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Discriminant analysis with errors in variables

Sébastien Loustau
∗
and Clément Marteau

†

Abstract

The effect of measurement error in discriminant analysis is investigated. Given obser-
vations Z = X + ǫ, where ǫ denotes a random noise, the goal is to predict the density of
X among two possible candidates f and g. We suppose that we have at our disposal two
learning samples. The aim is to approach the best possible decision rule G∗ defined as a
minimizer of the Bayes risk.

In the free-noise case (ǫ = 0), minimax fast rates of convergence are well-known under the
margin assumption in discriminant analysis (see [24]) or in the more general classification
framework (see [30, 2]). In this paper we intend to establish similar results in the noisy case,
i.e. when dealing with errors in variables. In particular, we discuss two possible complexity
assumptions that can be set on the problem, which may alternatively concern the regularity
of f − g or the boundary of G∗. We prove minimax lower bounds for these both problems
and explain how can these rates be attained, using in particular Empirical Risk Minimizer
(ERM) methods based on deconvolution kernel estimators.

1 Introduction

In the problem of discriminant analysis, we usually observe two i.i.d. samples X
(1)
1 , . . . ,X

(1)
n

and X
(2)
1 , . . . ,X

(2)
m . Each observation X

(i)
j ∈ R

d is assumed to admit a density with respect to
a σ-finite measure Q, dominated by the Lebesgue measure. This density will be denoted by f
if the observation belongs to the first set (i.e. when i = 1) or g in the other case. Our aim
is to infer the density of a new incoming observation X. This problem can be considered as a
particular case of the more general and extensively studied binary classification problem (see
[12] for a detailed introduction or [7] for a concise survey).

In this framework, a decision rule or classifier can be identified with a set G ⊂ R
d, which

attributes X to f if X ∈ G and to g otherwise. Then, we can associate to each classifier G its
corresponding Bayes risk RK(G) defined as

RK(G) =
1

2

[

∫

K/G
f(x)dQ(x) +

∫

G
g(x)dQ(x)

]

, (1.1)

where we restrict the problem to a compact set K ⊂ R
d. The minimizer of the Bayes risk (the

best possible classifier for this criterion) is given by

G∗
K = {x ∈ K : f(x) ≥ g(x)}, (1.2)

where the infimum is taken over all subsets of K. The Bayes classifier is obviously unknown
since it explicitly depends on the couple (f, g). The goal is thus to estimate G∗

K thanks to a

classifier Ĝn,m based on the two learning samples.
In this paper we propose to estimate the Bayes classifier G∗

K defined in (1.2) when dealing
with noisy samples. For all i ∈ {1, 2}, we assume that we observe

Z
(i)
j = X

(i)
j + ǫ

(i)
j , j = 1, . . . ni, (1.3)
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instead of the X
(i)
j . The ǫ

(i)
j denotes random variables expressing measurement errors. We will

see in this paper that we are faced to an inverse problem, and more precisely to a deconvolu-
tion problem. Indeed, if ǫ admit a density η with respect to the Lebesgue measure, then the

corresponding density of the Z
(i)
j is the convolution product (f.µ) ∗ η if i = 1 or (g.µ) ∗ η if

i = 2, provide that dQ(x) = µ(x)dx for some bounded function µ. It gives rise to a deconvolu-
tion step in the estimation procedure. Deconvolution problems arise in many fields where data
are obtained with measurements errors and are at the core of several nonparametric statistical
studies. For a general review of the possible methodologies associated to these problems we may
mention for instance [26]. More specifically, we refer to [14] in density estimation or [8] where
goodness-of-fit tests are constructed in the presence of noise. The main key of all these studies
is to construct a deconvolution kernel which may allow to annihilate the noise ǫ. More details
on the construction of such objects are provided in Section 3. It is important to note that in
this discriminant analysis setup, or more generally in classification, there is up to our knowledge
no such a work. The aim of this paper is to describe minimax rates of convergence in noisy
discriminant analysis under the margin assumption.

In the free-noise case, i.e. when ǫ = 0, [24] has attracted the attention on minimax fast rates

of convergence (i.e. faster than n−
1
2 ) and states in particular

inf
Ĝ

sup
G∗

K∈G(α,ρ)

[

RK(Ĝ)−RK(G
∗
K)
]

≈ n
− α+1

2+α+ρα , as n→ +∞, (1.4)

where G(α, ρ) is a non parametric set of candidates G∗
K with complexity ρ > 0 and margin

parameter α ≥ 0 (see Section 2.1 for a precise definition). In (1.4), the complexity parameter
ρ > 0 is related to the notion of entropy with bracketing whereas the margin is used to relate the
variance to the expectation. It allows [24] to get improved bounds using the so-called peeling
technique of [16]. This result is at the origin of a recent and vast litterature of fast rates of
convergence in classification (see for instance [25, 2]) or in general statistical learning (see [19]).
In these papers, the complexity assumption can be of two forms: geometric assumption over the
class of candidates G∗

K (such as finite VC dimension, or boundary fragments) or assumptions
on the regularity of the regression function of classification (plug-in type assumptions). In [25],
minimax fast rates are stated for finite VC class of candidates whereas plug-in type assumptions
have been studied in classification in [2] (see also [12, 28]). More generally [19] proposes to
consider ρ > 0 as a complexity parameter in local Rademacher complexities and gives general
upper bounds generalizing (1.4) and the results of [24] and [2].

In all these results, empirical risk minimizers appear as good candidates to reach these fast
rates of convergence. Indeed, given a class of candidates G, a natural way to estimate G∗

K is to
consider an Empirical Risk Minimization (ERM) approach. In standard discriminant analysis
(e.g. in the free-noise case considered in [24]), the risk RK(G) in (1.2) can be estimated by

Rn,m(G) =
1

2n

n
∑

i=1

1
{X

(1)
i ∈GC}

+
1

2m

m
∑

i=1

1
{X

(2)
i ∈G}

, (1.5)

leading to an empirical risk minimizer Ĝn,m, if it exists, defined as:

Ĝn,m = argmin
G∈G

Rn,m(G). (1.6)

Unfortunately, in the error-in-variable model, since we observe noisy samples Z = X + ǫ,
the probability densities of the observed variables w.r.t. the Lebesgue measure are respectively
convolution (f.µ) ∗ η and (g.µ) ∗ η. As a result, classical ERM principle fails since:

1

2n

n
∑

i=1

1
{Z

(1)
i ∈GC}

+
1

2m

m
∑

i=1

1
{Z

(2)
i ∈G}

−→ 1

2

[

∫

K/G
(f.µ) ∗ η(x)dx+

∫

G
(g.µ) ∗ η(x)dx

]

6= RK(G).
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As a consequence, we propose to add a deconvolution step in the classical ERM procedure by
considering the solution of the minimization:

min
G∈G

Rλn,m(G),

where Rλn,m(G) is an asymptotically unbiased estimator of RK(G) which uses kernel deconvolu-
tion estimators with smoothing parameter λ. It is called deconvolution empirical risk and will
be of the form

Rλn,m(G) =
1

2n

n
∑

j=1

hGC ,λ(Z
(1)
j ) +

1

2m

m
∑

j=1

hG,λ(Z
(2)
j ), (1.7)

where the hG,λ(·) are smoothed versions of indicator functions used in classical ERM for direct
observations (see Section 3 for details).

In this paper, we would like to describe as precisely as possible the influence of the error ǫ
on the classification rates of convergence and the presence of fast rates. Our aim is to use the
asymptotic theory of empirical processes in te spirit of [16] (see also [32]) when dealing with
the deconvolution empirical risk (1.7). To this end, we give the explicit form of functions hG,λ
in these framework. In particular, we need to study in details the complexity of the class of
functions {hG,λ, G ∈ G} in order to get statistical performances of the solution of the ERM esti-
mator. This complexity is related to the imposed complexity over G, such as boundary fragment
assumptions or regularity hypothesis on the function f − g. For each assumption, we establish
lower and upper bounds and discuss the performances of this deconvolution ERM estimator
for this problem. Such a study allows a first comparison of the robustness of these complexity
assumptions w.r.t. the presence of errors in variables. Remark that the results presented here
focus on the discriminant analysis set up but could be generalized to the classification framework
in a future work. Moreover the problem of adaptation will not be considered in this paper but
could be the core of a more advanced contribution.

We point out that the definition of the empirical risk (1.7) leads to a new and interesting
theory of risk bounds detailed in Section 3 for discriminant analysis. In particular, the parameter
λ has to be calibrated to reach a bias/variance trade-off in the decomposition of the excess risk.
Related ideas have been recently proposed in [18] in the gaussian white noise model and density
estimation setting for more general linear inverse problem using singular value decomposition. In
our framework, up to our knowledge, the only minimax result is [17] which gives minimax rates
in Hausdorff distance for manifold estimation in the presence of noisy variables. [11] gives also
consistency and limiting distribution for estimators of boundaries in deconvolution problems,
but no minimax results are proposed. In the direct case, we can also apply this methodology
and consider an empirical risk given by the estimation of f and g using simple kernel density
estimators. This idea has been already mentioned in [33] in the general learning context and
called Vicinal Risk Minimization (see also [9]). However even in pattern recognition and in the
direct case, up to our knowledge, there is no asymptotic rates of convergence for this empirical
minimization principle.

The paper is organized as follows. In Section 2, the two main complexity assumptions used
in this paper are explicited and associated lower bounds are proposed. These lower bounds
generalize the previous lower bounds of [24] and [2]. Deconvolving ERM attaining these rates
are presented in Section 3. A brief discussion and some perspectives are gathered in Section 4
while Section 5 is dedicated to the proofs of the main results.
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2 Plugin vs boundary fragments

In this section, we detail some common assumptions (complexity and margin) that can be set
on the pair (f, g). We then propose lower bounds on the corresponding minimax rates.

First of all, given a set G ⊂ K, simple algebra indicates that the excess risk RK(G)−RK(G∗)
can be written as:

RK(G)−RK(G∗
K) =

1

2
df,g(G,G

∗
K),

where the pseudo-distance df,g over subsets of K ⊂ R
d is defined as

df,g(G1, G2) =

∫

G1∆G2

|f − g|dQ,

and G1∆G2 = [Gc1 ∩ G2] ∪ [Gc2 ∩ G1] is the symmetric difference between two sets G1 and G2.
In this context, there is another natural way of measuring the accuracy of a decision rule G
through the quantity:

d∆(G,G
∗
K) =

∫

G∆G∗
K

dQ,

where d∆ defines also a pseudo-distance on the subsets of K ⊂ R
d.

In this paper, we are interested in the minimax rates associated to these pseudo-distances. In
other words, given a class F , one would like to quantify as precisely as possible the corresponding
minimax risks defined as

inf
Ĝn,m

sup
(f,g)∈F

d�(Ĝn,m, G
∗
K),

where the infimum is taken over all possible estimators of G∗
K and d� stands for df,g or d∆

following the context. In particular, we will exhibit classification rules Ĝn,m attaining these
rates. In order to obtain a satisfying study of the minimax rates mentioned above, one need to
detail the considered classes F . Such a class expresses some conditions that can be set on the
pair (f, g). They are often separated in two categories: margin and complexity assumptions.

