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Abstract

Bistable space-time discrete systems commonly possess a large variety of stable stationary solutions
with periodic profile. In this context, it is natural to ask about the fate of trajectories composed of
interfaces between steady configurations with periodic pattern and in particular, to study their prop-
agation as traveling fronts. Here, we investigate such fronts in piecewise affine bistable recursions on
the one-dimensional lattice. By introducing a definition inspired by symbolic dynamics, we prove the
existence of front solutions and uniqueness of their velocity, upon the existence of their ground patterns.
Moreover, the velocity dependence on parameters and the co-existence of several fronts with distinct
ground patterns are also described. Finally, robustness of the results to small C1-perturbations of the
piecewise affine map is argued by mean continuation arguments.
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1 Introduction

Invasion phenomena are ubiquitous in spatially extended systems. The introduction of a stable germ inside
an unstable (or less stable) phase usually results in the propagation of interfaces that progressively take the
form of traveling fronts with monotonic profile. This phenomenon typically occurs in, for instance, alloy
solidification, redox chemical reactions or the spreading of infectious diseases.

Since the pioneering work of Kolmogorov, Petrovsky and Piskunov in 1937, front propagation has been
mathematically investigated in a large variety of systems. Examples range from parabolic PDEs (see e.g.
[4, 11, 23] and references therein), to integro-differential equations, e.g. [6, 9], to lattice models of coupled
ODEs [5, 26, 29, 34] and to discrete-time models of recursions [18, 28, 30]. A specific feature of spatially
discrete/lattice models is the so-called pinning effect: (bistable) front propagation fails when the relative
asymmetry of the two stable phases is insufficiently large. This property contrasts with PDEs where propa-
gation occurs as soon as the bistable nonlinearity becomes asymmetric.

Beyond their de facto relevance for numerical simulations, discrete-time systems can be regarded as basic
versions of models with delays or with periodic updating [22, 27]. Moreover, Poincaré sections and time-1
maps techniques certify that, at least formally, the dynamics of recursions contains all trajectories of PDE’s
and integro-differential equations. On the other hand, lattice models naturally arise when representing
systems composed of markedly discrete units such as in solid-state physics or in traffic flows, but also when
modeling involves some local averaging in space.
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Discreteness of space in lattice systems is responsible for robust spatial chaos, namely the existence of
cohorts of stationary solutions with distinct profiles that are stable with respect to parameter changes. For
instance, a discrete reaction-diffusion system with bistable nonlinearity has, upon choice of parameters,
stable stationary solutions with periodic profiles, for (almost) every integer period [1, 16, 20], in addition to
the two stable translation invariant solutions inherited from the local nonlinear reaction. (Spatial chaos also
exists in PDEs with symmetric nonlinear reactions [13, 21] but it is unstable to arbitrary small asymmetric
perturbations.) This phenomenon is usually analyzed by means of horseshoe construction for the ”spatial”
dynamical system associated with stationary solutions [3, 10].

By analogy with standard fronts, the existence of robust stationary solutions with periodic profile in
lattice models suggests to investigate fronts that propagate between two such ground patterns. What about
the invasion of a spatially periodic phase by another one, via an interface that moves regularly along the
lattice, like a traveling wave ?

Ground pattern periodicity suggests to call up periodic/pulsating fronts as they have been proved to occur in
periodic (continuous) media [7, 24, 32]. Indeed, the concept of periodic fronts naturally emerges in discrete
systems when the lattice step is regarded as an intrinsic spatial period. Actually, monostable periodic fronts
have been studied for some spatially periodic recursions on lattices [25, 31].

In order to accommodate the potentially large variety of ground patterns that may coexist in space-
time discrete bistable systems and in particular, the occurrence of periodic profiles with period equal to
an arbitrary multiple of the lattice step, we consider here a more specific description of periodic fronts.
Our definition relies on the symbolic dynamics analysis of the recursion and explicitly incorporates ground
patterns as varying parameters via their codes, see equation (11) below. This approach is particularly suited
to describe the front velocity dependence on system parameters (once the pair of ground patterns has been
fixed). It is also convenient to study the co-existence of several fronts when spatial chaos takes place.

