
HAL Id: hal-00660300
https://hal.science/hal-00660300

Submitted on 16 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inexact graph matching based on kernels for object
retrieval in image databases

Justine Lebrun, Philippe-Henri Gosselin, Sylvie Philipp-Foliguet

To cite this version:
Justine Lebrun, Philippe-Henri Gosselin, Sylvie Philipp-Foliguet. Inexact graph matching based on
kernels for object retrieval in image databases. Image and Vision Computing, 2011, 29 (11), pp.716-
729. �10.1016/j.imavis.2011.07.008�. �hal-00660300�

https://hal.science/hal-00660300
https://hal.archives-ouvertes.fr

Inexact graph matching based on kernels for object retrieval
in image databases

Justine Lebrun, Philippe-Henri Gosselin and Sylvie Philipp-Foliguet

ETIS, CNRS, ENSEA, Univ Cergy-Pontoise, F-95000 Cergy-Pontoise

Abstract

In the framework of online object retrieval with learning, we address the problem of
graph matching using kernel functions. An image is represented by a graph of regions
where the edges represent the spatial relationships. Kernels on graphs are built from
kernel on walks in the graph. This paper firstly proposes new kernels on graphs and
on walks, which are very efficient for graphs of regions. Secondly we propose fast
solutions for exact or approximate computation of these kernels. Thirdly we show
results for the retrieval of images containing a specific object with the help of very few
examples and counter-examples in the framework of an activeretrieval scheme.

Keywords: Online, Interactive, Database, Content-Based, Object Retrieval, Image
Retrieval, Machine Learning, Kernel Methods, Graph matching, Inexact match
PACS:

1. Introduction

One of the goals of the content-based image retrieval is to retrieve images contain-
ing a particular object or type of object, animal or person, whose shape can be very
variable and set in a background also very variable. Global signatures are not a good
way to solve this problem, especially if the context (background) brings no information.
Approaches based on points of interest are interesting, butmust be used with a high
number of points to be efficient, and thus have a very high computational complexity.
A promising approach is to represent an object by a set of regions characterized on one
hand by intrinsic features (such as color, texture or shape), and on the other hand by
spatial relations between them. The adjacency graph of regions constitutes a structure
well adapted to represent objects in their infinite variability. However the segmentation
into regions is very difficult, since there is no unique solution (it depends on the level of
detail expected for this segmentation) and it is very sensitive to changes in the lighting,
in the scale and in the aspect of the object. The number and thecharacteristics of the
regions representing the same object are thus very variablefrom one image to the other.
The problem of retrieving images including a type of object can thus be considered as
a problem of inexact graph matching.

A retrieval system needs a similarity measure and a retrieval engine. The most
popular - because the most efficient - way to perform classification or browsing in a

Preprint submitted to Elsevier July 21, 2011

database is the Support Vector Machines (SVM). SVM are state-of-the-art large margin
classifiers which have demonstrated remarkable performances in image retrieval, when
associated with adequate kernel functions.

The problem of graph comparison is a topic which has been widely studied in
the literature for several decades [1]. One reason is that this problem occurs in many
domains as various as computer or social networks, chemistry, or pattern recognition.
Another reason is that graphs may be of very various kinds, intheir size, their structure,
in the type of information they represent and so on and thus they gave rise to many
different methods to compare and classify them, all methodspassing through graph
matching.

A first way to classify methods of graph matching concerns thestructure of the
graphs : there are two main categories of methods, dependingwhether the structure
of both graphs is the same or if it may differ. The first category addresses the graph
isomorphisms for which both graphs have the same number of vertices and the same
number of edges, each vertex of one graph being matched with one and only one vertex
of the other graph and the same for the edges. There is a wide literature on the problem
of finding the best isomorphism between graphs or sub-graphs[2]. This type of method
is used for example in chemistry, or in computer-aided design, where vertices and edges
are affected with symbolic labels, such as “carbon” or “hydrogen” for vertices, and
“over” or “under” to characterize edges in pattern recognition. The constraint of having
exactly the same structure is often too strong and is relaxedin the second category
where one vertex can match zero, one or several vertices of the other graph. The
problem of comparing graphs with unlabeled vertices and edges is a NP-hard problem.
When the vertices and the edges are labeled with symbols, the same problem is much
simpler, since the combinatorial is much smaller: a vertex with labell is only matched
with a vertex with the same labell, but it is still a NP-hard problem [3]. In our problem
of image retrieval from datasets, we deal with graphs whose both vertices and edges
are assigned with vectors of values. And we need not only to compare graphs in terms
of structure but we need a similarity also taking into account the similarity between
vertices and between edges.

The problem we address in this paper has two main challenges :compare graphs
of various structures and deal with vertices and edges attributed with numerical values.
As vertices and edges include numerical information, thesegraphs are called Attributed
Relational Graphs (ARG). In our case, vertices represent regions of the image and
edges represent adjacencies between regions (neighbor). Edges are directed since they
are described by information such as : how much one region is over another one.
There are no multiple edges between two vertices (two regions), but loops are possible
in order to allow multiple matches (one vertex to several).

Because of the computational cost, algorithms to compute distances between graphs
are either complete (they give the optimal solution, possibly with an exponential com-
plexity) or incomplete (the complexity is polynomial but the optimal solution is not
guaranteed [4]). Concerning the former ones, most methods use search trees and fil-
tering to prune these trees. A* or “branch and bound" algorithm is then used to solve
the problem [5, 6, 7]. In [8] A* algorithm is used to perform ARG isomorphism for
an image retrieval task. A way to find the isomorphism betweengraphs is to represent
them in a canonical way and then to compare these representations. The algorithm

2

developed by McKay [9] is “regarded by many authors as the fastest isomorphism al-
gorithm available today” [1]. Another solution is graph editing [10], which consists
in deforming one graph into the other one. The drawback of complete methods is
that, because of the computational cost, they are limited tosmall graphs [5]. Another
algorithm based on graph deformations is the Graph Transform Matching, which is ap-
plied to image registration [11]. In many cases, such as clustering or similar document
retrieval, the exact distance between graphs is not crucialand an approximation is suf-
ficient. In incomplete methods, combinatorial optimization algorithms are used, with
quadratic optimization like Softassign [12], or with estimation of distribution [13], or
with taboo search [14], etc. Recently Vishwanathan et al. [15] proposed a method to
compute a graph kernel from kernels on walks, which improvesthe time complexity. It
is particularly efficient for sparse graphs, but limited to graphs with unlabeled vertices.

Recent approaches of graph comparison consider graphs as sets of substructures
such as chains, walks, trees and even graphlets (small subgraphs). As we are interested
in matching only a part of the image (the object and not its background), this approach
seems able to measure a similarity between sets of regions with their layout. We thus
propose to build kernels on graphs from kernels on walks to compute the similarity be-
tween images. In the previous papers using random walks [16,17, 18, 19, 15], authors
only compare walks of equal length. But in our application, we need to compute a sim-
ilarity between graphs of different orders, which means that one vertex can be matched
with several vertices of the other graph, this will be achieved by allowing loops in the
walks.

We will show that the search tree is a representation well suited to a recursive
building of the walks in a graph and that the branch and bound algorithm allows a fast
computation of the best match. Moreover with this algorithmand the similarities we
propose, we are able to compute either the exact distance or an approximation.

The novelty of this paper is firstly to propose new kernels between graphs and
between walks, which are more efficient and faster than existing ones (Section 2). Sec-
ondly we propose solutions to the inexact graph matching problem for attributed graphs
of regions (Section 3). Thirdly we show results for the retrieval of images containing a
specific object with the help of very few examples and counter-examples in the frame-
work of an active retrieval scheme (Section 4).

3

2. Kernels on Graphs

Kernel-based methods, such as Support Vector Machines (SVM), have shown their
robustness for image retrieval and many other domains, thanks to convex minimization
criterion. Kernel functions can be seen as similarity functions, which respect properties
known as Mercer properties [20].

