the upper bounds. In particular, following the pioneering’s
works of Vapnik (see [34]), we have for RλK(·) := ERλn,m(·):

RK(Ĝλn,m)−RK(G⋆K) ≤ RK(Ĝλn,m)−Rλn,m(Ĝλn,m) +Rλn,m(G⋆K)−RK(G⋆K)
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≤ RλK(Ĝλn,m)−Rλn,m(Ĝλn,m) +Rλn,m(G⋆K)−RλK(G⋆K)
(3.4)

+ (RK −RλK)(Ĝλn,m)− (RK −RλK)(G⋆K)

≤ sup
G∈G

|RλK −Rλn,m|(G,G⋆K) + sup
G∈G

|RλK −RK |(G,G⋆K),

where we write for concision for any G,G′ ⊂K :

|RλK −Rλn,m|(G,G′) = |RλK(G)−RλK(G′)−Rλn,m(G) +Rλn,m(G′)|,

and similarly:

|RλK −RK |(G,G′) = |RλK(G)−RλK(G′)−RK(G) +RK(G′)|.

As a result, to get risk bounds, we have to deal with two opposing terms, namely a
so-called variability term:

sup
G∈G

|RλK −Rλn,m|(G−G⋆K), (3.5)

and a bias term (since ERλn,m(G) 6=RK(G)) of the form:

sup
G∈G

|RλK −RK |(G−G⋆K). (3.6)

The variability term (3.5) gives rise to the study of increments of empirical processes.
In this work, this control is based on entropy conditions and uniform concentration
inequalities. It is inspired by results presented for instance in [33] or [32]. The main
novelty here is that in the noisy case, empirical processes are indexed by a class of
functions which depends on the smoothing parameter λ. The bias term (3.6) is controlled
by taking advantages of the properties of G and of the assumptions on the kernel K.
Indeed, it can be related to the standard bias term in nonparametric density estimation
and can be controlled using smoothness assumptions of plug-in type. This bias term is
inherent to the estimation procedure and its control is a cornerstone of the upper bounds.
The choice of λ will be a trade-off between the two opposing terms (3.5) and (3.6).

Small λ leads to complex functions hG,λ and blasts the variance term whereas (3.6)
vanishes when λ tends to zero. The kernel K has to be chosen in order to take advantage
of the different conditions on G⋆K . This choice will be operated according to the following
definition.

Definition. We say that K is a kernel of order l ∈N
∗ if and only if:

•
∫

K(u) du= 1.
•
∫

ukjK(u) du= 0 ∀k = 1, . . . , l, ∀j = 1, . . . , d.

•
∫

|uj |l+1|K(u)|du <∞, ∀j = 1, . . . , d.

In addition to this definition, we will require the following assumption on the kernel
K which appears in (3.1).
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Kernel assumption. The kernel K is such that F [K] is bounded and compactly sup-
ported.

The construction of kernels of order l satisfying the Kernel assumption could be man-
aged using for instance the so-called Meyer wavelet (see [25]).
The following subsection intent to study deconvolution ERM estimator (3.3) and gives

asymptotic fast rates of convergence. It validates the lower bounds of Theorem 1.

3.2. Upper bound

For all δ > 0, using the notion of entropy (see, for instance, [33]) for Hölderian function
on compact sets, we can find a δ-network Nδ on Σ(γ,L) such that:

• log(card(Nδ))≤Aδ−d/γ ,
• For all h0 ∈Σ(γ,L), we can find h ∈Nδ such that ‖h− h0‖∞ ≤ δ.

In the following, we associate to each ν := f − g ∈Σ(γ,L), a set Gν = {x ∈K :ν(x)≥ 0}
and define the ERM estimator as:

Ĝn,m = arg min
ν∈Nδ

Rλn,m(Gν), (3.7)

where δ = δn,m has to be chosen carefully. This procedure has been introduced in the
direct case by [2] and referred to as an hybrid plug-in/ERM procedure. The following
theorem describes the performances of Ĝn,m.

Theorem 2. Let Ĝn,m the set introduced in (3.7) with

λj = (n∧m)−1/(γ(2+α)+2
∑d
i=1 βi+d), ∀j ∈ {1, . . . , d}, and

δ = δn,m =

(∏d
i=1 λ

−βi
i√

n∧m

)2/(d/γ+2+α)

.

Given some σ-finite measure Q, suppose (f, g) ∈ Fplug(Q) and the Noise assumption is
satisfied with βi > 1/2, ∀i = 1, . . . , d. Consider a kernel Kη defined as in (3.1) where

K=
∏d
j=1Kj is a kernel of order ⌊γ⌋, which satisfies the Kernel assumption. Then, for

all real α≥ 0, if Q is the Lebesgue measure:

lim
n,m→+∞

sup
(f,g)∈Fplug(Q)

(n∧m)τd(α,β,γ)Ef,gd�(Ĝn,m,G
⋆
K)<+∞,

where

τd(α,β, γ) =















γα

γ(2 + α) + d+2
∑d
i=1 βi

for d� = d∆,

γ(α+1)

γ(2 + α) + d+2
∑d
i=1 βi

for d� = df,g.
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Moreover, if Q(x) = µ(x) dx, the same upper bounds hold provided that µ ∈ Σ(γ,L) and
that minx∈K µ(x)≥ c0 for some c0 > 0.

Theorem 2 validates the lower bounds of Theorem 1. Deconvolution ERM are minimax
optimal over the class Fplug. These optimal rates are characterized by the tail behavior
of the characteristic function of the error distribution η. We only consider the ordinary
smooth case whereas straightforward modifications lead to slow rates of convergence in
the super-smooth case.
Here, fast rates (i.e., faster than 1/

√
n) are pointed out when αγ > d+ 2

∑

βi. This
result is comparable to [2], where fast rates are proposed when αγ > d. However, it is
important to stress that large values of both α and γ correspond to restrictive situations.
In this case, the margin parameter is high whereas the behavior of f −g is smooth, which
seems to be contradictory (see the related discussion in [2]).
If Q is not the Lebesgue measure, µ has to be lower bounded by a constant c0 > 0

which appears in the upper bound. This assumption can be relaxed to recover the case
of Theorem 1.
For the sake of concision, we do not study plug-in rules in this paper. Such algorithms

are characterized by classifiers of the form

G̃n,m = {x ∈K, f̃n(x)− g̃m(x)≥ 0},

where f̃n− g̃m is an (optimal) estimator of the function f − g. The performances of such
kind of methods have been investigated by [2] in the binary classification model. We also
mention for instance [18] or [6] for contributions in a more general framework.
Nevertheless, we point out that the choice of λ in Theorem 2 is the trade-off between

the variability term (3.5) and the bias term (3.6). It is important to note that this
asymptotic for λ is not the optimal choice in the problem of deconvolution estimation
of f − g ∈ Σ(γ,L) thanks to noisy data. Here the bandwidth depends on the margin
parameter α and optimizes the classification excess risk bound. It highlights that the
estimation procedure (3.7) is not a plug-in rule but an hybrid ERM/Plug-in estimator
as in [2].
Finally, this deconvolution ERM appears to be minimax optimal when we deal with

noisy data such that βi >
1
2 , ∀i = 1, . . . , d. A natural question is to extend these results

to the direct case where βi = 0, ∀i= 1, . . . , d. Moreover, the minimax optimality of this
procedure depends on the choice of λ in Theorem 2. In the following subsection, we deal
with a similar approach in the direct case, using standard kernel estimators instead of
deconvolution kernel estimators. Interestingly in this situation, the choice of λ is not
crucial to derive optimal rates of convergence.

