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1 Introduction

Constant advances in thin coating technology have led to the de-

velopment of micro- and nanoscale devices, for which the knowl-

edge of mechanical properties of the involved materials is essential

to guarantee the capabilities of these systems. Elastic properties

are in particular known to be very dependent on the deposi-

tion process conditions. Consequently this requires experimental

techniques enabling to measure elastic constants of thin coatings
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without being disturbed by the influence of the substrate. This

has become possible thanks to acoustic microscopy [1], scanning

probe microscopy [2,3] and nanoindentation [4,5]. Considering

an isotropic material described by its Young’s modulus E and its

Poisson’s ratio ν, these techniques unfortunately only provide a

combination of the elastic parameters. Nanoindentation provides

for example the measurement of the ratio E/(1− ν2) (sometimes

refered to as the indentation modulus), so that two techniques

providing two different combinations of the elastic parameters

are necessary to determine both parameters. Bamber et al. com-

bined acoustic microscopy and nanoindentation [6] to estimate

E and ν. Hurley et al. proposed a method using atomic force

microscope measurements obtained with flexural and torsional

modes of vibration of the cantilever [7]. This paper describes a

more straightforward method using the first two flexural modes

of vibration of the cantilever in scanning microdeformation mi-

croscopy and a dedicated identification procedure to decouple

the elastic parameters. Experimental measurements on an epoxy

photoresist (SU8) thin film are carried out to demonstrate the

validity of the method.
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2 The scanning microdeformation microscope

The scanning microdeformation microscope (SMM) [8,9] is a kind

of AC-force contact microscope. The sensor is classically a mi-

cromechanical resonator composed of a rectangular silicon beam

with a small sharp sapphire tip (curvature radius of severals tens

of µm) at the end. The cantilever is glued onto a piezoelectric

bimorph transducer at the other end. The transducer excites the

vibration of the tip-sample system. The tip remains in contact

with the sample and vibrates at several kHz with an amplitude

in the nanometer range. Amplitude and phase of the vibrating

cantilever are measured with a high sensitivity heterodyne inter-

ferometer [10] (Fig. 1). This type of microscope is an effective

tool to image surfaces and subsurfaces with heterogeneous local

elasticity or to characterize local elastic properties, and can be

used to characterize polymers [11,12]. The resonant frequencies

depend on the static force applied via the contact stiffness. Using

a well-suited model [13,14], the first resonant frequency is usually

used to estimate the local indentation modulus. Using the same

model, it is proposed herein to decouple the contributions of E

and ν from the first two resonant frequencies.
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Fig. 1. Schematic view of the SMM setup.

The piezoelectric bimorph transducer action on the cantilever is

modeled by a mass-spring system (mp, Kp). The interaction with

the surface is described by lateral (Kt) and longitudinal (Kn)

stiffnesses (Fig. 2). A Hertz contact is considered to relate the

contact stiffness to the sample elastic parameters. Assuming the

tip’s material is much stiffer than the probed material, the lateral

and longitudinal stiffnesses are related through Kt ≃ 2(1−ν)
2−ν

Kn.

Kc denotes the cantilever stiffness.

Fig. 2. Model describing the SMM resonator.
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3 Materials and Methods

The SU8 resist is a negative epoxy type photoresist which has

been developed by IBM (Watson Research Center). This poly-

mer is used for photolithography and MEMS applications and

is associated with a low viscoelastic behaviour [15,16]. This re-

sist can now be spin-coated and processed at low thicknesses [17]

and used to fabricate mechanical devices [18]. Young’s modulus

is typically in the range 3-7 GPa and Poisson’s ratio near 0.22-0.4

[19,15,20,21] for bulk material and thin films. These mechanical

parameters are expected to be very dependent on the processing

parameters. The sample considered herein is made of a 20 µm-

thick SU8 layer deposited on a silicon substrate.

As previously described, the micromechanical resonator used herein

to probe the elastic properties of the sample is made of a silicon

cantilever and a sapphire tip with the parameters described in

table 1. It should be highlighted these geometrical parameters

optimize the frequency sensitivity for materials whose Young’s

modulus is about few GPa (Kn ≃ Kc) [12,16].

The contact resonant frequencies on the SU8 thin layer have
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Table 1

Characteristics of the cantilever and the tip.

Length L Width b Thickness h Tip radius Rt

6.5 mm 400 µm 80 µm 45 µm

Tip length l Tip mass m Tip’s center of Piezo mass mp

mass position l1

697 µm 0.44 mg 250 µm 2.3 mg

been recorded (Fig. 3). The applied static force is F = 0.06 mN.

The first two resonances occur for excitation frequencies equal to

13.7 ± 0.01 kHz (mode 1) and 23.25± 0.01 kHz (mode 2).