The idea of syntax-driven kernels [3] as opposed to model-driven kernels is to de-
fine a kernel on graph from kernel on parts of the graphs. Such akernel was first
defined by Haussler with the convolution kernel [21]. Then Kondor et al. [22] defined
kernels over discrete structures which can be regarded as the discretization of Gaussian
kernels. Since 2003 many different kernels have been definedthat can be arranged
according to the kind of structure they consider :

• random walks in [17, 18, 19, 15]

• paths in [23] : a path is a walk which does not go twice throughthe same vertex

• trees in [24, 25]

• graphlets in [26] : graphlets are subgraphs of small order,typically 3 to 5 ver-
tices. In [26], they only capture the structure of the graph,they do not carry any
information on vertices and edges.

Most of these kernels have been designed for chemical or bioinformatics applica-
tions, where vertices and edges carry very few information,usually only a label and
sometimes a vector of small dimension (less than 4 attributes). Moreover these meth-
ods lead with graphs of small order, except [26] which deals with graphs of several
dozens or even several hundreds of vertices (but unlabeled).

There are two main approaches to define kernels on graphs, depending on the way
the embedding of the graph into a vector space is performed.

The first approach is explicit. This means that only a subset of features extracted
from the graphs can be considered (edge number, walks, spectrum...). In order to
choose such features, prototypes are built using techniques like K-Means, PCA [27],
MIL-based techniques [28] or randomized forests [29]. Froma set of prototypes or of
frequent patterns, an explicit embedding consists for example [30] in computing the
distance to each of the prototypes and then to use a classicalvector-based kernel. In
[31] the vertices are embedded into a vector space thanks to amembership function to
the pattern, this membership function can either be binary or obtained by diffusion of
the pattern through the edges of the graph.

This approach bounds the dimension of vectors in the inducedspace, since they
need to be explicitly stored. Moreover it leads to a global parametrization (such as the
number of prototypes) which needs to be tuned for each database or each query. Then,
the comparison of two graphs always depends on this global parameter. A solution
to this problem can be to perform an online computation of theprototypes during the
retrieval [32, 33].

The second approach performs an implicit embedding of graphs into a vector space,
which means that the vectors in the space induced by the kernel function are never

4

computed. This can be done using spectral techniques for matching pairs [34] or for
high order matching, with tensors [35]. Other kernels were proposed, which behave
like the similarity functions based on votes, but with respect to mathematical properties
[36, 37, 38].

In this paper, we focus on this last approach and especially on kernels based on
randow walks, since they are in our opinion the most adapted to compare graphs whose
information is carried by the vertices and the edges, ratherthan by the structure of the
graph.

Kashima et al. [17] and Gärtner et al. [16] built graph kernels from random walks.
These kernels look for common walks and weight them either bytheir length [16] or by
their probability of appearance [17]. These two kernels were defined for labeled graphs
(graphs of molecules) and they were extended to continuous values by Borgwardt [18].
In [15], the kernel is computed by counting the number of common walks (only the
edges are labeled). All these papers compute the kernel on graphs from all random
walks from the graphs. The number of these walks may be infinite (especially if cycles
are allowed). Suard [19] proposed to reduce the number of walks and showed thatn2

walks are enough (wheren is the number of vertices), which considerably reduces the
computational cost.

2.1. Kernel functions

We present in this section the main ideas of the kernel methods without entering
into details which can be found in [20].

Letx be the representation of an image in an input spaceX . This representation can
be a vector or a more complex structure. The first idea is no more to work on the initial
image representationx, but on an imageφ(x) in a Hilbert spaceH. In this Hilbert
space, images are represented by vectorsφ(x), and the dot product〈φ(x), φ(x′)〉 can
be used as a similarity function. Then, any vector-based learning technique can be
used.

At this point, the problem is to create a mapping functionφ : X → H which
maps any complex representationx to a vector representationφ(x). A common way to
perform this, as we will present below, is to work in a very large Hilbert space, up to
the infinite. For the largest ones, the direct computation ofthe mapped vector becomes
impossible. No matter the size of the Hilbert space, since the similarity between two
imagesx andx′ is computed through the dot product of their images inH: k(x, x′) =
〈φ(x), φ(x′)〉. It has been shown that many operations can be performed on vector
data without having an explicit representation, but only with the dot product [39]. For
example the Gaussian kernel which is one of the most frequently used kernel functions
is : k(x, x′) = exp(− 1

2d(x, x′)2/σ2), with d(x, x′) a metric. All methods able to
work only through a dot product are called kernel methods. For instance, the SVM
classification function never needs an explicit expressionof a mapped vector:

f(x) =
∑

i

αiyik(x, xi)

where(xi, yi) represents one example (xi is the image, andyi its class +1 or -1) and
(αi)i are the parameters of the hyperplane separating both classes.

5

In order to build these kernel functions, we use the following properties:

∀λ > 0, k is a kernel function⇒ λk is a kernel function. (1)

∀p ≥ 1, k is a kernel function⇒ kp is a kernel function. (2)

k, k′ are kernel functions⇒ k + k′ is a kernel function. (3)

k, k′ are kernel functions⇒ kk′ is a kernel function. (4)

Let G be the Gram matrix on a data-setX = (xi)i∈[1,n]. The Gram matrix for a kernel
functionk is the matrix of all values ofk:

∀i, j ∈ [1, n] Gij = k(xi, xj) (5)

Gram matrices are semi-definite positive, which is equivalent to say that all their eigen-
values are positive or null.

Reciprocally, if a matrixG defined as in Eq. (5) is semi-definite positive, then the
following property holds:

∃φ : X → H | ∀i, j ∈ [1, n] k(xi, xj) = 〈φ(xi), φ(xj)〉. (6)

This last property means that, even if the similarity functionk does not respect Mercer
properties, it can be used on a data set where the Gram matrix is semi-definite positive.

2.2. Kernels on Bags

The first step to kernels on graphs was the kernels on sets of vectors, or kernels on
bags [40, 36]. An imagexi is represented by a set of unordered elementsBi = {bri}r,
a “bag of features”, for instance all points of interest or all regions in an image.

A way to build a kernel function from this representation is to first map the elements
of the bag in a Hilbert space. When the elements are vectors, many kernel functions
on vectors are available, from polynomial to Gaussian kernels. If we denote byφ the
mapping function for a feature and byk the corresponding kernel function, then the
mapping of bagBi is Φ(Bi) =

∑

r φ(bri), which leads to the following kernel on bags
[39]:

K(Bi, Bj) = 〈Φ(Bi),Φ(Bj)〉

=
∑

r

∑

s

〈φ(bri), φ(bsj)〉

= 〈
∑

r

φ(bri),
∑

s

φ(bsj)〉

=
∑

r

∑

s

k(bri, bsj)

(7)

This kernel on bags satisfies Mercer properties, but it does not behave well since it
does not perform any matching-like operations, it only sumsup the similarities of all
vectors of imagei with all features of imagej. Several propositions have been made
to improve this function, for instance in [40]:

K(Bi, Bj) = 1
|Bi|

∑

r maxs k(bri, bsj) + 1
|Bj |

∑

s maxr k(bri, bsj) (8)

6

Let us note that, because of themax operation in the expression, this kernel function
does not satisfy the Mercer properties. However, the loss ofthe semi-definite posi-
tiveness of the Gram matrix occurs in very special cases, andnever happened on our
datasets. Then, property of Eq. (6) can be used.

The validity of these kernels on bags depends on the minor kernel functionk. They
were introduced with minor kernel on vectors, but kernel functions on more complex
data can be used. For instance we will show in the next sectionthat kernel on graphs
can be defined from kernel on walks.

2.3. Kernels on graphs and kernels on bags of walks

We denote byG ∈ G a graph defined by a pairG = (V,E), whereV is a set of
vertices, andE ⊆ V × V is a set of edges. In the case of ARG, such a graph is built
by representing each region by a vertexv ∈ V , and each edgee = (v1, v2) ∈ V × V
represents an adjacency between two regions.