3.3. Upper bound in the free-noise case

In the free-noise setting, direct observations X
(1)
j , j = 1, . . . , n and X

(2)
j , j = 1, . . . ,m are

available. In this case, we can construct an estimation procedure based on (3.7) where a
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standard kernel estimator is used instead of a deconvolution kernel estimator. Following
the noisy setting, we define in the direct case G̃λn,m as follows:

G̃λn,m = arg min
ν∈Nδ

R̃λn,m(Gν), (3.8)

where here R̃λn,m(G) is an estimator of RK(G) defined as:

R̃λn,m(G) =
1

2

[

1

n

n
∑

j=1

h̃K/G,λ(X
(1)
j ) +

1

m

m
∑

j=1

h̃G,λ(X
(2)
j )

]

,

where for a given kernel K:

h̃G,λ(z) =

∫

G

1

λ
K
(

z − x

λ

)

dx.

The following theorem describes the performances of G̃λn,m.

Corollary 1. Let F =Fplug(Q) and G̃λn,m the set introduced in (3.8) with

λj ≤ (n∧m)−1/(γ(2+α)+d), ∀j ∈ {1, . . . , d}, and δ = δn,m =

(

1√
n∧m

)2/(d/γ+2+α)

.

Consider a kernel K=
∏d
j=1Kj of order ⌊γ⌋ satisfying the Kernel assumption. Then, if

Q is the Lebesgue measure, for any real α≥ 0:

lim
n,m→+∞

sup
(f,g)∈Fplug(Q)

(n∧m)τd(α,γ)Ed�(G̃
λ
n,m,G

⋆
K)<+∞,

where

τd(α,γ) =















γα

γ(2 +α) + d
for d� = d∆,

γ(α+1)

γ(2 +α) + d
for d� = df,g.

Moreover, if Q(x) = µ(x) dx, the same upper bounds holds provided that µ ∈Σ(γ,L) and
that minx∈K µ(x)≥ c0 for some c0 > 0.

These rates correspond to the lower bound of Theorem 1 for βj = 0, ∀j = 1, . . . , d
(see also [2]). As a result, (3.8) provides a new procedure which reaches the minimax
optimality in classification. Some remarks are in order.
The choice of λ in Corollary 1 is not standard. It seems that if λ is small enough, the

ERM procedure (3.8) is minimax. This result can be explain as follows. Here, λ is not a
trade-off between two opposing terms. In the control of the variability term, it appears
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that with a good choice of K, the variability term does not depend on the bandwidth λ
of the kernel. As a result, we only need to control the bias term with a small bandwidth.
This property can also be interpreted heuristically as follows. It is clear that the es-

timation procedure (3.8) with kernel estimator K is not so far from the usual ERM
estimator in the direct case. Indeed, if λ is small enough, we have coarsely:

h̃G,λ(Xi) =

∫

G

1

λ
K
(

Xi − x

λ

)

dx≈ 1G(Xi).

As a result, with a small enough bandwidth, the procedure (3.8) reaches the same asymp-
totic performances as standard ERM.

4. Conclusion

We have provided in this paper minimax rates of convergence in the framework of smooth
discriminant analysis with errors in variables. In the presence of plug-in type assumptions,
we replace the unknown densities f and g by deconvolution kernel estimators. It gives
a new family of ERM estimators called deconvolution ERM. It reaches the minimax
rates of convergence. These optimal rates are fast rates (faster than n−1/2) when αγ >

d+ 2
∑d
i=1 βi and generalize the result of [2]. As shown in Table 1, the influence of the

noise ε can be compared with standard results in nonparametric statistics (see [15, 16] for
regression and density estimation with errors in variables or [8] in goodness-of-fit testing)
using kernel deconvolution estimators. Note that this idea can be adapted to the direct
case using kernel density estimators. It provides a new minimax optimal procedure in
the direct case, under the Plug-in assumption.
It is important to note that considering the estimation procedure of this paper, we are

facing two different problems of model selection or adaptation. First of all, the choice
of the bandwidths clearly depends on parameters which may be unknown a priori (e.g.,
the margin α and the regularity γ of the densities). In this sense, adaptation algorithms
should be investigated to choose automatically λ to balance the bias term and the vari-
ance term. The second step of adaptation would be to consider a family of nested (Gk)⊂G

Table 1. Optimal rates of convergence in pointwise L2-risk in density estimation (see [15]),
optimal separation rates for goodness-of-fit testing on Sobolev spaces W (s,L) (see, e.g., [8]) and
the result of this work in smooth discriminant analysis (where β̄ :=

∑d
i=1 βi)

Density estimation Goodness-of-fit testing Classification

Direct case (ε= 0) n−2γ/(2γ+1) n−2γ/(2γ+1/2) n−γ(α+1)/(γ(α+2)+d)

Errors-in-variables n−2γ/(2γ+2β+1) n−2γ/(2γ+2β+1/2) n−γ(α+1)/(γ(α+2)+2β̄+d)

Regularity f ∈Σ(γ,L) f ∈W (s,L) f − g ∈Σ(γ,L)

assumptions |F [η](t)| ∼ |t|−β |F [η](t)| ∼ |t|−β |F [ηi](t)| ∼ |t|−βi ∀i
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and to choose the model which balances the approximation term and the estimation term.
This could be done using for instance penalization techniques, such as [31] or [20] or a
comparison method such as [30].
This work can be considered as a first attempt into the study of risk bounds in clas-

sification with errors in variables. It can be extended in many directions. Naturally the
first extension will be to state the same kind of result in classification. Another natural
direction would be to consider more general complexity assumptions for the hypothesis
space G. In the free-noise case, [4] deal with local Rademacher complexities. It allows to
consider many hypothesis spaces, such as VC classes of sets, kernel classes (see [29]) or
even Besov spaces (see [24]). Another advantage of considering Rademacher complexities
is to develop data-dependent complexities to deal with the problem of model selection
(see [3, 20]). It also allows us to deal with the problem of nonunique solution of the
empirical minimization.
Into the direction of statistical inverse problem, there are also many open problems.