More specifically, we study the dynamics of fronts between periodic patterns in parameter families of bistable
piecewise affine recursions on one-dimensional lattices. We prove the existence of such solutions (upon ground
pattern existence, as it is the case for periodic fronts in continuous media), the uniqueness of their velocity,
and their stability (for almost all parameter values in their existence domain). In other words, relatively to
ground pattern existence domains in parameter space, these fronts are shown to have a similar phenomenology
to standard fronts between constant stable phases. We also describe the velocity dependence on parameters
and the co-existence with standard fronts and, possibly, other fronts between periodic patterns. Finally, we
mention in the last section, those results that are not specific to piecewise affine systems and extend to more
general smooth recursions.

2 Bistable piecewise affine recursions on one-dimensional lattices
and their symbolic dynamics

Our framework is that of recursions (discrete-time dynamical system) acting on the space of configurations
{us}s∈Z (with components us) of the one-dimensional lattice Z, endowed with supremum norm ‖ · ‖.
Temporal orbits {ut}t>0 (or {ut}t∈Z depending on context) are composed of lattice configurations (ut =
{uts}s∈Z for all t). We consider translation invariant recursions that are performed by the lattice convolution
of the images of components by some bistable nonlinearity fa,c, namely

ut+1
s =

∑
n∈Z

`nfa,c(u
t
s−n), ∀s ∈ Z. (1)

Here the coefficients `n are chosen non-negative and non-trivial (i.e. 0 6 `n < 1) and normalized (i.e.∑
n∈Z

`n = 1). These assumptions ensure that the coupling operator C, defined as the following linear and

bounded convolution operator acting on `∞(Z)

(Cu)s =
∑
n∈Z

`nus−n, ∀s ∈ Z,

behaves as a diffusion operator (and is neither the identity nor a pure translation). The map fa,c is defined
by [17] (see Figure 1)
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Figure 1: Graph of the bistable nonlinearity fa,c (a = 0.2 and c = 0.65).

fa,c(u) = au+ (1− a)H(u− c), ∀u ∈ R

where H is the Heaviside function (i.e. H(u) = 0 if u < 0 and H(u) = 1 if u > 0) and 0 6 a < 1 and
0 < c < 1. In particular 0 and 1 are stable fixed points of fa,c and the discontinuity c plays the role of a
repeller for this map.

Clearly, the assumptions on the `n and the expression of fa,c imply that for any initial configuration u0 ∈
`∞(Z), the subsequent orbit {ut}t>0 is well-defined, that is to say the dynamics (1) is well-defined.

Example: Nearest neighbor symmetric coupling. A basic example of recursion (1) is given by `n =
(1− ε)δn,0 + ε

2 (δn,−1 + δn,1) with 0 < ε 6 1, viz.

ut+1
s = (1− ε)fa,c(uts) +

ε

2

(
fa,c(u

t
s−1) + fa,c(u

t
s+1)

)
, ∀s ∈ Z. (2)

Such discrete time systems (with arbitrary real map fa,c) are well-known under the appellation of Cou-
pled Map Lattices [8] and have been extensively studied in the nonlinear science and dynamical systems
communities.

The assumptions on {`n}n∈Z and the bistability of fa,c also imply that both constant configurations
us = 0 for all s and us = 1 for all s, which we respectively abbreviate as 0∞ and 1∞, are (asymptotically)
stable fixed points of the dynamics. In fact, these translation invariant stationary solutions constitute
the ground patterns of standard fronts. Standard fronts in piecewise affine bistable recursions have been
thoroughly investigated in [15] in the case of nearest neighbor symmetric coupling, and in [17] in the case of
arbitrary coupling sequence {`n}n∈Z.

An important technique for the study of piecewise affine systems is symbolic dynamics. Symbolic dy-
namics relies on a coding of trajectories. In our context, this consists in associating, via the individual map
partition, a symbolic (space-time) sequence {θts}s∈Z,t>0 (or {θts}(s,t)∈Z2) with θts ∈ {0, 1} to every orbit of
the recursion (1), viz.

θts = H(uts − c), ∀s ∈ Z, t > 0 (or t ∈ Z).

For piecewise affine systems, introducing the coding allows one to formally solve the induction (1) for bounded
bi-infinite orbits {ut}t∈Z and to obtain a self-consistency equation for their code. This equation is called the
admissibility equation (see (5) below).

