N
N

N

HAL

open science

Inexact graph matching based on kernels for object
retrieval in image databases

Justine Lebrun, Philippe-Henri Gosselin, Sylvie Philipp-Foliguet

» To cite this version:

Justine Lebrun, Philippe-Henri Gosselin, Sylvie Philipp-Foliguet. Inexact graph matching based on
kernels for object retrieval in image databases. Image and Vision Computing, 2011, 29 (11), pp.716-

729. 10.1016/j.imavis.2011.07.008 . hal-00660300

HAL Id: hal-00660300
https://hal.science/hal-00660300

Submitted on 16 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00660300
https://hal.archives-ouvertes.fr

Inexact graph matching based on kernels for object retrieval
in image databases

Justine Lebrun, Philippe-Henri Gosselin and Sylvie Ppiioliguet
ETIS CNRS, ENSEA, Univ Cergy-Pontoise, F-95000 Cergy-Pontoise

Abstract

In the framework of online object retrieval with learningewddress the problem of
graph matching using kernel functions. An image is repriegsehy a graph of regions
where the edges represent the spatial relationships. kKesnegraphs are built from
kernel on walks in the graph. This paper firstly proposes nemedds on graphs and
on walks, which are very efficient for graphs of regions. ety we propose fast
solutions for exact or approximate computation of theseddsr Thirdly we show

results for the retrieval of images containing a specifieobjvith the help of very few

examples and counter-examples in the framework of an a@tvieval scheme.

Keywords. Online, Interactive, Database, Content-Based, Objecidrat, Image
Retrieval, Machine Learning, Kernel Methods, Graph matghinexact match
PACS

1. Introduction

One of the goals of the content-based image retrieval isttieve images contain-
ing a particular object or type of object, animal or persohpge shape can be very
variable and set in a background also very variable. Glolaksures are not a good
way to solve this problem, especially if the context (backond) brings no information.
Approaches based on points of interest are interestingmioist be used with a high
number of points to be efficient, and thus have a very high ectatipnal complexity.
A promising approach is to represent an object by a set obnsgiharacterized on one
hand by intrinsic features (such as color, texture or shape) on the other hand by
spatial relations between them. The adjacency graph aémsgionstitutes a structure
well adapted to represent objects in their infinite varighbiHowever the segmentation
into regions is very difficult, since there is no unique sioln{it depends on the level of
detail expected for this segmentation) and it is very seedib changes in the lighting,
in the scale and in the aspect of the object. The number anchtracteristics of the
regions representing the same object are thus very vafianleone image to the other.
The problem of retrieving images including a type of objeat thus be considered as
a problem of inexact graph matching.

A retrieval system needs a similarity measure and a retresvgine. The most
popular - because the most efficient - way to perform clasgifin or browsing in a

Preprint submitted to Elsevier July 21, 2011

database is the Support Vector Machines (SVM). SVM are-sthtke-art large margin
classifiers which have demonstrated remarkable perforesandmage retrieval, when
associated with adequate kernel functions.

The problem of graph comparison is a topic which has beenlyisteidied in
the literature for several decades [1]. One reason is tigptioblem occurs in many
domains as various as computer or social networks, chemistpattern recognition.
Another reason is that graphs may be of very various kindbgiim size, their structure,
in the type of information they represent and so on and theg tJave rise to many
different methods to compare and classify them, all methpedsing through graph
matching.

A first way to classify methods of graph matching concernsstinecture of the
graphs : there are two main categories of methods, depemdisther the structure
of both graphs is the same or if it may differ. The first catggmidresses the graph
isomorphisms for which both graphs have the same numberrb€es and the same
number of edges, each vertex of one graph being matched métard only one vertex
of the other graph and the same for the edges. There is a wadatlire on the problem
of finding the best isomorphism between graphs or sub-gi@bhshis type of method
is used for example in chemistry, or in computer-aided desidpere vertices and edges
are affected with symbolic labels, such as “carbon” or “loggm” for vertices, and
“over” or “under” to characterize edges in pattern recagnit The constraint of having
exactly the same structure is often too strong and is relaxeéke second category
where one vertex can match zero, one or several verticeseobttier graph. The
problem of comparing graphs with unlabeled vertices anégdga NP-hard problem.
When the vertices and the edges are labeled with symbolsathe problem is much
simpler, since the combinatorial is much smaller: a verték labell is only matched
with a vertex with the same labglbut it is still a NP-hard problem [3]. In our problem
of image retrieval from datasets, we deal with graphs whagk ertices and edges
are assigned with vectors of values. And we need not onlyitepese graphs in terms
of structure but we need a similarity also taking into acadhe similarity between
vertices and between edges.

The problem we address in this paper has two main challengespare graphs
of various structures and deal with vertices and edge$attrd with numerical values.
As vertices and edges include numerical information, tigeaphs are called Attributed
Relational Graphs (ARG). In our case, vertices represagibms of the image and
edges represent adjacencies between regions (neighloig@sre directed since they
are described by information such as : how much one regioives another one.
There are no multiple edges between two vertices (two ragidmut loops are possible
in order to allow multiple matches (one vertex to several).

Because of the computational cost, algorithms to compstaites between graphs
are either complete (they give the optimal solution, pdgsilith an exponential com-
plexity) or incomplete (the complexity is polynomial buttloptimal solution is not
guaranteed [4]). Concerning the former ones, most methsesearch trees and fil-
tering to prune these trees. A* or “branch and bound" alborits then used to solve
the problem [5, 6, 7]. In [8] A* algorithm is used to perform &Rsomorphism for
an image retrieval task. A way to find the isomorphism betwgraphs is to represent
them in a canonical way and then to compare these represastatThe algorithm

developed by McKay [9] is “regarded by many authors as theegassomorphism al-
gorithm available today” [1]. Another solution is graph taaj [10], which consists
in deforming one graph into the other one. The drawback ofptete methods is
that, because of the computational cost, they are limitesirtall graphs [5]. Another
algorithm based on graph deformations is the Graph Tramsidatching, which is ap-
plied to image registration [11]. In many cases, such agelung or similar document
retrieval, the exact distance between graphs is not cranidian approximation is suf-
ficient. In incomplete methods, combinatorial optimizatalgorithms are used, with
quadratic optimization like Softassign [12], or with esdition of distribution [13], or
with taboo search [14], etc. Recently Vishwanathan et &] fitoposed a method to
compute a graph kernel from kernels on walks, which imprdlesime complexity. It
is particularly efficient for sparse graphs, but limited taghs with unlabeled vertices.

Recent approaches of graph comparison consider graphssasf sibstructures
such as chains, walks, trees and even graphlets (smallegph®)r As we are interested
in matching only a part of the image (the object and not its«beaund), this approach
seems able to measure a similarity between sets of regidhghwiir layout. We thus
propose to build kernels on graphs from kernels on walks nopege the similarity be-
tween images. In the previous papers using random walkd [1,6,8, 19, 15], authors
only compare walks of equal length. But in our applicatior,veed to compute a sim-
ilarity between graphs of different orders, which means ¢in@ vertex can be matched
with several vertices of the other graph, this will be achikby allowing loops in the
walks.

We will show that the search tree is a representation weteduio a recursive
building of the walks in a graph and that the branch and bolgatighm allows a fast
computation of the best match. Moreover with this algoritna the similarities we
propose, we are able to compute either the exact distanceapmoximation.

The novelty of this paper is firstly to propose new kernelsMeen graphs and
between walks, which are more efficient and faster thaniegisines (Section 2). Sec-
ondly we propose solutions to the inexact graph matchinglpro for attributed graphs
of regions (Section 3). Thirdly we show results for the mtal of images containing a
specific object with the help of very few examples and couat@mples in the frame-
work of an active retrieval scheme (Section 4).

2. Kernelson Graphs

Kernel-based methods, such as Support Vector Machines jSivédve shown their
robustness for image retrieval and many other domainsk#taconvex minimization
criterion. Kernel functions can be seen as similarity fiored, which respect properties
known as Mercer properties [20].