A way to create a kernel function on graphsK(G,G′) is to directly produce such
a function from existing similarity measures. In many similarity measuresS(G,G′)
between two graphsG = (V,E) andG′ = (V ′, E′), the idea is to find the best matches
between vertices and edges. For example, Sorlin [41] proposes a similarity measure
which is the average value of the similarities between vertices and between edges of the
best graph match. However most of these similarity measuresdo not possess the usual
properties of a metric measure such as symmetry or triangular inequality. Furthermore,
the operators usually involved in these measures are hardly“kernelizable”.

Another way to create a kernel function on graphs is to consider a set of walks in
the graphs. A walkh is an orderedn-uple of vertices(v1v2...vn) linked by edges ofE.
The number of walks one can extract from a graph is infinite, since the same vertex and
the same edge can be used several times. This number can be reduced by specifying the
length or the type of the walks. We will study this in section 4and show that a graph
can be completely described by a small amount of walks. In this section we will note
H(.) a function which maps a graphG to a given set of walks. Kernels on graphs can
thus be seen as kernels on bags of walks : one can reuse the kernel on bags of Eq. (7)
with a kernel on walksKC(h, h′) on a set of walksH(G) of a graphG:

K(G,G′) =
∑

h∈H(G)

∑

h′∈H(G′)

KC(h, h′) (9)

This assumes that there is a kernel on walksKC(h, h′) able to deal with walks of
different lengths. Several kernels involving only walks ofthe same length have been
proposed [16, 17, 18, 15]. For instance Kashima et al. proposed the following kernel
[17]:

KKashima(G,G′) =
∑

h∈H(G)

∑

h′∈H(G′)
|h′|=|h|

KC(h, h′)p(h|G)p(h′|G′)
(10)

with p(h|G) the probability of finding walkh in graphG and |h| the length ofh
i.e. its number of edges.

7

This class of kernel is used in the framework of graphs of molecules, where the
similarity between vertices is binary, a vertex (an atom) isor is not the same as the ver-
tex of the other graph. But when the similarity between two vertices takes real values,
this function tends to bury the similarities between walks in the sum. For example, if
there are 3 matches (high similarity valuea) among 100 possible matches (97 small
similarity valuesb), then the total similarity equals3a + 97b. The 3 strong matches are
not sufficient towards the 97 small matches.

To deal with this problem, and also to reduce the computationtime, another kernel
we will call Kmax takes the maximum of all similarities of all walks of same length.

Kmax(G,G′) = max
h∈H(G)

max
h′∈H(G′)
|h′|=|h|

KC(h, h′) (11)

A similar kernel was used in FReBIR [42] without the restriction of walks of similar
lengths.

In between these two kernels, Suard kernel [19] uses the maximum of these values,
instead of using the mean of the matching values as Kashima.

KSuard(G,G′) =
1

2







∑

h∈H(G)

max
h′∈H(G′)
|h′|=|h|

KC(h, h′) +
∑

h′∈H(G′)

max
h∈H(G)
|h|=|h′|

KC(h, h′)







(12)
This formula is symmetric because of the use of two terms.
Since there is amax in the last two formula, these two functions do not respect the

Mercer conditions. But these conditions are violated only in very specific cases, which
never occurred in the databases we used, and the Gram matrix is always semi-definite
positive (cf. property of Eq. (6)). This type of functions was also used in [36] and [40]
with the same conclusions.

However, the presence of amax operator authorizes the use of fast algorithms and
approximate solutions.

2.4. New kernel on bags of walks

Kernels like the one of Eq. 10 uses the similarities between all pairs of walks of
same length. It is obvious that in the bag, some pairs of walksare not similar at all. It
is useless to include them in the sum. On the contrary,Kmax only takes into account
the best pair of walks, which is obviously not sufficient to completely describe the
graph.

We propose a compromise between these two behaviors. In order to take into ac-
count the graphs in their totality, we want that each vertex is included at least in one
walk. Thus we will start one walk from each vertexv of G. In order to reduce com-
binatorial complexity, we will look for the vertex ofG′ the most similar tov (denoted
mG((v)), and we start the walk inG′ by this vertex. The kernel between both graphs
is then the average value of the best matches of the walks starting from each vertex of
G (plus the symmetric). More formally, the proposed kernel is:

8

Knew(G,G′) = 1
|V |

∑

v∈G

max
h∈sG(v)

h′∈sG′ (mG′ (v))

KC(h, h′)

+ 1
|V ′|

∑

v′∈G′

max
h′∈sG′ (v′)

h∈sG(mG(v′))

KC(h, h′)

(13)

with

{

h ∈ sG(v) ⇔ v is the first vertex ofh ∈ H(G)
mG(u) = argmax

w∈G

(kV (w, u))

This function is symmetric thanks to the two terms. The first term returns the best
match value between any walkh of G starting fromv and any walkh′ of G′ starting
from the closest vertex ofG′ to v. This choice has two interesting properties. The
first one is that we restrict the search of the best match by starting with the couple
(v,mG′(v)) of v and its best matchmG′(v), which increases the discrimination of the
final function, as opposed to Kashima kernel. The second one is that this scheme allows
the use of a branch and bound algorithm, which dramatically decreases the computation
time, as opposed to Suard kernel.

Moreover as each term is an average value of the best matches between sets of
walk of both graphs, the kernel has good generalisation properties. Let us note that this
idea is close to the ones of Wallraven [40] and Suard [19], except that we added some
restrictions that make the kernel more discriminant and faster to compute.

As kernels defined by Philipp [42], Wallraven [40] and Suard [19], this function
does not fully satisfy Mercer conditions, but the Gram matrix is always semi-definite
positive (sdp) on our datasets, and property of Eq. (6) also holds.

However, for databases where the Gram matrix is not semi-definite positive (sdp),
several methods can be followed to use the function as a kernel. Let us recall that we
focus on the interactive retrieval of objects in image databases, which means that the
whole data is available before any search, and the learning methods are not used on
unknown data. Furthermore, during the offline stage of the database, post-processing
can be performed. The semi-definite positiveness of the Grammatrix is first checked.
In the case where this property holds, retrieval sessions can begin. In the other case,
a first solution is to identify the graphs that lead to a non-semi-definite positiveness
of the Gram matrix. Then, some manual modifications can be performed to get the
desired property. A second solution is to use non-sdp techniques, for instance SVM
for non-sdp kernels [43] or Indefinite Kernel Fisher Discriminant [44].

2.5. Kernels on walks

All the kernels on graphs expound in the previous section arebased on kernels of
walksKC(h, h′), with h ∈ H(G) andh′ ∈ H(G′). We present now various propo-
sitions for these kernels on walks. They involve kernels on verticesKV , and kernels
on edgesKE , called minor kernels. In the following, we assume that we use Gaussian
kernels, which return values between 0 and 1.

9

Kashima et al. used the following kernel on walks, which is a product of all simi-
larities of vertices and of edges of both walks [17]:

KCmul
(h, h′) = KV (v0, v

′
0)

|h|
∏

i=1

KE(ei, e
′
i)KV (vi, v

′
i) (14)

When using minor kernels that return values between 0 and 1, this kernel function
always decreases with the length of walksh, which makes the similarity of long walks
very small. This kernel function disadvantages long walks.

Philipp-Foliguet used the sum instead of the product [42] :

KCsum
(h, h′) = KV (v0, v

′
0) +

|h|
∑

i=1

KE(ei, e
′
i)KV (vi, v

′
i) (15)

When using minor kernels that return positive values, this kernel function always
increases with the length of walkh, which makes the similarity of short walks very
small. This kernel function disadvantages short walks.

First proposition. We first propose an improved version of product kernelKCmul

(Eq. 14):

KCnew1
(h, h′) = KV (v0, v

′
0)

|h|
∏

i=1

(1 + KE(ei, e
′
i)KV (vi, v

′
i)) (16)

Adding 1 to the product of the minor kernels transforms the behaviour of the kernel
when the walk length increases. This new product kernel increases with the length of
the walk, getting thus the same behaviour than the sum kernelof Eq. (15).