Beside their convenience for the symbolic dynamics analysis, bounded bi-infinite orbits have interest in their
own, at least when the coupling operator C is invertible with bounded inverse. Indeed, the recursion (1) is
injective on its image in this case, because the nonlinearity fa,c is itself one-to-one. Using this property, it
can be shown that the set of all configurations of bounded bi-infinite orbits coincides with the (standard)
attractor of the recursion (see [19] for a proof in finite dimension; a proof that applies mutatis mutandis
to the dynamical system here). For instance, the nearest neighbor symmetric coupling in equation (2) is
invertible with bounded inverse for every ε < 1/2. In the general case, this condition holds provided that C
is sufficiently close to the identity.
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In order to write the admissibility equation, we need to consider the entries of the powers Ck of the
coupling operator, namely the coefficients {`n,k}n∈Z defined by

(Cku)s =
∑
n∈Z

`n,kus−n, ∀s ∈ Z, k > 1.

In particular, we have `n,1 = `n for all n and, since C is a convolution operator, the entries for k > 2 are
defined via the following induction [2]

`n,k+1 =
∑
m∈Z

`m`n−m,k, ∀n ∈ Z, k > 1. (3)

This relation easily implies that the entries must be all non-negative and non-trivial (i.e. 0 6 `n,k < 1) and
normalized (i.e.

∑
n∈Z

`n,k = 1 for all k).

Anticipating the result of solving the induction (1), the component function φ of the (putative) bounded

orbit associated with the bi-infinite symbolic sequence ϑ = {θts}(s,t)∈Z2 ∈ {0, 1}Z2

is given by

φ(ϑ) =
1− a
a

+∞∑
k=1

ak
∑
n∈Z

`n,kθ
−k
−n (4)

(These series converge for every ϑ, every 0 6 a < 1 and every non-negative and normalized sequence {`n}n∈Z.
Moreover, φ only depends on {θts}s∈Z,t60 but the dependence on the whole sequence will become clear in
the Lemma below.) Let Rsp and Rti respectively denote the space and time translations acting on symbolic
sequences, i.e.

(Rspϑ)ts = θts+1 and (Rtiϑ)ts = θt+1
s , ∀(s, t) ∈ Z2.

Lemma 1 A bounded bi-infinite sequence {ut}t∈Z of configurations in `∞(Z) (i.e. such that sup
t∈Z
‖ut‖ < +∞)

satisfies the recursion (1) for all t ∈ Z iff its components write

uts = φ ◦Rtti ◦Rssp(ϑ), ∀(s, t) ∈ Z2

where ϑ is the associated code. Independently, given a symbolic sequence ϑ, the sequence {φ◦Rtti◦Rssp(ϑ)}(s,t)∈Z2

satisfies the recursion (1) for all t ∈ Z iff ϑ solves the equation

θts = H
(
φ ◦Rtti ◦Rssp(ϑ)− c

)
, ∀(s, t) ∈ Z2. (5)

As we shall see below, the admissibility equation (5) appears to be convenient in the analysis of bounded
orbits associated with fronts.

Proof of the Lemma. We only show that if ut belongs to a bounded orbit, then it writes {φ◦Rtti ◦Rssp(ϑ)}s∈Z.
The proofs of other properties are direct and left to the reader.

By introducing the notation θt = {θts}s∈Z for configurations of symbols, the recursion (1) can be written in
an operator form as follows

ut = aCut−1 + (1− a)Cθt−1. (6)

Iterating backward yields the following expression

ut = anCut−n +
1− a
a

n∑
k=1

akCkθt−k, ∀n > 1.

We have ‖C‖ = 1. Therefore, the assumption sup
t∈Z
‖ut‖ = M < +∞ for the orbit under consideration implies

an‖Cut−n‖ 6 an‖ut−n‖ 6 anM, ∀n > 1.

By taking the limit n→ +∞ in the expression of ut above, we obtain the following formula for its components

uts =
1− a
a

+∞∑
k=1

ak(Ckθt−k)s =
1− a
a

+∞∑
k=1

ak
∑
n∈Z

`n,kθ
t−k
s−n, ∀(s, t) ∈ Z2

which is the desired expression. 2
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3 Existence conditions for stationary configurations

As mentioned above, the existence of fronts depends upon the existence of their ground patterns. Ground
patterns correspond to stationary orbits (fixed points) of the recursion. These solutions are special cases
of bounded bi-infinite sequences {ut}t∈Z for which the code is independent of t (θt = θ for all t) and thus
only depend on spatial coordinates. Keeping the same notation φ, the component function associated with
a spatial code θ = {θs}s∈Z naturally writes

φ(θ) =
∑
n∈Z

lnθ−n

where ln = 1−a
a

+∞∑
k=1

ak`n,k. Alternatively these coefficients ln can be viewed as the entries of the operator

(1−a)C(Id−aC)−1 (see relation (6) above) which is itself a convolution operator [2], i.e. for every u ∈ `∞(Z),
we have (

(1− a)C(Id− aC)−1u
)
s

=
∑
n∈Z

lnus−n,∀s ∈ Z.