A natural direction for applications would be to consider unknown density η for the
random noise ε. This is a well known issue in the errors-in-variables setting to deal with
unknown operator of inversion. In this setting we can consider repeated measurements
to estimate the density of the noise ε (see, for instance, [12] for both density estimation
and regression with errors). Another natural extension will be to consider general linear
compact operator A :f 7→Af to generalize the case of deconvolution. In this case, ERM
estimators based on standard regularization methods from the inverse problem literature
(see [14]) appear as good candidates. This could be the material of future works.
Finally, the presence of fast rates in discriminant analysis goes back to [26]. In [26],

the regularity assumption is related to the smoothness of the boundaries of the Bayes
classifier. If we consider a set of Hölder boundary fragments, [26] states minimax fast
rates in noise-free discriminant analysis. These rates are attained by ERM estimators.
A natural extension of the present contribution is to state minimax rates in the presence
of Hölder boundary fragments, where the control of the bias term seems really more
nasty. This is the purpose of a future work.

5. Proofs

In this section, with a slight abuse of notations, C, c, c′ > 0 denote generic constants that
may vary from line to line, and even in the same line. Given two real sequences (an)n∈N

and (bn)n∈N, the notation a≃ b (resp. a. b) means that there exists generic constants
C, c > 0 such that can ≤ bn ≤Can (resp. an ≤Cbn) for all n ∈N.

5.1. Proof of Theorem 1

The proof mixes standard lower bounds arguments from classification (see [1] and [2])
but then uses some techniques which are specific to the inverse problem literature (see,
for instance, [8] or [28]).
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Consider F1 = {f−→σ ,
−→
σ = (σ1, . . . , σk) ∈ {0,1}k} a finite class of densities with respect

to a specific measure Q0 and g0 a fixed density (with respect to the same Q0) such that

(f−→σ , g0) ∈ Fplug for all
−→
σ ∈ {0,1}k. The construction of f−→σ as a function of

−→
σ , the value

of g0 and the definition of Q0 will be precised in Section 5.1.1. Then, for all estimator
Ĝn,m of the set G⋆K , we have:

sup
(f,g)∈Fplug

Ef,gd∆(Ĝn,m,G
⋆
K)≥ sup

f∈F1

Eg0 [Ef{d∆(Ĝn,m,G⋆K)|Z(2)
1 , . . . , Z(2)

m }]. (5.1)

In a first time, we propose a triplet (F1, g0,Q0). Then, we prove that each associated
element satisfies our hypotheses. We finish the proof with a convenient lower bound for
(5.1).

5.1.1. Construction of the triplet (F1, g0,Q0)

We only consider the case d = 2 for simplicity, whereas straightforward modifications
lead to the general d-dimensional case. For g0, we take the constant 1 over R2:

g0(x) = 1, ∀x ∈R
2.

For any z ∈R
2 and positive δ, we write in the sequel B(z, δ) := {x= (x1, x2) : |xi − zi| ≤

δ}.
For an integer q ≥ 1, introduce the regular grid on [0,1]2 defined as:

Gq =

{(

2p1 + 1

2q
,
2p2 +1

2q

)

, pi ∈ {0, . . . , q− 1}, i= 1,2

}

.

Let nq(x) ∈Gq the closest point to x ∈R
2 among points in Gq (by convention, we choose

the closest point to 0 when it is nonunique). Consider the partition (χ′
j)j=1,...,q2 of [0,1]2

defined as follows: x and y belongs to the same subset if and only if nq(x) = nq(y). Fix

an integer k ≤ q2. For any i ∈ {1, . . . , k}, we define χi = χ′
i and χ0 = R

2\⋃ki=1 χi to get
(χi)i=1,...,k a partition of R2. In the sequel, we note by (zj)j=1,...,k the centers of the χj .
Then, we consider the measure Q0 defined as dQ0(x) = µ(x) dx where µ(x) = µ0(x) +

µ1(x) for all x ∈R
2 with

µ0(x) = kωρ(x1 − 1/2)ρ(x2 − 1/2) and µ1(x) = (1− kω)ρ(x1 − a)ρ(x2 − b),

where k, ω, a, b are constants which will be made precise later on and where for all x ∈R,
ρ :R→ [0,1] is the function defined as

ρ(x) =
1− cos(x)

πx2
, ∀x ∈R.

Recall that ρ satisfies F [ρ](t) = (1 − |t|)+. It allows us to take advantage of the Noise
assumption. Moreover, g defines a probability density w.r.t. to the measure Q0 since
∫

R2 µ(x) dx= 1.
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Now, we have to define the class F1 = {f−→σ ,
−→
σ }. We first introduce ϕ as a C∞ proba-

bility density function w.r.t. the measure Q0 and such that

ϕ(x) = 1− c⋆q−γ ∀x ∈ [0,1]2.

Now introduce a class of functions ψj :R
2 →R, for j = 1, . . . , k defined for any x ∈R

2 as
follows:

ψj(x) = q−γcψρ(2πq(x1 − zj1))ρ(2πq(x2 − zj2)) cos(4πq(x1 − zj1)) cos(4πq(x2 − zj2)),

where (zj)j=1,...,k are the centers of the χj . The class (ψj)j is specific to the noisy case and

the inverse problem literature (see [8] and [28]). With such notations, for any
−→
σ ∈ {0,1}k,

we define:

f−→σ (x) = ϕ(x) +

k
∑

l=1

σlψl(x), ∀x ∈R
2.

Now we have to check that this choice of F1, g0 and Q0 provides the Margin assumption
and that the complexity assumption hold true.

5.1.2. Main assumptions check

In a first time, we prove that the f−→σ define probability density functions w.r.t. the

measure Q0. Let
−→
σ ∈ {0,1}k. Remark that, considering the case d= 1 w.l.o.g.:

∫

R

ψl(x)µ0(x) dx = F [ψlµ0](0) = cψq
−γF [ρ(2πq·)µ0(·)](±4πq)

= cψq
−γkωF [ρ] ∗ F [ρ(2πq·)](±4πq).

Then, since

F [ρ(2πq·)](t) = 1

2πq
F [ρ]

(

t

2πq

)

∀t ∈R,

and

F [ρ(2πq·)](t) 6= 0 ⇔ −1<
t

2πq
< 1 ⇔ −2πq < t < 2πq,

we get

suppF [ρ] ∗ F [ρ(2πq·)] = [−2πq− 1; 2πq+ 1] and

∫

R

ψl(x)µ0(x) dx= 0. (5.2)

The same computations show that
∫

R
ψl(x)µ1(x) dx= 0 and prove the desired result since

ϕ is a probability density with respect to Q0.
Concerning the regularity, f−→σ ∈Σ(γ,L) for q large enough since f−→σ can be written as

q−γF0(x) where F0 is infinitely differentiable.
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In order to conclude this part, we only have to prove that the margin hypothesis is
satisfied for all the couples (f−→σ , g), namely for some constant c2, t0 > 0, we have for
0< t < t0:

Q0({x ∈ [0,1]d : |f−→σ (x)− g(x)| ≤ t})≤ c2t
α.

First, note that by construction of Q0, we have dQ0(x) = (µ0(x) + µ1(x)) dx and by
choosing constant a, b > 0 large enough in µ1, we can restrict ourselves to the study of
the Margin assumption with respect to Q′

0(dx) = µ0(x) dx.
Concerning the triplet (k,ω, q), we set

{

k = q2,
ω = q−αγ−2.