Second proposition. The second proposition is also an improvement of the product
kernel which only modifies the minor kernel on vertices:

KCnew2
(h, h′) = KV (v0, v

′
0)

|h|
∏

i=1

KE(ei, e
′
i)(1 + KV (vi, v

′
i)) (17)

Let us remind thatKV is the minor kernel on vertices (which in our case represent
regions) andKE the minor kernel on edges (which represent spatial relationships). In
the case where walksh andh′ link regions with the same spatial relationships, this
kernel function will increase with the length of walks. In the other cases, a single
difference between the spatial relationships of two regions will significantly decreases
the similarity. This kernel is not monotonic with the walk length.

This kernel emphasizes region layout which has a strong semantic meaning. More-
over, when used with the efficient algorithm we present in thenext section, this reduces
the number of required walk comparisons.

10

walk lengths HΩl HEl Hc̄l HΩ HE Hc̄

|h| = 0 5 5 5 5 5 5
|h| = 1 25 25 20 20 20 20
|h| = 2 125 100 100 90 60 60
|h| = 3 625 380 320 320 180 120

Figure 1: Number of walks in the complete graphK5 for different walk sets.

3. Computation of kernels

The main problem of the kernels on walks is the computationalcost, especially in
the applications of image retrieval, where the walk comparisons have to be performed
for each image of a learning set and several iterations of classification. In order to
reduce the complexity we propose several choices :

• Use a set of walks, able to properly represent the graph, butavoiding as most as
possible the redundancy in order to be more efficient (see section 4.1).

• Use a search tree and similarity functions compatible withrecursion : the simi-
larity of walks of lengthl is computed from similarity of walks of lengthl − 1
(see section 4.2.2).

• Allow an approximate solution of walk comparisons, which is possible thanks to
the use of the branch and bound algorithm, which allows the tree pruning.

3.1. Sets of walks

The computation time of graph kernel depends on the number ofwalks ofH(G).
This number depends on the number of vertices and on the “density” of the graph.
We give in the first column of table in Fig. 1 the number of walksof lengths 0 to 3
for the complete graphK5, which is a not oriented graph, without loop and whose all
nodes are connected. Let us note that although the graph is not oriented, walks are
oriented, and for example the walk between two verticesab is different from walkba.
The number of walks still increases if loops are added to the walks.

As there is much redundancy between all walks, a solution consists in reducing the
number of walks by removing the walks supposed to be the most redundant.

Suard et al. only keeps acyclic walks which do not contain twice the same vertex.
Another reduction consists in taking only Eulerian walks, which do not include twice
the same edge.

More formally, if we denoteh = abc... a walk of graphG, with a, b, c ∈ V ,
various sets of walksH(G) can be defined :

• HΩ(G) : walks without loops; (a loop is an edge(v, v));

• HΩl(G) : walks with one loop for each vertex of the graphG (used by Kashima
[17]);

• HE(G) : Eulerian walks (an edge cannot be duplicated);

11

• HEl(G) : Eulerian walks with loops (used by Philipp-Foliguet [42]);

• Hc̄(G) : walks without cycles (used by Suard [19]); (a cycle is a walkwith first
and last vertices equal);

• Hc̄l(G) : walks without cycles, but with loops.

The number of walks of each set inK5 is compared in Fig. 1 for lengths 0 to 3.
In order to reduce the number of walks, Suard chooses a more specific set of walks.

This set is composed of all walks which are a shortest walk between two vertices of the
graph. The size of this set equals the number of pairs of vertices|V |2, and the number
of possible matches is bounded by|V |4. Mahé et al. studied tottering in [24], where a
walk can return to visited vertex just after leaving it.

3.2. Computation algorithm

The computational complexity depends on the number of walksin the graphs, on
the similarity function and on the kernel on walks.KKashima kernel (Eq. (10)) requires
an exhaustive comparison of all walks, since it performs thesum of all similarities be-
tween walks. If an incomplete solution is sufficient, the only way to reduce the compu-
tation with this kernel is to bound the lengths of the walks. On the contrary, to compute
theKmax kernel (Eq. (11)), only a part of the walks needs to be compared, the search
of the maximum can be easily obtained by the branch and bound algorithm, and an
incomplete solution is also reachable through a pruning of the search tree. TheKSuard

kernel (Eq. (12)) and our two proposed kernels can be computed without computing all
walk comparisons.

In this section we discuss the complexity of graph kernel computation and the pos-
sible optimization. We present our representation which minimizes the complexity.
Then we present the way we use it and how we use the branch and bound algorithm
with our graph kernels.

3.2.1. Search tree
An interesting property of the walks is that they can be builtrecursively. A search

tree is used to represent all the walk comparisons. This representation allows to per-
form the computation with the “branch and bound” algorithm,whose recursivity well
suits the recursivity of walks.

For two graphsG = (V,E) andG′ = (V ′, E′) and a generative function of set
walksH, our search tree is composed of :

• a root

• nodes : each node represents a match of two verticesn = (v, v′) ∈ V × V ′.

• a link between two nodesn1 = (v1, v
′
1) andn2 = (v2, v

′
2) means that there is

an edgee1,2 betweenv1 andv2 in H(G), and an edgee′1,2 betweenv′
1 andv′

2 in
H(G′).

12

1

2

3

1’

2’

3’

(a) An example of graphG (b) An example of graphG′

2 2’ 2 3’ 3 2’ 3 3’ 2 1’ 3 1’ 2 1’ 3 1’

1 1’ 1 2’ 1 3’

3 3’ 2 3’ 3 2’ 2 2’

1 2’ 1 3’ 3 2’ 3 3’ 1 1’ 3 1’ 1 1’ 3 1’

2 1’ 2 2’ 2 3’

3 3’ 1 3’ 3 2’ 1 2’

1 2’ 1 3’ 2 2’ 2 3’ 2 1’ 1 1’ 2 1’ 1 1’

3 1’ 3 2’ 3 3’

1 3’ 2 3’ 1 2’ 3 2’

root

(c) The corresponding search tree, with no cycles nor loops.

Figure 2: A example of search tree. Each path from the root until a leaf is a possible match between two
walks. For instance, the corresponding path to the comparison of walks(213) and(3′1′2′) is (root) →
(23′)→ (11′)→ (32′).

An example of search tree is shown in Fig. 2. We will call a patha walk in the
search tree, starting from the root. A path corresponds to a comparison of two walks.

The main interest of the search tree is that it does not need tobe built completely,
it can be pruned during its building. For instance, for a search of a maximum, only the
useful branches are built. The branch and bound algorithm allows this pruning.

3.2.2. Application of branch and bound algorithm to kernel on walks
The branch and bound algorithm aims at finding optimal solutions to problems

whose goal is to find the maximal value of a function. It is especially adapted to solve
the search of the maximum for functions whose bounds can be predicted on a given
subset (in our case, a subset of walks).

In our case, the function is the kernel functionKC . To be employed with a search
tree, this function must be computed recursively. Adding a node to a path in the tree
from the root means adding a vertex to each of the walks compared in this path. More
formally, let hi be a walk ofH(G) andh′

i a walk ofH(G′). If, in graphG, vertexv
(or edgee) is added to walkhi, we obtain walkhi+1, and in graphG′, if vertexv′ (or
edgee′) is added to walkh′

i, we obtain walkh′
i+1. The node(v, v′) is added to the

tree as a prolongation to this path representing(h, h′). To be efficient, the computation
of KC(hi+1, h

′
i+1) must be performed from the computation ofKC(hi, h

′
i). All the

kernels on walks presented in section 3.5 have this property.
The recursivity formula for these kernels are :

KCmul
(hi+1, h

′
i+1) = KCmul

(hi, h
′
i)KE(e, e′)KV (v, v′)

KCsum
(hi+1, h

′
i+1) = KCsum

(hi, h
′
i) + KE(e, e′)KV (v, v′)

KCnew1
(hi+1, h

′
i+1) = KCnew1

(hi, h
′
i)(1 + KE(e, e′)KV (v, v′))

13

KCnew2
(hi+1, h

′
i+1) = KCnew2

(hi, h
′
i)KE(e, e′)(1 + KV (v, v′))

Since we use Gaussian kernels, the values returned byKE andKV are always
between 0 and 1. Thus, the value returned byKC can be easily bounded, and from the
value of a node, the range of values of its descendants can be predicted. For instance,
for walks h of length |h|, the KCsum

function always returns values between 0 and
(1 + |h|). If we consider the subtree whose root is the node at the end of(hi, hi′) in
the main tree, then the value of any node at depthd of the subtree will be between
KCsum

(hi, h
′
i) andKCsum

(hi, h
′
i) + d. That shows the ability of our graph kernels to

be used with the “branch and bound” algorithm.