A first condition that can be set on the pair (f, g) is the well-known margin assumption. It
has been introduced in discriminant analysis (see [24]) as follows:

Margin Assumption: There exists positive constants t0, c2, α ≥ 0 such that for 0 < t < t0:

Q{x ∈ K : |f(x)− g(x)| ≤ t} ≤ c2t
α. (2.1)

This assumption is related to the behaviour of |f − g| at the boundary of G∗
K . It may give a

variety of minimax fast rates of convergence which depends on the margin parameter α. A large
margin corresponds to configurations where the slope of |f − g| is high at the boundary of G∗

K .
The most favorable case corresponds to a margin α = +∞ when f − g jumps at the boundary
of G∗

K .
From a practical point of view, this assumption provides a precise description of the interac-

tion between the pseudo distance df,g and d∆. In particular, it allows a control of the variance
of the empirical processes involved in the upper bounds. Note that in the presence of noise in
variables, Lemma 4 in Appendix proposes an usefull generalization of Lemma 2 in [24]. More
general assumptions of this type can be formulated (see for instance [6] or [19]) in a more general
statistical learning context.
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The margin assumption is ’structural’ in the sense that it describes the difficulty to dis-
tinguish an observation having density f from an other with density g. In order to provide a
complete study, one also needs to set an assumption on the difficulty to find G∗

K in a possible set
of candidates, namely a complexity assumption. In the classification framework, two different
kind of complexity assumptions are often proposed in the literature. The first kind concerns
the regularity of the boundary of the Bayes classifier. Indeed, our aim is to estimate G∗

K , which
yet corresponds to a nonparametric set estimation problem. In this context, it seems natural
to traduce the difficulty of the learning process by condition on the shape of G∗

K . An other
way to describe the complexity of the problem is to impose condition on the regularity of the
underlying densities f and g. Such kind of condition is originally related to plug-in approaches.

Remark that any clear connexion can be established between such kind of assumption: a
set G∗

K with a smooth boundary is not necessarily associated to smooth densities. In the two
following subsections, we provide a precise description of the assumptions that we will use in this
paper. In each case, we propose lower bounds for the associated minimax rates of convergence
in this noisy setting. Corresponding upper bounds are presented and discussed in Section 3.

For the sake of convenience, we will also require in the following an additional assumption
on the noise ǫ. We assume in the sequel that ǫ = (ǫ1, . . . , ǫd)

′ admit a density η with respect to
the Lebesgue measure satisfying

η(x) =

d
∏

i=1

ηi(xi) ∀x ∈ R
d. (2.2)

In other word, the entries of the vector ǫ are independent. The assumption below describes the
difficulty of the considered problems. It is often called the ordinary smooth case in the inverse
problem litterature.

Noise Assumption: There exist (β1, . . . , βd)
′ ∈ R

d
+ such that for all i ∈ {1, . . . , d}, βi > 1/2,

|F [ηi](t)| ∼ |t|−βi , and
∣

∣F ′[ηi](t)
∣

∣ ∼ |t|−βi as t→ +∞,

where F [ηi] denotes the Fourier transform of the ηi. Moreover, we assume that F [ηi](t) 6= 0 for
all t ∈ R and i ∈ {1, . . . , d}.

Classical results in deconvolution (see e.g. [14], [15] or [8] among others) are stated for d = 1.
Two different settings are then distinguished concerning the difficulty of the problem which is
expressed through the shape of F [η]. One considers alternatively the case where |F [η](t)| ∼ |t|−β
as t → +∞, which yet corresponds to mildly ill-posed inverse problem or |F [η](t)| ∼ e−γt as
t → +∞ which leads to a severely ill-posed inverse problem. This last setting corresponds to a
particularly difficult problem and is often associated to low minimax rates of convergence.

In this paper, we only deal with d-dimensional mildly ill-posed deconvolution problems. For
the sake of brevity, we do not consider severely ill-posed inverse problems or possible intermedi-
ates (e.g. a combination of polynomial and exponential decreasing densities). Nevertheless, the
rates in these cases could be obtained through the same steps.

2.1 The boundary fragment assumption

We focus in this subsection on an assumption related to the regularity of the boundary of G∗
K .

More precisely, we deal with the family of boundary fragments on K = [0, 1]d. A set G ⊂ [0, 1]d

belongs to a class of boundary fragments (see [20]) if there exists b : [0, 1]d−1 → [0, 1] such that:

G = {x = (x1, . . . xd) : xd ≤ b(x1, . . . , xd−1)} := Gb.

5



For given γ, L > 0 the class of Hölder boundary fragments is then defined as

G(γ, L) = {Gb, b ∈ Σ(γ, L)},

where Σ(γ, L) is the class of isotropic Hölder continuous functions b(x1, . . . , xd−1) having con-
tinuous partial derivatives up to order ⌊γ⌋, the maximal integer strictly less than γ and such
that:

|b(y)− pb,x(y)| ≤ L|x− y|γ ,∀x, y ∈ [0, 1]d−1,

where pb,x is the Taylor polynomial of b at order ⌊γ⌋ at point x.

Boundary fragment assumption. There exist γf and L positive constants such that the
set G∗

K belongs to G(γf , L).

In the following, we denote by Ffrag the set of all pairs (f, g) satisfying both the margin and
boundary fragment assumptions. Theorem 1 states lower bounds for the minimax risks over the
class Ffrag. The proof is postponed to Section 5.

Theorem 1 Let K = [0, 1]d and F = Ffrag. Suppose that Q is the Lebesgue measure on K and
that the noise assumption is satisfied. Then

lim inf
n→+∞

inf
Ĝn,m

sup
(f,g)∈Ffrag

(n ∧m)τd(α,β,γf )d�(Ĝn,m, G
⋆
K) > 0,

where the infinimum is taken over all possible estimators of the set G⋆K and

τd(α, β, γf ) =











































γα

γf(2 + α) + (d− 1)α+ 2α

d−1
∑

i=1

βi + 2αβdγf

for d� = d∆

γ(α+ 1)

γf(2 + α) + (d− 1)α+ 2α

d−1
∑

i=1

βi + 2αβdγf

for d� = df,g.

Remark that we obtain exactly the same lower bounds as [24] in the direct case, which yet
corresponds to the situation where βj = 0 for all j ∈ {1, . . . , d}. In this particular framework,
the minimax rate of convergence mainly depends on γf and α. The coefficient γf corresponds
to the regularity of the boundary of G∗

K . Greater is γf , easier is the estimation. The term α
is related to the margin assumption. The case α = +∞ actually corresponds to a jump of the
function f−g near the boundary of G∗

K . On the opposite hand, a small α is associated to a very
difficult problem since the difference between f and g may be quite small in such a situation.

In the presence of noise in the variables, the rates obtained in Theorem 1 are slower. The
price to pay is an additional term of the form

2α

d−1
∑

i=1

βi + 2αβdγf .

This term clearly connects the difficulty of the problem to the values of the coefficients β1, . . . , βd.
Moreover the above expression highlights a connection between the margin parameter and the
ill-posedness. The role of the margin parameter over the inverse problem can be summarized
as follows. Higher is the margin, higher is the price to pay for a given degree of ill-posedness.
When the margin parameter is small, the problem is difficult at the boundary of G∗

K and we can
only expect a non-sharp estimation of G∗

K . In this case it is not significantly worst to add noise.
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On the contrary, for large margin parameter, there is nice hope to give a sharp estimation of
G∗
K and then perturb the inputs variables have strong consequences in the performances.
Remark also in the above expression that the first d− 1 components of ǫ have not the same

impact as the last (vertical) component. This is due to the fact that we consider boundary
fragments with a given regularity γf .

2.2 The plug-in assumption

The boundary fragment assumption concerns the set G∗
K and in particular the smoothness of

its boundary. Other conditions have been proposed in the literature in order to explain and
quantify the difficulty related to a classification problem.

An alternative hypothesis concerns the regularity of the function f−g itself. In the following,
we denote by Σ′(γ, L) the class of d-dimensional isotropic Hölder continuous functions.

Plug-in Assumption. There exists γp and L′ positive constants such that f − g ∈ Σ′(γp, L
′).

We then call Fplug the set of all pairs (f, g) satisfying both the margin and plug-in assump-
tions, since the previous assumption is often associated to plug-in rules in the statistical learning
literature. The following theorem proposes a lower bound for the noisy smooth discriminant
analysis problem in such a setting.

Theorem 2 Let F = Fplug. Suppose that Q is absolutely continuous with respect to the Lebesgue
measure and that the noise assumption is satisfied. Then, provided α ≤ 1,

lim inf
n→+∞

inf
Ĝn,m

sup
(f,g)∈Fplug

(n ∧m)τ
′
d(α,β,γ)d�(Ĝn,m, G

⋆
K) > 0,

where the infinimum is taken over all possible estimators of the set G⋆K and

τ ′d(α, β, γ) =















































γpα

γp(2 + α) + d+ 2
d
∑

i=1

βi

for d� = d∆

γp(α+ 1)

γp(2 + α) + d+ 2

d
∑

i=1

βi

for d� = df,g.

As in the previous subsection, we obtain the same lower bound as [2] in the direct case, i.e. when
βi = 0 for all i ∈ {1, . . . , d}. Once again, the larger α, the easier the estimation. Moreover,
smooth densities will provide a simpler classification problem.

As in Theorem 1, in the presence of noise in the variables, the rates obtained in Theorem 1
are slower. The price to pay is an additional term of the form 2

∑d
i=1 βi. Nevertheless, the way

where the parameters γp, α and the βi interact is slightly different than for boundary fragment
assumption. This is not surprising since the structure and the complexity of the problem have
changed. Here γp denotes the regularity of f−g and interacts directly with the margin parameter
α.

Remark that this lower bound is valid only for α ≤ 1. Since we use in the proof of Theorem
2 an algebra based on standard Fourier analysis tools, we have to consider sufficient smooth
objects. As a consequence in the lower bounds, we can check the margin assumption only for
values of α ≤ 1. Nevertheless, we conjecture that this restriction is only due to technical reasons
and that our result remains pertinent for all α, γ ∈ R. In particular, an interesting direction
is to consider a wavelet basis which provides an isometric wavelet transforms in L2 in order to
obtain the desired lower bound in the general case.
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3 Upper bounds

3.1 Estimation of G∗
K

In the free-noise case (ǫ
(j)
i = 0 for all i ∈ {1, . . . , d}, j ∈ {1, 2}), we deal with two samples

(X
(1)
1 , . . . ,X

(1)
n ), (X

(2)
1 , . . . ,X

(2)
m ) having respective densities f and g. A standard way to esti-

mate G∗
K = {x ∈ K : f(x) ≥ g(x)} is to estimate RK(·) thanks to the data. For all G ⊂ K, the

risk RK(G) can be estimated by the empirical risk defined in (1.5). Then the Bayes classifier
G⋆K is estimated by Ĝn,m defined as a minimizer of the empirical risk (1.5) over a given family

of sets G. We know for instance from [24] that the estimator Ĝn,m reaches the minimax rates
of convergence of Theorem 1 for β = 0 when G := G(γ, L) corresponds to the set of boundary
fragments with γ > d − 1. For larger set G(γ, L), as proposed in [24], the minimization can be
restricted to an δ−net of G(γ, L). With an additional assumption over the approximation power
of this δ−net, the same minimax rates can be achieved in a subset of G(γ, L).

If we consider complexity assumptions related to the smoothness of f − g, we can show
coarsely with [2] that an hybrid plug-in/ERM estimator reaches the minimax rates of convergence
of Theorem 2 in the free-noise case. The principle of the method is to consider the empirical
minimization (1.5) over a particular class G based on plug-in type decision sets. More precisely,
following [2] for classification, we can minimize in the direct case the empirical risk over a class
G of the form:

G = {{f − g ≥ 0}, f − g ∈ Nn,m},
where Nn,m is an δ−net over the class of densities, and where δ := δn is well chosen. With such
a procedure, minimax rates can be obtained with no restriction over the parameter γp, α and d.

