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Noname manusript No.(will be inserted by the editor)
A geometri dissimilarity riterion between Jordan spatial mosais.Theoretial aspets and appliation to segmentation evaluation.Yann Gavet · Jean-Charles Pinoli
the date of reeipt and aeptane should be inserted laterAbstrat An image segmentation proess often results in a speial spatial set, alled a mosai, as the sub-division of a domain S within the n-dimensional Eulidean spae. In this paper, S will be a ompat domainand the study will be foused on �nite Jordan mosais, that is to say mosais with a �nite number of regionsand where the boundary of eah region is a Jordan hypersurfae.The �rst part of this paper addresses the problem of omparing a Jordan mosai to a given refereneJordan mosai and introdues the ǫ dissimilarity riterion. The seond part will show that the ǫ dissimilarityriterion an be used to perform the evaluation of image segmentation proesses. It will be ompared to lassialriterions in regard to several geometri transformations. The pros and ons of these riterions are presentedand disussed, showing that the ǫ dissimilarity riterion outperforms the other ones.Keywords Dissimilarity riterion · Geometri Distanes · Spatial mosais · Human visual pereption ·Supervised segmentation evaluation.
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2 Part I: Theoretial aspets1 Introdution1.1 Spatial mosais in R
nLet S be a non-empty losed bounded subset of the n-dimensional Eulidean spae, denoted R

n. In this artile,
S is simply onneted and its interior is non empty. Its boundary will be supposed to be a Jordan hypersurfae,or simply alled a surfae ([8,21℄). Mathematially, this means that S is homeomorphi to the unit ball in R

n.The set S designates the working domain in whih Jordan mosais will be studied. It will be thus alled thedomain of interest. Pratially, S will be for example a retangle in the two-dimensional Eulidean spae R
2(Fig. 1).

Fig. 1 This �gure is a view that shows a piee of a mosai.A mosai an then be de�ned on S as follows: it is onstituted of disjoined adjaent onneted open subsetsalled regions, denoted Ri for i ∈ I (I is the index set), so that the losure of their union set equals the wholedomain S. The olletion of suh regions for a given domain S will be supposed to be �nite and indexed by anatural number range I ⊂ N. A region Ri (for i ∈ I) is in fat de�ned by its boundary ∂Ri, whih is supposedto be a Jordan (hyper)surfae (a Jordan urve in the two-dimensional ase). A Jordan surfae is a simple losedontinuous surfae that separates the spae R
n into two separated open onneted subsets ([21℄). Pratially,this surfae has mathematial nie properties that orrespond to what is visually seen in R

2 (see Fig. 2).De�nition 1 (Jordan mosai).A Jordan mosai M is the set of ontours C =
S

∂Ri, i ∈ I , de�ned as follows:
∀(i, j) ∈ I(index set), i 6= j, Ri ∩ Rj = ∅ (1)and

R =
S

{Ri}, i ∈ I

C =
S

{∂Ri}, i ∈ I

S = R
S

C

∅ = R
T

C

9

>>=

>>;

(2)where eah boundary ∂Ri is a Jordan surfae.Notie that there is a duality between regions (R =
S
{Ri}) and ontours (C = ∪∂Ri) (Eq. 2).



3Tesselations are speial mosais where the regions are polyhedra. The lassial referenes [14,45,46,47,38℄onsidered regular tesselations of planes and higher-dimensional spaes. See [32℄ for a historial sketh of theideas development .Mosais addressed in the present paper are more general sine eah region is neither restrited to a poly-hedron nor a simply onneted set (Fig. 2).

S

C

Fig. 2 Spatial Jordan mosai example in R
2. The domain of interest S (a retangle) is separated into several disjoinedadjaent and onneted regions (Ri)i∈I by their ontours C.

1.2 Aim and outline of this �rst partThe omparison methods for spatial mosais fall into two distint ategories: region-based or ontour-basedapproahes. The region-based approahes onsider a olletion of regions as desribed above. In this ase, aomparison of two mosais basially onsists on making a one-to-one orrespondane between regions of eahmosai, whih is generally not possible.This �rst part aims at omparing spatial Jordan mosais together from the ontours �point of view�, andmore preisely to ompare suh a mosai to a given referene spatial Jordan mosai. First, some lassialdistane funtions used to evaluate disrepanies between Eulidean sets will be presented, namely the threelassial metris: Hausdor�, Nikod�ym and Steinhaus distanes, respetively (Set. 2). Seond, it will be shownthat these distanes are not adapted to mosai omparison (Set. 3). Third (Set. 4), these distanes will beextended, but will still remain irrelevant. In Set. 5, the study of the human visual pereption will highlightthat the metri notion is too strong, and even not geometrially or visually relevant. The notion of dissimilarityis disussed sine it appears to better suit how the visual pereption system performs the omparison proess.Set. 6 presents a novel geometri dissimilarity riterion that allows to perform the mosai omparison. InSets. 7 and 8, its properties and asymptoti behavior are studied.2 Geometri Distanes in R
nThis setion �rst realls the de�nition of a peuliar distane funtion alled a metri and then presents threemetris lassially used to ompare (rigid) geometri sets.