14

Figure 3: The RETIN graphic user interface. First three lines: retrieved images, ranked from one query
(green square); Last line: images selected by the active learner and displayed for annotation.

4. Application to image retrieval

In order to browse or to classify a database, we use interactive machine learning.
The user annotates the images to lead the search through a graphic user interface (cf.
Fig. 3). The learning set is iteratively built thanks to the user, who labels the images as
relevant or irrelevant to his query. The number of images a user can reasonably label
in an on-line use is less than 100.

In this section we present our experiments on kernels on graphs. In a first approach,
we compared the evolution of the retrieval task with three kernels on graphs and four
kernels on walks. These experiments were first performed on atoy database. Then we
used a public database for further experimentation and comparison to other methods.

For the first experiments, we built a toy database composed of600 images. It is
made of 50 objects of 12 views each and put on a random background. The objects
come from the Columbia database1, and the background is an image of landscape is-
sued from the ANN database2. Examples of this database are displayed in Fig. 4.

1http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
2http://www.cs.washington.edu/research/imagedatabase/

Figure 4: Objects of Columbia on random backgrounds from ANN.

15

Figure 5: Example of fuzzy segmentation. Each colour corresponds to one of the 16 regions of the image.
The more saturated the pixel, the more it belongs to the region.

For the second experiments, we used an image database of birds3. This database is
composed of 6 categories of 100 photographs.

For the third experiments, we used the VOC database, a large generalist image
database from the Pascal network challenge4. This database has about 6,000 images in
10 categories.

4.1. Image representation by an ARG

Images are segmented into fuzzy regions, which allows to segment a whole database
without tuning any parameter (only an interval for the number of regions is specified
for the whole database [42]). The regions are fuzzy sets, which overlap more or less
according to the colorimetric variation between them (cf. Fig. 5). In the toy database,
images are represented by planar graphs of between 5 and 25 vertices, whereas in the
bird database, there are between 10 and 50 vertices. The number of regions composing
the object is variable from an image to the other, for examplea face can be constituted
by only one fuzzy region in an image and by five regions in another image. In the toy
database, objects are generally covered by one to five regions, the other regions com-
posing the background. In both databases, each region is represented by a histogram
of 32 values, 8 values for the color (chrominances ofL⋆a⋆b⋆) and 24 values for the
gradient relative to the principal orientation of the region (3 scales and 8 orientations).

Images are represented by Attributed Relational Graphs, whose edges describe the
layout of the regions. An edge between two adjacent regionsRi andRj is described
by 4 features : above, below, left to and right to.

Let us consider the setFij of pixel couples(pi, pj) ∈ Ri × Rj neighbour in 4-
connectivity. We define the following features, where|·| represents the cardinal number

3http://www-cvr.ai.uiuc.edu/ponce_grp/data/
4http://www.pascal-network.org/

16

of a set :

TRt

ij =
|{(pi, pj) ∈ Fij , pjRtpi}|

|Fij |
with















piR1pj ⇔ pi is abovepj

piR2pj ⇔ pi is belowpj

piR3pj ⇔ pi is left of pj

piR4pj ⇔ pi is right ofpj

(18)

Edgeeij between two regionsRi andRj is then represented by a 4-dimension
vectoreij = (TR1

ij TR2

ij TR3

ij TR4

ij).

4.2. Experimental protocol

In order to simulate an interactive search for an object or for a category, and also
to be able to evaluate the results, each database is providedwith a ground truth. Once
a kernel function is chosen, a SVM classifier is trained on a training set composed of
positive and negative examples allowing the ranking of images by relevance. The ker-
nels also allow the use of active learning techniques in order to select the best images
to be annotated by the user [45]. We evaluate each method by simulating a large num-
ber of retrieval sessions. For each session, a category is chosen. An image is randomly
chosen within this category, and is annotated as positive. Afirst ranking of the database
is then performed, only based on the similarity. Then the images selected by the active
learning technique are annotated according to the category(as positive or negative).
The classifier is then trained with this first set of examples,leading to a better classi-
fication of all images of the database. The ranking process isthen repeated with the
same principle of selection and of classification. The simulation of retrieval sessions
are repeated a hundred of times for each category. The average quality of the ranking
can be measured at each step of annotation thanks to the usualcriterion of Average
Precision used for example in TRECVID evaluation campaign [46]. At last, in order to
have a global quality measure of our system, we compute the Mean Average Precision
(MAP) on all categories.

We also compute the average computational time of each kernel in order to evaluate
the tractability of large databases. The computational time is the average time for
computing a value of a kernel on graphsK(G,G′) over the whole database.

For each experiment we used a Gaussian kernel withσ = 1 andχ2 distance as a
kernel on verticesKV and a Gaussian kernel with aL1 distance as a kernel on edges
KE . In all experiments carried out, the semi-definite positiveness of the Gram was
checked before the simulated retrieval sessions, and during the each SVM training.

4.3. Experiments on the toy database

We first used our toy database to compare the three kernels on graphsKKashima,
Kmax andKnew and the four kernels on walksKCsum

, KCmul
, KCnew1

, andKCnew2

with three walk lengths. The set of walks is defined byHc̄, that is to say they have
no cycles nor loops. Results are displayed in Fig. 6. Each graphic corresponds to a
combination of a kernel on graphsK and a kernel on walksKC . Each graphic includes
one to three curves, corresponding to walk lengths|h| = 1, 2 or 3. When the MAP is
less than 60%, the curve does not appear.

17

KKashima graph kernel Kmax graph kernel Knew graph kernel
K

C
s

u
m

w
al

k
ke

rn
el

5 10 15 20
60

65

70

75

80

85

90

95

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

5 10 15 20
60

65

70

75

80

85

90

95

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

5 10 15 20
60

65

70

75

80

85

90

95

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

2ms, 50ms, 700ms 2ms, 40ms, 540ms 2ms, 8ms, 85ms

K
C

m
u

l
w

al
k

ke
rn

el

5 10 15 20
60

65

70

75

80

85

90

95

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

5 10 15 20
60

65

70

75

80

85

90

95

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

5 10 15 20
60

65

70

75

80

85

90

95

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

2ms, 50ms, 700ms 2ms, 3ms, 4ms 2ms, 2.5ms, 3ms

K
C

n
e

w
1

w
al

k
ke

rn
el

5 10 15 20
60

65

70

75

80

85

90

95

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

5 10 15 20
60

65

70

75

80

85

90

95

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

5 10 15 20
60

65

70

75

80

85

90

95

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

2ms, 50ms, 700ms 2ms, 3ms, 4ms 2ms, 2.5ms, 3ms

K
C

n
e

w
2

w
al

k
ke

rn
el

5 10 15 20
60

65

70

75

80

85

90

95

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

5 10 15 20
60

65

70

75

80

85

90

95

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

5 10 15 20
60

65

70

75

80

85

90

95

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

2ms, 50ms, 700ms 2ms, 3ms, 4ms 2ms, 2.5ms, 3ms

Figure 6: Comparison of kernels on graphs and kernels on walkson the toy database. Each column uses the
same kernel on graph, and each row uses the same kernel on walk. Below each figure we show the average
time required for the computation of one value of the graph kernel K(G, G′) for walks of length 1, 2 and 3.
Let us note that in some cases, curves are not visible since their values are below 60%.