According to Lemma 1, the components of the stationary orbit associated with ϑ write (where we also
keep the notation Rsp for the translation acting on spatial codes)

us = φ ◦Rssp(θ), ∀s ∈ Z

and the admissibility equation for θ is

θs = H
(
φ ◦Rssp(θ)− c

)
, ∀s ∈ Z.

It is convenient to re-write this condition as follows

M(θ) . c 6 m(θ) where M(θ) = sup
s : θs=0

φ ◦Rssp(θ) and m(θ) = inf
s : θs=1

φ ◦Rssp(θ)

and where the symbol . means < if M is a maximum and it means 6 if this supremum is not attained.
Therefore, whenever M(θ) < m(θ), there exists an interval of the parameter c for which the fixed point
associated with θ exists.

The property M(θ) < m(θ) is not rare and can in fact be satisfied on open sets of parameters a and
{`n}n∈Z. In particular, if the original coupling operator C is sufficiently close to the identity (see below)
such that l0 > 1/2, then we have

sup
θ∈{0,1}Z

M(θ) = 1− l0 < l0 = inf
θ∈{0,1}Z

m(θ)

and thus for c ∈ (1− l0, l0], all spatial codes are admissible (and there is a spatial chaos of maximal diversity
in this case).

To show that l0 > 1/2 when C is close to the identity, notice that the induction relation (3), together with
non-negativity of the coefficients, implies the inequality `0,k+1 > `0`0,k, which in turn gives `0,k > `k0 for all
k > 1. The definition of ln at the beginning of this section then yields

l0 =
1− a
a

+∞∑
k=1

ak`0,k >
1− a
a

+∞∑
k=1

ak`k0 =
1− a

1− a`0
`0

from which it follows that l0 > 1/2 when 1− `0 = ‖Id−C‖
2 < 1−a

2−a as desired.

4 Simplest front between periodic patterns

In this piecewise affine setting, a standard front with velocity v is the bounded orbit associated with a
purely interfacial code, i.e. such that there exists x0 ∈ R such that ϑ is given by

θts = H(s− vt+ x0), ∀(s, t) ∈ Z2.
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The quantity x0 is only a phase parameter that has no influence on the existence of fronts. Furthermore, the
front itself writes as a pure traveling wave (i.e. uts = φ(s − vt + x0)). In a space-time discrete system, this
expression is more general than requiring that the orbit be space-time periodic (i.e. ut+qs = uts+p for some
integer pair (p, q)), because it includes irrational velocities, while space-time periodicity does not.

For a standard front, the ground patterns are the constant configurations 0∞ and 1∞ (which respectively
correspond to the spatial codes θs = 0 for all s and θs = 1 for all s). The simplest extension of a standard
front is a traveling wave that represents the invasion of the constant phase 0∞ into the ground pattern with
spatial period 2. This pattern is the stationary configuration associated with the spatial code θ̄ defined by
(and which we abbreviate as (10)∞)

θ̄s =
1 + (−1)s

2
, ∀s ∈ Z. (7)

The front is the bounded orbit associated with the code

θts = H(s− vt+ x0)
1 + (−1)s

2
, ∀(s, t) ∈ Z2 (8)

A snapshot of this front in the case of the nearest neighbor symmetric coupling recursion, together with a
standard front profile, are given on Figure 2 (see also supplementary information [14] for computer animations
of their time evolution). Notice that a similar solution has been observed in the modeling of neural fields
[12].
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Figure 2: Standard front profile (left) and a snapshot (right) of the front (8) between 0∞ and (10)∞ for the
recursion (2). The front velocity is v = 4/23 in both cases and the system parameters are a = 0.8, ε = 0.07
and c = 0.890 (left)/c = 0.762 (right).

The analysis of the admissibility equation for this code results in the following statement on front existence,
uniqueness of velocity and velocity continuity with respect to parameters. As anticipated, the existence
statement is relative to ground pattern existence.

Proposition 2 Assume that the parameter a and {`n}n∈Z are such that the inequality M(θ̄) < m(θ̄) holds
(necessary condition for existence of the stationary solution θ̄ = (10)∞). Then the following assertions hold.

