Very nilpotent basis and n-tuples in Borel subalgebras
Abstract
A (vector space) basis B of a Lie algebra is said to be very nilpotent if all the iterated brackets of elements of B are nilpotent. In this note, we prove a refinement of Engel's Theorem. We show that a Lie algebra has a very nilpotent basis if and only if it is a nilpotent Lie algebra. When g is a semisimple Lie algebra, this allows us to define an ideal of S((g^n)^*)^G whose associated algebraic set in g^n is the set of n-tuples lying in a same Borel subalgebra.
Origin : Files produced by the author(s)
Loading...