18

5 10 15 20
30

40

50

60

70

80

90

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

No cycles, no loops
No cycles, loops
Eulerian, loops

5 10 15 20
30

40

50

60

70

80

90

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

No cycles, no loops
No cycles, loops
Eulerian, loops

(a)Kmax graph kernel (b)Knew graph kernel

Figure 7: Comparison of walk sets on the toy database.

Kashima kernel. Let us first comment the first column of Fig. 6, which con-
cernsKKashima kernel on graphs (Eq. 10). Whatever the kernel on walks, increasing
the walk length decreases the performances. That can be explained by the fact that
KKashima kernel sums all similarities between all walks of the graph,the highest ones
as well as the lowest ones. Thus, the sum of a large number of small similarity values
tends to be larger than a single high similarity value as explained in section 3.3. How-
ever, except increasing computational time, the performances are about the same for all
lengths. Now comparing the kernels on walks withKKashima, it turns out thatKCsum

(Eq. 15) is the most interesting . And finally, considering computational time, with all
kernels on walks we have the same average time : 2ms for walks of length 1, 50ms for
walks of length 2, and 700ms for walks of length 3. Thus, with walks of length 3, the
comparison of one image to all images of a database of 10,000 images would require
about 2 hours, which is completely intractable.

Max kernel. Let us now focus on the second column of Fig. 6, with kernel on
graphKmax (Eq. 11). Considering kernels on walks, we have very different behaviors.
With kernel on walksKCsum

(Eq. 15), performances increase with the walk length.
With kernel on walksKCmul

(Eq. 14), we have very bad results (curves are below
60%). This is certainly because theKCmul

function quickly decreases with the length
of walks, which makes the comparison of long walks very difficult. Furthermore, since
theKmax graph kernel returns only one similarity between two walks (the best one),
no averaging behavior like inKkashima can counterpart this. Considering the kernels
on walks we introduce in this paper, even if they reduce the problems of theKCmul

,
this is not enough to get good results with theKmax graph kernel. Finally, thanks to the
branch and bound algorithm, the average time is very good (except with theKCsum

) :
from 2 to 4ms.

New graph kernel. Now we focus on the third column of Fig. 6, with the kernel
on graph we introduce in this paper,Knew (Eq. 11). Except forKCmul

walk kernels,
performances are about the same whatever the length of the walk. This is due to the
set of walks used by this kernel. Let us remind that each vertex is taken as the start of
one walk, which is matched with a walk of the other graph. Because of the recursion

19

of the walk building, a walk of length 2 is built as a prolongation of a walk of length
1 and a walk of length 3 as a prolongation of a walk of length 2. It seems from these
results that with this kernel, the structure of the graph is completely grasped by a set
of edges (walks of length 1), at least for our goal of graph comparison. Moreover all
results with this kernel outperforms those withKmax andKKashima.

Best combination. The experiments on the toy database show that the best combi-
nation of kernels on graphs and kernels on walks is the graph kernelKnew used with a
walk kernelKCnew2

. This combination also has the lowest computational complexity,
since walks of length 1 are enough. Thus, the exact comparison of one image to all
images of a database of 10,000 images needs about 20s. This time can be reduced if
approximate solutions are sufficient, which is generally true for online applications.

Comparison of walk sets. We also compared different sets of walksH(G). We
added to the sets of walks either walks with loops or walks with cycles (but restricted
to Eulerian ones). Results are shown in Fig. 7 forKmax andKnew graph kernels,
with KCnew2

walk kernel and walks of length 3.KKashima has not been evaluated
since its computational complexity is intractable with Eulerian walk sets. WithKmax

kernel, using a larger walk set increases the MAP. Since thisgraph kernel selects the
best similarity between two walk sets, adding more walks increases the chance to find
a better match. WithKnew, as expected, performances are not improved, especially
when few images are labeled.

Example of retrieval session. We present in Fig. 8 an example of interactive search
with Knew graph kernel andKCnew2

walk kernel. The system is initialized with one
image containing the query object, a red can. As can be seen onthe top screen shot of
Fig. 8, the system has returned many images with the same background (lake). This
result is as expected: since the system does not known which parts of the image are
relevant, it returns the images containing the regions which have the best matches with
the query regions – in this example regions of lake. The user gives then 4 new labels,
and asks for a system update. The new ranking is shown in the middle screen shot of
Fig. 8, where many more cans are returned. There are still some unwanted images,
certainly brought by the background regions in the second positive example (road,
grass and trees). The user gives 5 more labels in order to helpthe system to find the
discriminant region walks. The final ranking is shown in the bottom screen shot of
Fig. 8, where 21 cans are present. Let us note that the 3 remaining cans of the database
(not visible on this last screen shot), are the next ones in the ranking.

4.4. Experiments on a generalist database

Simulations. We carried out the same experiments on the bird database, except for
Kkashima graph kernel andKCsum

walk kernel because of their high computational
complexity. As one can see on Fig. 9, the kernel behaviors arealmost the same. These
results are interesting for the following reasons.

Firstly, the bird database is composed of real photographs,which shows that the
conclusions we made on the toy database are also true for realdata. Furthermore,
although the sizes of the categories is very different – 100 images per category in birds
(17% of the database), 12 images in toy (2% of the database) – the behavior of the
system is the same.

20

Figure 8: Example of retrieval session on the toy database. Ineach screenshot, the three first rows show the
ranking of images according to the current classifier, and thelast row shows the images selected by the active
learner. Images with a small green square are images labeled as positive by the user. Top : Initial ranking
with one query image. Middle : Result with 2 positive labels and 3 negative labels. Bottom : Result with 4
positive labels and 6 negative labels.

21

Kmax graph kernel Knew graph kernel
K

C
m

u
l

w
al

k
ke

rn
el

5 10 15 20
30

35

40

45

50

55

60

65

70

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

5 10 15 20
30

35

40

45

50

55

60

65

70

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

8ms, 9ms, 10ms 8ms, 10ms, 12ms

K
C

n
e

w
1

w
al

k
ke

rn
el

5 10 15 20
30

35

40

45

50

55

60

65

70

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

5 10 15 20
30

35

40

45

50

55

60

65

70

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

8ms, 9ms, 10ms 8ms, 10ms, 12ms

K
C

n
e

w
2

w
al

k
ke

rn
el

5 10 15 20
30

35

40

45

50

55

60

65

70

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

5 10 15 20
30

35

40

45

50

55

60

65

70

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

|h|=3
|h|=2
|h|=1

8ms, 9ms, 10ms 8ms, 10ms, 12ms

Figure 9: Comparison of kernels on graphs and kernels on walkson the bird database. Each column uses the
same kernel on graph, and each row uses the same kernel on walk. Below each figure we show the average
time required for the computation of one value of the graph kernel K(G, G′) for walks of length 1, 2 and 3.

22

Secondly, in this database, there is a correlation between the background and the
objects – on the contrary to the toy database, where background is nothing but noise.
For instance, some birds are always surrounded by water. That shows the ability of our
learning scheme to deal with both cases, with or without meaningful context. Let us
also remind that we use global annotation, i.e. the user never has to select the relevant
parts of an image, he just has to inform the system if an image contains something he
is looking for or not. The system is able to select by itself the discriminant parts (from
object and/or background) through the combination of SVM and graph kernels .

Thirdly, the birds are made of larger sub-graphs than the objects in the toy database.
Despite this difference, and especially for the graph kernel we introduced in this paper,
the system is still able to catch matches even with walks of length 1.

Finally, the low-level features (color and gradient histograms) are less efficient on
the bird database, as can be seen on the beginning of the curves, which starts with a
MAP of about 30%. However, the performances quickly increase with more labels. For
instance, with the kernels we propose (bottom right graphicof Fig. 9), with 20 labels
the MAP goes up to 68%. That shows that our learning scheme is able to quickly catch
the discriminant walks in the graphs. Let us note that, with 50 labels and the kernels
we propose, the MAP is over 90%, which is comparable to other results on the same
database, obtained with a larger learning set [47].