In noisy discriminant analysis, ERM estimator (1.6) is not available since we only observe
noisy samples. The probability densities of the samples w.r.t. the Lebesgue measure are respec-
tively convolution (fµ) ∗ η and (gµ) ∗ η and then classical ERM principle fails since:

1

2n

n
∑

i=1

1
{Z

(1)
i ∈GC}

+
1

2m

m
∑

i=1

1
{Z

(2)
i ∈G}

a.s.−−−→
n→∞

1

2

[

∫

K/G
(f.µ) ∗ η(x)dx+

∫

G
(g.µ) ∗ η(x)

]

6= RK(G).

Hence, we have to add a deconvolution step to the classical ERM estimator. In this context, we
can construct a deconvolution kernel provided that the noise has a nonnull Fourier transform, as
expressed in the Noise Assumption. This is rather classical in the inverse problem literature (see
e.g. [14], [8], [10] or [26]). With such an assumption, we are able to construct a deconvoluting
kernel as follows.

Let K =
∏d
i=1Kj : Rd → R be a d-dimensional function defined as the product of d uni-

dimensional function Kj . The properties of K leading to satisfying upper bound (depending
on the considered complexity assumption) will be precised later on. Then if we denote by
λ = (λ1, . . . , λd) a set of (positive) bandwidths and by F [·] the Fourier transform, we define Kη

as

Kη : R
d → R

x 7→ Kη(t) = F−1

[ F [K](·)
F [η](·/λ)

]

. (3.1)

In this context, for all G ⊂ K, the risk RK(G) can be estimated by

Rλn,m(G) =
1

2

[

1

n

n
∑

i=1

hGC ,λ(Z
(1)
i ) +

1

m

m
∑

i=1

hG,λ(Z
(2)
i )

]

,

8



where for a given z ∈ R,

hG,λ(z) :=

∫

G

1

λ
Kη

(

z − x

λ

)

dQ(x). (3.2)

In the following, we propose to study ERM estimators defined as

Ĝλn,m = argmin
G∈G

Rλn,m(G), (3.3)

where the parameter λ ∈ R
d
+ has to be chosen explicitly. It is important to note that in (3.2)

hG,λ depends on Q. Hence, the measure Q needs to be known a priori. It differs from the direct
case where the empirical risk is independent of the nature of Q. Here functions hG,λ in equation
(3.2) are at the core of the upper bounds. In particular, remark that following the pioneering’s
works of Vapnik (see [33]), we have

RK(Ĝ
λ
n,m)−RK(G∗) ≤ RK(Ĝ

λ
n,m)−Rλn,m(Ĝ

λ
n,m) +Rλn,m(G

∗
K)−RK(G

∗),

≤ RλK(Ĝ
λ
n,m)−Rλn,m(Ĝ

λ
n,m) +Rλn,m(G

∗
K)−RλK(G

∗)

+(RK −RλK)(Ĝ
λ
n,m)− (RK −RλK)(G∗

K)

≤ sup
G∈G

|RλK −Rλn,m|(G−G∗
K) + sup

G∈G
|RλK −RK |(G −G∗

K), (3.4)

where RλK(·) corresponds to the expectation of Rλn,m(.). As a result, to get risk bounds, we have
to deal with two opposing terms, namely a so-called variability term

sup
G∈G

|RλK −Rλn,m|(G −G∗
K), (3.5)

and a bias term (since ERλn,m(G) 6= RK(G)) of the form:

sup
G∈G

|RλK −RK |(G−G∗
K). (3.6)

The variability term (3.5) gives rise to the study of increments of empirical process. In this
paper this control is based on entropy conditions and uniform concentration inequalities which
are inspired by results presented for instance in [32] or [16]. The main novelty here is that in the
noisy case, empirical processes are indexed by a class of functions which depends on the smooth-
ing parameter λ. The bias term (3.6) is controlled by taking advantages of the properties of G
and of the assumptions on the kernel K. Indeed, it can be related to the standard bias term in
non parametric density estimation with more or less technicalities, according to the smoothness
assumption (boundary fragements or plug-in type). This bias term is inherent to the proposed
estimation procedure and its control is a cornerstone of the upper bounds.

The choice of λ will be a trade off between the two opposing terms (3.5) and (3.6). Small
λ > 0 leads to complex functions hG,λ and blast the variance term whereas (3.6) vanishes when
λ tends to zero. The kernel K has to be chosen in order to take advantage of the different
conditions on GK∗. This choise will be operated according to the following definition.

Definition We say that K is a kernel of order l ∈ N
∗ with respect to Q if and only if:

•
∫

K K(u)dQ(u) = 1 ∀ j = 1, . . . d.

•
∫

K u
k
jK(u)dQ(u) = 0 ∀ k = 1, . . . l, ∀ j = 1, . . . d.

•
∫

K |uj |l|K(u)|dQ(u) <∞, ∀ j = 1, . . . d.

9



In addition to this definition, we will require that the deconvolution kernel is convenient for the
noise η through the following assumption. Such an assumption is rather standard and is for
instance satisfied if the kernel K has a compactly supported Fourier transform (see the proof in
the Appendix) and even under a polynomial decreasing behavior of |F [Kη ](t)|.

Kernel Assumption. The Kernel K is such that

sup
t∈Rd

|F [Kη ](t)| ≤ C
d
∏

i=1

λ−βii ,

for some positive constant C.

The two following subsections propose to study deconvolution ERM estimator (3.3) and give
asymptotic rates of convergence for particular choices of λ. Under the margin assumption, fast
and optimal rates are stated depending on the complexity assumption considered: the Boundary
fragment assumption or the Plug-in assumption.

3.2 Upper bound for the plug-in assumption

We first point out that for the sake of coherence, we will not study plug-in rules in this paper,
although a study similar to [2] could be managed. Since our aim is to establish minimax rates
of convergence under two different complexity assumptions, we focus on the same ERM type
estimators of the form (3.3).

For all δ > 0, using the notion of entropy (see for instance [32]) for Hölderian function on
compact sets, we can find a δ-network Nδ on Σ′(γp, L) such that

• log(card(Nδ)) ≤ Aδ−d/γp

• For all h0 ∈ Σ′(γp, L), we can find h ∈ Nδ such that ‖h− h0‖∞ ≤ δ.

In the following, we associate to each ν := f − g ∈ Σ′(γp, L), a set Gν = {x : ν(x) ≥ 0}. Under
the plug-in assumption, our ERM estimator will then be defined as

Ĝn,m = arg min
ν∈Nδ

Rλn,m(Gν), (3.7)

where δ = δn has to be chosen carefully. This procedure has been introduced in the direct case
by [2] and refered as an hybrid Plug-in/ERM procedure. The following theorem describes the
performances of Ĝn,m.

Theorem 3 Let F = Fplug and Ĝn,m the set introduced in (3.7) with

λi = n
− 1

γp(2+α)+2
∑d

i=1
βi+d , ∀i ∈ {1, . . . , n}, and δn =

(

∏d
i=1 λ

−βi
i√

n

)
2

2/γp+2+α

.

Suppose that the noise assumption is satisfied with βi > 1/2, ∀i = 1, . . . d. Consider a kernel Kη

defined as in (3.1) where K = Πdj=1Kj is a kernel of order ⌊γ⌋ with respect to Q, which satifies
the kernel assumption. Then

lim
n→+∞

sup
(f,g)∈Fplug

(n ∧m)τ
′
d(α,β,γ)d(Ĝn, G

⋆
K) < +∞,
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where

τ ′d(α, β, γ) =















































γpα

γp(2 + α) + d+ 2

d
∑

i=1

βi

for d = d∆

γp(α+ 1)

γp(2 + α) + d+ 2

d
∑

i=1

βi

for d = df,g.

Theorem 3 validates the lower bounds of Theorem 1. Deconvolution ERM are minimax optimal
over the class Fplug.

These optimal rates are characterized by the tail behavior of the characteristic function of
the error distribution η. We only consider the ordinary smooth case whereas straightforward
modifications leads to low rates of convergence in the super smooth case.

Here fast rates are proposed provided that αγ > d +
∑

βi. However it is important to
note that large values of both α and γ corresponds to very restrictive situations. In this case
the margin parameter is high whereas the behavior of f − g is smooth, which seems to be
contradictory (see the related discussion in [2]).

3.3 Upper bound for the boundary fragment assumption

For the sack of concision, we propose to restrict the set of all possible regularities γf in G(γf , L)
to γf > d − 1. It allows us to control the bracketing entropy of G(γf , L) with a parameter
ρ = d−1

γ < 1. Hence, the construction of the ERM estimator can be directly (at least from a
theoretical point of view) performed on this set and leads to the estimator:

Ĝn = arg min
G∈G(γ,L)

Rλn(G). (3.8)

Nevertheless, one may also define our ERM estimator on a network in a practical purpose,
without significant change in the following results.

Theorem 4 below describes the performances of Ĝn for the boundary fragment assumption.
It seems to highlight a difficulty to get minimax results in this setting and do not entirely
validates the lower bounds of Theorem 1.

Theorem 4 Let F = Ffrag, G∗
K ∈ G(γ, L) with γ > d− 1 and Ĝn,m the set introduced in (3.8).

Suppose the noise assumption is satisfied with βd ≥ 1/2. Conside a kernel Kη defined as in (3.1)
satysfying the Kernel assumption and such that Kd−1 = Πd−1

j=1Kj is a kernel of order ⌊γb⌋ with
respect to the Lebesgue measure. Then, for all n ∈ N, we have

Edf,g(Ĝn, G
∗
K) .

(

∏d
j=1 λ

−βj
j√

n

)

2(α+1)γ
γ(α+2)+(d−1)α

+ sup
G∈G(γ,L)

∣

∣

∣
RλK −RK

∣

∣

∣
(G).

In addition, if

λi = n
− α

γ(2+α)+2αγ
∑d−1

i=1
βi+2αβd+1 , ∀i ∈ {1, . . . , d− 1}, and λd = λγ1 ,

then
Ed∆(Ĝn, G

∗
K) . n−τd(α,β,γ) + rn(α, λ,G

∗
K ), (3.9)

where n−τd(α,β,γ) is the optimal minimax rate of Theorem 2 and rn(α, λ,G
∗
K ) is a additional

term defined as:

rn(α, λ,G
∗
K )

=

(
∫

|f − g||Kλ ∗ 1{.∈G∗
K} −Kλ ∗ 1{.∈Ĝn}

| −
∫

(f − g)(Kλ ∗ 1{.∈G∗
K} −Kλ ∗ 1{.∈Ĝn}

)

)
α

α+1

.
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Theorem 4 underlines a lack of optimality of ERM estimator Ĝn for the Hölder boundary
fragment assumption. It could be explain as follows.

The first assertion of Theorem 4 deals with the excess risk of the procedure. As a result, in
this case using the series of inequalities (3.4), it is straightforward to get the first assertion with
a modified version of Lemma 1 in [24] applied to the noisy setting. However a control of the
bias term is not yet available. To deal with a boundary fragment’s type assumption, we have to
write the bias term using Fubini as follows:

RλK(G)−RK(G) =

∫

(f − g)(z)

∫

K(u)[1G(z)− 1G(z − λ.u)]du dz.

The presence of f − g in the above integral seems problematic and an assumption about the
behavior of (f − g) at the boundary of G∗

K seems to be necessary to reach the minimax results
of Theorem 1.