The idea of syntax-driven kernels [3] as opposed to modeedrkernels is to de-
fine a kernel on graph from kernel on parts of the graphs. Sulkérel was first
defined by Haussler with the convolution kernel [21]. Them#or et al. [22] defined
kernels over discrete structures which can be regardectakdtretization of Gaussian
kernels. Since 2003 many different kernels have been deflredcan be arranged
according to the kind of structure they consider :

* random walks in [17, 18, 19, 15]
 pathsin [23] : a path is a walk which does not go twice throtighsame vertex
* treesin [24, 25]

* graphlets in [26] : graphlets are subgraphs of small ortgeically 3 to 5 ver-
tices. In [26], they only capture the structure of the grdaphy do not carry any
information on vertices and edges.

Most of these kernels have been designed for chemical anfbiohatics applica-
tions, where vertices and edges carry very few informatimsually only a label and
sometimes a vector of small dimension (less than 4 attrshutdoreover these meth-
ods lead with graphs of small order, except [26] which death graphs of several
dozens or even several hundreds of vertices (but unlabeled)

There are two main approaches to define kernels on graphsndiey on the way
the embedding of the graph into a vector space is performed.

The first approach is explicit. This means that only a subk&aiures extracted
from the graphs can be considered (edge number, walks,rgpec). In order to
choose such features, prototypes are built using techsilikee K-Means, PCA [27],
MIL-based techniques [28] or randomized forests [29]. Feoget of prototypes or of
frequent patterns, an explicit embedding consists for @@if80] in computing the
distance to each of the prototypes and then to use a classicir-based kernel. In
[31] the vertices are embedded into a vector space thankenzbership function to
the pattern, this membership function can either be binagbtained by diffusion of
the pattern through the edges of the graph.

This approach bounds the dimension of vectors in the indgspade, since they
need to be explicitly stored. Moreover it leads to a globadpeetrization (such as the
number of prototypes) which needs to be tuned for each dsgadreeach query. Then,
the comparison of two graphs always depends on this globrahpeter. A solution
to this problem can be to perform an online computation ofptttetotypes during the
retrieval [32, 33].

The second approach performs an implicit embedding of grayth a vector space,
which means that the vectors in the space induced by the Ikiermetion are never

computed. This can be done using spectral techniques farhingt pairs [34] or for
high order matching, with tensors [35]. Other kernels wewppsed, which behave
like the similarity functions based on votes, but with refpge mathematical properties
[36, 37, 38].

In this paper, we focus on this last approach and especiallgeonels based on
randow walks, since they are in our opinion the most adajptedmpare graphs whose
information is carried by the vertices and the edges, rattar by the structure of the
graph.

Kashima et al. [17] and Gartner et al. [16] built graph kesrfedm random walks.
These kernels look for common walks and weight them eithénély length [16] or by
their probability of appearance [17]. These two kernelsawksfined for labeled graphs
(graphs of molecules) and they were extended to continualugs by Borgwardt [18].
In [15], the kernel is computed by counting the number of canmwalks (only the
edges are labeled). All these papers compute the kernelaghgfrom all random
walks from the graphs. The number of these walks may be iaf{g&pecially if cycles
are allowed). Suard [19] proposed to reduce the number dsnaid showed that?
walks are enough (whereis the number of vertices), which considerably reduces the
computational cost.

2.1. Kernel functions

We present in this section the main ideas of the kernel mstgthout entering
into details which can be found in [20].

Letx be the representation of an image in an input spacehis representation can
be a vector or a more complex structure. The first idea is n@nwowork on the initial
image representation, but on an image)(x) in a Hilbert space{. In this Hilbert
space, images are represented by vectorg, and the dot produdty(x), ¢(«’)) can
be used as a similarity function. Then, any vector-baserhileg technique can be
used.

At this point, the problem is to create a mapping functipn X — H which
maps any complex representatioto a vector representatief{z). A common way to
perform this, as we will present below, is to work in a verygkaHilbert space, up to
the infinite. For the largest ones, the direct computatiatheimapped vector becomes
impossible. No matter the size of the Hilbert space, sineestimilarity between two
images: andz’ is computed through the dot product of their images(ink(z, 2') =
(p(x),p(2")). It has been shown that many operations can be performedatarve
data without having an explicit representation, but onlthvtihe dot product [39]. For
example the Gaussian kernel which is one of the most frefyuesgd kernel functions
is 1 k(z,2') = exp(—3d(z,2)*/0?), with d(z,2’) a metric. All methods able to
work only through a dot product are called kernel methods:. iffstance, the SVM
classification function never needs an explicit expressfamapped vector:

flz) = Zaiyik(maﬁﬁi)

where(z;, y;) represents one example; (is the image, ang; its class +1 or -1) and
(a;); are the parameters of the hyperplane separating both slasse

In order to build these kernel functions, we use the foll@ymoperties:

YA > 0,k is a kernel function= Ak is a kernel function. Q)
Vp > 1, k is a kernel function=- k? is a kernel function. (2)
k, k' are kernel functions= k + k' is a kernel function. 3)

k, k" are kernel functions= k&’ is a kernel function. 4)

Let G be the Gram matrix on a data-s€t= (x;);c1,»- The Gram matrix for a kernel
function is the matrix of all values of:

Vi, j € [1,n] Gij = k(z4,2;) (5)

Gram matrices are semi-definite positive, which is equivietie say that all their eigen-
values are positive or null.

Reciprocally, if a matrixG' defined as in Eg. (5) is semi-definite positive, then the
following property holds:

3 X — M |Vi,j € [1,n] k(zs,2;) = (d(x:), d(x5)). (6)

This last property means that, even if the similarity fuocti does not respect Mercer
properties, it can be used on a data set where the Gram neaséxii-definite positive.

2.2. Kernelson Bags

The first step to kernels on graphs was the kernels on setstdfrgeor kernels on
bags [40, 36]. An image; is represented by a set of unordered eleméits- {b,;},

a “bag of features”, for instance all points of interest dredjions in an image.

A way to build a kernel function from this representatioroi$itst map the elements
of the bag in a Hilbert space. When the elements are vectorsy kenel functions
on vectors are available, from polynomial to Gaussian Kernéwe denote by the
mapping function for a feature and laythe corresponding kernel function, then the
mapping of bags; is ®(B;) = >, ¢(b;), which leads to the following kernel on bags
[39]:

K(Bi, Bj) (®(B;), ®(B;))

O bbri), Y b(bsy)) (7)
= 3 k(b by)

This kernel on bags satisfies Mercer properties, but it doebehave well since it
does not perform any matching-like operations, it only sumshe similarities of all
vectors of image with all features of image. Several propositions have been made
to improve this function, for instance in [40]:

K(B“ B]) — ﬁ Zr maXg k(bri, bsj) + ﬁ ZS max, k(bri»bsj) (8)

Let us note that, because of thexx operation in the expression, this kernel function
does not satisfy the Mercer properties. However, the loghefsemi-definite posi-
tiveness of the Gram matrix occurs in very special casesnawdr happened on our
datasets. Then, property of Eq. (6) can be used.

The validity of these kernels on bags depends on the minoekérnctionk. They
were introduced with minor kernel on vectors, but kernelktions on more complex
data can be used. For instance we will show in the next setitairkernel on graphs
can be defined from kernel on walks.

2.3. Kernels on graphs and kernels on bags of walks

We denote byG € G a graph defined by a pair = (V, E'), whereV is a set of
vertices, andZ C V' x V is a set of edges. In the case of ARG, such a graph is built
by representing each region by a vertex V, and each edge = (vy,v2) € V x V
represents an adjacency between two regions.

A way to create a kernel function on grapR3G, G’) is to directly produce such
a function from existing similarity measures. In many sarity measures (G, G')
between two graph§ = (V, E) andG’ = (V', E'), the idea is to find the best matches
between vertices and edges. For example, Sorlin [41] pespassimilarity measure
which is the average value of the similarities between eestand between edges of the
best graph match. However most of these similarity measloe®mt possess the usual
properties of a metric measure such as symmetry or triangéquality. Furthermore,
the operators usually involved in these measures are hdeligelizable”.