(i) There exists a countable and nowhere dense set G such that the code (8) solves the admissibility equation
(5) for some velocity v ∈ R iff c ∈ [M(θ̄),m(θ̄)] \G.

(ii) For every c ∈ [M(θ̄),m(θ̄)] \ G, there exists a unique v(c) ∈ R for which (8) solves (5) (i.e. the
corresponding velocity is unique).

(iii) The function v(·) can be extended to the whole interval [M(θ̄),m(θ̄)] as an increasing Devil’s staircase.
It also continuously depends on a and {`n}n∈Z.

Notice that the inequality M(θ̄) < m(θ̄) is equivalent to
∑
n∈Z

l2n+1 <
∑
n∈Z

l2n. It certainly holds when the

coupling operator C sufficiently close to the identity.
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In addition, the proof of this statement shows that for c ∈ G, the recursion (1) has ’ghost’ fronts, namely
bounded bi-infinite front-like sequences in phase space that do not satisfy the relation (1) (but which would
satisfy it if we had H(0) = 0 instead of H(0) = 1). In particular, some ghost front component(s) must lie
on the discontinuity c. Despite that they are not genuine orbits, ghost fronts are relevant objects in this
discontinuous system because they attract open sets of initial conditions (see [15, 17] for more details on
ghost (standard) fronts).

The proof also proffers an explicit expression for the front velocity, see (9) below. This expression is
illustrated by Figure 3 which displays a color plot in the square (ε, c) for a fixed, of front velocities for the
nearest neighbor recursion (2). The picture clearly reveal the staircase structure of the function c 7→ v(c),
with an ε-dependent range. In addition, Figure 3 shows that different fronts may propagate with distinct
velocities (e.g. fronts between 0∞ and (10)∞ with non-vanishing velocity can only exist in the zero velocity
region of standard fronts).
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Figure 3: Existence domains in the (ε, c) plane for a = 0.8, of standard fronts (left picture) and fronts (8)
between 0∞ and (10)∞ (middle and right pictures; the right picture is a magnification of the rectangle in
the middle one) for the recursion (2). Colors code for velocities, from −1 (dark blue), to 0 (white) and to
1 (dark red). Some of the domains where the velocity has a given rational velocity are shown. (Between
those domains, the velocity takes every intermediate value, in particular it can be an irrational number.)
The middle and right pictures have been computed using the inequalities (9). The top (resp. bottom) curve
represents the function ε 7→M(θ̄) (resp. ε 7→ m(θ̄)) - also shown as dashed curves in the left picture - beyond
which no front (8) can exist. The left picture has been computed by using analytic expressions in [15], (see
also proof of Theorem 3 below). Notice that standard fronts exist for every c ∈ [0, 1] \G1,∅ where G1,∅ is a
countable and nowhere dense set.

Proof of the Proposition. The front code (8) can be expressed as

θt2s = H(2s− vt+ x0) and θt2s+1 = 0, ∀(s, t) ∈ Z2

By inserting this expression into the component function (4), one easily obtains that the associated front
components write

ut2s+r = φr(2s− vt+ x0, v), ∀r ∈ {0, 1}, (s, t) ∈ Z2

where

φr(x, v) =
1− a
a

+∞∑
k=1

ak
∑
n∈Z

`2n+r,kH(x− 2n+ vk), ∀x, v ∈ R.

The coefficients `n,k > 0 are non-negative; hence both functions x 7→ φr(x, v) are right continuous and
increasing.

The admissibility equation for the code (8) is equivalent to

sup
s,t : 2s−vt+x0<0

φ0(2s− vt+ x0, v) . c 6 inf
s,t : 2s−vt+x0>0

φ0(2s− vt+ x0, v)

and φ1(2s− vt+ x0, v) < c, ∀(s, t) ∈ Z2.

7



Let nmax = sup{n : `n > 0}. A direct analysis shows that we have

φ1(x, v) < φ1(+∞, v),∀x ∈ R if v < nmax and φ1(0, nmax) = φ1(+∞, nmax) if nmax < +∞.

In addition, for all v ∈ R, we have φ1(+∞, v) = 1−a
a

+∞∑
k=1

ak
∑
n∈Z

`2n+1,k =
∑
n∈Z

l2n+1 = M(θ̄). Hence the last

admissibility condition is equivalent to M(θ̄) = φ1(+∞, v) . c.