To avoid the presence of (f−g) in the bias term, the second assertion of Theorem 4 proposes
to control d∆(Ĝn, G

∗
K). In this case, it is possible to control a bias term as follows:

∫

1G − hG,λ =

∫

K(u)[1G(z)− 1G(z − λ.u)]dudz ≤
d−1
∑

i=1

λγi + λd,

and to approach the minimax rates of Theorem 1 thanks to an optimal choice for λ. However in
this case a residual term appears in the upper bound and the main problem is that any satisfying
bound on this residual term is, up to our knowledge available. The minimax optimality of Ĝn
remains an open problem.

4 Conclusion

We have provided in this paper minimax rates of convergence in the framework of smooth
discriminant analysis with error in variables. We consider two different assumptions over the
complexity of the hypothesis space: plug-in type assumptions or boundary fragments. In the
presence of plug-in type assumptions, we have proved minimax optimality reached by Deconvo-
lution ERM. These optimal rates are fast rates (faster than n−

1
2 ) when αγ > d +

∑d
i=1 βi and

generalize the result of [2]. As shown in Table 1, the influence of the noise ǫ can be compared
with standard results in regression and density estimation with errors in variables of [14, 15]
using kernel deconvolution estimators.

Density estimation Goodness-of-fit testing Classification

Direct case (ǫ = 0) n
− 2γ

2γ+1 n
− 2γ

4γ+1 n
− γ(α+1)

γ(α+2)+d

Errors in variables n−
2γ

2γ+2β+1 n−
2γ

4γ+4β+1 n
− γ(α+1)

γ(α+2)+2β̄+d

Regularity f ∈ Σ(γ, L) f ∈W (s, L) f − g ∈ Σ(γ, L)
assumptions |F [η](t)| ∼ |t|−β |F [η](t)| ∼ |t|−β |F [ηi](t)| ∼ |t|−βi ∀i

Table 1. Optimal rates of convergence in pointwise L2-risk in density estimation (see [14]),
optimal separation rates for goodness-of-fit testing on Sobolev spaces W (s, L) (see e.g. [8]) and

the result of the paper in smooth discriminant analysis.

In the presence of boundary fragments assumptions, we state a lower bound which generalizes
the lower bound of the direct case of [24]. However Deconvolution ERM does not reach this
lower bound. As a result, an open problem is to find the minimax optimal rate of convergence
in the presence of noise under boundary fragments assumptions. A possible way is to find a
classifier reaching the lower bound of Theorem 1. An interesting direction for this purpose
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could be to consider convex loss functions in the spirit of [5]. If we take a look at Theorem 4,
standard ERM with hard loss suffers from a lack of regularity. Considering for instance SVM
type loss, it could be possible to control the bias term in the Deconvolution ERM using the
Hölder regularity of the boundary. The robustness of SVM with respect to noise in variables
could be an interesting future work. However, this paper seems to highlight that at the first
glance plug-in type assumptions are more adapted to the presence of noise in classification.

We conclude this discussion by some words on adaptation. It is important to note that con-
sidering the estimation procedure of this paper, we are faced to two different problems of model
selection or adaptation. First of all the bandwidths proposed in this paper clearly depend on
parameters which may be unknown a priori (e.g. the margin α or the regularity of the bound-
ary γ). In this sense, adaptation algorithms should be investigated to choose automatically λ
to balance the bias term and the variance term. The second step of adaptation would be to
consider a familly of nested (Gk) ⊂ G and to choose the model which balance the approximation
term and the estimation term. This could be done using for instance penalization techniques,
such as [31] or [19].

This work can be considered as a first attempt into the study of risk bounds in classification
with errors in variables. It can be extended in many directions. Naturally the first extension
will be to state the same kind of result in classification. Another natural direction would be to
consider more general complexity assumptions for the hypothesis space G. In the free noise case,
[4] proposes to deal with Local Rademacher complexities. It allows to consider many hypothesis
spaces, such as VC class of sets, kernel classes (see [27]) or even Besov spaces (see [23]). Another
advantage of considering Rademacher complexities is to develop data-dependent complexities to
deal with the problem of model selection (see [19, 3]) and to deal with the problem of non-unique
solution of the empirical minimization.

Into the direction of statistical inverse problem, there are also many directions of study. A
natural direction for applications would be to consider unknown density η for the random noise
ǫ. this is a well known issue in the inverse problem litterature to deal with unknown operator
of inversion. Another natural extension will be to consider general linear compact operator
A : f 7→ Af to generalize the case of deconvolution. In this case, ERM estimators based on
standard regularization methods from the inverse problem litterature (see [13]) appear as good
candidates. This could be the material of future works.

In this paper, a classifier G : X → Y is always identified with a subset of Rd. Our aim is
then to estimate the set G∗

K from the noisy observations (1.3). In particular, the main goal is
not only to provide a good classifier but also to understand the relationship between the spatial
position of an input X ∈ R

d and its affiliation to one of the candidate densities. One could al-
ternatively try to provide the best classifier for a noisy input Z from a noisy training set. These
two problems are certainly comparable, although a rigorous comparison of the two framework
and the respective error of classification should be done. We mention for instance [21] or [22]
for a related discussion in a goodness-of-fit purpose. This could be the core of a future work,
but it requires the preliminary study provided in this paper.

5 Proofs

In this section, with a slight abuse of notations, C, c, c′ > 0 denotes generic constants that may
vary from line to line, and even in the same line. The notation a ≈ b (resp. a . b) means that
there exists generic constants C, c > 0 such that ca ≤ b ≤ Ca (resp. a ≤ Cb).
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5.1 Proof of Theorem 1

The proof starts as in [24] but then uses some arguments which are specific to the inverse problem
literature (see for instance [8] or [26]).

Let F1 a finite class of densities and g0 a fixed density such that (f, g0) ∈ Ffrag for all f ∈ F1.
The composition of F1 and the value of g0 will be precised later on. Then, for all estimator
Ĝn,m of the set G⋆K , we have

sup
(f,g)∈Ffrag

Ef,gd∆(Ĝn,m, G
⋆
K) ≥ sup

(f,g0),f∈F1

Ef,gd∆(Ĝn,m, G
⋆
K),

≥ Eg0





1

♯F1

∑

f∈F1

Ef

{

d∆(Ĝn,m, G
⋆
K)|X(2)

1 , . . . ,X(2)
m

}



 .(5.1)

5.1.1 Construction of F1

Concerning the density g0, we deal with the uniform density on [0, 1]2, i.e.

g0(x) = 1{x∈[0,1]2},∀x ∈ R
2.

Now, we have to define the class F1. First, we consider a function ϕ infinitely differentiable
defined on R such that supp(ϕ) = [−1, 1], ϕ(t) ≥ 0 for all t ∈ R and ‖ϕ‖∞ = ϕ(0) = 1. Let
M ≥ 2 an integer which will be allowed to depend on n and τ > 0 a positive constant. Then,
for all j ∈ {1, . . . ,M}, we set

ϕj(t) = τM−γϕ

(

M

[

t− 2j − 1

M

])

, ∀t ∈ R.

For all ω ∈ {0, 1}M and all t ∈ R, we define

b(t, ω) =
1

2
+

M
∑

j=1

ωjϕj(t).

In the specific case where ωj = 1 for all j ∈ {1, . . . ,M}, we write b(t,1). Then, let b0 and
C⋆ positive constants which will be precised later on. We define the function f0 : R2 → R as
f0(x) = 0 for all x 6∈ [0, 1]2 and

f0(x) =



























1 + 2η0,∀x2 ∈ [0, 1/2],

1− η0 − b0,∀x2 ∈ [b(x1,1), 1],

1 +
(

b(x,1)−x2
c2

)1/α
−C⋆M−γ/α,∀x2 ∈ [1/2, b(x1,1)],

where C⋆ = 3/2.(τ/c2)
1/α and b0 > 0 is such that

∫

f0(x)dx = 3/4. The condition on C⋆ ensures
that f0(x) < 1 for all x2 ∈ [1/2, b(x1,1)]. We will also use the function f1 defined as

f1(x) =







0,∀x ∈ [0, 1]2,

C1
(1+x2)2.(1+x1)2

,∀x 6∈ [0, 1]2,

where C1 is such that
∫

f1(x)dx = 1/4. Finally, the set F1 will be defined as

F1 =
{

fω, ω ∈ [0, 1]M
}

,
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where for a given ω ∈ {0, 1}M ,

fω(x) = f0(x) + f1(x) +

M
∑

j=1

ωjρj(x). (5.2)

for some functions (ρj)j=1...M which are explicited below. In order to complete the construction
of the set F1, we have to provide a precise definition of the ρj and to prove that the fω define
probability density functions for all ω ∈ {0, 1}M .

We first start with the construction of the ρj . For all x ∈ R, let ρ : R → [0, 1] the function
defined as

ρ(x) =
1− cos(x)

πx2
, ∀x ∈ R,

with associate Fourier transform F [ρ](t) = (1− |t|)+. In particular, supp F [ρ] = [−1, 1]. For all
j ∈ {1, . . . ,M} and x2 ∈ R, introduce

ρ(2)(x2) = cos

(

x2 − 1/2(1 + τM−γ)

3/2π−1τM−γ

)

ρ

(

x2 − 1/2(1 + τM−γ)

3π−1τM−γ

)

. (5.3)

By the same way, for all j ∈ {1, . . . ,M}, we define

ρj,(1)(x1) = cos

[

π

3

(

x1 − j/M

M−1

)]

ρ

[

π

6

(

x1 − j/M

M−1

)]

. (5.4)

Then, for all j ∈ {1, . . . ,M} and x = (x1, x2) ∈ [0, 1]2, we set

ρj(x) = c⋆(τM−γ)1/α ρ(2)(x2)ρj,(1)(x1), (5.5)

for some constant c⋆ explicited below.

Now, we prove that the fω introduced in (5.2) define density functions. First, remark that

M
∑

j=1

|ρj(x)| ≤
{

CM−γ/α(1 + x1)
−2(1 + x2)

−2, ∀x 6∈ [0, 1]2,

CM−γ/α, ∀x ∈ [0, 1]2,

This ensures that fω ≥ 0 for all ω ∈ {0, 1}M , at least for M large enough. Then recall that
both f0 and f1 are designed in order to guarantee that

∫

(f0 + f1)(x)dx = 1. Hence, we only
have to show that

∫

ρj(x)dx = 0 for all j ∈ {1, . . . ,M}. In fact, it is only necessary to prove
that

∫

ρ(2)(x2)dx2 = 0. First remark that
∫

ρ(2)(x2)dx2 =
∫

ρ̃(2)(x2)dx2 where ρ̃(2)(x2) =
ρ(2)(x2 + 1/2(1 + τM−γ)) for all x2 ∈ R. Then, using simple algebra

F [ρ(2)](0) =
1

2
F [ρ

( .

3π−1τM−γ

)

]

(

± 1

3/2π−1τM−γ

)

=
3

2
π−1τM−γF [ρ] (±2) = 0,

since the support of the Fourier transform of ρ is [−1; 1]. Hence, for all ω ∈ {0, 1}M , fω is a
density function.