Another way to create a kernel function on graphs is to cansadset of walks in
the graphs. A wallk is an orderedh-uple of verticegv,vs...v,,) linked by edges ofs.
The number of walks one can extract from a graph is infinitegesthe same vertex and
the same edge can be used several times. This number carubeddyy specifying the
length or the type of the walks. We will study this in sectioartl show that a graph
can be completely described by a small amount of walks. kigaction we will note
H(.) a function which maps a gragh to a given set of walks. Kernels on graphs can
thus be seen as kernels on bags of walks : one can reuse tte drrioags of Eq. (7)
with a kernel on walkg<{(h, i) on a set of walkd1 (G) of a graphG:

K@GG)= Y. Y Kohh) ©)

heH(G) h'€H(G)

This assumes that there is a kernel on walks(h, k') able to deal with walks of
different lengths. Several kernels involving only walkstleé same length have been
proposed [16, 17, 18, 15]. For instance Kashima et al. pexptize following kernel
[17]:

Krashima (Ga G/) = Z Z Kc(h, h/)p(h|G)p(h/|G/)
heH(G) ' cH(G') (10)
|n'|=|h|

with p(h|G) the probability of finding walkk in graphG and |h| the length ofh
i.e. its number of edges.

This class of kernel is used in the framework of graphs of mdks, where the
similarity between vertices is binary, a vertex (an atonoyis not the same as the ver-
tex of the other graph. But when the similarity between twdives takes real values,
this function tends to bury the similarities between walkshie sum. For example, if
there are 3 matches (high similarity valugamong 100 possible matches (97 small
similarity valuesh), then the total similarity equals: + 97b. The 3 strong matches are
not sufficient towards the 97 small matches.

To deal with this problem, and also to reduce the computdiime, another kernel
we will call K,,,. takes the maximum of all similarities of all walks of samedtn

Kooz (G, G = Ke(h, W 11
(GG = B350 wisices e o) ()
h'|=]h]

A similar kernel was used in FReBIR [42] without the restantof walks of similar
lengths.

In between these two kernels, Suard kernel [19] uses themmuamiof these values,
instead of using the mean of the matching values as Kashima.

1
KSuard(Ga G/) = 5 Z h,g}?(}é/) KC(h7h,) + Z hén]_?()é) KC(ha h/)
PEHG) || WEH(G) =]
12)

This formula is symmetric because of the use of two terms.

Since there is anax in the last two formula, these two functions do not respeet th
Mercer conditions. But these conditions are violated onlyeary specific cases, which
never occurred in the databases we used, and the Gram nsadiixdys semi-definite
positive €f. property of Eqg. (6)). This type of functions was also usedi#] fand [40]
with the same conclusions.

However, the presence ofraax operator authorizes the use of fast algorithms and
approximate solutions.

2.4. New kernel on bags of walks

Kernels like the one of Eq. 10 uses the similarities betwdkepadrs of walks of
same length. It is obvious that in the bag, some pairs of waigsot similar at all. It
is useless to include them in the sum. On the contr&ry, . only takes into account
the best pair of walks, which is obviously not sufficient tarqaetely describe the
graph.

We propose a compromise between these two behaviors. In tortkke into ac-
count the graphs in their totality, we want that each versecluded at least in one
walk. Thus we will start one walk from each verteof G. In order to reduce com-
binatorial complexity, we will look for the vertex @’ the most similar ta (denoted
me((v)), and we start the walk i’ by this vertex. The kernel between both graphs
is then the average value of the best matches of the walksgténom each vertex of
G (plus the symmetric). More formally, the proposed kernel is

‘ [l

Knew(G7 G/)

max Ko(h,h')
ved hesa(v)
h'E€sgr(megr(v))

(13)

b D Kel)
v eG! h'esgr(v)
hesa(ma(v'))
. h € sq¢(v) < v is the first vertex oh € H(G)
With § me(u) = argmax(ky (w,)
weG

This function is symmetric thanks to the two terms. The figsirt returns the best
match value between any walkof G starting fromv and any walkh’ of G’ starting
from the closest vertex af’ to v. This choice has two interesting properties. The
first one is that we restrict the search of the best match byirggawith the couple
(v, mer (v)) of v and its best matchg. (v), which increases the discrimination of the
final function, as opposed to Kashima kernel. The secondshai this scheme allows
the use of a branch and bound algorithm, which dramaticakyehses the computation
time, as opposed to Suard kernel.

Moreover as each term is an average value of the best matelhesdn sets of
walk of both graphs, the kernel has good generalisationggtigs. Let us note that this
idea is close to the ones of Wallraven [40] and Suard [19]epkthat we added some
restrictions that make the kernel more discriminant antkfade compute.

As kernels defined by Philipp [42], Wallraven [40] and Suaté][this function
does not fully satisfy Mercer conditions, but the Gram nxaisialways semi-definite
positive (sdp) on our datasets, and property of Eq. (6) also holds.

However, for databases where the Gram matrix is not senmmitkefiositive dp),
several methods can be followed to use the function as alkdraeus recall that we
focus on the interactive retrieval of objects in image dasa&s, which means that the
whole data is available before any search, and the learnetyads are not used on
unknown data. Furthermore, during the offline stage of theliese, post-processing
can be performed. The semi-definite positiveness of the @nairix is first checked.
In the case where this property holds, retrieval sessiondegin. In the other case,
a first solution is to identify the graphs that lead to a nomisgefinite positiveness
of the Gram matrix. Then, some manual modifications can bfoeed to get the
desired property. A second solution is to use rdp-techniques, for instance SVM
for non-sdp kernels [43] or Indefinite Kernel Fisher Discriminant [44].

2.5. Kernels on walks

All the kernels on graphs expound in the previous sectiorbased on kernels of
walks K¢ (h, h'), with h € H(G) andh’ € H(G’). We present now various propo-
sitions for these kernels on walks. They involve kernels eriisesK,, and kernels
on edges{g, called minor kernels. In the following, we assume that we @aussian
kernels, which return values between 0 and 1.

Kashima et al. used the following kernel on walks, which ig@dpct of all simi-
larities of vertices and of edges of both walks [17]:

|h]
KCnLul (h7 hl) = KV (IUO’ U(’)) H KE (ei7 6;)KV (Ui7 U;) (14)

=1

When using minor kernels that return values between 0 andslké¢hnel function
always decreases with the length of walksvhich makes the similarity of long walks
very small. This kernel function disadvantages long walks.

Philipp-Foliguet used the sum instead of the product [42] :

R

Ke,,, (h 1) = Ky(vo,v)) + > Kg(ei,) Ky (vi,0]) (15)
=1

When using minor kernels that return positive values, thisddefunction always
increases with the length of walk, which makes the similarity of short walks very
small. This kernel function disadvantages short walks.

First proposition. We first propose an improved version of product ketel
(Eq. 14):

R

K (h 1) = Ky (vo,00) [T(1+ Kp(es, ¢) Ky (vi, v))) (16)
i=1

Adding 1 to the product of the minor kernels transforms thieav@ur of the kernel
when the walk length increases. This new product kernekaszs with the length of
the walk, getting thus the same behaviour than the sum keftig]. (15).

Second proposition. The second proposition is also an improvement of the product
kernel which only modifies the minor kernel on vertices:

1
Kcnewz (hv h/) =Ky (Uo, Ué)) H KE(eiv elz)(l + KV(viv ’01/)) (17)

i=1

Let us remind thafy is the minor kernel on vertices (which in our case represent
regions) andx i the minor kernel on edges (which represent spatial relsliips). In
the case where walkis and 4’ link regions with the same spatial relationships, this
kernel function will increase with the length of walks. Iretlother cases, a single
difference between the spatial relationships of two regioill significantly decreases
the similarity. This kernel is not monotonic with the walktgh.