42.1 De�nitionDistane funtions ([13℄) are funtionals adapted to perform omparisons of (mathematial) objets belongingto the same family ξ (for example, ξ is the family of the Jordan mosais on a given referene domain S).De�nition 2 (Metri).A metri is a partiular distane funtion d that is a funtion from ξ2 into R+ and veri�es the four followingaxioms (see [13℄): (identity)
∀x ∈ ξ, d(x, x) = 0 (3)(separation)

∀x, y ∈ ξ, d(x, y) = 0 ⇒ x = y (4)(symmetry)
∀x, y ∈ ξ, d(x, y) = d(y, x) (5)(triangle inequality)

∀x, y, z ∈ ξ, d(x, y) ≤ d(x, z) + d(z, y) (6)These axioms are mathematially important and will be disussed in Set. 5.2.2 Three lassial geometri distanesThis artile does not aim to give an exhaustive overview of distanes. The reader will refer to [13℄ for a deepreview. One lassial metri used between ompat sets in R
n is the Hausdor� distane ([34,18℄). Anotherdistane, alled the Nikod�ym distane ([31℄), is based on the Lebesgue measure of the symmetri di�erenebetween measurable sets. A derived distane alled the Steinhaus distane has been historially next de�ned([23℄).De�nition 3 (Hausdor� half-distane).Let dE be the Eulidean metri and S a given domain in R

n. If the appliation dE(a,B) denotes theEulidean distane between a point a ∈ S ⊂ R
n and a ompat set B ⊂ S, then the Hausdor� half-distanedenoted fdE

between two ompat sets A and B (A, B ⊂ S) is de�ned by Eq. 7:
fdE

(A, B) = sup
a∈A

dE(a, B) (7)with dE(a, B) = inf
b∈B

dE(a, b) (8)De�nition 4 (Hausdor� distane).The Hausdor� distane (Fig. 3) between two ompat sets A and B, denoted dH(A,B), is then de�ned byEq. 9 (notie that the symmetry property is now satis�ed in this equation):
dH(A, B) = max

˘
fdE

(A, B), fdE
(B, A)

¯ (9)The supremum operator in Eq. 7 implies that if only one point is added to A or B, the Hausdor� distanevalue might hange a lot.De�nition 5 (Symmetri di�erene).The symmetri di�erene set between two sets A and B (A ⊂ S and B ⊂ S) in R
n, denoted ∆(A, B), isde�ned by the following equation (Eq. 10) and illustrated in Fig. 4:

∆(A,B) = (A ∪ B) \ (A ∩ B)

= (A \ B) ∪ (B \ A) (10)
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PSfrag replaements
A

B

d1

d2Fig. 3 Illustration of Hausdor� distane between two sets A and B: d1 = f(A, B) and d2 = f(B, A).
Fig. 4 Illustration of the symmetri di�erene between two sets A and B: ∆(A, B) is represented in white, the exludedpart (the intersetion of A and B) is in blak.De�nition 6 (Nikod�ym distane).The Nikod�ym distane ([31℄), denoted d∆, is the Lebesgue measure ([22℄) of the symmetri di�erene setof two (Lebesgue) measurable sets A and B (A, B ⊂ S in R

n):
d∆(A, B) = Ln(∆(A,B)) (11)where Ln denotes the Lebesgue measure in R

n (i.e. the area in R
2).The Steinhaus distane ([23,13℄) is derived from the symmetri di�erene set operation. It is de�ned byEq. 12 for two Lebesgue measurable sets A and B in R

n with stritly positive measures.De�nition 7 (Steinhaus distane). The Steinhaus distane, denoted dS , between two (Lebesgue) measur-able sets A and B (A, B ⊂ S in R
n) is given by:

dS(A,B) =
Ln(∆(A, B))

Ln(A
S

B)
= 1 −

Ln(A
T

B)

Ln(A
S

B)
(12)This distane may also be referened as the Jaard index ([19℄).3 Geometri distanes and spatial mosaisThis setion will show that the previous distanes are not adapted to ompare Jordan mosais. Notie that aJordan mosai is being de�ned by its ontours (see Def. 1).



63.1 Hausdor� distaneThe Hausdor� distane may be applied on Jordan mosais beause they onsist in ompat sets. Sine thisdistane uses a supremum operator, it is very sensitive to small spatial variations, as noted in [21℄. A solutionto this problem was proposed in [3℄ in the ase of the Hausdor� distane, by replaing the supremum operatorby a mean or p-th order mean operator. This distane is thus less sensitive to small spatial variations. In thease of disrete sets (i.e. sets in Z
n), the sensitivity of the Hausdor� distane an be attenuated by taking thek-th point that realises the supremum ([5℄), but the problem of sensitivity still persists.3.2 Nikod�ym and Steinhaus distanesThe Nikod�ym ans Steinhaus distanes have an overwhelming drawbak. They are not de�ned for Jordanmosais, sine these sets are not Lebesgue-measurable (a Jordan mosai is indeed de�ned as a olletion ofontours, see Def. 1). They onsequently annot be used �as is� to ompare Jordan mosais.4 Extended geometri distanes4.1 Minkowski addition and parallel neighborhoodsThe Minkowski addition ([28℄) de�nes an algebrai operation between sets in R

n. It will be used to spatiallyenlarge the sets to be ompared in order to be less sensitive to small spatial di�erenes and/or to beomeLebesgue measurable. Extensions of the Hausdor� distane and of the Nikodym distane will thus be introdued.De�nition 8 (Minkowski addition).If A and B are two sets of R
n, the Minkowski sum of A and B, denoted A ⊕ B, is then de�ned by:

A ⊕ B = {a + b|a ∈ A, b ∈ B}

A ⊕ B =
[

b∈B

{a + b, a ∈ A}where ⊕ is the Minkowski addition symbol.The Hausdor� and the Nikod�ym distanes are extended by introduing a spatial enlargement de�ned bythe mean of the Minkowski addition.De�nition 9 (Unit neighborhood).
N ∈ R

n denotes the unit neighbourhood (e.g., the n-dimensional unit ball in R
n, Def. 9). The point O isthe origin of R

n.
N = {x ∈ R

n, dE(O, x) ≤ 1}With this notation, rN designates the ball of radius r, entered on the origin O.De�nition 10 (r-enlargement). The losed r-enlargement of a set A in R
n is de�ned as:

Ar = A ⊕ rN

Ar denotes the r-enlarged set of A.
Ar is also lassially alled the parallel set at distane r of A or simply the r-parallel set to A ([38,44℄).It has also been alled the tubular neighborhood in [16℄. The e�et of the Minkowski addition an be seen onFig. 5.
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1. Referene Jordan mosai(M). 2. Enlargement of M for a pa-rameter value r = 3 (dilation
M ⊕ rN).Fig. 5 Enlargement (Sub�g. 2.) of the referene mosai M (Sub�g. 1.).4.2 Extended Hausdor� distaneDe�nition 11 (Extended Hausdor� distane).Let r ∈ R (r ≥ 0) be a positive real number. The extended Hausdor� distane is de�ned for two ompatsets A and B, using the unit neighborhood N :

dr
H(A, B) =

max{fdE
(A ⊕ rN, B), fdE

(B ⊕ rN, A)}The Hausdor� distane an also be de�ned by using the Minkowski addition ⊕ (see Set. 4.1):
dr

H(A, B) = max
˘
fr
dE

(A, B), fr
dE

(B, A)
¯ (13)with

fr
dE

(A,B) = inf {p ∈ R | (B ⊕ rN) ⊂ (A ⊕ pN)}Proposition 1 The half-distane between A and B (Eq. 7) is the minimal value of p so that the dilation of A(whih is A ⊕ pN) englobes the set B:
fdE

(A,B) = inf{p ∈ R, B ⊂ (A ⊕ pN)} (14)This formulation implies the next relation (Eq. 15), whih means that there is an almost linear relationbetween the Hausdor� distane and its extension, namely:
fr
dE

(A, B) = inf{p ∈ R |

B ⊂ (A ⊕ (max{p − r; 0})N)}

dr
H(A, B) = max{dH(A, B) − r; 0} (15)Thus, if the Hausdor� distane is sensitive to small variations, this is also the ase for its extension. This iswhy it is preferable not to use the extended Hausdor� distane for Jordan mosai omparison purpose.



84.3 Extended Nikod�ym distaneDe�nition 12 (Extended symmetri di�erene).The extension of the symmetri di�erene, denoted ∆r, is the symmetri di�erene involving a r enlarge-ment, de�ned by:
∆r(A,B) = (A \ Br) ∪ (B \ Ar)This notation introdues an enlargement in the symmetri di�erene. Notie that this tolerane r wouldnot exist when onsidering the operations (Ar \ Br) and (Br \ Ar).De�nition 13 (Extended Nikod�ym distane).The extended Nikod�ym distane d∆r is then de�ned for two Lebesgue measurable sets A and B in R

n by:
d∆r (A,B) = Ln{∆r(A,B)}Proposition 2 The extended Nikod�ym distane does not verify the axiom of separation and the triangle in-equality (Eqs. 4 and 6, respetively) of a metri (beause of the tolerane parameter r). It veri�es the symmetryaxiom (Eq. 5).4.4 Distanes are not adapted for visual omparisonA distane is the mathematial tool lassialy used for sets omparison. In the ase of the Hausdor� andNikod�ym distanes, it appears that small spatial variations or the lak of Lebesgue measurability make themine�ient or not available. Thus, a notion of geometri enlargement is introdued, but loosing the propertiesof a distane (the separation axiom and the triangle inequality are not satis�ed). The question of the relevaneof the distane notion is therefore learly stated. It will be now disussed in the ontext of the human visualpereption.5 Distanes and human visual pereptionIn this setion, it will be highlighted that the axioms de�ning a metri are in fat not relevant to mathematiallyquantify the geometri di�erenes that are visually perepted.The following subsetions will explain the non relevane of eah metri axiom. Therefore, a omparisonriterion annot be de�ned as being a distane fontion with regards to the human visual pereption.5.1 The separation axiomThe human visual pereption does not always onsider that two distint geometri objets (onsidered as losedbounded sets) are di�erent. This means that a omparison riterion (denoted c) does not verify the separationaxiom for two losed bounded sets A and B (Eq. 4):