In order to conclude the proof, we have to show that

(fω, g0) ∈ Ffrag ∀ω ∈ {0, 1}M , (5.6)

which allows to use the bound (5.1),

Q {x ∈ K : |fω(x)− g0(x)| ≤ η} ≤ c2η
α ∀ω ∈ {0, 1}M and ∀η ≤ η0, (5.7)

which means that the Margin assumption is satisfied for our test functions and that

Eg0Efω

{

d∆(Ĝn,m, G
⋆
K)|X(2)

1 , . . . ,X(2)
m

}

≥ Cn
− γ

γ( 2
α+1)+2β1+2β2γ+1 , (5.8)

for some positive constant C.
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5.1.2 Main assumptions check

We first start with the proof of (5.6). First remark that for all j ∈ {1, . . . ,M}, the function
ρj(.) is bounded from above by CM−γ/α for some C > 0. Then, using simple algebra

x2 ∈ [1/2; b(x1,1)] ⇒ 1

2
≤ x2 ≤

1

2
+ τM−γ ,

⇒ −τM
−γ

2
≤ x2 −

1

2
− τM−γ

2
≤ τM−γ

2
,

⇒ −π
6
≤ x2 − 1/2(1 + τM−γ)

3π−1τM−γ
≤ π

6
,

⇒ ρ(2)(x2) ≥
9

4π3
.

The same kind on minoration holds for the function ρj,(1). Hence the ρj are uniformly bounded

from below on [1/2; b(x1,1]. For all ω ∈ {0, 1}M and for all x ∈ [0, 1]2, we have

fω(x) ≥ 1 +

(

b(x,1) − x2
c2

)1/α

≥ g0(x), ∀x2 ∈ [1/2, b(x1, ω)],

for c⋆ large enough. This ensures that

{x ∈ [0, 1]2 : fω(x) ≥ g0(x)} = {x ∈ [0, 1]2 : 0 ≤ x2 ≤ b(x1, ω)}.

In order to conclude the proof of (5.6), we only have to remark that the function b(., ω) belongs
to Σ(γ, L) for all ω ∈ {0, 1}M , at least for M small enough.

Now, we consider the margin assumption (5.7). First, we consider the case where η <
[τc−1

2 ]1/αM−γ/α < η0. Clearly, following our choices of b0 and C⋆, we have that

|fω(x)− g0(x)| ≤ η ⇒ x2 ∈ [1/2; b(x1, ω)] ⇒ x2 ≤ b(x1, ω).

Moreover, for all x ∈ [0, 1]2 such that x2 ≤ b(x1, ω), we have

(fω − g0)(x) =

(

b(x,1) − x2
c2

)1/α

+

M
∑

j=1

ωjρj(x)− C⋆M−γ/α,

where
M
∑

j=1

ωjρj(x)− C⋆M−γ/α > 0, ∀x2 ∈
[

1

2
, b(x1, ω)

]

.

Thus

|fω(x)− g0(x)| ≤ η ⇒
(

b(x, ω)− x2
c2

)1/α

≤ η ⇒ x2 ≥ b(x1, ω)− c2η
α,

which proves the margin assumption when η < [τc−1
2 ]1/αM−γ/α. Now, in the case where η0 >

η > [τc−1
2 ]1/αM−γ/α, we have

|fω(x)− g0(x)| ≤ η ⇒ 1/2 < x2 < b(x1,1),

which entails
Q {x ∈ K : |fω(x)− g0(x)| ≤ η} ≤ τM−γ ≤ c2η

α.

This concludes this part.
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5.1.3 Final minoration

Now, we can deal with the lower bound (5.8). The proof is based on classical tools which can
be found for instance in [29], [24], [8] or [26]. First remark that the shape of G⋆K depends on the
value of ω. For the sake of convenience, we omit the dependency with respect to this quantity.
For all ω ∈ {0, 1}M , recall that

G⋆K = {x ∈ [0, 1]2 : fω(x) ≥ g0(x)} = {x ∈ [0, 1]2 : 0 ≤ x2 ≤ b(x1, ω)}.

Using Assouad Lemma and classical tools designed for instance in [29], we get

E

[

d∆(Ĝn,m, G
⋆
K)|Y1, . . . , Ym

]

≥ M

2
‖ϕ1‖1

∫

min [dP11, dP10] , (5.9)

where P11 denotes the law of (Z
(1)
i )i=1...n when the density of the X

(1)
i is fω11 . In the following,

we will choose M in order to guarantee that the term
∫

min [dP11, dP10] is bounded from below.
Consequently, the lower bound will be determined by the corresponding value of M‖ϕ1‖1. Since
the observations are independent

∫

min [dP11, dP10] ≥ 1−
√

(1 + χ2(P1, P0))
n − 1,

where χ2(Pa, Pb) denotes the chi-square divergence between two given probability measures Pa

and Pb, and P0, P1 are the law of the variable Z
(1)
1 = X

(1)
1 + ǫ

(1)
1 when the density of the Xi

is respectively fω11 or fω10 . In the following, our aim is to find a satisfying upper bound for
χ2(P1, P0).

First, remark that we can find c̃ > 0 such that for all x 6∈ [0, 1]2 and all ω ∈ {0, 1}M ,
fω(x) ≥ c̃f1(x). Hence, using simple algebra, we get that

fω ∗ η(x) ≥ C

(1 + x21)(1 + x22)
, ∀x ∈ R

2, (5.10)

for some C > 0. In the following, given f, η1 and η2, we denote by f ∗ η the convolution product
in dimension two, i.e.

f ∗ η(x) =
∫

R

∫

R

f(x1 − y1, x2 − y2)η1(y1)η2(y2)dy1dy2, ∀x ∈ R
2.

Then, using (5.2) and (5.10),

χ2(P1, P0) =

∫

R

∫

R

{(fω11 − fω10) ∗ η(x)}2
fω11 ∗ η(x)

dx,

≤ C

∫

R

∫

R

(1 + x21)(1 + x22){ρ1 ∗ η(x)}2dx.

Hence

χ2(P1, P0) ≤ C

∫

R

∫

R

{ρ1 ∗ η(x)}2dx+ C

∫

R

∫

R

x22{ρ1 ∗ η(x)}2dx

+C

∫

R

∫

R

x21{ρ1 ∗ η(x)}2dx+ C

∫

R

∫

R

x21x
2
2{ρ1 ∗ η(x)}2dx,

:= A1 +A2 +A3 +A4,
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where the ρj are defined in (5.5). In the following, we only consider the bound of A1, the other
terms being controlled in the same way. We get

A1 = C

∫

R

∫

R

{ρ1 ∗ η(x)}2dx,

= CM−2γ/α

∫

R

∫

R

{
∫

R

∫

R

ρ(2)(x2 − y2)ρj,(1)(x1 − y1)η1(y1)η2(y2)dy1dy2

}2

dx,

= CM−2γ/α

∫

R

∫

R

|F [ρ(2)](t2)|2|F [ρ1,(1)](t1)|2|F [η1](t1)|2|F [η2](t2)|2dt1dt2,

= CM−2γ/αA1,1A1,2,

where

A1,1 =

∫

R

|F [ρ(1)](t1)|2|F [η1](t1)|2dt1, A1,2 =

∫

R

∫

R

|F [ρ1,(2)](t2)|2|F [η2](t2)|2dt2,

and ρ(1), ρ1,(2) are respectively defined in (5.3),(5.4). We first deal with the term A1,2. Using
simple algebra, we get

A1,2 =

∫

R

|F [ρ
(1)
1 ](t1)|2|F [η1](t1)|2dt1,

=

∫

R

∣

∣

∣

∣

F
[

ρ
( .

3π−1τM−γ

)]

(

t1 ±
1

3/2π−1τM−γ

)∣

∣

∣

∣

2

|F [η1](t1)|2dt1,

= (3π−1)2τ2M−2γ

∫

R

∣

∣

∣

∣

F [ρ]

(

3π−1τM−γt1 ±
3

3/2

)∣

∣

∣

∣

2

|F [η1](t1)|2dt1.

Then, setting s1 = 3π−1τM−γt1 and using the Noise assumption, we obtain

A1,2 = 3π−1τM−γ

∫

R

|F [ρ](s1 ± 2)|2
∣

∣

∣
F [η1]

( s1
3π−1τM−γ

)∣

∣

∣

2
ds1,

= 3π−1τM−γ

∫ 3

1
|F [ρ](s1 ± 2)|2

∣

∣

∣
F [η1]

( s1
3π−1τM−γ

)∣

∣

∣

2
ds1,

≤ CM−γ−2β2γ

∫ 3

1
|F [ρ](s1 ± 2)|2|s1|−2β1ds1,

≤ CM−γ−2β2γ .

Using a similar algebra for the term A1,1, we obtain

A1,2 ≤ CM−1−2β1 .

Similar bounds are available for A2, A3 and A4 since F [ρ] and its weak derivative are bounded
by 1 and supported on [−1; 1]. In particular, we use the fact that for all t ∈ R

F [ρ1,(2)](t) = 3π−1τM−γF [ρ](3π−1τM−γt± 2),

and
d

dt
F [ρ1,(2)](t) = −i(3π−1τM−γ)2t.F [ρ](3π−1τM−γt± 2),

for all t in a subset of R having a Lebesgue measure equal to 1.

The above equations lead to the following upper bound:

χ2(P1, P0) ≤ CM−γ(2/α+1)−2β1γ−2β2−1.
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Then, χ2(P1, P0) ≤ C/n for some constant C > 0 as soon as

M =Mn ∼ n
1

γ(2/α+1)+2β1+2β2γ+1 .

Finally, going back to equation (5.9), we obtain

E

[

d∆(Ĝn,m, G
⋆
K)|Y1, . . . , Ym

]

≥ Mn

2
‖ϕ1‖1

∫

min [dP11, dP10] ,

≥ CMn‖ϕ1‖1,

= CτM−γ
n

∫ 1

0
ϕ1(t)dt,

∼ M−γ
n = n

− γ
γ(2/α+1)+2β1+2β2γ+1 ,

which concludes the proof.

5.2 Proof of Theorem 2

The proof mixes standard lower bounds arguments coming from classification (see [1] and [2]) but
then uses some techniques which are specific to the inverse problem literature (see for instance
[8] or [26]).

Consider F2 = {f−→σ ,−→σ = (σ1, . . . , σk) ∈ {0,+1}k} a finite class of densities with respect to
a specific measure Q0 and g0 a fixed density (with respect to the same Q0) such that (f−→σ , g0) ∈
Fplug for all −→σ ∈ {−1,+1}k. The construction of f−→σ as a function of −→σ , the value of g0 and the

definition of Q0 will be precised in Section 5.2.1. Then, for all estimator Ĝn,m of the set G⋆K ,
we have:

sup
(f,g)∈Fplug

Ef,gd∆(Ĝn,m, G
⋆
K) ≥ sup

f∈F2

Eg0

[

Ef

{

d∆(Ĝn,m, G
⋆
K)|Z(2)

1 , . . . , Z(2)
m

}]

. (5.11)

In a first time, we propose a triplet (F2, q0, Q0). Then we prove that each associated element
satisfies our hypotheses. We finish the proof with a convenient lower bound for (5.11).

5.2.1 Construction of the triplet (F2, g0, Q0)

We only consider the case d = 2 for simplicity, whereas straightforward modifications lead to
the general d-dimensional case. For g0, we take the constant 1 over Rd:

g0(x) = 1,∀x ∈ R
d.

For any z ∈ R
d and positive δ, we write in the sequel B(z, δ) := {x = (x1, . . . , xd) : |xi−zi| ≤ δ}.

For an integer q ≥ 1, introduce the regular grid on R
d defined as:

Gq =

{(

2p1 + 1

2q
, . . . ,

2pd + 1

2q

)

, pi ∈ {0, . . . q − 1}, i = 1, . . . d

}

.