Example of retrieval session. We present in Fig. 10 an example of interactive
search withKnew graph kernel andKCnew2

walk kernel on the bird database. The
system is initialized with one image containing the query object, a white owl. Let us
note that in the query image, the owl is partially occluded. As one can see on the top
screen shot of Fig. 10, the system has returned images with owls, but also other birds.
In the next feedback step with 8 labels (cf. middle screen shot of Fig. 10), as in the
previous session example, new relevant objects are retrieved, but also new images are
returned. This is a typical behavior of the system in the firstfeedback steps, where the
ranking changes a lot. At those steps, the system tries to findthe discriminant parts
of images. Since new positive labels also bring new backgrounds, the system needs
negative examples to remove them. Then, with those labels and new positive ones to
reinforce the relevant parts, the systems tends to return only images with an owl (cf.
bottom screen shot of Fig. 10).

23

Figure 10: Example of retrieval session on the toy database. In each screenshot, the three first rows show the
ranking of images according to the current classifier, and thelast row shows the images selected by the active
learner. Images with a small green square are images labeled as positive by the user. Top : Initial ranking
with one query image. Middle : Result with 4 positive labels and 4 negative labels. Bottom : Result with 6
positive labels and 9 negative labels.

24

4.5. Experiments on a large generalist database
We carried out experiments on the VOC database in order to compare graph ker-

nels to bags kernel. This database has 6,000 images in 10 categories. The categories
are heterogeneous : some of them consider small objects, other scenes, objects with a
relevant context, some without, etc. This is a very interesting database for the evalua-
tion of methods in the most generic way, since a lot of retrieval problems in generalist
databases can be found.

The following methods have been compared:

• Global histogram – each image is represented by a histogramof 64 colors and
64 textures. A Gaussian kernel with aχ2 distance was used.

• Bags of keypoints – each image is represented by a bag of about 100 SIFT vectors
computed on MSER regions. The kernel on bag of Wallraven has been used [40].
Let us note that we did not tested graphs of keypoints since itis computationally
untractable.

• Bags of regions – each image is represented by a bag of regions (the same as for
graphs). The kernel on bag of Wallraven has also been used in this case.

• Graphs of regions – each image is represented by a graph of regions. The
graph kernel proposed in this paper has been used withKCnew2

walk kernel.
On the contrary to previous experiments, an inexact similarity computation is
performed, with a speed up of about 20%.

Global results are shown in Fig. 12, and results per categoryare shown in Fig. 13.
Considering features, the region-based ones are globally the best ones (cf. Fig. 12).

However, as one can see on Fig. 13, there are very different results for each category.
Even if they have no structural information, the global histograms give honorable re-
sults. This is certainly because, for several categories, the context is discriminant.
Thus, retrieving the scene is about the same than retrievingthe object. The keypoints
have the best results on two categories (bicycles and dogs).This can be explained by
the fact that there are near-identical visual features on the objects and no discriminant
context. And finally, the region-based methods give the bestresults, and especially
when employing graphs. This result is interesting since it shows the ability of our
model to handle heterogeneous categories.

Considering computation time, the global histogram is by far the fastest method.
The average computation of one value of a kernel point is around 1µs. On the other
side, the bags of SIFT are the slowest with about15ms. The bags of regions require
about150µs per bag comparison, which is reasonable for the improvement(about 10%
with 50 labels). For the graphs of regions, the exact similarity computation requires
2.5ms per comparison, but with approximation, about the same results (the ones pre-
sented in the figures) were obtained with2ms per comparison. Compared to bags, the
small increase of computational time is worth the performance increase.

In order to evaluate the performances of the methods from theuser viewpoint, we
show in Fig. 14 the Top 100 for each category, with 25 labels5. This shows the average

5With 50 labels, the 100 first images returned by the system are all relevant with most of the methods.

25

number of images the user sees in the first screens of the graphic interface. The global
behavior of the methods is about the same. The graphs of regions give the best results,
with an average Top of 85.

26

Figure 11: Images from the VOC database.

5 10 15 20 25 30 35 40 45 50
15

20

25

30

35

40

45

50

55

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

Number of labelled images

Graphs/Regions
Bags/Regions
Bags/Keypoints
Global

Figure 12: Comparison of features and kernels on the VOC database.

27

category Global Bags/Keypoints Bags/Regions Graphs/Regions
cat 27 33 48 45
car 53 60 61 68
cow 32 28 59 59
horse 20 28 42 42
sheep 43 34 59 65

motorbike 27 22 22 49
bicycle 27 53 44 47

dog 22 35 33 34
person 37 41 51 51

bus 32 40 51 59
total 32 37 48 52

Figure 13: Average Precision (%) on the categories of the VOCdatabase, with 50 labels.

category Global Bags/Keypoints Bags/Regions Graphs/Regions
cat 49 52 84 83
car 80 100 98 100
cow 59 34 89 92
horse 33 37 67 65
sheep 72 60 95 96

motorbike 42 29 74 79
bicycle 42 96 92 94

dog 38 58 54 64
person 47 70 86 87

bus 45 62 83 90

Figure 14: Number of relevant images within the 100 first ones returned by the system (Top 100), on the
categories of the VOC database, with 25 labels.

28

5. Conclusion

We have shown in this paper that the similarity between two graphs can be effi-
ciently and effectively computed through a set of walks within the graphs. We have
proposed a new kernel on graphs which improves the effectiveness of Kashima graph
kernel, while dramatically decreasing the computational time. This kernel is suitable
for any type of graph matching - and especially for inexact graph matching - and for
labeled or attributed vertices or edges. We have also proposed two improvements of
the kernel on walks used by Kashima. The combination of thesenew kernels on graphs
and kernels on walks on two databases gives high results.

More surprising with the new kernel on graphs applied to image regions, instead
of computing the similarities between all pairs of walks from both graphs, as previous
work did, the length of the walks can be reduced until considering only pairs of re-
gions, without loss of performance. This set of matched pairs must cover both graphs
(one edge starting from each vertex of each graph). The structure of the graph is thus
captured by a set of edges, which is sufficient to achieve the graph matching.

In other applications longer walks are necessary, for example molecules studied or
skeletons in pattern recognition. For these cases, the inexact matching of graphs can
be achieved with the method we propose thanks to branch and bound algorithm, which
well suits the recursive building of the walks. Inexact solutions can also be obtained
more rapidly with this algorithm. The algorithm is thus general and can be applied to
any problem of graph matching.

The results on several databases show that the method is usable for on-line queries.
Applications concern partial queries such as retrieving images including a particular
object, whatever the background. Furthermore, the learning is weakly-supervised,
which means that there is no need for the user to indicate the area of interest in im-
ages.

References

[1] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years ofgraph matching in
pattern recognition, International Journal of Pattern Recognition and Artificial
Intelligence 18 (3) (2004) 265–298.

[2] H. Bunke, X. Jiang, Graph matching and similarity, in: H.-N. Teodorescu,
D. Mlynek, A. Kandel, H.-J. Zimmermann (Eds.), IntelligentSystems and In-
terfaces, International series in intelligent technologies, Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 2000, pp. 281–301.

[3] T. Gärtner, A survey of kernels for structured data, SIGKDD Explorations 5 (1)
(2003) 49–58.

[4] O. Sammoud, S. Sorlin, C. Solnon, K. Ghedira, A comparative study of ant colony
optimization and reactive search for graph matching problems, in: 6th European
Conference on Evolutionary Computation in Combinatorial Optimization (Evo-
COP 2006), 2006, pp. 287–301.

29

[5] R. Ambauen, S. Fischer, H. Bunke, Graph edit distance with node splitting and
merging, and its application to diatom identification, in: IAPR-TC15 Workshop
on Graph-based Representation in Pattern Recognition, 2003, pp. 95–106.