In particular, we will have kω = q−αγ . Then, we will distinguish two different cases
concerning the possible value of t. The first case concerns the situation where C1q

−γ <
t < t0 for some constant C1. Then, we have for Q′

0(dx) = µ0(x) dx:

Q′
0({x ∈ [0,1]2 : |f−→σ (x)− g(x)| ≤ t})≤

∫

[0,1]2
µ0(x) dx≤ kω ≤Cq−αγ ≤Ctα.

Now, we consider the case where t < C1q
−γ . For all σ ∈ {0,1}k:

Q′
0({x ∈ [0,1]2 : |(fσ − g)(x)| ≤ t}) =

∫

[0,1]2
kω1|(fσ−g)(x)|≤t dx

≤ kω
k
∑

j=1

∫

χj

1|(fσ−g)(x)|≤t dx (5.3)

≤ k2ωLeb{x ∈ χ1 : |(fσ − g)(x)| ≤ t},

where without loss of generality, we suppose that σ1 = 1 and we denote by Leb(A) the
Lebesgue measure of A.
Last step is to control the Lebesgue measure of the setW1 = {x ∈ χ1 : |(fσ−g)(x)| ≤ t}.

Since fσ − g =
∑k

j=1 σjψj − c⋆q−γ , we have

W1 =

{

x ∈ χ1 :

∣

∣

∣

∣

∣

k
∑

j=1

σjψj(x)− c⋆q−γ

∣

∣

∣

∣

∣

≤ t

}

=

{

x ∈ χ1 :

∣

∣

∣

∣

∣

ψ1(x)−
(

c⋆q−γ −
k
∑

j=2

σjψj(x)

)∣

∣

∣

∣

∣

≤ t

}

.

Moreover, note that on the square χj :

∑

l 6=j

σlψl(x) ≤ q−γcψ
∑

l 6=j

1

24π6q4

2
∏

i=1

1

|xi − zl,i|2
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≤ q−γcψ
24π6

∑

l 6=j

1

|l− j|4 (5.4)

≤ q−γcψ
24π6

ζ(4) =
q−γcψπ

4

90× 24π6
:= c′q−γ ,

where c′ =
cψ

90×24π2 . Then, if we note by:

c∞ = sup
x∈χ1

ρ(2πq(x1 − z11))ρ(2πq(x2 − z12)) cos(4πq(x1 − z11)) cos(4πq(x2 − z12)),

we have, for any x ∈ χ1:

k
∑

j=1

σjψj(x) = ψ1(x) +

k
∑

j=2

σjψj(x)≤ (cψc∞ + c′)q−γ . (5.5)

Then, for all x ∈ χ1, we can define zx as

zx = arg min
z:ψ1(z)=c⋆q−γ−

∑
k
j=2 σjψj(z)

‖x− z‖2.

Indeed, inequality (5.5) ensures the existence of zx provided that c⋆ < cψc∞ + c′.
In order to evaluate the Lebesgue measure of W1, the main idea is to approximate ψ1

at each x ∈W1 by a Taylor polynomial of order 1 at zx. We obtain

W1 = {x ∈ χ1 : |ψ1(x)− ψ1(z
x)| ≤ t}

= {x ∈ χ1 : |〈Dψ1(z
x), x− zx〉+ ψ1(x)− ψ1(z

x)− 〈Dψ1(z
x), x− zx〉| ≤ t}

⊂ {x ∈ χ1 : ||〈Dψ1(z
x), x− zx〉| − |ψ1(x)− ψ1(z

x)− 〈Dψ1(z
x), x− zx〉|| ≤ t}.

Now, it is possible to see that there exists c0 > 0 such that

|〈Dψ1(z
x), x− zx〉| ≥ c0qq

−γ‖x− zx‖1, ∀x ∈ χ1. (5.6)

Moreover, using again the inequality ‖x− zx‖1 ≤C/q, there exists a function h :R→R+

such that qh(q)→ 0 as q→∞ and which satisfies:

|ψ1(x)− ψ1(z
x)− 〈Dψ1(z

x), x− zx〉|
‖x− zx‖1

≤ q−γh(q). (5.7)

At this step, it is important to note that provided that q := q(n)→∞ as n→∞, there
exists some n0 ∈N such that for any n≥ n0, we have:

|〈Dψ1(z
x), x− zx〉|> |ψ1(x)− ψ1(z

x)− 〈Dψ1(z
x), x− zx〉|.

Hence, we get the following inclusion

W1 ⊂
{

x ∈ χ1 : c0qq
−γ‖x− zx‖1

(

1− h(q)

q

)

≤ t

}

, as q→+∞.



Minimax rates for noisy discriminant analysis 21

With the property qh(q)→ 0 as q→∞ (or equivalently when n→∞), we can find n′
0

large enough such that for any n≥ n′
0:

Leb(W1)≤ Leb

({

x ∈ χ1 :‖x− zx‖1 ≤
t

2c0
qγ−1

})

≤ t

2c0qq1−γ
.

Gathering with (5.3), we hence get, for t < C1q
−γ , provided that α≤ 1:

Q′
0{x ∈ [0,1]2 : |(fσ − g)(x)| ≤ t} ≤ Ck2ω

t

q2q−γ

≤ Ckω
t

q−γ
=Cqγ(1−α)tαt1−α ≤Ctα,

where C > 0 is a generic constant.

5.1.3. Final minoration

Suppose without loss of generality that n≤m. Now we argue as in [1] (Assouad Lemma
for classification) and introduce ν, the distribution of a Bernoulli variable (ν(σ = 1) =

ν(σ = 0) = 1/2). Then, denoting by P
⊗n
−→
σ

the law of (Z
(1)
1 , . . . , Z

(1)
n ) when f = f−→σ , we get

sup
−→
σ ∈{0,1}

Ef{d∆(Ĝn,m,G∗
K)|Z(2)

1 , . . . , Z(2)
m }

≥ Eν⊗kEf−→
σ
d∆(Ĝn,m,G

∗
K)

≥ Eν⊗kEf−→
σ

k
∑

j=1

∫

χj

1(x ∈ Ĝn,m∆G⋆K)Q0(dx) (5.8)

=

k
∑

j=1

Eν⊗(k−1)

∫

Ω

Eν(dσj)

∫

χj

1(x ∈ Ĝn,m(ω)∆G⋆K)Q0(dx)P
⊗n
−→
σ

(dω)

≥
k
∑

j=1

Eν⊗(k−1)

∫

Ω

Eν(dσj)

∫

χj

1(x ∈ Ĝn,m(ω)∆G⋆K)Q0(dx)

[

P
⊗n
−→
σ j,1

P
⊗n
−→
σ j

∧
P
⊗n
−→
σ j,0

P
⊗n
−→
σ j

]

P
⊗n
−→
σ

(dω),

where
−→
σ j,r = (σ1, . . . , σj−1, r, σj+1, . . . , σk) for r ∈ {0,1}.