Fig. 3. Amplitude of vibration (Å) as a function of the excitation frequency (kHz)

for a static force of 0.06 mN on the 20 micrometers thick SU8 film : first (left) and

second mode (right).
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4 Identification procedure

4.1 Direct problem

If the elastic properties of the sample are known, the resonant

frequencies of the beam are obtained by solving the linear dif-

ferential equation for the vibration of the beam (i.e., the direct

problem)

EcIn

∂4y

∂x4
+ ρA

∂2y

∂t2
= 0 (1)

considering harmonic solutions with the suited boundary condi-

tions. EcIn is the cantilever’s flexural stiffness, ρ is the cantilever’s

material mass density. The beam’s cross-section is also described

through its area A = bh. For the system described in Fig.2 the

resonance condition is obtained as a closed form ??:

0=R(x, m, AL, l1) + f(x, m, AL)6l2Y

+3g(x, m, AL, l1)X + 18l2XY (2)

where l is the total tip length and l1 is the distance from the

beam’s neutral fiber to the tip’s center of mass m. R, f and

g are non-linear functions. The constitutive parameters appear

through the unknowns X and Y

7



X =
Kn

Kc

(3)

Y =
Kn

Kc

1 − ν

2 − ν
(4)

x denotes the frequency parameter defined by

x = L





(2πfr)
2ρA

EcIn





1

4

(5)

L is the cantilever’s length, fr is the considered resonant fre-

quency. Eq (2) therefore allows one to compute the resonant fre-

quencies when the geometry and the constitutive parameters are

known.

4.2 Inverse problem

Because the first two resonance modes involve different combi-

nations of the lateral and longitudinal stiffnesses, they involve

different combinations of the constitutive parameters. To extract

the elastic parameters of the sample from the resonant frequen-

cies, one now considers that the resonant frequencies are mea-

sured (i.e., known) and that the constitutive parameters are to

be retrieved. Considering two different resonance modes, corre-

sponding to the resonance parameters x1 and x2, and discarding

the dependences to the geometrical parameters for the sake of
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brevity, the parameters satisfy the linear relationship

0=R(x1) − R(x2) + (f(x1) − f(x2)) 6l2Y

+3 (g(x1) − g(x2))X (6)

The vector U is defined by

U t =[g(x1) − g(x2), f(x1) − f(x2)]

=‖ U ‖ Ũ t =‖ U ‖
[

Ũx, Ũy

]

(7)

where U t is the transpose of U and ‖ U ‖ is its norm. Denoting

S the sought parameters St =
[

3X, 6l2Y
]

, the Eq. (6) reads

Ũ tS =
1

‖ U ‖
{R(x2) − R(x1)} = p (8)

The solution therefore reads

S =
(

Ũ tS
)

Ũ + qÛ (9)

with Û t =
[

Ûx, Ûy

]

satisfying

Û tÛ =1 (10)

Û tŨ =0 (11)

U , and consequently Ũ and Û are obtained from the measured

resonant frequencies. p is also known from the resonant frequen-

cies and Eq.(8), so that one only needs to find the scalar q to

retrieve the unknown vector S. The Eq.(2) is then recast, for a
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given frequency number x

0=
[

R(x) + p2ŨxŨy + p
(

Ũyf(x) + Ũxg(x)
)]

+q
[

Ûyf(x) + Ûxg(x) + p
(

ŨxÛy + ŨyÛx

)]

+ q2ÛxÛy

=T (x, q) (12)

thereby providing a scalar condition per resonance mode depend-

ing on q. Assuming Eq.6 is satisfied, only one of the non-linear

equations (12) has to be enforced. The initial problem then turns

into solving the linear equation (6) and a single non-linear one

(T (x1, q) = 0 for instance).

5 Results and discussion

The equation T (x1, q) = 0 is first built using the measured reso-

nant frequencies and solved for q, assuming Kp = 55× 103N.m−1

(obtained from the first unloaded resonant frequency) . p is ob-

tained from x1 and x2 using Eq.8, so that two solution vectors

S are obtained using the two solutions for T (x1, q) = 0. The so-

lution satisfying the linear elasticity theory constrain 1
3 ≤ 1−ν

2−ν
≤

2
3 is kept. This provides an initial guess for q which is subse-

quently polished by minimizing the norm of the vector J(q)t =

[T (x1, q), T (x2, q)] with respect to q (Nelder-Mead simplex algo-

rithm). The solution for q is therefore used to build the vector S
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thus providing the parameters X = Kn/Kc = 305.54 ± 0.4 and

ν = 0.38 ± 0.015. Using Hertz theory [22], this translates to

E

1 − ν2
=

√

√

√

√

√

(XKc)
3

6RtF
= 7.24 ± 0.02 GPa (13)

Considering the values obtained for three samples yields E
1−ν2 =

6.89 ± 0.58 GPa. Using nano-indentation tests (continuous stiff-

ness method at 45 Hz), a comparable value (E/(1− ν2) = 6.42±

0.25 GPa) has been obtained on the same samples (NanoIIs nano-

indenter from Nano Instruments), thereby proving the identifi-

cation procedure yields consistent results. The elastic parame-

ters are then decoupled from a single experiment to yield E =

6.15 ± 0.07 GPa and ν = 0.38 ± 0.015. Again, these values are

comparable to previously reported values [19,15,16,20] obtained

using different techniques. The obtained value for E is particu-

larly close to the one reported by Al-Halhouli et al.[15]. It should

be highlighted the values reported herein are obtained for defor-

mations confined in a volume radiating from the contact point

at a distance which scales as
(

3FRt

4E

) 1

3 ≃ 690 nm [22]. The identi-

fied constitutive parameters can therefore be considered as local,

so that the ability to decouple elastic constants from multiple

resonant modes makes this characterization method a powerful
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tool for mapping thin-films materials properties. It should be

highlighted that even though the described technique applies to

isotropic materials, the (qualitative) existence of an anisotropic

behavior can be easily tested by changing the cantilever direc-

tion (Kt is probed within the plane of Fig.2). The identification

technique described herein for isotropic materials and the very

promising obtained results therefore pave the way to an quanti-

tative extension to anisotropic materials.
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