This kernel emphasizes region layout which has a strongsgemaeaning. More-
over, when used with the efficient algorithm we present imign section, this reduces
the number of required walk comparisons.

10

walk lengths Ho, Hg, H; Hqg Hg H:
|h| =0 5 5 5 5 5 5
|h| =1 25 25 20 20 20 20
|h| =2 125 100 100 90 60 60
|h]| =3 625 380 320 320 180 120

Figure 1: Number of walks in the complete gralgiy for different walk sets.

3. Computation of kernels

The main problem of the kernels on walks is the computatioost, especially in
the applications of image retrieval, where the walk congmars have to be performed
for each image of a learning set and several iterations afsiflaation. In order to
reduce the complexity we propose several choices :

» Use a set of walks, able to properly represent the graphaumitling as most as
possible the redundancy in order to be more efficient (seeset.1).

» Use a search tree and similarity functions compatible wathursion : the simi-
larity of walks of lengthl is computed from similarity of walks of length— 1
(see section 4.2.2).

 Allow an approximate solution of walk comparisons, whislpossible thanks to
the use of the branch and bound algorithm, which allows @ pruning.

3.1. Setsof walks

The computation time of graph kernel depends on the numberlis of H (G).
This number depends on the number of vertices and on the itgen$ the graph.
We give in the first column of table in Fig. 1 the number of watifdengths 0 to 3
for the complete graplk’s, which is a not oriented graph, without loop and whose all
nodes are connected. Let us note that although the graptt rieated, walks are
oriented, and for example the walk between two vertidess different from walkba.
The number of walks still increases if loops are added to thkksy

As there is much redundancy between all walks, a solutiosistsin reducing the
number of walks by removing the walks supposed to be the nedsindant.

Suard et al. only keeps acyclic walks which do not contaicévihe same vertex.
Another reduction consists in taking only Eulerian walk&jet do not include twice
the same edge.

More formally, if we denoteh = abe... a walk of graphG, with a,b,c € V ,
various sets of walk#l (G) can be defined :

* Hq(G) : walks without loops; (a loop is an edge, v));

* Hq(G) : walks with one loop for each vertex of the graph(used by Kashima
[17]);

* Hp(G) : Eulerian walks (an edge cannot be duplicated);

11

e Hpgi(G) : Eulerian walks with loops (used by Philipp-Foliguet [42])

* H:(G) : walks without cycles (used by Suard [19]); (a cycle is a waith first
and last vertices equal);

* Hz(Q) : walks without cycles, but with loops.

The number of walks of each set ity is compared in Fig. 1 for lengths 0 to 3.

In order to reduce the number of walks, Suard chooses a mecdisgset of walks.
This set is composed of all walks which are a shortest walk&en two vertices of the
graph. The size of this set equals the number of pairs ofoessiti’|2, and the number
of possible matches is bounded [3y|*. Mahé et al. studied tottering in [24], where a
walk can return to visited vertex just after leaving it.

3.2. Computation algorithm

The computational complexity depends on the number of wialltke graphs, on
the similarity function and on the kernel on walks x . s1im« kernel (Eq. (10)) requires
an exhaustive comparison of all walks, since it performsstira of all similarities be-
tween walks. If an incomplete solution is sufficient, theyomby to reduce the compu-
tation with this kernel is to bound the lengths of the walks.tle contrary, to compute
the K,,,.. kernel (EqQ. (11)), only a part of the walks needs to be conthahe search
of the maximum can be easily obtained by the branch and bolgadithm, and an
incomplete solution is also reachable through a pruning@tearch tree. ThE 54,4
kernel (Eqg. (12)) and our two proposed kernels can be cordpuitbout computing all
walk comparisons.

In this section we discuss the complexity of graph kernelpatation and the pos-
sible optimization. We present our representation whichimizes the complexity.
Then we present the way we use it and how we use the branch and ladgorithm
with our graph kernels.

3.2.1. Searchtree

An interesting property of the walks is that they can be beittursively. A search
tree is used to represent all the walk comparisons. Thieseptation allows to per-
form the computation with the “branch and bound” algorittwinose recursivity well
suits the recursivity of walks.

For two graphs? = (V, E) andG’ = (V’, E’) and a generative function of set
walks H, our search tree is composed of :

* aroot
* nodes : each node represents a match of two vernticegv,v’) € V x V.

* a link between two nodes; = (vq,v}) andny = (vq, vh) means that there is
an edge; » betweerv; andv; in H(G), and an edge) , betweerv; andv; in
H(G).

12

o |

(a) An example of graplty (b) An example of grapld:’

(c) The corresponding search tree, with no cycles nor loops.

Figure 2: A example of search tree. Each path from the root aréaf is a possible match between two
walks. For instance, the corresponding path to the companéwalks (213) and (3/1'2’) is (root) —
(23") — (117) — (32").

An example of search tree is shown in Fig. 2. We will call a patlvalk in the
search tree, starting from the root. A path corresponds torgarison of two walks.

The main interest of the search tree is that it does not nebd twilt completely,
it can be pruned during its building. For instance, for a gleaf a maximum, only the
useful branches are built. The branch and bound algorittowslthis pruning.

3.2.2. Application of branch and bound algorithmto kernel on walks

The branch and bound algorithm aims at finding optimal sohgito problems
whose goal is to find the maximal value of a function. It is esgéy adapted to solve
the search of the maximum for functions whose bounds can dxdiqted on a given
subset (in our case, a subset of walks).

In our case, the function is the kernel functiéiiz:. To be employed with a search
tree, this function must be computed recursively. Addingdento a path in the tree
from the root means adding a vertex to each of the walks cozdgarthis path. More
formally, leth; be a walk of H (G) andh/ a walk of H(G"). If, in graphG, vertexv
(or edgee) is added to walku;, we obtain walkh, 1, and in graphG’, if vertexv’ (or
edgec’) is added to walky;, we obtain walkh;, ;. The node(v,v’) is added to the
tree as a prolongation to this path representing:’). To be efficient, the computation
of K¢(hit1,hi,,) must be performed from the computation St (hs, h;). All the
kernels on walks presented in section 3.5 have this praperty

The recursivity formula for these kernels are :

Ke,,.,. (hi+17 h2+1) = Kc,,., (hi7 h;)KE(ev eI)KV (va 'U/)

Ke (hi+1a h;-',-l) =Ke,,,n (hi’ h;) + KE(e’ 6/)[(\/(1], U/)

sum

Ko (hiv1, Miy) = Ke, oy (his) (14 Kp(e,) Ky (v,0"))

13

Koo (hig1,Wiq) = Koy, (his hi) Kg (e, €') (1 4+ Ky (v,0))

Since we use Gaussian kernels, the values returnel pyand Ky, are always
between 0 and 1. Thus, the value returnedsy can be easily bounded, and from the
value of a node, the range of values of its descendants careliefed. For instance,
for walks h of length ||, the K¢, function always returns values between 0 and
(1 + |h]). If we consider the subtree whose root is the node at the e, 0f;) in
the main tree, then the value of any node at deptif the subtree will be between
Kc,,, (hi,hl) andKc,, (hi, h;) + d. That shows the ability of our graph kernels to
be used with the “branch and bound” algorithm.

14

Figure 3: The RETIN graphic user interface. First threedineetrieved images, ranked from one query
(green square); Last line: images selected by the activedeand displayed for annotation.

4. Application toimageretrieval

In order to browse or to classify a database, we use intgeagtachine learning.
The user annotates the images to lead the search througplaauser interfacect.
Fig. 3). The learning set is iteratively built thanks to ttsey who labels the images as
relevant or irrelevant to his query. The number of imageses can reasonably label
in an on-line use is less than 100.

In this section we present our experiments on kernels orhgrdp a first approach,
we compared the evolution of the retrieval task with thres&ls on graphs and four
kernels on walks. These experiments were first performedton database. Then we
used a public database for further experimentation and adsgn to other methods.