Let nq(x) ∈ Gq the closest point to x ∈ R
d among points in Gq (by convention, we choose the

closest point to 0 when it is non unique). Consider the partition (χ′
j)j=1,...qd of [0, 1]d defined as

follows: x and y belongs to the same subset if and only if nq(x) = nq(y). Fix an integer k ≤ qd.
For any i ∈ {1, . . . k}, we define χi = χ′

i and χ0 = R
d\ ∪ki=1 χi to get (χi)i=1,...,k a partition of

R
d.
Then, we consider the measure Q0 defined as dQ0(x) = µ(x)dx where µ(x) = µ0(x) + µ1(x)

for all x ∈ R
2 with

µ0(x) = kωρ(x1 − 1/2)ρ(x2 − 1/2) and µ1(x) = (1− kω)ρ(x1 − a)ρ(x2 − b)
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where k, ω, a, b are constants which will be precised later on and where for all x ∈ R, ρ : R → [0, 1]
is the function defined in the previous lower bound as

ρ(x) =
1− cos(x)

πx2
, ∀x ∈ R.

It seems clear that the function g define a probability density w.r.t. to the measure Q0 since
∫

R2 µ(x)dx = 1.

Now, we have to define the class F2 = {f−→σ ,−→σ }. Denote by (zj)j=1,...k the centers of the χ′
js.

We first introduce ϕ as a C∞ probability density function w.r.t. the measure Q0 and such that

ϕ(x) = 1− c⋆q−γ ∀x ∈ [0, 1]2.

Now introduce a class of function ψj : R
2 → R, for j = 1, . . . , k defined for any x ∈ R

2 as follows:

ψj(x) = q−γcψρ(2πq(x1 − zj1))ρ(2πq(x2 − zj2)) cos(4πq(x1 − zj1)) cos(4πq(x2 − zj2)),

The class (ψj)j is specific to the noisy case and the inverse problem literature (see [8] and
[26]), and mimics the construction provided in Theorem 1. Recall that ρ satisfies F [ρ](t) =
(1− |t|)+, and will allow us to take advantages of the regularity assumption over η in the noise
assumption.

With such notations, for any −→σ ∈ {0, 1}d, we define:

f−→σ (x) = ϕ(x) +

k
∑

l=1

σlψl(x), ∀x ∈ R
2.

Now we have to check that this choice of F2, g0 and Q0 provides the margin assumption and
that the complexity assumption hold true.

5.2.2 Properties of the triplet (F2, g0, Q0)

In a first time, we prove that the f−→σ define probability density function w.r.t. the measure Q0.
Let −→σ ∈ {0, 1}k . Remark that, considering the case d = 1 w.l.o.g:
∫

R

ψl(x)µ0(x)dx = F [ψlµ0](0) = cψq
−γF [ρ(2πq.)µ0(.)](±4πq) = cψq

−γkωF [ρ]∗F [ρ(2πq.)](±4πq).

Then, since

F [ρ(2πq.)](t) =
1

2πq
F [ρ]

(

t

2πq

)

∀t ∈ R,

and

F [ρ(2πq.)](t) 6= 0 ⇔ −1 <
t

2πq
< 1 ⇔ −2πq < t < 2πq,

we get

suppF [ρ] ∗ F [ρ(2πq.)] = [−2πq − 1; 2πq + 1] and

∫

R

ψl(x)µ0(x)dx = 0. (5.12)

This proves the desired result.
Concerning the regularity, f−→σ ∈ Σ(γ, L) for q large enough since f−→σ can be written as

q−γF0(x) where F0 is infinitly differentiable.

In order to conclude this part, we only have to prove that the margin hypothesis is satisfied for
all the couples (f−→σ , g). Concerning the parameters k and ω we will use the following asymptotics







kω = O(q−αγ),
k = qd,
w = q−αγ−d.
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Then, we will distinguish two different cases concerning the possible value of t. The first
case concerns the situation where C1q

−γ < t < t0 for some constant C1. Then, thanks to the
construction of µ0:

µ0

{

x ∈ [0, 1]d : |f−→σ (x)− g(x)| < t
}

≤
∫

[0,1]2
µ0(x)dx ≤ kω ≤ Cq−αγ ≤ Ctα.

Now, we consider the case where t < C1q
−γ . We have in dimension d = 2 for simplicity,

∀σ ∈ {0, 1}k :

µ0
{

x ∈ [0, 1]2 : |(fσ − g)(x)| ≤ t
}

=

∫

[0,1]2
kω1|(fσ−g)(x)|≤tdx ≤ kω

k
∑

j=1

∫

χj

1|(fσ−g)(x)|≤tdx

≤ k2ωLeb {x ∈ χ1 : |(fσ − g)(x)| ≤ t} , (5.13)

where without loss of generality, we suppose that σ1 = 1.
Last step is to control the Lebesgue measure of the set W1 = {x ∈ χ1 : |(fσ − g)(x)| ≤ t}.

Since fσ − g =
∑k

j=1 σjψj − C∗q−γ , we have:

W1 ⊂ {x ∈ χ1 : |
k
∑

j=1

σjψj(x)| ≤ t} ⊂ {x ∈ χ1 : |ψ1(x)| ≤ t} := W ′
1,

noting that ∀j′ 6= j, signψj = signψ′
j. We hence have to control the size of W ′

1. The idea is to
approximate ψx at each x ∈W ′

1 by a Taylor polynomial of order 1 at zx := argminz:ψ1(z)=0 ‖x−z‖
as follows:

ψ1(x) = ψ1(zx) + ▽ψ1(z
x
1 , z

x
2 ) · (x− zx) + ø(‖x − z‖).

Hence we have by construction, since ∀x ∈W ′
1, there exists i ∈ {1, 2} : xi = zxi :

Leb(W ′
1) ≤ Leb {x ∈ χ1 : |ψ1(zx) + ▽ψ1(z

x
1 , z

x
2 ) · (x− zx)| ≤ t}

≤ cLeb
{

x ∈ χ1 : qq
−γ |x1 − zx1 | ≤ t

}

≤ c
t

q2q−γ
.

Gathering with (5.13), we hence get, for t < C1q
−γ , provided that α ≥ 1:

µ0
{

x ∈ [0, 1]2 : |(fσ − g)(x)| ≤ t
}

≤ ck2ω
t

q2q−γ

≤ ckω
t

q−γ
= cqγ(1−α)tαt1−α ≤ c′tα.

5.2.3 Final minoration

Suppose without loss of generality that n ≤ m. Now we argue as in [1] (Assouad Lemma for
classification) and introduce ν, the distribution of a Bernoulli variable (ν(σ = 1) = ν(σ = 0) =
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1/2). Then, denoting by P
⊗n
−→σ

the law of (Z
(1)
1 , . . . , Z

(1)
n ) when f = f−→σ , we get

sup
−→σ ∈{−1,+1}

Ef

{

d∆(Ĝn,m, G
∗
K)|Z(2)

1 , . . . , Z(2)
m

}

≥ Eν⊗kEf−→σ d∆(Ĝn,m, G
∗
K),

≥ Eν⊗kEf−→σ

k
∑

j=1

∫

χj

1(x ∈ Ĝn,m∆G
∗
K)Q0(dx),

= Eν⊗(k−1)

k
∑

j=1

∫

Ω
Eν(dσj )

∫

χj

1(x ∈ Ĝn,m(ω)∆G
∗
K)Q(dx)P⊗n

−→σ
(dω)

≥ Eν⊗(k−1)

k
∑

j=1

∫

Ω

[

P
⊗n
−→σ j,1

P
⊗n
−→σ j

∧
P
⊗n
−→σ j,0

P
⊗n
−→σ j

)

]

(dω)

Eν(dσj)

∫

χj

1(x ∈ Ĝn,m(ω)∆G
∗
K)Q0(dx)P

⊗n
−→σ

(dω), (5.14)

where −→σ j,r = (σ1, σj−1, r, σj+1 . . . , σk) for r ∈ {0, 1} and Bj is defined above. Now introduce
binary valued functions:

f̂(x) = 1(x ∈ Ĝn,m) and f
∗
−→σ (x) = 1(x ∈ G∗

K).

Then since
∑

l 6=j σlψl(x) ≤ ψj(x)− ϕj(x) (see 5.2.2), we have coarsely for any −→σ :

∀x ∈ χj, f
∗
−→σ (x) =







σj for x ∈ Bj,

0 otherwise,
(5.15)

where Bj = {x ∈ χj : ∀i |xi − zj,i| ≤ c
q}. Now we go back to the lower bound. We can write:

Eν(dσj )

∫

χj

1(x ∈ Ĝn,m(ω)∆G
∗
K)Q0(dx) = Eν(dσj)

∫

χj

1(f̂ 6= f∗−→σ )Q0(dx)

≥ Eν(dσj )

[

∫

Bj

1(f̂ 6= σj)Q0(dx)

]

=
1

2

[

∫

Bj

[1(f̂ 6= 1) + 1(f̂ 6= 0)]Q0(dx)

]

=
1

2

∫

Bj

Q0(x)dx,

where we use (5.15) at the second line. Then it follows from (5.14) that:

sup
−→σ ∈{−1,+1}k

Ef

{

d∆(Ĝn,m, G
⋆
K)|Z(2)

1 , . . . , Z(2)
m

}

≥ Eν⊗(k−1)

k
∑

j=1

∫

Ω

[

P
⊗n
−→σ j,0

P
⊗n
−→σ j

∧
P
⊗n
−→σ j,1

P
⊗n
−→σ j

]

(dω)
1

2

∫

χj

Q0(dx)P
⊗n
−→σ

(dω)

=

k
∑

j=1

Eν⊗(k−1) [1− V(P⊗n
−→σ ,1

,P⊗n
−→σ ,0

)]
1

2

∫

Bj

Q0(dx)

≥
k
∑

j=1

Eν⊗(k−1) [1−
√

χ2(P⊗n
−→σ ,1

,P⊗n
−→σ ,0

)]
1

2

∫

Bj

Q0(dx)

=
k
∑

j=1

[1−
√

(1 + χ2(P1,P0))n − 1)
1

2
]

∫

Bj

Q0(dx), (5.16)
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where P±1 is the law of Z(1) when f = f−→σ with −→σ = (±1, 1, . . . , 1). Then we can write, if
χ2(P1,P0) ≤ C

n :

sup
σ∈{−1,+1}k

Ef−→σ ,g0d∆(Ĝn,m, G
⋆
K) ≥ c′

k
∑

j=1

∫

Bj

Q0(dx) = c′kw, (5.17)

where we use the definition of Q0.

Next step is to find a satisfying upper bound for χ2(P1,P0). We have, by construction of
f−→σ :

χ2(P1,P−1) =

∫

[(f−→σ ,+1 − f−→σ ,−1)µ ∗ η]2
f−→σ ,−1 ∗ η

dx,

≤
∫

[(f−→σ ,+1 − f−→σ ,−1)µ0 ∗ η]2
f−→σ ,−1µ ∗ η dx+

∫

[(f−→σ ,+1 − f−→σ ,−1)µ1 ∗ η]2
f−→σ ,−1µ ∗ η dx.

The r.h.s. term can be considered as engligible with a good choice of the parameters a and b.
Hence, we concentrate on the first one. First remark that for all x ∈ R

d

f−→σ ,−1µ ∗ η ≥ C
kw

1 + x2
, and

{

(f−→σ ,+1 − f−→σ ,−1)µ0
}

∗ η = q−γ{ψlµ0} ∗ η(x) = q−γkω{ψlρ} ∗ η(x).

Hence

χ2(P1,P−1) ≤ Ckωq−2γ‖(ψ1ρ) ∗ η‖2. (5.18)

From the definition of ψ1 and the conditions on η, we have in dimension d = 2 for simplicity:

‖(ψ1ρ) ∗ η‖2 =

∫

(ψ1ρ) ∗ η(x)2dx =

2
∏

i=1

∫

|F [ψ1ρ](ti)|2 |F [ηi](ti)|2 dti

=

2
∏

i=1

∫

|F [ρ(2πq·)ρ](ti − 4πq)|2 |F [ηi](ti)|2 dti.