Moreover, note that from (5.4), we have on the square χj :

∑

l 6=j

σlψl(x)≤ c′q−γ ,

where c′ =
cψ

90×24π2 . Now it is easy to see that from the definition of the test functions ψj ,
for any integer k0, k1 :k1 > 2k0, on the square ring Bj(k0, k1) = {x ∈ χj :∀i |xi − zj,i| ≤
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1
2k0q

and |xi − zj,i| ≥ 1
k1q

}:

ψj(x)− c⋆q−γ ≥ q−γ
[

cψk
4
0

(1− cos2π/k1)
2

π
6

(cos4π/k0)
2 − c⋆

]

= q−γ ,

provided that cψ = π
6(1+c⋆)

k20(1−cos2π/k1)2(cos4π/k0)2
. Hence, since c′ =

cψ
90×24π2 , we can choose

k0, k1 ∈N such that c′ ≤ 1 to get on Bj(k0, k1):

∑

l 6=j

σlψl(x)≤ c′q−γ ≤ ψj(x)− c⋆q−γ . (5.9)

Now introduce binary valued functions:

f̂(x) = 1(x ∈ Ĝn,m) and f⋆−→
σ
(x) = 1(x ∈G⋆K,σ),

where G⋆K,σ = {f−→σ − g ≥ 0}. From (5.9), we claim that for any
−→
σ :

∀x ∈Bj(k0, k1), f⋆−→
σ
(x) = σj . (5.10)

Indeed, since f−→σ − g =
∑k

l=1 σlψl − c⋆q−γ , gathering with (5.9), we have the following
assertion:

f⋆−→
σ
(x) = 1 ⇒ (1 + σj)ψj(x)≥ 2c⋆q−γ ⇒ σj = 1,

provided that c⋆ ≤ qγminx∈Bj(k0,k1)ψj(x)/2. Moreover, this choice of c⋆ leads to the
following assertion:

f⋆−→
σ
(x) = 0 ⇒

k
∑

l=1

σlψl(x)≤ c⋆q−γ ≤ min
x∈Bj(k0,k1)

ψj(x)/2.

In this case, if σj = 1, we obtain:

ψj(x) +
∑

l 6=j

σlψl(x)≤ min
x∈Bj(k0,k1)

ψj(x)/2. (5.11)

Last step is to show that (5.11) is a contradiction. For this purpose, note that:

min
x∈Bj(k0,k1)

(

ψj(x) +
∑

l 6=j

σlψl(x)

)

≥ min
x∈Bj(k0,k1)

ψj(x) + min
x∈Bj(k0,k1)

∑

l 6=j

σlψl(x)

≥ min
x∈Bj(k0,k1)

ψj(x)/2,

where the last inequality is guaranteed when:

min
x∈Bj(k0,k1)

ψj(x)/2≥− min
x∈Bj(k0,k1)

∑

l 6=j

σlψl(x).
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Finally, the last inequality holds thanks to the positivity of ψj(x) on the set Bj(k0, k1)

and the fact that ∀j′ 6= j, signψj = signψj′ . Indeed, ∀j, ψj(x) = 0 for x ∈ Zj,1 ∪ Zj,2
where:

Zj,1 =
{

x ∈R
2 : |xu − zju|=

l

q
, u ∈ {1,2}, l∈N

∗

}

and

Zj,2 =
{

x ∈R
2 : |xu − zju|=

2l+ 1

8q
, u ∈ {1,2}, l∈N

}

.

Note that by construction, ∀j 6= j′, Zj,2 =Zj′,2 =Z2 does not depend on j ∈ {1, . . . , k}.
Moreover, for any j ∈ {1, . . . , k}, ψj is alternatively positive and negative on the checker-

board associated with Z2. It leads to signψj = signψj′ , ∀j 6= j′ since two centers zj and

zj
′

are separated by an odd number of squares (exactly 5) on both directions. We hence
have by construction that (5.11) is a contradiction and then, (5.10) is shown.

Now we go back to the lower bound. We can write:

Eν(dσj)

∫

χj

1(x ∈ Ĝn,m(ω)∆G⋆K)Q0(dx) = Eν(dσj)

∫

χj

1(f̂ 6= f⋆−→
σ
)Q0(dx)

≥ Eν(dσj)

[
∫

Bj

1(f̂ 6= σj)Q0(dx)

]

=
1

2

[
∫

Bj

[1(f̂ 6= 1)+ 1(f̂ 6= 0)]Q0(dx)

]

=
1

2

∫

Bj

Q0(x) dx,

where we use (5.10) at the second line with Bj :=Bj(k0, k1). Then it follows from (5.8)

that:

sup
−→
σ ∈{0,+1}k

Ef{d∆(Ĝn,m,G⋆K)|Z(2)
1 , . . . , Z(2)

m }

≥ Eν⊗(k−1)

k
∑

j=1

∫

Ω

[

P
⊗n
−→
σ j,0

P
⊗n
−→
σ j

∧
P
⊗n
−→
σ j,1

P
⊗n
−→
σ j

]

(dω)
1

2

∫

χj

Q0(dx)P
⊗n
−→
σ

(dω)

=

k
∑

j=1

Eν⊗(k−1) [1−V(P⊗n
−→
σ ,1

,P⊗n
−→
σ ,0

)]
1

2

∫

Bj

Q0(dx) (5.12)

≥
k
∑

j=1

Eν⊗(k−1)

[

1−
√

χ2(P⊗n
−→
σ ,1

,P⊗n
−→
σ ,0

)
]1

2

∫

Bj

Q0(dx)
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=

k
∑

j=1

[(

1−
√

(1 + χ2(P1,P0))
n − 1

)

1

2

]
∫

Bj

Q0(dx),

where Pi, i ∈ {0,1} is the law of Z(1) when f = f−→σ with
−→
σ = (i,1, . . . ,1), i ∈ {0,1},

V(P,Q) is the total variation distance between distribution P and Q and χ2(P,Q) is the
χ2 divergence between P and Q. Then we can write, if χ2(P1,P0)≤ C

n :

sup
−→
σ ∈{0,+1}k

Ef−→
σ
,g0d∆(Ĝn,m,G

⋆
K)≥ c′

k
∑

j=1

∫

Bj

Q0(dx) = c′kω, (5.13)

where we use the definition of Q0.
Next step is to find a satisfying upper bound for χ2(P1,P0). We have, by construction

of f−→σ :

χ2(P1,P0) =

∫

[(f−→σ ,1 − f−→σ ,0)µ ∗ η]2
f−→σ ,0 ∗ η

dx

≤
∫

[(f−→σ ,1 − f−→σ ,0)µ0 ∗ η]2
f−→σ ,0µ ∗ η dx+

∫

[(f−→σ ,1 − f−→σ ,0)µ1 ∗ η]2
f−→σ ,0µ ∗ η dx.