c(A, B) = 0 ; A = BThis is what is alled a visual tolerane: not idential sets (∃x ∈ A,x /∈ B) an be onsidered equal for thegiven riterion c.5.2 The triangle inequality axiomIt has been proved that the triangle inequality is not respeted by the human visual pereption system ([41,43,42℄) as illustrated in Fig. 6.Mathematially, this means that for a given omparison riterion c and two losed bounded sets A and B,the triangle inequality (Eq. 6) is not respeted, namely:
∃z|c(A, B) > c(A, C) + c(C, B)
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A B C

Fig. 6 The triangle inequality is not veri�ed by the visual pereption. The horse and the man are really di�erent, butthe distane between the man and the entaur (or between the entaur and the horse) may appear small. This means
c(A, C) > c(A, B) + c(B, C)5.3 The symmetry axiomMore surprisingly, the visual pereption system does not satisfy to the symmetry priniple ([40℄).Mathematially, the symmetry (Eq. 5) is not respeted for a given omparison riterion c, namely:

c(A, B) 6= c(B, A)In the ase of an appliation issue where a referene geometri objet is onsidered, the loss of this axioman beome relevant.5.4 DissimilaritiesIt thus follows from the three previous subsetions that the metri notion appears as not adapted to mimithe human visual pereption system when omparing two geometri objets. Sine the metri onept is toostrong, the notion of dissimilarity has been proposed by psyhologists ([41,37℄).De�nition 14 (Dissimilarity).Formally, a dissimilarity an be de�ned as a funtion ς of two objets A and B, that veri�es ([13℄)
0 ≤ ς(A,A) ≤ ς(A,B)This means that the higher ς(A, B) is, the more dissimilar A and B are.Tversky ([40℄) proposes the notion of dissimilarity funtion ς between two sets A and B (Def. 15). Notiethat a dissimilarity is dissymmetri by onstrution.De�nition 15 (Dissimilarity funtion).A dissimilarity funtion between two sets A and B, denoted ς(A,B), an be expressed by:

ς(A, B) = θf(A ∩ B) − βf(A \ B) − γf(B \ A)where θ, β and γ are real numbers and f is a measuring funtion ([40℄).6 A geometri dissimilarity riterion for mosaisLet M, X, Y, and Z be Jordan mosais de�ned through their ontours olletions. M will designate the referenemosai and X, Y, Z will designate the mosais ompared to M . Remember that a Jordan mosai is thus notLebesgue-measurable.



106.1 De�nitionsTo deal with the problem of the non-Lebesgue measurability of a Jordan mosai M , a solution is to usethe enlarged mosai Mr|S = (M ⊕ rN)|S instead of M in the symmetri di�erene de�nition (Eq. 10). Tosimplify the notations, Mr will denote Mr|S , the r-enlarged mosai M onstrained to the domain S. Using theMinkoswki addition for r > 0, the enlarged mosai Mr is Lebesgue-measurable.De�nition 16 (Enlarged mosai).Let r be a stritly positive real number. An r-enlarged Jordan mosai Mr is de�ned by the tubular r-neighborhood of the Jordan mosai M (see Def. 10):
Mr = M ⊕ rNDe�nition 17 (Extension and tolerane parameters).For a r-enlarged Jordan mosai, r is alled the enlargement parameter.� It will be alled the tolerane parameter and denoted ρ when the goal is to involve a (r-level) of spatialvariations.� It will be alled the extension parameter and denoted α in the ases where the Lebesgue measurability isrequired.6.2 The ǫ dissimilarity riterionDe�nition 18 (Dissimilarity riterion)The dissimilarity riterion ǫ, depending on ρ (tolerane parameter), α (extension parameter) and M (ref-erene Jordan mosai), and based on the extended symmetri di�erene ∆ρ, ompares a Jordan mosai X tothe referene Jordan mosai M :

ǫρ,α
M (X) =

d∆ρ (Mα,Xα)
Ln{Mα⊕ρN}

=
Ln{(Xα\Mα⊕ρN)∪(Mα\Xα⊕ρN)}

Ln{Mα⊕ρN}Proposition 3 (ǫ is a dissimilarity funtion).The ǫ dissimilarity riterion (Def. 18) is a dissimilarity funtion.Proof Aording to Def. 18, the dissimilarity riterion is given by:
ǫρ,α
M

(X) =
Ln{(Xα\Mα+r)∪(Mα\Xα+ρ)}

Ln{Mα+ρ}Sine (Xα \ Mα+ρ) ∩ (Mα \ Xα+ρ) = ∅, this implies:
ǫρ,α
M

(X) =
Ln{(Xα\Mα+ρ)}+Ln{(Mα\Xα+ρ)}

Ln{Mα+ρ}This relation proves that ǫ is a dissimilarity riterion as de�ned by [40℄ (Def. 15), with β = γ = −1, θ = 0 and
f designates the Lebesgue measure Ln.6.3 PropertiesProposition 4 (Symmetry).The ǫ dissimilarity riterion does not verify the symmetry axiom of a metri.