Using (5.12), the noise assumption, and the fact that q → +∞, we get

= Cq−2β̄
2
∏

i=1

∫

|F [ρ(2πq·)ρ](ti − 4πq)|2 dti,

= Cq−2β̄‖ρ(2πq.)ρ‖2,
≤ Cq−2β̄‖ρ(2πq.)‖2 ≤ Cq−2β̄−2.

Using (5.18), one gets the following control of the quantity χ2(P1,P−1) in the general d-dimensional
case:

χ2(P−→σ ,1,P−→σ ,−1) ≤ Cq−2γ−αγ−d−2β̄ ≤ C

n
, with q = n

1
2γ+αγ+d+2β̄ . (5.19)

Now using (5.17),

sup
σ∈{−1,+1}k

Ef−→σ d∆(Ĝn,m, G
⋆
K) ≥ c′kw = c′q−αγ = c′n

−αγ
2γ+αγ+d+2β̄ ,

which concludes the proof of the second lower bound.
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5.3 Proof of Theorem 3

The proof is presented for d = 2 for simplicity whereas straightforward modifications leads to the
d−dimensional case. In the sequel, we identify each ν ∈ Σ′(γp, L) with a set Gν = {x : ν(x) ≥ 0}.
By the same way, we identify G∗

K with ν∗ = f − g.

For all Gν := {ν ≥ 0}, we have, using the notations of Section 3:

Rn,m(Gν)−Rn,m(G
∗
K)−RλK(Gν) +RλK(G∗

K)

=
1

2n

n
∑

i=1

Ui(Gν) +
1

2m

n
∑

i=1

Vi(Gν) :=
1

2
Tn(G),

where, for all i ∈ {1, . . . , n},

Ui(G) = {hG∗C
K ,λ(Z

(1)
i )− hGC

ν ,λ
(Z

(1)
i )} − E[hG∗C

K ,λ(Z
(1)
i )− hGC

ν ,λ
(Z

(1)
i )],

and
Vi(G) = {hG∗

K ,λ
(Z

(2)
i )− hGν ,λ(Z

(2)
i )} − E[hG∗

K ,λ
(Z

(2)
i )− hGν ,λ(Z

(2)
i )].

Then, for all i ∈ {1, . . . , n}, using Lemmas 3 and 4 in Appendix we get

E[Ui(G)]
2 ≤ cλ−2β1

1 λ−2β2
2 d∆(G,G

∗
K) ≤ c′λ−2β1

1 λ−2β2
2 df,g(G,G

∗
K)

α
α+1 ,

and

|Ui(G)| ≤ C

2
∏

i=1

λ
−βi−1/2
i ,

for some constant C > 0. The Bernstein’s inequality leads to

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ui(Gν)

∣

∣

∣

∣

∣

> a

)

≤ 2 exp

[

− Cna2

a× λ
−β1−1/2
1 λ

−β1−1/2
2 + λ−2β1

1 λ−2β2
2 d∆(Gν , G

∗
K)

]

,

for all a > 0. Since βi > 1/2 for all i ∈ {1, . . . , d}, the particular choice a = df,g(Gν , G
∗
K) yields

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

Ui(Gν)

∣

∣

∣

∣

∣

> df,g(G,G
∗
K)

)

≤ 2 exp
[

−Cnλ2β11 λ2β22 df,g(G,G
∗
K)2−

α
α+1

]

,

= 2exp
[

−Cnλ2β11 λ2β22 df,g(G,G
∗
K)

2+α
α+1

]

.

Using the same algebra on the Vi(Gν), we get

P (|Tn(Gν)| > df,g(Gν , G
∗
K)) ≤ 2 exp

[

−Cnλ2β11 λ2β22 df,g(G,G
∗
K)

2+α
α+1

]

.

This concludes the first part of the proof. Let t a positive parameter which will be chosen further
and introduce the set G′ defined as

G′ =
{

G ∈ Nδn , df,g(G
∗
K , G) > tδ1+αn

}

,

where Nδn is the δn network introduced in Section 4.2. Using the upper bound above,

P

(

∃G ∈ G′ : |Tn(G)| ≥
1

4
df,g(G,G

∗
K)

)

≤
∑

G∈G′

P

(

|Tn(G)| ≥
1

4
df,g(G,G

∗
K)

)

,

≤
∑

G∈G′

2 exp
[

−Cnλ2β11 λ2β22 df,g(G,G
∗
K)

2+α
α+1

]

,

≤
∑

G∈G′

2 exp

[

−Cnλ2β11 λ2β22

(

tδ1+αn

)
2+α
α+1

]

,

≤
∑

G∈G′

2 exp
[

−Cnλ2β11 λ2β22 t
2+α
α+1 δ2+αn

]

.
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Since log card(Nδn) = Aδ
−2/γ
n , we get

P

(

∃G ∈ G′ : |Tn(G)| ≥
1

4
df,g(G,G

∗
K)

)

≤ exp
[

Aδ−2/γ
n − Cnλ2β11 λ2β22 t

2+α
α+1 δ2+αn

]

.

Thanks to the value of δn,
δ−2/γ
n ∼ nλ2β11 λ2β22 δ2+αn .

Hence

P

(

∃G ∈ G′ : |Tn(G)| ≥
1

4
df,g(G,G

∗
K)

)

≤ exp
[

−Cδ−2/γ
n

]

= exp



−C
(

λ−β11 λ−β22√
n

)−2/γ. 2
2/γ+2+α



 .

Now, using Lemma 2 in Appendix, we can find a set Gn ∈ Nδn such that:

df,g(G
∗
K , Gn) ≤ ‖ν∗ − νn‖α+1

∞ ≤ C0δ
1+α
n ,

for some positive constant C0. Then, for all G ∈ G′, we get

1

4
df,g(G,G

∗
K)− 1

2
df,g(Gn, G

∗
K) ≥ t

4
δ1+αn − C

2
δ1+αn ≥ C

2
δ1+αn , (5.20)

provided that t > 4C0. We eventually obtain:

P
(

df,g(G
∗
K , Ĝn) > tδ1+αn

)

≤ P
(

∃G ∈ G′ such that Rn(G) ≤ Rn(Gn)
)

,

= P

(

∃G ∈ G′ such that
1

2
dλf,g(G,G

∗
K) + Zn(G)−

1

2
dλf,g(Gn, G

∗
K)− Zn(Gn) ≤ 0

)

,(5.21)

where for all G1, G2 ⊂ K, dλf,g(G1, G2) is defined as

1

2
dλf,g(G1, G2) = RλK(G1)−RλK(G2).

Last step is to control the bias term. For all G1, G2 ⊂ K, we can remark that
∣

∣

∣
(RλK −RK)(G1 −G2)

∣

∣

∣

≤
∣

∣

∣

∣

∫
[
∫

1

λ
K
(

z − x

λ

)

f(z)dQ(z) − f(x)

]

[

1(x ∈ GC1 )− 1(x ∈ GC2 )
]

dQ(x)

+

∫
[
∫

1

λ
K
(

z − x

λ

)

g(z)dQ(z) − g(x)

]

[1(x ∈ G1)− 1(x ∈ G2)] dQ(x)

∣

∣

∣

∣

≤
∫

G1∆G2

|Kλ ∗ ν(x)− nu(x)| dQ(x),

≤ ‖Kλ ∗ ν − ν‖∞d∆(G1, G2),

≤ Cd∆(G1, G2) [λ
γ
1 + λγ2 ] ,

for some C > 0, provided that for ν ∈ Σ(γ, L) and K a kernel of order l = ⌊γ⌋:

‖Kλ ∗ ν − ν‖∞ ≤ C [λγ1 + λγ2 ] . (5.22)

Using the Young inequality
xyr ≤ ry + (1− r)x1/(1−r),

with r = α/(α + 1), we get for all G1, G2 ⊂ K

∣

∣

∣
(RλK −RK)(G1 −G2)

∣

∣

∣
≤ (1− r)γ1/(1−r)

[

λ21 + λ22
]

γ(1+α)
2 + γ−1/rdf,g(G1, G2), (5.23)
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for some γ > 0. Hence, it follows from (5.20)-(5.21) that

P
(

df,g(G
∗
K , Ĝn) > tδ1+αn

)

≤ P

(

∃G ∈ G′ such that
3

4
df,g(G,G

∗
K) + Zn(G)−

1

4
df,g(Gn, G

∗
K)− Zn(Gn) + C

2
∑

i=1

λ
ν(1+α)
i ≤ 0

)

,

≤ P

(

∃G ∈ G′ such that Zn(G) ≤ −1

4
df,g(G,G

∗
K)

)

+ P

(

Zn(Gn) ≥ C(δ1+αn +

2
∑

i=1

λ
ν(1+α)
i )

)

.

In order to conclude, remark that the proposed choice of (λj)j=1...d provides

δ1+αn ≃
2
∑

i=1

λ
γ(1+α)
i ⇔ ∀i ∈ {1, 2},

(

1

λβ
√
n

)
2

2/ν+2+α

≃ [λ21 + λ22]
γ/2.

The end of the proof follows exactly the same lines as [2].

5.4 Proof of Theorem 4

Let us prove the first assertion. Using the definition of Ĝλn in (1.7), we have:

df,g(Ĝ
λ
n, G

∗
K) ≤ RK(Ĝλn)−RK(G

∗
K)−Rλn(Ĝ

λ
n) +Rλn(G

∗
K)

≤ RλK(Ĝλn)−Rλn(Ĝ
λ
n) +Rλn(G

∗
K)−Rλ(G∗

K) + (RK −RλK)(Ĝλn −G∗
K).

Consider the empirical processes ν
(j)
n , for j ∈ {1, 2}, defined as:

ν(j)n (G) =
1√
n

n
∑

i=1

hG,λ(Z
(j)
i )− EhG,λ(Z

(j)). (5.24)

Hence we can write:
∫

(f − g)(Kλ ∗ 1{.∈G∗
K} −Kλ ∗ 1{.∈Ĝn}

)

≤ 1

2
√
n
(ν(1)n (G∗C)− ν(1)n (ĜλCn )) +

1

2
√
n
(ν(2)n (G∗)− ν(2)n (Ĝλn).

Now denoting Λ = Πdi=1λ
−βi−

1
2

i , c(λ) = Πdi=1λ
−βi
i and ρ = 2/γ, consider the event:

Ω = {d∆(Ĝn, G∗
K) ≥ c(λ)−

2
1+ρn−

1
1+ρΛ

2
1+ρ }.