Moreover, the properties of φ0 imply that the remaining admissibility inequalities hold for every x0 ∈ R iff

1− a
a

+∞∑
k=1

ak
∑

n∈Z : n<d vk
2 e

`2n,k = φ0(0− 0, v) = φ0(0, v − 0) . c 6 φ0(0, v) =
1− a
a

+∞∑
k=1

ak
∑

n∈Z : n6b vk
2 c

`2n,k

We conclude that there exists v ∈ R such that the code (8) solves the admissibility equation iff

max {φ1(+∞, v), φ0(0, v − 0)} . c 6 φ0(0, v).

The assumption that the coefficients `n are non trivial implies that nmin = inf{n ∈ Z : `n > 0} < nmax. In
the remaining of the proof, we assume for convenience that nmin > −∞ and nmax < +∞. The other cases
where one or both of these quantities are infinite can be treated similarly.

The function v 7→ φ0(0, v) - which is right continuous - is strictly increasing on the interval [nmin, nmax] (this
fact is shown at the end of the proof below). Hence, the velocity v(c) for which the admissibility equation
holds is unique when c (and a, {`n}n∈Z) is fixed.

Similarly to as before, we have φ0(0, nmax) = 1−a
a

+∞∑
k=1

ak
∑
n∈Z

`2n,k = m(θ̄). Let vmin = inf{v > nmin :

φ0(0, v) > M(θ̄)}. For the sake of clarity, we also assume here that vmin > −∞. (The case vmin = −∞
(which can only happen when nmin = −∞) can be equally treated without additional difficulties.) The
velocity v(c) is given by

v(c) = inf {v ∈ [vmin, nmax] : φ0(0, v) > c} (9)

and the front exists iff φ0(0, v(c)− 0) . c. Therefore for each c ∈
[
M(θ̄),m(θ̄)

]
, there exists v ∈ [vmin, nmax]

such that the code (8) satisfies the admissibility equation, except if φ0(0, v(c) − 0) = c when this limit is
reached (and if c = M(θ̄) when vmin = nmax). This occurs iff p

q ∈ [vmin, nmax]∩Q when vmin < nmax, i.e. we
have

G =
⋃

p
q∈[vmin,nmax]∩Q

φ0(0,
p

q
− 0)

which is countable and nowhere dense. (If vmin = nmax, we have G = M(θ̄) which is obviously countable
and nowhere dense.) This proves statements (i), (ii) and (iii), excepted the continuous dependence on a
and {`n}n∈Z. However, this property can be easily proved following the same lines as in the proof of front’s
velocity continuity in [15]. The details are left to the reader.

It remains to prove that v 7→ φ0(0, v) is strictly increasing on [nmin, nmax]. Given v1 < v2 in this interval,
we obtain using the expression above of φ0(0, v)

φ0(0, v2)− φ0(0, v1) =
1− a
a

+∞∑
k=1

ak
∑

b v1k
2 c<n6b

v2k
2 c

`2n,k >
1− a
a

+∞∑
k=1

a2k
∑

bv1kc<n6bv2kc

`2n,2k

Moreover, an induction based on relation (3) shows that if n0, n1 ∈ Z are such that `n0
> 0 and `n1

> 0,
then we have

`pn0+(m−p)n1,m > 0, ∀p ∈ {0, · · · ,m},m > 1. (10)

By definitions of nmin and nmax, let the integers n0, n1 be also such that n0 6 v1 < v2 6 n1. When k is
sufficiently large, there exists an integer q such that⌈

kn1 − bv1kc
n1 − n0

⌉
− 1 > q >

⌈
kn1 − bv2kc
n1 − n0

⌉
i.e. such that bv1kc < qn0 + (k − q)n1 6 bv2kc. The conditions n0 6 v1 and v2 6 n1 guarantee that
q ∈ {0, · · · , k}. Applying inequality (10) with m = 2k and p = 2q then implies that `2qn0+2(k−q)n1,2k > 0
from which it easily follows that φ0(0, v2)− φ0(0, v1) > 0 as desired. 2
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5 Fronts between more general periodic patterns

The bounded orbit associated with the code (8) is actually a special case of fronts between periodic patterns
that the recursion (1) may show. Indeed, the arguments in the previous section are general enough to be
extended without any additional major difficulty to fronts between more general ground patterns.