The right-hand side term can be considered as negligible with a good choice of the
parameters a and b. Hence, we concentrate on the first one. First, remark that for all
x ∈R

2, for some C > 0:

f−→σ ,0µ ∗ η ≥ C

(1 + x21)(1 + x22)
, ∀x ∈R

2, and

{(f−→σ ,+1 − f−→σ ,0)µ0} ∗ η = q−γkω{ψlρ} ∗ η(x).

Then,

χ2(P1,P0) =

∫

R

∫

R

{(fω11 − fω10) ∗ η(x)}2
fω11 ∗ η(x)

dx

≤ Cq−2γkω

∫

R

∫

R

(1 + x21)(1 + x22){ψ1ρ ∗ η(x)}2 dx.

Hence:

χ2(P1,P0) ≤ Cq−2γkω

∫

R

∫

R

{ψ1ρ ∗ η(x)}2 dx+Cq−2γkω

∫

R

∫

R

x22{ψ1ρ ∗ η(x)}2 dx

+Cq−2γkω

∫

R

∫

R

x21{ψ1ρ ∗ η(x)}2 dx

+Cq−2γkω

∫

R

∫

R

x21x
2
2{ψ1ρ ∗ η(x)}2 dx
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:= A1 +A2 +A3 +A4.

In the following, we only consider the bound of A1 = Ckωq−2γ‖(ψ1ρ) ∗ η‖2, the other
terms being controlled in the same way. From the definition of ψ1 and the conditions on
η, we get

‖(ψ1ρ) ∗ η‖2 =
∫

(ψ1ρ) ∗ η(x)2 dx=
2
∏

i=1

∫

|F [ψ1ρ](ti)|2|F [ηi](ti)|2 dti

=

2
∏

i=1

∫

|F [ρ(2πq·)ρ](ti − 4πq)|2|F [ηi](ti)|2 dti.

Using (5.2), the Noise assumption, and the fact that q→+∞, we get

‖(ψ1ρ) ∗ η‖2 = Cq−2(β1+β2)
2
∏

i=1

∫

|F [ρ(2πq·)ρ](ti − 4πq)|2 dti

= Cq−2(β1+β2)‖ρ(2πq·)ρ‖2

≤ Cq−2(β1+β2)‖ρ(2πq·)‖2 ≤Cq−2(β1+β2)−2.

Similar bounds are available for A2, A3 and A4 as follows. First, note that for all t ∈R:

F [ψ1ρ](t) = cψq
−γF [ρ(2πq·)ρ(·)](t± 4πq),

and

d

dt
F [ψ1ρ](t) =−(icψq

−γ)
2
t · F [ρ(2πq·)ρ(·)](t± 4πq),

for all t in a subset of R having a Lebesgue measure equal to 1. Then since F [ρ] and its
weak derivative are bounded by 1 and supported on [−1; 1], we have for instance for A2:

A2 = Cq−2γkω

∫

R

∫

R

x22{ψ1ρ ∗ η(x)}2 dx

≤ Cq−2γkω

∫

R

∫

R

(

d

dx2
F [ψ1ρ](x)F [η](x)

)2

dx,

which leads to the same asymptotics as in A1. It leads to the following upper bound in
the general d-dimensional case:

χ2(P1,P0)≤Cq−2γ−αγ−d−2(β1+β2) ≤ C

n
, with q = n1/(2γ+αγ+d+2(β1+β2)). (5.14)

Now using (5.13),

sup
σ∈{0,1}k

Ef−→
σ
d∆(Ĝn,m,G

⋆
K)≥ c′kω = c′q−αγ = c′n−αγ/(2γ+αγ+d+2(β1+β2)),
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which concludes the proof of the lower bound.

5.2. Proof of Theorem 2

The proof is presented for d = 2 for simplicity whereas straightforward modifications
lead to the d-dimensional case. In the sequel, we identify each ν ∈ Σ(γ,L) with a set
Gν = {x :ν(x) ≥ 0}. By the same way, we identify G⋆K with ν⋆ = f − g. Moreover, we
assume for simplicity that n≤m.

5.2.1. A first inequality

For all Gν := {ν ≥ 0}, we have, using the notations of Section 3:

Rλn,m(Gν)−Rλn,m(G⋆K)−RλK(Gν) +RλK(G⋆K)

=
1

2n

n
∑

i=1

Ui(Gν) +
1

2m

m
∑

i=1

Vi(Gν) :=
1

2
Tn,m(G),

where, for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},

Ui(Gν) = {hK/G⋆K ,λ(Z
(1)
i )− hGCν ,λ(Z

(1)
i )} −E[hK/G⋆K ,λ(Z

(1)
i )− hGCν ,λ(Z

(1)
i )],

and

Vj(Gν) = {hG⋆K ,λ(Z
(2)
j )− hGν ,λ(Z

(2)
j )} −E[hG⋆K,λ(Z

(2)
j )− hGν ,λ(Z

(2)
j )].

Then, for all i ∈ {1, . . . , n}, using successively Lemma A.2 in the Appendix and the
Margin assumption (Lemma 2 in [26]) we get:

E[Ui(Gν)]
2 ≤ cλ−2β1

1 λ−2β2

2 d∆(Gν ,G
⋆
K)≤ c′λ−2β1

1 λ−2β2

2 df,g(Gν ,G
⋆
K)

α/(α+1)
,

and

|Ui(Gν)| ≤C

2
∏

i=1

λ
−βi−1/2
i ,

for some constant C > 0. The Bernstein’s inequality leads to

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ui(Gν)

∣

∣

∣

∣

∣

> a

)

≤ 2 exp

[

− Cna2

a× λ
−β1−1/2
1 λ

−β2−1/2
2 + λ−2β1

1 λ−2β2

2 df,g(Gν ,G⋆K)α/(α+1)

]

,
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for all a > 0. Since βi > 1/2 for all i ∈ {1, . . . , d}, the particular choice a= df,g(Gν ,G
⋆
K)

yields

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ui(Gν)

∣

∣

∣

∣

∣

> df,g(Gν ,G
⋆
K)

)

≤ 2 exp[−Cnλ2β1

1 λ2β2

2 df,g(Gν ,G
⋆
K)

2−α/(α+1)
]

= 2 exp[−Cnλ2β1

1 λ2β2

2 df,g(Gν ,G
⋆
K)

(2+α)/(α+1)
].

In the upper bound above, we have implicitly use the fact that df,g(Gν ,G
⋆
K)/2 ≤

(df,g(Gν ,G
⋆
K)/2)α/(α+1) since df,g(G1,G2) ≤ 2 for all G1,G2 ⊂ K . Using the same al-

gebra on the Vj(Gν), we get

P (|Tn,m(Gν)|> df,g(Gν ,G
⋆
K))≤ 2 exp[−Cnλ2β1

1 λ2β2

2 df,g(Gν ,G
⋆
K)

(2+α)/(α+1)
].