We have on Ω, using both the margin assumption and Lemma 3:

∫

(f − g)(Kλ ∗ 1{.∈G∗
K} −Kλ ∗ 1{.∈Ĝn}

)

≤
d

1−ρ
2

∆ (Ĝλn,m, G
∗)c(λ)√

n





ν
(1)
n (G∗C)− ν

(1)
n (ĜλCn,m)

c(λ)d
1−ρ
2

∆ (Ĝλn,m, G
∗) ∨ c(λ)

2ρ
(1+ρ)n−

1−ρ
2+2ρΛ

1−ρ
1+ρ

+
ν
(2)
n (G∗)− ν

(2)
n (Ĝλn,m)

c(λ)d
1−ρ
2

∆ (Ĝλn,m, G
∗) ∨ c(λ)

2ρ
(1+ρ)n−

1−ρ
2+2ρΛ

1−ρ
1+ρ





≤
d

1−ρ
2

α
α+1

f,g (Ĝλn,m, G
∗)c(λ)

√
n

[V (1)
n + V (2)

n ],
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where V
(j)
n is the random variable defined as, for j ∈ {1, 2}:

V (j)
n = sup

G∈G

|ν(j)n (G∗)− ν
(j)
n (G)|

c(λ)ρ‖hλG − hλG∗‖1−ρ2,Z(j) ∨ c(λ)
2ρ

(1+ρ)n−
1−ρ
2+2ρΛ

1−ρ
1+ρ

. (5.25)

A generalization of Lemma 5.13 of [16] provides that the variable V
(1)
n + V

(2)
n has controled

moments. We can write, using Young’s inequality xyr ≤ ry + (1− r)x1/(1−r) for r = 1−ρ
2

α
α+1 :

∫

(f − g)(Kλ ∗ 1{.∈Ĝn}
−Kλ ∗ 1{.∈G∗

K}) ≤ c

(

c(λ)√
n
[V (1)
n + V (2)

n ]

)

2(α+1)
α+2+ρα

. (5.26)

Finally we conclude that on Ω:

df,g(Ĝ
λ
n, G

∗
K) ≤ c

(

c(λ)√
n
[V (1)
n + V (2)

n ]

)

2(α+1)
α+2+ρα

+ sup
G∈G(γ,L)

∣

∣

∣
RK −RλK

∣

∣

∣
(G).

This allows us to get the first assertion of the Theorem since we have on ΩC , we have from an
easy calculation:

d∆(Ĝ,G
∗
K) ≤ c(λ)

− 2
1+ρn

− 1
1+ρΛ

2
1+ρ = c(λ)

1
1−ρn

− 1
1−ρ ≤

(

c(λ)√
n

)

2(α+1)
α+2+ρα

provided that λ = (λ1, . . . , λd) is choosen small enough to ensure the last inequality.
To get the second assertion, we apply Lemma 1 with G1 = Ĝn,m := Ĝ and G2 = G∗

K and
Lemma 4 in order to get

d∆(Ĝn,m, G
∗
K) ≤ C‖Kλ ∗ 1{.∈Ĝn,m} −Kλ ∗ 1{.∈G∗

K}‖1 + λγ1 + λ2,

≤ C

(
∫

|f − g|
∣

∣

∣
Kλ ∗ 1{.∈Ĝ} −Kλ ∗ 1{.∈G∗

K}

∣

∣

∣

)α/α+1

+ λγ1 + λ2. (5.27)

Since Kλ ∗ 1{.∈G} ∈ [0, 1] for any G ∈ G(γ, L), we get
∫

|f − g||Kλ ∗ 1{.∈G∗
K} −Kλ ∗ 1{.∈Ĝn}

|

≤
∫

|f − g||1G∗
K
−Kλ ∗ 1{.∈Ĝn}

|+
∫

|f − g||Kλ ∗ 1{.∈G∗
K} − 1G∗

K
|

=

∫

(f − g)(1G∗
K
−Kλ ∗ 1{.∈Ĝn}

) +

∫

|f − g||Kλ ∗ 1{.∈G∗
K} − 1G∗

K
|,

≤
∫

(f − g)
(

Kλ ∗ 1{.∈G∗
K} −Kλ ∗ 1{.∈Ĝn}

)

+ 2

∫

|f − g||Kλ ∗ 1{.∈G∗
K} − 1G∗

K
|.

which gives, gathering with (5.27):

d∆(Ĝn,m, G
∗
K)

≤ C

(

RλK(Ĝ
λ
n)−RλK(G

∗
K) + 2

∫

|f − g||1G∗
K
−Kλ ∗ 1{.∈G∗

K}

)α/α+1

+ C(λγ1 + λ2).(5.28)

Finally using Lemma 1, (5.28) and (5.26), we have on Ω:

d∆(Ĝ,G
∗
K) ≤ c

(

c(λ)√
n
[V (1)
n + V (2)

n ]

)
2α

α+2+ρα

+
d−1
∑

i=1

λγi + λd +

(
∫

|f − g||1G∗
K
− hG∗

K
|
)α/α+1

.

Integrating the above inequality, we conclude the proof noting that on ΩC , we have from an
easy calculation:

d∆(Ĝ,G
∗
K) ≤ c(λ)

− 2
1+ρn

− 1
1+ρΛ

2
1+ρ =

(

Πdi=1λin
)

−1
1−ρ ≤ n−τd(α,β,γ),

provided that 2β1 + 2β2γ + 1 ≥ γ, or in particular when β2 ≥ 1
2 .
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6 Appendix

For the sake of convenience, we assume troughout this section that the kernels (Kj)j=1...d are
compactly supported. This assumption can easily be relaxed up to a more complicated algebra.

Lemma 1 For any G1, G2 ∈ G(γ, L), and any λ > 0, we have:

d∆(G1, G2) ≤ c‖Kλ ∗ 1{.∈G1} −Kλ ∗ 1{.∈G2}‖1 +
(

d−1
∑

i=1

λ2i

)γ/2

+ λd.

Proof. For the sake of convenience, we only give the proof in the particular case where d = 2.
Using the equality |a− b| = a+ b− 2min(a, b), ∀a, b ∈ R, we can write:

‖Kλ ∗ 1{.∈G1} −Kλ ∗ 1{.∈G2}‖1

=

∫

Kλ ∗ 1{.∈G1} +

∫

Kλ ∗ 1{.∈G2} − 2

∫

min(Kλ ∗ 1{.∈G1},Kλ ∗ 1{.∈G2}).

Then for any G ∈ G(γ, L), remark that
∣

∣

∣

∣

∣

∫

[0,1]
Kλ ∗ 1{x∈G}dx2 − b(x1)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

[0,1]

∫

R2

1

λ
K
(

u− x

λ

)

1(u2 ≤ b(u1))dudx2 − b(x1)

∣

∣

∣

∣

∣

,

≤
∣

∣

∣

∣

∣

∫

[0,1]

∫

R

1

λ1
K
(

u1 − x1
λ1

)

1(x2 ≤ b(u1))du1dx2− b(x1)

∣

∣

∣

∣

∣

+ Cλ2,

≤
∣

∣

∣

∣

∫

R

1

λ1
K
(

u1 − x1
λ1

)

b(u1)du1 − b(x1)

∣

∣

∣

∣

+ Cλ2,

≤ C(λγ1 + λ2). (6.1)

Moreover, noticing that
∫

min(f, g) ≤ min(
∫

f,
∫

g), we have, using (6.1)
∫

min(Kλ ∗ 1{.∈G1},Kλ ∗ 1{.∈G2})

≤
∫

[0,1]
min

(

∫

[0,1]
Kλ ∗ 1{.∈G1}dx2,

∫

[0,1]
Kλ ∗ 1{.∈G2}dx2

)

dx1,

≤
∫ 1

0
min(b1(x1), b2(x1))dx1 + C(λγ1 + λ2).

Finally we arrive at the conclusion:

d∆(G1, G2) =

∫

|b1 − b2| =

∫

b1 +

∫

b2 − 2

∫

min(b1, b2)

≤
∫

b1 +

∫

b2 − 2

∫

min(Kλ ∗ 1{.∈G1},Kλ ∗ 1{.∈G2}) + 2c′[λγ1 + λ2]

≤ ‖Kλ ∗ 1{.∈G1} −Kλ ∗ 1{.∈G2}‖1 + 2C[λγ1 + λ2],

for some positive constant C.

�

Lemma 2 For any (f, g) satisfying the margin assumption with parameter α > 0, we have:

df,g(Gν , G
∗
K) ≤ ‖ν − ν∗‖α+1

∞ ,

where Gν = {ν ≥ 0} and ν∗ = f − g.
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The proof is a straightforward modification of the proof of Lemma 5.1 in [2] which state a
similar result in the binary classification framework.

Lemma 3 Assume that η satisfies the Noise assumption and let Kη the deconvolution kernel.
Then we have,

(i) E[hG,λ(Z)− hG′,λ(Z)]
2 ≤ d∆(G,G

′)

d
∏

i=1

λ−2βi
i .

(ii) sup
x∈K

|hG,λ(x)− hG′,λ(x)| ≤
d
∏

i=1

λ
−βi−1/2
i

proof For the sake of convenience, we only consider the case where d = 1. We first prove (i).
We have:

E[hG,λ(Z)− hG′,λ(Z)]
2 =

∫

K

[
∫

R

1

λ
Kη

(

z − x

λ

)

(1{x∈G} − 1{x∈G′})1{x∈K}dQ(x)

]2

(fµ) ∗ η(z)dz,

≤ c

∫

R

1

λ2
|F [Kη(./λ)](t)|2

∣

∣F [µ× (1{.∈G} − 1{.∈G′})1{.∈K}](t)
∣

∣

2
dt,

≤ Cλ−2β

∫

K
|µ(t)|21{t∈G∆G′}dt,

≤ Cλ−2βd∆(G,G
′).

Indeed, for all s ∈ R

1

λ2
|F [Kη(./λ)](s)|2 = |F [Kη ](sλ)|2 ≤ sup

t∈R

∣

∣

∣

∣

F [K](tλ)

F [η](t)

∣

∣

∣

∣

2

≤ sup
t∈[− 1

λ
; 1
λ
]

∣

∣

∣

∣

1

F [η](t)

∣

∣

∣

∣

2

≤ Cλ−2β, (6.2)

provided that K has compact Fourier transform. By the same way,

sup
x∈R

|hG,λ(x)− hG′,λ(x)| = sup
x∈R

∫

G∆G′

1

λ

∣

∣

∣

∣

Kη

(

z − x

λ

)∣

∣

∣

∣

dQ(x),

≤ sup
x∈R

∫

K

1

λ

∣

∣

∣

∣

Kη

(

z − x

λ

)
∣

∣

∣

∣

dx,

≤ C sup
x∈R

√

∫

1

λ2
K2
η

(

z − x

λ

)

dx ≤ λ−β−1/2,

where the last line is inspired by (6.2).

�

The following Lemma proposes a generalization to the well-known inequality of [24].

Lemma 4 Let h a positive and bounded function integrable with respect to Q with ‖h‖∞ ≤ B.
Suppose the margin assumption holds and denote by α > 0 the margin parameter. Then, there
exists positive constants c(α) and C(α) such that:

c(α)

(
∫

h(x)dQ(x)

)
α+1
α

≤
∫

|f − g|h(x)dQ(x) ≤ C(α)

∫

h(x)dQ(x).

In particular, for all G1, G2 ⊂ K, we have

c(α) (d∆(G1, G2))
α+1
α ≤ df,g(G1, G2) ≤ C(α)d∆(G1, G2).
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Proof. The proof follows exactly the proof of Lemma 2 of [24]. Since Q(K) is bounded,
Q(|f − g| ≤ η) ≤ c2η

α for 0 < η < η0 implies Q(|f − g| < η) ≤ c̃2η
α,∀η > 0 where c̃2 :=

c̃2(α, c2, η0, Q(K)). Then we have since h > 0 is bounded, choosing η =
( ∫

h
2Bc̃2

)
1
α
:

∫

|f − g|hdQ ≥
∫

|f − g|1(|f − g| ≥ η)hdQ

≥ η

(
∫

hdQ−
∫

h1(|f − g| < η)dQ

)

≥ η

(
∫

hdQ−BQ(|f − g| < η)

)

≥ η

(
∫

hdQ− c̃2Bη
α

)

= c(α)

(
∫

hdQ

)
α+1
α

,

where c(α) = 2−1−1/α(Bc̃2)
−1/α. The upper bound is straightforward since |f − g| is bounded

from above.

�
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