For the first experiments, we built a toy database compos&d®fimages. It is
made of 50 objects of 12 views each and put on a random baakgyrolhe objects
come from the Columbia databasand the background is an image of landscape is-
sued from the ANN databa&eExamples of this database are displayed in Fig. 4.

Lhttp://ww1.cs.columbia.edu/CAVE/software/softlibileb00.php
2http://www.cs.washington.edu/research/imagedatabase/

Figure 4: Objects of Columbia on random backgrounds from ANN.

15

Figure 5: Example of fuzzy segmentation. Each colour corredpdo one of the 16 regions of the image.
The more saturated the pixel, the more it belongs to the region.

For the second experiments, we used an image database st Binis database is
composed of 6 categories of 100 photographs.

For the third experiments, we used the VOC database, a lagerglist image
database from the Pascal network challén@éis database has about 6,000 images in
10 categories.

4.1. Image representation by an ARG

Images are segmented into fuzzy regions, which allows tmeagia whole database
without tuning any parameter (only an interval for the numdiferegions is specified
for the whole database [42]). The regions are fuzzy setssiwbwverlap more or less
according to the colorimetric variation between thesfa Fig. 5). In the toy database,
images are represented by planar graphs of between 5 andtR®esewhereas in the
bird database, there are between 10 and 50 vertices. Theamafntegions composing
the object is variable from an image to the other, for exaragkce can be constituted
by only one fuzzy region in an image and by five regions in agoitmage. In the toy
database, objects are generally covered by one to five iedioa other regions com-
posing the background. In both databases, each regionrisseagied by a histogram
of 32 values, 8 values for the color (chrominanced.o&*b*) and 24 values for the
gradient relative to the principal orientation of the reg{8 scales and 8 orientations).

Images are represented by Attributed Relational Graphsse/kdges describe the
layout of the regions. An edge between two adjacent regidnand R; is described
by 4 features : above, below, left to and right to.

Let us consider the séf;; of pixel couples(p;,p;) € R; x R; neighbour in 4-
connectivity. We define the following features, wheteepresents the cardinal number

Shttp://www-cvr.ai.uiuc.edu/ponce_grp/data/
“http:/iwww.pascal-network.org/

16

ofaset:

piRap; < p;is abovep;
TRt _ H{(pi,p;) € Fij» piRupi}| with piRap; < p; is belowp; (18)
Y |Fj piRsp; < p;isleftof p;
piRap; < p;isrightofp,

Edgee;; between two region®; and R; is then represented by a 4-dimension
vectore;; = (TS T/ T TR,

4.2. Experimental protocol

In order to simulate an interactive search for an object oafoategory, and also
to be able to evaluate the results, each database is prawitted ground truth. Once
a kernel function is chosen, a SVM classifier is trained orasnitng set composed of
positive and negative examples allowing the ranking of iesaoy relevance. The ker-
nels also allow the use of active learning techniques inraselect the best images
to be annotated by the user [45]. We evaluate each methodriweting a large num-
ber of retrieval sessions. For each session, a categorgsenhAn image is randomly
chosen within this category, and is annotated as positifeés&ranking of the database
is then performed, only based on the similarity. Then theg@ssselected by the active
learning technique are annotated according to the catggsrypositive or negative).
The classifier is then trained with this first set of exampleading to a better classi-
fication of all images of the database. The ranking proceteis repeated with the
same principle of selection and of classification. The satioh of retrieval sessions
are repeated a hundred of times for each category. The avqueity of the ranking
can be measured at each step of annotation thanks to theargadbn of Average
Precision used for example in TRECVID evaluation campadfi).[At last, in order to
have a global quality measure of our system, we compute treMegerage Precision
(MAP) on all categories.

We also compute the average computational time of eachlkaroeler to evaluate
the tractability of large databases. The computationaé tismthe average time for
computing a value of a kernel on grapRigG, G’) over the whole database.

For each experiment we used a Gaussian kernel avith 1 and y? distance as a
kernel on verticed(,, and a Gaussian kernel with/a distance as a kernel on edges
Kg. In all experiments carried out, the semi-definite positegs of the Gram was
checked before the simulated retrieval sessions, andgltiveneach SVM training.

4.3. Experiments on the toy database

We first used our toy database to compare the three kernel®phsy< i o snimas
Kypar aNd K., and the four kernels on walksc. ., K¢,,.,. Kc,,...» andK¢, .,
with three walk lengths. The set of walks is defined My, that is to say they have
no cycles nor loops. Results are displayed in Fig. 6. Eacphigacorresponds to a
combination of a kernel on grapli$ and a kernel on walk& . Each graphic includes
one to three curves, corresponding to walk lengths= 1, 2 or 3. When the MAP is
less than 60%, the curve does not appear.

17

K K ashima graph kernel Kz graph kernel K1 ew graph kernel

< 90) 90| - 9|
=] o =]
(2] @ @
e g 85 @ 85 03 85|
= o o a
Q 80| 80| 80r X
= g75 375 875
[<] < < <
= g 70| g 70| & 70
. o 51 3
g = = =
S 65 65| Slhi=2 65|
) - |hj=1)
O 6% 10 15 20 5 10 15 20 5 10 15
M Number of labelled images Number of labelled images Number of labelled images
2ms, 50ms, 700ms 2ms, 40ms, 540ms 2ms, 8ms, 85ms
< 90| 5 90 < 90
— @ @]
k] 2 g5 2
g 3 85) 3 g 85|
o
5 s 80 80 % 80
X 2 & g
X 875 @ 75 g 75
I z 2 z
= §70 §70 £ 70
o 53 3
= = = =
3 65 65 65|
13
O 605 10 15 20 605 10 15 5 10 15
K Number of labelled images Number of labelled images Number of labelled images
2ms, 50ms, 700ms 2ms, 3ms, 4ms 2ms, 2.5ms, 3ms
£ 90 < 90 < 9]
s =] o =]
2 & 85 2 a5 8 85
= 1] 13 3
) 2 80 2 80 2 80
x g g g
< o775 Q75 875
= < < <
g 70| & 70| g 70|
- i 51 o
3 s s s
B 65 65| 65|
g
O 605 10 15 20 5 10 15 20 605 10 15 20
K Number of labelled images Number of labelled images Number of labelled images
2ms, 50ms, 700ms 2ms, 3ms, 4ms 2ms, 2.5ms, 3ms
_ < 90| 23 s 90| < 90
[} k) @ @
c g 85 g 85| g 85|
£ 380 s 80 $ 50
~ ¢ &)
el @75 D 75| O 75|
2 < 2 2
§70 S 70 S 70]
s & 3
™ g L 8 g
3 = e = =
S 65 & 65 65
g - |hj=1)
0 EC5 10 15 20 5 10 15 0 EO5 10 15 20
M Number of labelled images Number of labelled images Number of labelled images
2ms, 50ms, 700ms 2ms, 3ms, 4ms 2ms, 2.5ms, 3ms

Figure 6: Comparison of kernels on graphs and kernels on wealitee toy database. Each column uses the
same kernel on graph, and each row uses the same kernel on veddkv 8ach figure we show the average
time required for the computation of one value of the graphdleii(G, G’) for walks of length 1, 2 and 3.
Let us note that in some cases, curves are not visible sintevttiees are below 60%.

18

—-No cycles, no loops
--No cycles, loops
-H-Eulerian, loops

©
o
©
o

fosl
o
©
o

~
o
~
o

a
o

Mean Average Precision
a [}
o (=]

Mean Average Precision
(2]
o
B
=

—k-No cycles, no loops||
-5-No cycles, loops
-H-Eulerian, loops

N
o

w
(=]
w
(=)

20 20

10 15 10 15
Number of labelled images Number of labelled images
(@) Kmaax graph kernel (bY¥< e graph kernel

Figure 7: Comparison of walk sets on the toy database.