ǫρ,α
M

(X) 6= ǫρ,α
X

(M)This is beause the purpose of this riterion is to ompare a Jordan mosai to a given referene Jordanmosai. This dissymmetry expresses that the two mosais M and X do not play the same role, M being thereferene Jordan mosai onsidered to be the truth (up to a tolerane value ρ) to whih the Jordan mosai Xis to be ompared.



11Proposition 5 (Positivity).The ǫ dissimilarity riterion is positively valued:
∀X ⊂ S, ǫρ,α

M
(X) ≥ 0Proposition 6 (Identity).The identity axiom (Eq. 3) is veri�ed :

ǫρ,α
M (M) = 0Proposition 7 (Separation).The separation axiom (Eq. 4) is not veri�ed by de�nition:

ǫρ,α
M (X) = 0 ⇒


X ⊂ Xα ⊂ M ⊕ ρN

M ⊂ Mα ⊂ X ⊕ ρNIn the general ase, X 6= M . This is explained by the fat that the tolerane parameter ρ makes two distint(but lose) Jordan mosais as equal.Proposition 8 (Triangle inequality).The triangle inequality (see Eq. 6) is not veri�ed.Proof For example, X, Y and Z being hosen as illustrated in Fig. 7:
d∆ρ(X, Z) = 0

d∆ρ(Z, Y ) = 0It is possible to hoose X and Y so that d∆ρ(X, Y ) > 0, and thus the inequality d∆ρ(X, Y ) ≤ d∆ρ(X, Z)+

d∆ρ(Z, Y ) is not veri�ed (see Figure Fig. 7).
Z

Y

X

Fig. 7 The triangle inequality is not veri�ed in this ase (see the value of ρ). Eah layer line is at a distane of ρ of thenext one. d∆ρ (X, Z) = 0 and d∆ρ (Z, Y ) = 0, but d∆ρ (X, Y ) > 0



127 Properties of the ǫ dissimilarity riterion: general ase ρ > 0, α > 07.1 PropertiesProposition 9 (Unboundedness).The value given by the ǫ dissimilarity riterion is not bounded.Proposition 10 (Monotoniity).The ǫ dissimilarity riterion is dereasing in regard to the tolerane parameter ρ.
∀(ρ1, ρ2) ∈ R

2
+, ρ1 > ρ2 ⇒ ǫρ1,α

M ≤ ǫρ2,α
MProof If a greater tolerane value is taken, the ǫ value will derease beause the following relations hold:

∆ρ2

M
(X) ⊂ ∆ρ1

M
(X)

Ln(M ⊕ ρ2N) < Ln(M ⊕ ρ1N)7.2 Asymptoti behavior and geometri invarianesTheorem 1 (Asymptoti behavior).Beyond a ertain tolerane value ρ0, the ǫ dissimilarity riterion values equal zero. This value ρ0 is theHausdor� distane between X and M .
∀X ⊂ S,∃ρ0 | ∀ρ ≥ ρ0, ǫ

ρ
M

(X) = 0 (16)where ρ0 = dH(X, M)Proof It an easily be proved with Eq. 13 and Prop. 7.Proposition 11 (Sale invariane).The ǫ dissimilarity riterion remains invariant through an homotheti transformation:
∀λ ∈ R+, ǫλρ,α

λM
(λX) = ǫρ,α

M
(X)Proof Let's start by the de�nition of the extended symmetri di�erene (Def. 12).

∆ρ(X, Y ) = (X \ Y ⊕ ρN) ∪ (Y \ X ⊕ ρN)Thus, the Lebesgue measure of the symmetri di�erene is:
d∆ρ(Xα, Yα) = Ln(∆ρ(Xα, Yα))

= Ln(Xα \ Yα ⊕ ρN)

+Ln(Yα \ Xα ⊕ ρN)When multiplying X and Y by a salar λ (notie that the relation λ(A⊕B) = λA⊕λB is veri�ed), yields:
d∆ρ(λXα, λYα) =

λnLn(Xα \ Yα ⊕
ρ

λ
N) + λnLn(Yα \ Xα ⊕

ρ

λ
N)whih �nally gives:

d∆ρ(λXα, λYα) = λnd
∆

ρ
λ

(Xα, Yα)In other words, a hange of sale for both the onsidered Jordan mosai and the referene Jordan mosaigives allways the same ǫ dissimilarity value for a saled tolerane λρ.Proposition 12 (Invariane by rigid geometri transformation).If τ is a rigid geometri transformation (like translation, rotation, re�etion or symmetry), the followingrelation is true:
ǫρ,α
τ(M)

(τ (X)) = ǫρ
M

(X)This means that applying the same rigid transformation to two Jordan mosais yields to the same ǫdissimilarity value.