Let L > 1 be arbitrary and let S ⊂ Z be a L-periodic subset (i.e. s ∈ S iff s + L ∈ S) that does not
intersect the set LZ composed of multiple integers of L. The ground pattern behind (resp. ahead of) the
front is the stationary solution with spatial code θ = {χS(s)}s∈Z (resp. θ̄ = {χS∪LZ(s)}s∈Z), where χX is
the characteristic function of the set X. The front itself is the bounded orbit associated with the code

θts = χS(s) + χLZ(s)H(s− vt+ x0), ∀(s, t) ∈ Z2, (11)

for some x0 ∈ R.

This framework includes in particular standard fronts, which can be recovered by choosing S = ∅ and L = 1,
and the fronts between 0∞ and (10)∞, which are obtained for S = ∅ and L = 2. More examples of solution
profiles for the recursion (2) are given in Figure 4 (see again [14] for related computer animations).

c
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0.4

0.6
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us
t

c

10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

s

us
t

Figure 4: Snapshots of the front (11) between the ground patterns θ = {χS(s)}s∈Z and θ̄ = {χS∪LZ(s)}s∈Z
for the recursion (2). The front velocity is v = 2/11 in both cases and the system parameters are a = 0.8,
ε = 0.25 and c = 0.471 (left)/ε = 0.12 and c = 0.643 (right). Left picture: S = ∅ and L = 8, i.e. front
between 0∞ and (10000000)∞. Right picture: S = 8Z + 4 and L = 8, i.e. front between (10000000)∞ and
(1000)∞.

The existence of fronts between general ground patterns and the dependence of their velocity on parameters
is given in the next statement.

Theorem 3 Given L > 1 and a L-periodic set S not intersecting LZ, assume that the parameter a and
{`n}n∈Z are such that the inequalities M(θ) < m(θ) and M(θ̄) < m(θ̄) hold and the interval

IL,S = [M(θ),m(θ)] ∩ [M(θ̄),m(θ̄)],

is not empty (i.e. such that both stationary solutions with spatial code θ and θ̄ co-exist upon appropriate
choice of c). Then the following assertions hold.

(i) There exists a countable and nowhere dense set GL,S such that the code (11) solves the admissibility
equation (5) for some velocity v ∈ R iff c ∈ IL,S \GL,S.

(ii) For every c ∈ IL,S \GL,S, there exists a unique vL,S(c) for which (11) solves (5).

(iii) The function vL,S(·) can be extended to the whole interval IL,S as an increasing Devil’s staircase. It
also continuously depends on a and {`n}n∈Z.
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Figure 5: Existence domains in the (ε, c) plane for a = 0.8 of the front between 0∞ and (100)∞ (i.e. S = ∅
and L = 3) - and gray level plot of the existence domains for the the front between 0∞ and (10)∞ - for the
recursion (2). Color code as in Figure 3.

Recall that we can make sure that IL,S 6= ∅ for all L, S by choosing the coupling operator C sufficiently close
to the identity, i.e. such that l0 > 1/2. In this case, the recursion (1) has a huge variety of fronts between
periodic patterns that co-exist, possibly with distinct velocities.

An illustration of the velocity domains of the front between 0∞ and (100)∞ (i.e. S = ∅ and L = 3) for
the recursion (2), based on explicit expressions (obtained in the proof below), is given Figure 5.

Proof of the Theorem. The proof follows the same lines as in the previous proof. When applied to the code
(11), linearity of the component function φ in relation (4) implies that the corresponding bounded orbit
coordinates can be written as a sum of a time-independent component and a periodic traveling wave one,
i.e.

utsL+r = ur + φr,L(sL− vt+ x0, v), ∀r ∈ {0, · · · , L− 1}, (s, t) ∈ Z2,

where us =
∑
n∈Z

lnθs−n =
∑
n∈Z

lnχS(s− n) are the components of the L-periodic background (encoded by θ)

and

φr,L(x, v) =
1− a
a

+∞∑
k=1

ak
∑
n∈Z

`nL+r,kH(x− nL+ vk), ∀x, v ∈ R.

Using that the code (11) rewrites under the following form

θtsL = H(sL− vt+ x0) and θtsL+r = χS(r), ∀r ∈ {1, · · · , L− 1}, (s, t) ∈ Z2,

the admissibility equation becomes equivalent to

sup
s,t : sL−vt+x0<0

u0 + φ0,L(sL− vt+ x0, v) < c 6 inf
s,t : sL−vt+x0>0

u0 + φ0,L(sL− vt+ x0, v),

and
H (ur + φr,L(sL+ r − vt+ x0, v)) = χS(r), ∀r ∈ {1, · · · , L− 1}, (s, t) ∈ Z2.