Kashima kernel. Let us first comment the first column of Fig. 6, which con-
cernsK iqshima Kernel on graphs (Eq. 10). Whatever the kernel on walks, asing
the walk length decreases the performances. That can baimsglby the fact that
Kkashima Kernel sums all similarities between all walks of the grapk,highest ones
as well as the lowest ones. Thus, the sum of a large numberaif similarity values
tends to be larger than a single high similarity value asarpl in section 3.3. How-
ever, except increasing computational time, the perfooasiare about the same for all
lengths. Now comparing the kernels on walks Wl s 1,im.a, it turns out thatc_ -
(Eqg. 15) is the most interesting . And finally, consideringhguitational time, with all
kernels on walks we have the same average time : 2ms for whleagth 1, 50ms for
walks of length 2, and 700ms for walks of length 3. Thus, witilks of length 3, the
comparison of one image to all images of a database of 10r88§ds would require
about 2 hours, which is completely intractable.

Max kernel. Let us now focus on the second column of Fig. 6, with kernel on
graphK,,... (EQ. 11). Considering kernels on walks, we have very diffebehaviors.
With kernel on walksK .. (Eg. 15), performances increase with the walk length.
With kernel on walksK ¢, ., (EQ. 14), we have very bad results (curves are below
60%). This is certainly because thi&- , function quickly decreases with the length
of walks, which makes the comparison of long walks very difficFurthermore, since
the K,,,.. graph kernel returns only one similarity between two watke (best one),
no averaging behavior like ik, sn:mq Can counterpart this. Considering the kernels
on walks we introduce in this paper, even if they reduce tleblems of theK ¢, .,
this is not enough to get good results with tig, ... graph kernel. Finally, thanks to the
branch and bound algorithm, the average time is very goozke(®with theK_,) :
from 2 to 4ms.

New graph kernel. Now we focus on the third column of Fig. 6, with the kernel
on graph we introduce in this papéf,,.,, (Eq. 11). Except for<. , walk kernels,
performances are about the same whatever the length of tlke Wais is due to the
set of walks used by this kernel. Let us remind that each xésteaken as the start of
one walk, which is matched with a walk of the other graph. Beezof the recursion

19

of the walk building, a walk of length 2 is built as a prolongatof a walk of length
1 and a walk of length 3 as a prolongation of a walk of lengthtzekems from these
results that with this kernel, the structure of the graphoisipletely grasped by a set
of edges (walks of length 1), at least for our goal of graph garnson. Moreover all
results with this kernel outperforms those with,,,.. and K ko snima-

Best combination. The experiments on the toy database show that the bestcombi
nation of kernels on graphs and kernels on walks is the grapiekk’,,.,, used with a
walk kernelK ¢, ... This combination also has the lowest computational coxiiyle
since walks of length 1 are enough. Thus, the exact compadgéone image to all
images of a database of 10,000 images needs about 20s. mhisdn be reduced if
approximate solutions are sufficient, which is generalkg tior online applications.

Comparison of walk sets. We also compared different sets of walkKgG). We
added to the sets of walks either walks with loops or walké wjytcles (but restricted
to Eulerian ones). Results are shown in Fig. 7 foy,,. and K,,.,, graph kernels,
with K¢, walk kernel and walks of length 3K k,shime has not been evaluated
since its computational complexity is intractable with &idn walk sets. With<,,, ..
kernel, using a larger walk set increases the MAP. Sincegttsiph kernel selects the
best similarity between two walk sets, adding more walksdases the chance to find
a better match. With<,,..,, as expected, performances are not improved, especially
when few images are labeled.

Exampleof retrieval session. We presentin Fig. 8 an example of interactive search
with K., graph kernel and<{c,_,, walk kernel. The system is initialized with one
image containing the query object, a red can. As can be setirednp screen shot of
Fig. 8, the system has returned many images with the samegimacid (lake). This
result is as expected: since the system does not known whidh pf the image are
relevant, it returns the images containing the regions whave the best matches with
the query regions — in this example regions of lake. The usesdhen 4 new labels,
and asks for a system update. The new ranking is shown in ttiélenscreen shot of
Fig. 8, where many more cans are returned. There are stile sotwanted images,
certainly brought by the background regions in the secorsitipe example (road,
grass and trees). The user gives 5 more labels in order tatelgystem to find the
discriminant region walks. The final ranking is shown in thetbm screen shot of
Fig. 8, where 21 cans are present. Let us note that the 3 rengaians of the database
(not visible on this last screen shot), are the next onesaimghking.

4.4. Experiments on a generalist database

Simulations. We carried out the same experiments on the bird databaseptehor
Krashima 9raph kernel and<{._, walk kernel because of their high computational
complexity. As one can see on Fig. 9, the kernel behavioralatest the same. These
results are interesting for the following reasons.

Firstly, the bird database is composed of real photographgh shows that the
conclusions we made on the toy database are also true fodagal Furthermore,
although the sizes of the categories is very different — h¥bies per category in birds
(17% of the database), 12 images in toy (2% of the databadeg behavior of the
system is the same.

20

Figure 8: Example of retrieval session on the toy databaseadh screenshot, the three first rows show the
ranking of images according to the current classifier, antateow shows the images selected by the active
learner. Images with a small green square are images labelazsitisgoby the user. Top : Initial ranking
with one query image. Middle : Result with 2 positive labelsl 8negative labels. Bottom : Result with 4
positive labels and 6 negative labels.

21

Ko graph kernel K ew graph kernel

65 65
< c
S S
< @ 60| o
S S
3 2
£ &5 &
Q o)
X 250 g
x s
[45 <
< c
s § a0 3
= = =
3
35
3
0 5 10 15 20 5 10 15 20
K Number of labelled images Number of labelled images
8ms, 9ms, 10ms 8ms, 10ms, 12ms
65
—= s 5
[0] G 60 7}
= g g
[a 55 a
X o o
X 350 g
© g g
<45 <
s - -
— § 40 b5
3 = =
v 35
S =1
0 5 10 15 0 5 10 15 20
M Number of labelled images Number of labelled images
8ms, 9ms, 10ms 8ms, 10ms, 12ms
65 65
— s s
GCJ @ 60 60
=} S
o1 55 £ 55
X o b 2,
x~ gso g 50|
g % 45 3 45
s c =
2l § 40 $ a0/
3 = s3] =
v 35| -O-|h=2 35|
O: & |h|=1
- 10 15 20 5 10 15
K Number of labelled images Number of labelled images

8ms, 9ms, 10ms 8ms, 10ms, 12ms
Figure 9: Comparison of kernels on graphs and kernels on wvealldse bird database. Each column uses the

same kernel on graph, and each row uses the same kernel on veddkv 8ach figure we show the average
time required for the computation of one value of the graphdleki(G, G’) for walks of length 1, 2 and 3.

22

Secondly, in this database, there is a correlation betweebackground and the
objects — on the contrary to the toy database, where backdrisunothing but noise.
For instance, some birds are always surrounded by watet.shbas the ability of our
learning scheme to deal with both cases, with or without rmggiml context. Let us
also remind that we use global annotation, i.e. the usenragto select the relevant
parts of an image, he just has to inform the system if an imagéis something he
is looking for or not. The system is able to select by itsedf diiscriminant parts (from
object and/or background) through the combination of SVM @raph kernels .

Thirdly, the birds are made of larger sub-graphs than theatbjn the toy database.
Despite this difference, and especially for the graph Kemedantroduced in this paper,
the system is still able to catch matches even with walksragtle 1.

Finally, the low-level features (color and gradient hisags) are less efficient on
the bird database, as can be seen on the beginning of thescwhieeh starts with a
MAP of about 30%. However, the performances quickly inceagish more labels. For
instance, with the kernels we propose (bottom right graphi€ig. 9), with 20 labels
the MAP goes up to 68%. That shows that our learning schent@eg@quickly catch
the discriminant walks in the graphs. Let us note that, withHebels and the kernels
we propose, the MAP is over 90%, which is comparable to otbeults on the same
database, obtained with a larger learning set [47].