[6] M. Neuhaus, K. Riesen, H. Bunke, Fast suboptimal algorithms for the computa-
tion of graph edit distance, in: SSPR/SPR, 2006, pp. 163–172.

[7] L. Cordella, P. Foggia, C. Sansone, M. Vento, Subgraph transformation for the
inexact matching of attributed relational graphs, Computing 12 (1998) 43–52.

[8] S. Berretti, A. D. Bimbo, E. Vicario, Efficient matching and indexing of graph
models in content-based retrieval, IEEE Trans. on PAMI 23 (10) (2001) 1089–
1105.

[9] B. McKay, Practical graph isomorphism, Congressus Numerantium 30 (1981)
45–87.

[10] K. Riesen, M. Neuhaus, H. Bunke, Bipartite graph matching for computing the
edit distance of graphs, in: GbRPR, 2007, pp. 1–12.

[11] W. Aguilar, Y. Frauel, F. Escolano, M. E. Martinez-Perez, A. Espinosa-Romero,
M. A. Lozano, A robust graph transformation matching for non-rigid registration,
Image and Vision Computing 27 (7) (2009) 897–910.

[12] S. Gold, A. Rangarajan, A graduated assignment algorithm for graph matching,
IEEE Transactions on Pattern Analysis and Machine Intelligence 18 (4) (1996)
377–388.

[13] E. Bengoetxea, P. Larrañaga, I. Bloch, A. Perchant, C. Boeres, Inexact graph
matching by means of estimation of distribution algorithms, Pattern Recognition
35 (12) (2002) 2867–2880.

[14] S. Sorlin, C. Solnon, Reactive taboo search for measuring graph similarity, in:
IAPR Workshop on Graph-based Representation in Pattern Recognition, 2005,
pp. 172–182.

[15] S. V. N. Vishwanathan, N. N. Schraudolph, I. R. Kondor, K. M. Borgwardt, Graph
kernels, Journal of Machine Learning Research (2009) submitted.

[16] T. Gärtner, P. A. Flach, S. Wrobel, On graph kernels: Hardness results and effi-
cient alternatives, in: COLT, 2003, pp. 129–143.

[17] H. Kashima, Y. Tsuboi, Kernel-based discriminative learning algorithms for la-
beling sequences, trees and graphs, in: International Conference on Machine
Learning (ICML), Banff, Alberta, Canada, 2004, p. 58.

[18] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan, A. J. Smola,
H.-P. Kriegel, Protein function prediction via graph kernels, in: ISMB (Supple-
ment of Bioinformatics), 2005, pp. 47–56.

30

[19] F. Suard, V. Guigue, A. Rakotomamonjy, A. Bensrhair, Pedestrian detection using
stereo-vision and graph kernels, in: Intelligent VehiclesSymposium, Las Vegas,
Nevada, 2005, pp. 267–272.

[20] B. Schölkopf, A. Smola, Learning with Kernels, MIT Press, Cambridge, MA,
2002.

[21] D. Haussler, Convolution kernels on discrete structures, Tech. rep., Institute of
California at Santa Cruz (1999).

[22] R. I. Kondor, J. D. Lafferty, Diffusion kernels on graphs and other discrete input
spaces, in: ICML, 2002, pp. 315–322.

[23] L. Ralaivola, S. J. Swamidass, H. Saigo, P. Baldi, Graphkernels for chemical
informatics, Neural Networks 18 (8) (2005) 1093–1110.

[24] P. Mahé, J.-P. Vert, Graph kernels based on tree patterns for molecules, Machine
Learning 75 (1) (2009) 3–35.

[25] N. Shervashidze, K. M. Borgwardt, Fast subtree kernel on graphs, in: NIPS, 2009,
p. to appear.

[26] N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mehlhorn, K. M. Borgwardt,
Efficient graphlet kernels for large graph comparison, in: AISTATS, 2009, p. to
appear.

[27] R. C. Wilson, E. R. Hancock, Pattern spaces from graph polynomials, in: 12th
International Conference On Image Analysis And Processing, 2003, pp. 480–485.

[28] Y. Chen, J. Wang, Image categorization by learning and reasoning with regions,
International Journal on Machine Learning Research 5 (2004) 913–939.

[29] F. Moosmann, E. Nowak, F. Jurie, Randomized clusteringforests for image clas-
sification, IEEE Trans. on Pattern Analysis and Machine Intelligence 30 (2008)
1632–1646.

[30] H. Bunke, K. Riesen, A family of novel graph kernels for structural pattern recog-
nition, in: CIARP, Vol. 4756, 2007, pp. 20–31.

[31] A. M. Smalter, J. Huan, G. H. Lushington, Gpm: A graph pattern matching kernel
with diffusion for chemical compound classification, in: BIBE, 2008, pp. 1–6.

[32] I. Gondra, D. Heisterkamp, Learning in region-based image retrieval with gener-
alized support vector machines, in: IEEE International Conference on Computer
Vision and Pattern Recognition Workshop (CVPRW), Vol. 27, 2004, pp. 149–149.

[33] J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse
coding, in: International Conference on Machine Learning (ICML), 2009, pp.
689–696.

31

[34] M. Leordeanu, M. Hebert, A spectral technique for correspondence problems
using pairwise constraints, in: International Conferenceof Computer Vision
(ICCV), 2005, pp. 1482–1489.

[35] O. Duchenne, F. Bach, I. Kweon, J. Ponce, A tensor-basedalgorithm for high-
order graph matching, in: IEEE International Conference onComputer Vision
and Pattern Recognition (CVPR), 2009, pp. 1980–1987.

[36] J. Eichhorn, O. Chapelle, Object categorization with svm: kernels for local fea-
tures, Tech. rep., Max Planck Institute (2004).

[37] S. Lyu, Mercer kernels for object recognition with local features, in: IEEE In-
ternational Conference on Computer Vision and Pattern Recognition, Vol. 2, San
Diego, CA, 2005, pp. 223–229.

[38] P. Gosselin, M. Cord, S. Philipp-Foliguet, Kernel on bags of fuzzy regions for fast
object retrieval, in: IEEE International Conference on Image Processing, Vol. 1,
San Antonio, Texas, USA, 2007, pp. 177–180.

[39] J. Shawe-Taylor, N. Cristianini, Kernel methods for Pattern Analysis, Cambridge
University Press, ISBN 0-521-81397-2, 2004.

[40] C. Wallraven, B. Caputo, A. Graf, Recognition with local features: the kernel
recipe, in: International Conference on Computer Vision (ICCV), Vol. 2, 2003,
pp. 257–264.

[41] S. Sorlin, O. Sammoud, C. Solnon, J.-M. Jolion, Mesurerla similarite de graphes,
in: Extraction de Connaissance a partir d’Images (ECOI’06), Atelier de Extrac-
tion et Gestion de Connaissances (EGC’06), 2006, pp. 21–30.

[42] S. Philipp-Foliguet, J. Gony, FReBIR : Fuzzy regions-based image retrieval, in:
Information Processing and Management of Uncertainty (IPMU), Paris, France,
2006, pp. 693–707.

[43] B. Haasdonk, Feature space interpretation of svms withindefinite kernels, IEEE
Transactions on Pattern Analysis and Machine Intelligence27 (4) (2005) 482–
492. doi:http://doi.ieeecomputersociety.org/10.1109/TPAMI.2005.78.

[44] B. Haasdonk, E. Pekalska, Indefinite kernel fisher discriminant, in: Int. Conf. on
Pattern Recognition (ICPR), Tampa, USA, 2008, pp. 1–4.

[45] P. Gosselin, M. Cord, Precision-oriented active selection for interactive image
retrieval, in: IEEE International Conference on Image Processing, Atlanta, GA,
USA, 2006, pp. 3197–3200.

[46] TREC Video Retrieval Evaluation Campain, http://www-
nlpir.nist.gov/projects/trecvid/.

[47] S. Lazebnik, C. Schmid, J. Ponce, A maximum entropy framework for part-based
texture and object recognition, in: ICCV, 2005, pp. 832–838.

32