138 Properties of the ǫ dissimilarity riterion: role of the α extension parameterThe α extension parameter guarantees the Lebesgue measurability of the onsidered α-enlarged Jordan mosais
Xα and Mα. In the general ase with a tolerane ρ > 0, the dissimilarity riterion ǫ is de�ned for all values of
α (i.e. even for α = 0, see Def. 18).8.1 De�nitionsDe�nition 19 (for α = 0 and ρ > 0).For α = 0 and ρ > 0, ǫρ,α=0

M
(X) = 0. This is due to the non Lebesgue measurability of X and M .De�nition 20 (for α > 0 and ρ = 0).For α > 0, ǫρ=0,α

M
(X) is perfetly de�ned (see Def. 18)).The question arises when α tends toward 0.8.2 Limit for α → 0, ρ = 0The symbol Ln will still denote the Lebesgue measure in R

n (i.e. the area in R
2), while the symbol Hn willdenote the Hausdor� measure in R

n ([29℄).In order to study this asymptoti behavior, it is neessary to introdue the so-alled Minkowski ontent:De�nition 21 (Minkowski ontent).The Minkowski ontent ([15℄) of a �nite union of (n − 1)-dimensional ompat Lipshitz surfaes A ∈ R
n,denoted Mn−1(A), is de�ned as follows:

Mn−1(A) = lim
α→0

Hn(Aα)

2αThe disussion and study of the existene onditions of the limit (Def. 21) are outside the sope of thepresent artile. The reader an refer to [2,44℄ for reent advanes. A nie ondition is full�lled ([2℄) for� a Jordan mosai A whih onsists of �nite union of Lipshitz (n − 1)-dimensional surfaes� and a �nite union or intersetion of suh Jordan mosais ([29℄).De�nition 22 (Lipshitz mosai).A (�nite) Lipshitz mosai is a (�nite) Jordan mosai that onsists of a (�nite) union of Lipshitz surfaes.This is a ondition that is pratially obtained in the ase of real physial mosais ([17,9,27℄).The following proposition straightforwardly based on [15℄ will be of a great interest in the Set. 8.3.Proposition 13 (Minkowski ontent andHausdor� measures).The Minkowski ontent oinides with the (n − 1)-dimensional Hausdor� measure, namely:
Mn−1(X) = Hn−1(X)for X a �nite Lipshitz mosai, and a �nite union or intersetion of Lipshitz mosais.



148.3 Asymptoti behaviorTheorem 2 (Limit of extension).Let X and M be two Lipshitz mosais. The dissimilarity riterion ǫρ=0,α
M for ρ = 0 is de�ned when α → 0by:

lim
α→0

ǫρ=0,α
M

(X) =
Hn−1(∆(M, X))

Hn−1(M)Proof Starting with:
ǫρ=0,α
M (X) =

Ln{(Xα ∪ Mα) \ (Xα ∩ Mα)}
Ln{Mα}and by dividing both the numerator and denominator by 2α yields:

ǫρ=0,α
M (X) =

Ln(Xα∪Mα)
2α

Ln(Mα)
2α

| {z }

ǫ1

−
Ln(Xα∩Mα)

2α
Ln(Mα)

2α
| {z }

ǫ2

(17)First, it will be shown that ǫ1 and ǫ2 (see Eq. 17) have �nite limits for α → 0, prooving that lim(ǫ1 − ǫ2) =

lim(ǫ1) − lim(ǫ2).As the union and dilation operators are ontinuous and by using Def. 21 and Prop. 13, yields:
lim
α→0

ǫ1 =
Hn−1(X ∪ M)

Hn−1(M)As the intersetion operator is upper semi-ontinuous and as the dilation operator is ontinuous, yields:
lim sup

α→0
(Xα ∩ Mα) = X ∩ Mand

lim
α→0

(X ∩ M)α = X ∩ MIn addition, the nesting property of the (Xα ∩Mα) family (i.e. Xα ∩Mα ⊂ Xα′ ∩Mα′ , for α < α′) impliesthat:
lim inf
α→0

(Xα ∩ Mα) = X ∩ MTherefore, and by using Def. 21 and 13:
lim
α→0

ǫ2 =
Hn−1(X ∩ M)

Hn−1(M)Theorem 2 is thus established.This theorem leads to the following de�nition:De�nition 23 (for α = 0 and ρ = 0).The ǫ dissimilarity riterion with no tolerane and with no enlargement is de�ned by:
ǫρ=0,α=0
M

(X) =
Hn−1(∆(M, X))

Hn−1(M)For example, in R
2, this value is the length of the symmetri di�erene divided by the length of the referenemosai.