Example of retrieval session. We present in Fig. 10 an example of interactive
search withK,,.,, graph kernel and<., walk kernel on the bird database. The
system is initialized with one image containing the querjeot) a white owl. Let us
note that in the query image, the owl is partially occluded.ohe can see on the top
screen shot of Fig. 10, the system has returned images wi#) but also other birds.
In the next feedback step with 8 labetd.(middle screen shot of Fig. 10), as in the
previous session example, new relevant objects are rettjdut also new images are
returned. This is a typical behavior of the system in the feastiback steps, where the
ranking changes a lot. At those steps, the system tries tatlmdliscriminant parts
of images. Since new positive labels also bring new backgisuthe system needs
negative examples to remove them. Then, with those labelsaew positive ones to
reinforce the relevant parts, the systems tends to retugnimages with an owl ¢f.
bottom screen shot of Fig. 10).

23

Figure 10: Example of retrieval session on the toy databaseadh screenshot, the three first rows show the
ranking of images according to the current classifier, antateow shows the images selected by the active
learner. Images with a small green square are images labelessigiseby the user. Top : Initial ranking
with one query image. Middle : Result with 4 positive labelsl dmegative labels. Bottom : Result with 6
positive labels and 9 negative labels.

24

4.5. Experiments on a large generalist database

We carried out experiments on the VOC database in order t@amsrgraph ker-
nels to bags kernel. This database has 6,000 images in Ifbdate The categories
are heterogeneous : some of them consider small objects, sthnes, objects with a
relevant context, some without, etc. This is a very inténgstlatabase for the evalua-
tion of methods in the most generic way, since a lot of reali@voblems in generalist
databases can be found.

The following methods have been compared:

» Global histogram — each image is represented by a histogfa¥ colors and
64 textures. A Gaussian kernel with @ distance was used.

» Bags of keypoints — each image is represented by a bag of 260 $IFT vectors
computed on MSER regions. The kernel on bag of Wallraven bes hsed [40].
Let us note that we did not tested graphs of keypoints sinsedmputationally
untractable.

e Bags of regions — each image is represented by a bag of effftmsame as for
graphs). The kernel on bag of Wallraven has also been usédindse.

e Graphs of regions — each image is represented by a graphgohese The
graph kernel proposed in this paper has been used Kith ., walk kernel.
On the contrary to previous experiments, an inexact siityl@omputation is
performed, with a speed up of about 20%.

Global results are shown in Fig. 12, and results per categr@ghown in Fig. 13.

Considering features, the region-based ones are glolballlpest onesc{. Fig. 12).
However, as one can see on Fig. 13, there are very differsualtsgfor each category.
Even if they have no structural information, the global dbggams give honorable re-
sults. This is certainly because, for several categorhes,context is discriminant.
Thus, retrieving the scene is about the same than retrighimgbject. The keypoints
have the best results on two categories (bicycles and dd$$3.can be explained by
the fact that there are near-identical visual features erotjects and no discriminant
context. And finally, the region-based methods give the besilts, and especially
when employing graphs. This result is interesting sinceniwss the ability of our
model to handle heterogeneous categories.

Considering computation time, the global histogram is htli@ fastest method.
The average computation of one value of a kernel point isratdws. On the other
side, the bags of SIFT are the slowest with abbit:s. The bags of regions require
about150us per bag comparison, which is reasonable for the improvelabdout 10%
with 50 labels). For the graphs of regions, the exact siitylanomputation requires
2.5ms per comparison, but with approximation, about the samdtse@he ones pre-
sented in the figures) were obtained with.s per comparison. Compared to bags, the
small increase of computational time is worth the perforogaincrease.

In order to evaluate the performances of the methods fronigke viewpoint, we
show in Fig. 14 the Top 100 for each category, with 25 labélfis shows the average

Swith 50 labels, the 100 first images returned by the systemlar@@vant with most of the methods.

25

number of images the user sees in the first screens of theigiaprface. The global
behavior of the methods is about the same. The graphs oinggive the best results,
with an average Top of 85.

26

Figure 11: Images from the VOC database.

—¥— Graphs/Regions

—&—Bags/Regions

—<}-Bags/Keypoints
—&— Global

55

50

n
<t

uoisioald abelany ueay

15 20 25 30 35 40 45 50
Number of labelled images

10

Figure 12: Comparison of features and kernels on the VOC dagab

27

category Global Bags/Keypoints Bags/Regions GraphstiRegi
cat 27 33 48 45
car 53 60 61 68
cow 32 28 59 59
horse 20 28 42 42
sheep 43 34 59 65
motorbike 27 22 22 49
bicycle 27 53 44 47
dog 22 35 33 34
person 37 41 51 51
bus 32 40 51 59
total 32 37 48 52

Figure 13: Average Precision (%) on the categories of the \d@@base, with 50 labels.

category Global Bags/Keypoints Bags/Regions GraphsfRegi

cat 49 52 84 83
car 80 100 98 100
cow 59 34 89 92
horse 33 37 67 65
sheep 72 60 95 96
motorbike 42 29 74 79
bicycle 42 96 92 94
dog 38 58 54 64
person 47 70 86 87
bus 45 62 83 90

Figure 14: Number of relevant images within the 100 first onasrmed by the system (Top 100), on the

categories of the VOC database, with 25 labels.

28

5. Conclusion

We have shown in this paper that the similarity between tvaplgs can be effi-
ciently and effectively computed through a set of walks mitthe graphs. We have
proposed a new kernel on graphs which improves the effexta®of Kashima graph
kernel, while dramatically decreasing the computatioimét This kernel is suitable
for any type of graph matching - and especially for inexaepgrmatching - and for
labeled or attributed vertices or edges. We have also peaptvgo improvements of
the kernel on walks used by Kashima. The combination of thesekernels on graphs
and kernels on walks on two databases gives high results.

More surprising with the new kernel on graphs applied to ieneggions, instead
of computing the similarities between all pairs of walksnfrboth graphs, as previous
work did, the length of the walks can be reduced until corrgideonly pairs of re-
gions, without loss of performance. This set of matchedspaiust cover both graphs
(one edge starting from each vertex of each graph). Thetstriof the graph is thus
captured by a set of edges, which is sufficient to achieve rtéyghgmatching.

In other applications longer walks are necessary, for examplecules studied or
skeletons in pattern recognition. For these cases, thadhematching of graphs can
be achieved with the method we propose thanks to branch amatitgorithm, which
well suits the recursive building of the walks. Inexact $iolus can also be obtained
more rapidly with this algorithm. The algorithm is thus geatend can be applied to
any problem of graph matching.

The results on several databases show that the method Is frsabn-line queries.
Applications concern partial queries such as retrievingges including a particular
object, whatever the background. Furthermore, the legrisnveakly-supervised,
which means that there is no need for the user to indicaterttee & interest in im-
ages.

References

[1] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty yeargrajph matching in
pattern recognition, International Journal of Patterndg@dtion and Atrtificial
Intelligence 18 (3) (2004) 265-298.

[2] H. Bunke, X. Jiang, Graph matching and similarity, in: -N. Teodorescu,
D. Mlynek, A. Kandel, H.-J. Zimmermann (Eds.), IntelligeBystems and In-
terfaces, International series in intelligent technadsgiKluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 2000, pp. 281-301.

[3] T. Gartner, A survey of kernels for structured data, SIEKXExplorations 5 (1)
(2003) 49-58.

[4] O.Sammoud, S. Sorlin, C. Solnon, K. Ghedira, A compsesdtudy of ant colony
optimization and reactive search for graph matching problen: 6th European
Conference on Evolutionary Computation in Combinatoripti@ization (Evo-
COP 2006), 2006, pp. 287-301.

29

[5] R. Ambauen, S. Fischer, H. Bunke, Graph edit distancé wiide splitting and
merging, and its application to diatom identification, i&kPIR-TC15 Workshop
on Graph-based Representation in Pattern Recognitior3, 2@0 95-106.