This concludes the first part of the proof. Let t a positive parameter which will be chosen
further and introduce the set G′ defined as

G′ = {G ∈Nδn , df,g(G
⋆
K ,G)> tδ1+αn },

where Nδn is the δn-network introduced in Section 3.2, with δn = δn,n. Using the upper
bound above,

P

(

∃G ∈ G′ : |Tn,m(G)| ≥ 1

4
df,g(G,G

⋆
K)

)

≤
∑

G∈G′

P

(

|Tn,m(G)| ≥
1

4
df,g(G,G

⋆
K)

)

≤
∑

G∈G′

2 exp[−Cnλ2β1

1 λ2β2

2 df,g(G,G
⋆
K)

(2+α)/(α+1)
]

≤
∑

G∈G′

2 exp[−Cnλ2β1

1 λ2β2

2 (tδ1+αn )
(2+α)/(α+1)

]

≤
∑

G∈G′

2 exp[−Cnλ2β1

1 λ2β2

2 t(2+α)/(α+1)δ2+αn ].

Since log card(Nδn)≤Aδ
−2/γ
n , we get

P (∃G ∈ G′ : |Tn,m(G)| ≥ 1
4df,g(G,G

⋆
K))≤ exp[Aδ−2/γ

n −Cnλ2β1

1 λ2β2

2 t(2+α)/(α+1)δ2+αn ].

Thanks to the value of δn, we get δ
−2/γ
n ≃ nλ2β1

1 λ2β2

2 δ2+αn . Hence, for t large enough,

P

(

∃G ∈ G′ : |Tn,m(G)| ≥
1

4
df,g(G,G

⋆
K)

)

≤ exp[−Ctδ−2/γ
n ] (5.15)
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= exp

[

−Ct
(

λ−β1

1 λ−β2

2√
n

)−(2/γ)(2/(2/γ+2+α))]

.

Now, using Lemma A.1 in the Appendix, we can find a set Gn ∈Nδn such that:

df,g(Gn,G
⋆
K)≤ c2‖ν∗ − νn‖α+1

∞ ≤ c2δ
1+α
n .

Then, for all G ∈ G′, we get

1

8
df,g(G,G

⋆
K)− 3

4
df,g(Gn,G

⋆
K)≥ t

8
δ1+αn − 3c2

4
δ1+αn ≥ c2

4
δ1+αn ,

provided that t > 8c2. We eventually obtain:

P (df,g(G
⋆
K , Ĝn,m)> tδ1+αn )

≤ P (∃G ∈ G′ :Rλn,m(G)≤Rλn,m(Gn)) (5.16)

= P (∃G ∈ G′ : 12d
λ
f,g(G,G

⋆
K) + Tn,m(G)− 1

2d
λ
f,g(Gn,G

⋆
K)− Tn,m(Gn)≤ 0),

where for all G1,G2 ⊂K ,

1
2d
λ
f,g(G1,G2) :=RλK(G1)−RλK(G2).

5.2.2. Control of the bias

Last step is to control the bias term. In particular, given G1,G2 ⊂K , we want to measure
the difference between RK(G1)−RK(G2) and RλK(G1)−RλK(G2). First of all, we have
to explicit the term RλK . Recall that for all G1 ⊂K ,

2RλK(G1) := 2ERλn,m(G1)

= E[hK/G1,λ(Z
(1)
1 )] +E[hG1,λ(Z

(2)
1 )]

= E

[
∫

K/G1

1

λ
Kη
(

Z
(1)
1 − x

λ

)

dx

]

+E

[
∫

G1

1

λ
Kη
(

Z
(2)
1 − x

λ

)

dx

]

=

∫

K/G1

E

[

1

λ
Kη
(

X
(1)
1 + ε

(1)
1 − x

λ

)]

dx+

∫

G1

E

[

1

λ
Kη
(

X
(2)
1 + ε

(2)
1 − x

λ

)]

dx.

Using the properties of the deconvolution kernel, we can see that for all x ∈K ,

E

[

1

λ
Kη
(

X
(1)
1 + ε

(1)
1 − x

λ

)]

= E

[

1

λ
K
(

X
(1)
1 − x

λ

)]

=

∫

Rd

1

λ
K
(

y− x

λ

)

f(y) dQ(y).

The same result holds true when replacing X
(1)
1 by X

(2)
1 and f by g. Hence, we obtain

that

2RλK(G1) =

∫

K/G1

∫

Rd

1

λ
K
(

y− x

λ

)

f(y) dQ(y) dx+

∫

G1

∫

Rd

1

λ
K
(

y− x

λ

)

g(y) dQ(y) dx.
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Moreover, if Q is not the Lebesgue measure, note that by assumption, there exists a
constant c0 > 0 such that:

∫

G1∆G2

dx≤ c−1
0 d∆(G1,G2). (5.17)

We then have:

|(RλK −RK)(G1 −G2)|

≤ 1

2

∣

∣

∣

∣

∫
[
∫

1

λ
K
(

y− x

λ

)

f(y)µ(y) dy− f(x)µ(x)

]

[1(x ∈K/G1)− 1(x ∈K/G2)] dx

+

∫
[
∫

1

λ
K
(

y− x

λ

)

g(y)µ(y) dy− g(x)µ(x)

]

[1(x ∈G1)− 1(x ∈G2)] dx

∣

∣

∣

∣

≤ 1

2

∫

G1∆G2

|Kλ ∗ (ν⋆ · µ)(x)− ν⋆ · µ(x)|dx

≤ 1

2c0
‖Kλ ∗ (ν⋆ · µ)− ν⋆ · µ‖∞

∫

G1∆G2

dx

≤Cd∆(G1,G2)[λ
γ
1 + λγ2 ]

≤C[λγ1 + λγ2 ]df,g(G1,G2)
α/(α+1),

for some C > 0, where Kλ(·) = 1
λK(·/λ). Indeed, provided that νµ ∈ Σ(γ,L) and K is a

kernel of order l= ⌊γ⌋, it is well known that:

‖Kλ ∗ (νµ)− νµ‖∞ ≤C[λγ1 + λγ2 ]. (5.18)

This bound is sufficient for the case α= 0. If α> 0, using the Young inequality:

xyr ≤ ry + (1− r)x1/(1−r), ∀x, y ∈R
+,

with r = α/(α+1), x=Cκ−α/α+1[λγ1 +λγ2 ] and y = κdf,g(G1,G2), where κ > 0 is chosen
later on, we get for all G1,G2 ⊂K :

|(RλK −RK)(G1 −G2)| ≤
(

1− α

α+ 1

)(

C

κ

)α

[λγ1 + λγ2 ]
α+1

+
α

α+1
κdf,g(G1,G2).

(5.19)

5.2.3. Conclusion of the proof

Hence, it follows from (5.16) and (5.19) that if α > 0, by choosing κ= (α+ 1)/(4α):

P (df,g(G
⋆
K , Ĝn,m)> tδ1+αn )

≤ P

(

∃G ∈ G′ :

(

1

2
− α

α+ 1
κ

)

df,g(G,G
⋆
K) + Tn,m(G)
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−
(

1

2
+

α

α+1
κ

)

df,g(Gn,G
⋆
K)− Tn,m(Gn) +C

2
∑

i=1

λ
γ(1+α)
i ≤ 0

)

≤ P

(

∃G ∈ G′ :Tn,m(G)≤−1

8
df,g(G,G

⋆
K)

)

+P

(

Tn,m(Gn)≥C

(

δ1+αn +

2
∑

i=1

λ
γ(1+α)
i

))

.