158.4 DisussionTherefore, for Lipshitz mosais X and M (onsisting of �nite union of (n− 1) dimensional Lipshitz surfaes)the geometri dissimilarity riterion ǫ with no geometri tolerane (ρ = 0) and no geometri extension (α = 0)is given by Def. 23 as a limit value. It is equal to the ratio of the surfae area not shared by the Lipshitz mosais
X and M divided by the surfae area of the referene Lipshitz mosai M . This result orresponds to what isintuitively infered in the 2-dimensional ase when looking at a plane �gure. In pratial situations Def. 23 isnot diretly alulable and Def. 18 is therefore the relevant de�nition for the geometri dissimilarity riterion
ǫ. This is of great importane from a pratial viewpoint. This was also theoretially important to establishthat Theorem 2 gives the geometri limit ase when passing from the n-dimensional to the (n−1)-dimensionalase for the ǫ dissimilarity riterion.9 ConlusionThis �rst part introdued the notion of Jordan mosais as a �nite union set of hypersurfaes in R

n. The goalwas to ompare Jordan mosais to a referene Jordan mosai. It showed that lassial distanes (Hausdor�,Nikodym...) are not adapted for these speial sets. A novel riterion has been proposed, whih appeared tobe in aordane with the notion of dissimilarity proposed by psyhologists and that better suits what thehuman visual pereption an perform. It possesses strong properties suh as monotoniity and invarianeunder saling or rigid geometri transformations. Its asymptoti behavior is also established for a speial aseof Jordan mosais alled Lipshitz mosais.Part II: Appliation and omparison issues10 IntrodutionThe �rst part of this artile introdued a dissimilarity riterion adapted to Jordan mosais, alled the ǫ dis-similarity riterion. From an image analysis point of view, the result of an image segmentation proess anoften be seen as a Jordan spatial mosai. There are two di�erent ways of presenting a result of a segmentation,either region-based or ontour-based approah. Aording to [24℄, the human visual pereption �rst rely onontours; thisjusti�es the fat that the mosais are some sets of ontours and that the ǫ riterion evaluates thedissimilarities between these ontours. The possibility of omparing region-based segmentation results will notbe disussed.This seond part pratially illustrates the properties of this riterion in the ase of real segmented imagesof human orneal endothelium. It also proposes a way to hoose the value of the tolerane parameter ρ. Thus,the onsidered mosai is de�ned by the ontours of the endothelial ells. Some dissimilarity riteria found inthe segmentation evaluation litterature are afterwards presented. Next, this paper proposes to evaluate theperformane of these riteria in regard to some transformations (over and under segmentations, translations,distortions and small spatial variations.).10.1 Disrete aseThis seond part of the artile presents the results in the ase of real binary images, i.e. for disrete sets. Thus,the following notations are introdued: IM and IX represent binary images that orrespond to a referenemosai M and another mosai X. An image segmentation result an be seen from a ontour point of view as aspeial mosai de�ned with a non null extension parameter α. In this ase, a mosai is a binary image of theontours. There will be no further mention of the extension parameter α beause it is already involved in thesegmentation result.Then, the ǫ dissimilarity riterion applied to binary images is de�ned by the following equation:
ǫρ
M (X) =

#{(X \ M ⊕ ρN) ∪ (M \ X ⊕ ρN)}

#{M ⊕ ρN}
(18)with N being the struturing element of radius 1 (ρN is the disrete ball of radius ρ) and # meaning thenumber of non null pixels in the set (ardinal operator) (see Fig. 5).



16 A database of 30 di�erent mosais is used and for eah one, an expert ophthalmologist has manuallysegmented the ells and thus reated a referene mosai (Fig. 25) for eah image (Fig. 26). The Fig. 8 illustratesthe properties of monotoniity (Prop. 10) and the asymptoti behavior (Theorem 1).10.2 Choie of the tolerane parameter valueThis subsetion explains how to �x the tolerane parameter ρ aording to the onsidered mosais. With theimage database (Fig. 26), the experts have 10 times drawn the same mosai, and the ǫ dissimilarity riterionhave been used to ompare every manual segmentation to the others. The mean value of the ǫ dissimilarityriterion is represented in the Fig. 9. The reader an onsider that an expert will always draw the ontours atthe same loation within a ertain spatial tolerane (i.e. within the tolerane tube), depending on the imagesize and the preision of the drawing tool.In the future, the hoie of the tolerane parameter ould be made automatially by an adaptive approah,depending on the mosai itself, by de�ning this parameter as (for example) a funtion of the urvature [30,20℄or by using some greysale informations [12℄. Thus, this parameter would be independant of any supervision.For this database, the tolerane parameter value is ρ = 2.11 Evaluation riteriaEvaluating the results of image segmentation methods is not a reent subjet, but it still remains a di�ulttask.A segmentation proess, in the �eld of image analysis, provides a partition of the spatial de�nition domain
S of the gray tone images into adjaent regions that present a partiular interest. It is often useful to quantifythe performane of suh a segmentation proess: numerous methods exist for this task ([50,10℄).Evaluation methods an be divided into di�erent ategories ([33,49℄). Supervised methods are based on theomparison versus an expert, whih gives a referene partition of a domain S. Unsupervised methods onsiston establishing an absolute riterion based on some already known harateristis (for example, homogeneityof luminane, ontrast...). They are also alled stand-alone evaluations. The supervised methods are verytime-onsuming beause they require experts to give their own solutions, often manually drawn.When hoosing between one of these two types of methods, the key question of subjetivity is raised. Often,when a human expert gives his own result of segmentation, it may be slightly di�erent from another expert.This is why, when evaluating segmentation methods, unsupervised riteria are often preferred. But on theother way, unsupervised methods are based on spei� harateristis, and the hoie of these harateristisan introdue a bias in the omparison: the subjetivity is therefore also present in these methods.In our point of view, supervised methods are to be preferred instead of unsupervised methods, beause weonsider that it is better to take into aount that there is a variability in the expertise instead of believingthat an unsupervised method would be unbiased.12 Presentation of 11 evaluation riteriaThe following pages will onsider a riterion crit omparing two mosais M and X, where M is the referenemosai (from the expert). It will be denoted critM (X). The Eulidean distane d will also be mentionned, andthe notation d(p, M) is the distane between a pixel p and a mosai M . N is now the size of the images IM or
IX , onsidered as equal for obvious pratial reasons.12.1 Dissimilarity riteriaRemember psyhologists proposed the notion of dissimilarity (15):