[6] M. Neuhaus, K. Riesen, H. Bunke, Fast suboptimal algarg for the computa-
tion of graph edit distance, in: SSPR/SPR, 2006, pp. 163-172

[7] L. Cordella, P. Foggia, C. Sansone, M. Vento, Subgraphsfiormation for the
inexact matching of attributed relational graphs, Comqmufi2 (1998) 43-52.

[8] S. Berretti, A. D. Bimbo, E. Vicario, Efficient matchingnd indexing of graph
models in content-based retrieval, IEEE Trans. on PAMI ZB (2001) 1089—
1105.

[9] B. McKay, Practical graph isomorphism, Congressus Nuaméum 30 (1981)
45-87.

[10] K. Riesen, M. Neuhaus, H. Bunke, Bipartite graph matghior computing the
edit distance of graphs, in: GbRPR, 2007, pp. 1-12.

[11] W. Aguilar, Y. Frauel, F. Escolano, M. E. Martinez-Peré. Espinosa-Romero,
M. A. Lozano, A robust graph transformation matching for fimid registration,
Image and Vision Computing 27 (7) (2009) 897-910.

[12] S. Gold, A. Rangarajan, A graduated assignment alyoriior graph matching,
IEEE Transactions on Pattern Analysis and Machine Intetigg 18 (4) (1996)
377-388.

[13] E. Bengoetxea, P. Larrafiaga, I. Bloch, A. Perchant, @erBs, Inexact graph
matching by means of estimation of distribution algorithi®attern Recognition
35 (12) (2002) 2867—2880.

[14] S. Sorlin, C. Solnon, Reactive taboo search for meagugraph similarity, in:
IAPR Workshop on Graph-based Representation in Patterndrémn, 2005,
pp. 172-182.

[15] S. V. N. Vishwanathan, N. N. Schraudolph, I. R. KondorM Borgwardt, Graph
kernels, Journal of Machine Learning Research (2009) sttdahi

[16] T. Gartner, P. A. Flach, S. Wrobel, On graph kernels: Has$ results and effi-
cient alternatives, in: COLT, 2003, pp. 129-143.

[17] H. Kashima, Y. Tsuboi, Kernel-based discriminativarigng algorithms for la-
beling sequences, trees and graphs, in: Internationale@amie on Machine
Learning (ICML), Banff, Alberta, Canada, 2004, p. 58.

[18] K. M. Borgwardt, C. S. Ong, S. Schonauer, S. V. N. Vishat@ian, A. J. Smola,
H.-P. Kriegel, Protein function prediction via graph kdspén: ISMB (Supple-
ment of Bioinformatics), 2005, pp. 47-56.

30

[19] F. Suard, V. Guigue, A. Rakotomamonjy, A. Bensrhaid&srian detection using
stereo-vision and graph kernels, in: Intelligent Vehicgsnposium, Las Vegas,
Nevada, 2005, pp. 267-272.

[20] B. Schoélkopf, A. Smola, Learning with Kernels, MIT PsesCambridge, MA,
2002.

[21] D. Haussler, Convolution kernels on discrete struesuTech. rep., Institute of
California at Santa Cruz (1999).

[22] R. . Kondor, J. D. Lafferty, Diffusion kernels on graphnd other discrete input
spaces, in: ICML, 2002, pp. 315-322.

[23] L. Ralaivola, S. J. Swamidass, H. Saigo, P. Baldi, Grieinels for chemical
informatics, Neural Networks 18 (8) (2005) 1093-1110.

[24] P. Mahé, J.-P. Vert, Graph kernels based on tree patferrmolecules, Machine
Learning 75 (1) (2009) 3—-35.

[25] N. Shervashidze, K. M. Borgwardt, Fast subtree kerngjraphs, in: NIPS, 2009,
p. to appear.

[26] N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mem, K. M. Borgwardt,
Efficient graphlet kernels for large graph comparison, ihSPATS, 2009, p. to
appear.

[27] R. C. Wilson, E. R. Hancock, Pattern spaces from graghnomials, in: 12th
International Conference On Image Analysis And Proces&0@3, pp. 480-485.

[28] Y. Chen, J. Wang, Image categorization by learning aaboning with regions,
International Journal on Machine Learning Research 5 (P903—-939.

[29] F. Moosmann, E. Nowak, F. Jurie, Randomized clustefidngsts for image clas-
sification, IEEE Trans. on Pattern Analysis and Machinelligence 30 (2008)
1632-1646.

[30] H. Bunke, K. Riesen, A family of novel graph kernels ftnugtural pattern recog-
nition, in: CIARP, Vol. 4756, 2007, pp. 20-31.

[31] A. M. Smalter, J. Huan, G. H. Lushington, Gpm: A graphteat matching kernel
with diffusion for chemical compound classification, in:BH, 2008, pp. 1-6.

[32] I. Gondra, D. Heisterkamp, Learning in region-basedgmretrieval with gener-
alized support vector machines, in: IEEE International f€mnce on Computer
Vision and Pattern Recognition Workshop (CVPRW), Vol. 2Q20p. 149-149.

[33] J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictigniearning for sparse
coding, in: International Conference on Machine Learnit@ML), 2009, pp.
689-696.

31

[34] M. Leordeanu, M. Hebert, A spectral technique for cep@ndence problems
using pairwise constraints, in: International ConferenteComputer Vision
(ICCV), 2005, pp. 1482-1489.

[35] O. Duchenne, F. Bach, I. Kweon, J. Ponce, A tensor-basgatrithm for high-
order graph matching, in: IEEE International ConferenceCamputer Vision
and Pattern Recognition (CVPR), 2009, pp. 1980-1987.

[36] J. Eichhorn, O. Chapelle, Object categorization witms kernels for local fea-
tures, Tech. rep., Max Planck Institute (2004).

[37] S. Lyu, Mercer kernels for object recognition with Ibdaatures, in: IEEE In-
ternational Conference on Computer Vision and Pattern g@tion, Vol. 2, San
Diego, CA, 2005, pp. 223-229.

[38] P.Gosselin, M. Cord, S. Philipp-Foliguet, Kernel omybaf fuzzy regions for fast
object retrieval, in: IEEE International Conference on ¢adrocessing, Vol. 1,
San Antonio, Texas, USA, 2007, pp. 177-180.

[39] J. Shawe-Taylor, N. Cristianini, Kernel methods fottBen Analysis, Cambridge
University Press, ISBN 0-521-81397-2, 2004.

[40] C. Wallraven, B. Caputo, A. Graf, Recognition with lbdaatures: the kernel
recipe, in: International Conference on Computer Visid®@QV), Vol. 2, 2003,
pp. 257-264.

[41] S. Sorlin, O. Sammoud, C. Solnon, J.-M. Jolion, Meslaesimilarite de graphes,
in: Extraction de Connaissance a partir d'Images (ECO|'@@&glier de Extrac-
tion et Gestion de Connaissances (EGC’06), 2006, pp. 21-30.

[42] S. Philipp-Foliguet, J. Gony, FReBIR : Fuzzy regioresed image retrieval, in:
Information Processing and Management of Uncertainty ((IWMParis, France,
2006, pp. 693-707.

[43] B. Haasdonk, Feature space interpretation of svms wibfinite kernels, IEEE
Transactions on Pattern Analysis and Machine Intellige?icé4) (2005) 482—
492. doi:http://doi.ieeecomputersociety.org/10.1T6HMI.2005.78.

[44] B. Haasdonk, E. Pekalska, Indefinite kernel fisher dhsicilant, in: Int. Conf. on
Pattern Recognition (ICPR), Tampa, USA, 2008, pp. 1-4.

[45] P. Gosselin, M. Cord, Precision-oriented active s@ecfor interactive image
retrieval, in: IEEE International Conference on Image Besing, Atlanta, GA,
USA, 2006, pp. 3197-3200.

[46] TREC Video Retrieval Evaluation Campain, http://www-
nlpir.nist.gov/projects/trecvid/.

[47] S. Lazebnik, C. Schmid, J. Ponce, A maximum entropy &awork for part-based
texture and object recognition, in: ICCV, 2005, pp. 832-838

32