Note that the same inequalities hold for α= 0 using the crude bound:

|(RλK −RK)(G1 −G2)| ≤C[λγ1 + λγ2 ].

In order to conclude, remark that the proposed choice of (λj)j=1,2 provides:

δ1+αn ≃
2
∑

i=1

λ
γ(1+α)
i ⇔ ∀i ∈ {1,2},

(

λ−β1

1 λ−β2

2√
n

)(2γ(α+1))/(γ(2+α)+2)

≃ λ
γ(α+1)
i .

Using (5.15), we eventually get

P (df,g(G
⋆
K , Ĝn,m)> tn−(γ(α+1))/(γ(2+α)+2+2

∑2
i=1 βi))

≤ exp[−C1tn
1/(γ(2+α)+2+2

∑2
i=1 βi)] + exp[−C2n

1/(γ(2+α)+2+2
∑2
i=1 βi)],

where C1, C2 denote positive constants. In order to conclude, we can remark that

nτd(α,β,γ)Ef,gdf,g(G
⋆
K , Ĝn,m)

≤ t+Ef,gdf,g(G
⋆
K , Ĝn,m)1{df,g(G⋆K ,Ĝn,m)>tn−γ(α+1)/(γ(2+α)+d+2

∑d
i=1

βi)}

≤ t+2exp[−C1tn
1/(γ(2+α)+2+2

∑2
i=1 βi)] + 2 exp[−C2n

1/(γ(2+α)+2+2
∑2
i=1 βi)]≤C

for some positive constant C, where we have used the bound df,g(G1,G2) ≤ 2 for all
G1,G2 ⊂K .

5.3. Proof of Corollary 1

The proof follows the same steps as the proof of Theorem 2. Note that in the direct case,
using a kernel K with bounded Fourier transform, we have under the Margin assumption:

E[Ui(G)
2]≤Cd∆(G,G⋆K)≤C′df,g(G,G

⋆
K)

α/(α+1)
and |Ui(G)| ≤C,

for some constant C > 0. Remark that the last inequality is more precise than in the
error-in-variable case. Then using Bernstein’s inequality, we have exactly as in the proof
of Theorem 2:

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ui(Gν)

∣

∣

∣

∣

∣

> a

)

≤ 2 exp

[

− Cna2

a+ d∆(Gν ,G∗
K)

]

,
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for all a > 0. Choosing a= df,g(Gν ,G
⋆
K) and using the same algebra, we get a control of

the upper bound provided that:

δ−2/γ
n ≃ nδ2+αn and δ1+αn ≥

2
∑

i=1

λ
γ(1+α)
i .

The choice of λ and δn in Corollary 1 concludes the proof.

Appendix

Lemma A.1. For any (f, g) satisfying the Margin assumption with parameter α > 0, we
have:

df,g(Gν ,G
⋆
K)≤ c2‖ν − ν⋆‖α+1

∞ ,

where Gν = {ν ≥ 0} and ν⋆ = f − g.

Proof. The proof is a straightforward modification of the proof of Lemma 5.1 in [2]
which state a similar result in the binary classification framework. In the following, given
x ∈R, we write sign(x) = 1 if x> 0, sign(x) = 0 if x= 0, and sign(x) =−1 if x < 0. Then,
we get

df,g(Gν ,G
⋆
K) =

∫

K

|ν⋆(x)|1{x∈G⋆K∆Gν} dQ(x)

=

∫

K

|ν⋆(x)|1{sign(ν⋆(x)) 6=sign(ν(x))} dQ(x)

≤
∫

K

|ν⋆(x)|1{0<|ν⋆(x)|≤|ν(x)−ν⋆(x)|} dQ(x)

≤ ‖ν − ν⋆‖∞Q({x ∈K : 0< |ν⋆(x)| ≤ ‖ν − ν⋆‖∞})≤ c2‖ν − ν⋆‖α+1
∞ ,

where we have used the Margin assumption in order to get the last inequality. �

Lemma A.2. Assume that η satisfies the Noise assumption. Let Kη a deconvolution
kernel defined in (3.1) such that F [K] is bounded and compactly supported. If Q(x) =
µ(x) dx, we assume that minx∈K µ(x)≥ c0 for some c0 > 0. Then, we have,

(i) E[hG,λ(Z)− hG′,λ(Z)]
2 ≤Cd∆(G,G′)

d
∏

i=1

λ−2βi
i ,

(ii) sup
x∈K

|hG,λ(x)− hG′,λ(x)| ≤C

d
∏

i=1

λ
−βi−1/2
i ,

for some generic constant C > 0.
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Proof. For the sake of convenience, we only consider the case where d= 1. We first prove
(i). We have, using (5.17):

E[hG,λ(Z)− hG′,λ(Z)]
2

=

∫

R

[
∫

R

1

λ
Kη
(

z − x

λ

)

(1{x∈G} − 1{x∈G′})1{x∈K} dx

]2

(fµ) ∗ η(z) dz

≤ c

∫

R

1

λ2
|F [Kη(·/λ)](t)|2|F [(1{·∈G} − 1{·∈G′})1{·∈K}](t)|2 dt

≤Cmax
x∈Rd

µ(x)× λ−2β

∫

K

1{t∈G∆G′} dt

≤Cλ−2βd∆(G,G
′).

Indeed, for all s ∈R, using assumptions on the kernel Kη :

1

λ2
|F [Kη(·/λ)](s)|2 = |F [Kη](sλ)|2 =

∣

∣

∣

∣

F [K](sλ)

F [η](s)

∣

∣

∣

∣

2

(A.1)

≤ C sup
s∈[−M/λ,M/λ]

∣

∣

∣

∣

1

F [Kη](s)

∣

∣

∣

∣

2

≤Cλ−2β ,

where F [K] = 0 on R \ [−M,M ].
In order to prove (ii), we use the following algebra

sup
z∈R

|hG,λ(z)− hG′,λ(z)| ≤ sup
z∈R

∫

G∆G′

1

λ

∣

∣

∣

∣

Kη
(

z − x

λ

)∣

∣

∣

∣

dx

≤ C sup
z∈R

∫

K

1

λ

∣

∣

∣

∣

Kη
(

z − x

λ

)
∣

∣

∣

∣

dx

≤ C sup
z∈R

√

∫

1

λ2
K2
η

(

z − x

λ

)

dx

≤ Cλ−1/2

√

∫

[−M,M ]

∣

∣

∣

∣

F [K](t)

F [η](t/λ)

∣

∣

∣

∣

2

dt

≤ Cλ−β−1/2,

where last line uses the Noise assumption and assumptions on the kernel Kη . �
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