Similarly to as in the previous proof, each function x 7→ φr,L(x, v) is right continuous and strictly increasing,
and reaches its limit φr,L(+∞, v) iff v = nmax. Moreover, we have φr,L(−∞, v) = 0 for all v ∈ R. Accordingly,
the last condition is equivalent to

max
r∈{1,··· ,L−1}\S

ur + φr,L(+∞, v) . c 6 min
r∈S

ur = m(θ)

where max
r∈{1,··· ,L−1}\S

ur +φr,L(+∞, v) = max
r∈Z\S

ūr = M(θ̄). Moreover, as in the previous proof, monotonicity

and right continuity imply that the inequalities in the admissibility condition are equivalent to

u0 + φ0,L(0, v − 0) . c 6 u0 + φ0,L(0, v).

Strict monotonicity of the function v 7→ φ0,L(0, v) then implies that the front velocity is uniquely defined by

vL,S(c) = min {v ∈ [vmin, vmax] : u0 + φ0,L(0, v) > c}
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where

vmin = inf
{
v > nmin : u0 + φ0,L(0, v) >M(θ̄)

}
and vmax = sup {v 6 nmax : u0 + φ0,L(0, v) 6 m(θ)} .

(As before, the definition here assumes that both vmin and vmax are finite. Otherwise, the interval [vmin, vmax]
needs to be replaced by the appropriate one; i.e. (−∞, nmax], [nmin,+∞) or (−∞,+∞) upon case.) In
addition, the front with velocity vL,S(c) exists iff c & u0 + φ0,L(0, v(c)− 0). Since the limit here is attained
only when the velocity is rational, it follows that

GL,S =
⋃

p
q∈[vmin,vmax]∩Q

u0 + φ0,L(0,
p

q
− 0)

when vmin < nmax (and GL,S = M(θ̄) if vmin = vmax = nmax). The rest of the proof is as before. 2

6 Concluding remarks

When L > 1 the conditions on a and {`n}n∈Z for which the interval IL,S in Theorem 3 is non-empty (i.e.
where the corresponding ground patterns co-exist), is substantially smaller than the corresponding interval
I1,∅ = (0, 1) of the standard fronts, see Figures 3 and 5. Accordingly, fronts between periodic patterns may
seem hardly observable in practice. However, these fronts are generically asymptotically stable and robust
solutions of bistable recursions on lattices, as we argue now. As such they are likely to be seen provided that
parameters and initial conditions are chosen (anywhere) in suitable open sets.

Indeed, when the front velocity is rational and the front {uts}(s,t)∈Z2 remains bounded away at positive
distance from the discontinuity, i.e.

inf
(s,t)∈Z2

|uts − c| = δ > 0, (12)

(these properties are satisfied for every c in a dense countable union of intervals in IL,S \GL,S), it is direct
to show that this solution attracts every trajectory in a δ-neighborhood i.e. for an initial condition ũ0 such
that ‖ũ0 − u0‖ < δ, we have

‖ũt − ut‖ < atδ, ∀t > 1 and then lim
t→∞

‖ũt − ut‖ = 0.

Lyapunov asymptotic stability is proved. In addition, standard arguments based on the condition (12) also
implies robustness. At first, this condition states that no front component can visit the interval [c− δ, c+ δ]
around the discontinuity. Hence, the bistable nonlinearity can be modified in this interval in such a way to
make f be continuous (or even smooth), without affecting the front dynamics.

More generally, under condition (12), the front, which has velocity p/q for some integer pair p, q, is actually
a linearly stable space-time periodic orbit of the recursion (1), i.e. we have ut+qs−p = uts. The implicit function
theorem [33] implies that this space-time periodic solution can be continued for the lattice recursion

{us}s∈Z 7→ {
∑
n∈Z

`nf(us−n)}s∈Z

where f is any small C1-perturbation of fa,c on the set [−δ, c− δ/2]∪ [c+ δ+ 2, 1 + δ]. In other words, fronts
between periodic patterns, with rational velocity, exist for some continuous/smooth bistable recursions on
the lattice, and they are robust to small variations of the bistable nonlinearity.

Naturally, the arguments here apply to recursions in a small neighborhood of the piecewise affine mapping
(1). A proper reasoning needs to be developed for more general bistable mappings on the lattice. This will
be the subject of future studies.
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