0 ≤ ς(A,A) ≤ ς(A,B)Notie that the 11 presented riteria are dissimilarity riteria.
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Fig. 9 Method for �xing the tolerane parameter. In this example, ρ is in pixels, and there is a strong gap between notolerane (ρ = 0) and a tolerane of one pixel (ρ = 1).12.2 11 dissimilarity riteriaThe riteria are separated into three main ategories:� the riteria that use the Eulidean distane between pixels,� the riteria based on the symmetri di�erene of sets,� the riteria based on pixel-to-pixel operations, inluding their neighbors.12.3 Eulidean distane between pixels and derivativesIn the ase of mosais omparisons, the Hausdor� distane hausM (Def. 4) an be employed.One of the most used methods for evaluating segmentation is the �gure of merit (fom) ([1,39℄) de�ned inDef. 24. Be aware that the exat de�nition does not involve a di�erene to 1, but it has been introdued tobeome a dissimilarity. The α parameter value is �xed to 1 without in�uene on the robustness of the riterion.De�nition 24 (Figure of Merit).
fomM (X) = 1 −

1

max{#(M), #(X)}

X

p∈X

1

1 + α · d2(p, M)where d(p, M) is the distane between the pixel p ∈ X to the losest pixel of M and # the number of pixels ofthe onsidered mosai M or X (whih are not equal to N ).A formulation that also uses the distane of a pixel p to the losest one belonging to the referene M anbe found in [48℄:



19De�nition 25 (Yasno� distane).
yasM (X) =

100

N

s
X

p∈X

d2(p, M)Denoting No is the number of over-segmented pixels (No = #(O),with O = X \ M) and Nu the numberof under-segmented pixels (Nu = #(U),with U = M \ X), [6℄ proposes two measurement methods as follows:De�nition 26 (Belaroussi riteria).
odiM (X) =

1

No

NoX

p∈O

„
d(p,M)

dTH

«n

udiM (X) =
1

Nu

NuX

p∈U

„
d(p,X)

dTH

«nThe parameters dTH and n establish a distane tolerane around the pixels of M . In the following, the valueshoosen are n = 4 and dTH = ρ = 2 to be onsistent with the ǫ dissimilarity riterion.A more reent measure, denoted jcd ([11℄, in referene to Jaard, see also Def. 29) also uses the Eulideandistane to establish a riterion whose values are between 0 and 1. Like fom (Def. 24), it has been modi�edto get a dissimilarity (Def. 27).De�nition 27 (Cárdenes measure).
jcdM (X) = 1−

#(M ∩ X)

#(M ∩ X) +
P

p∈X(d2(p, M)) +
P

p∈M (d2(p, X))12.4 Symmetri di�erene and derivativesThe following metris are based on the symmetri di�erene (Def. 5).The Nikodym metri is the measure of the symmetri di�erene ([31℄), denoted nikoM (X):De�nition 28 (Disrete Nikodým metri).
nikoM (X) = #(∆(M, X))The disrete Jaard index is de�ned by Def. 29:De�nition 29 (Disrete Jaard index).

jacM (X) =
#(∆(M, X))

#(M
S

X)
= 1 −

#(M
T

X)

#(M
S

X)Some very similar riteria have been proposed by [25℄ or referened by [10℄ as overdetetion or underdete-tion errors, and also as loalization error ErrLoc (Def. 30):De�nition 30 (Loalization error).
ErrLocM (X) =

#(∆(M, X)

NIn the ase of mosais (binary sets), the lassial Lq distane is de�ned by:De�nition 31 (Lq metri).
LqM (X) =

0

B
B
@

X

p

|IM (p) − IX(p)|q

N

1

C
C
A

1
q

=
“

#(∆(M,X))
N

” 1
qNotie that in the ase of binary images, and q = 1, the following relations holds: L1M (X) = ErrLocM (X).



2012.5 Pixel to pixel omparisonA measure of quality has been proposed by [35℄, although its formulation will not be explained here beauseit would take too long in this artile. It will be alled mquality (it is alled R in the original artile). Thisriterion inludes neighborhood onsiderations.Based on the Rènyi entropy Hα, [4,26℄ propose some other measures that an handle grey level images(Küllbak, Bhattaharyya and Jensen-like distanes):De�nition 32 (Küllbak distane).
dkuM (X) =

1

N

X

p



(IX(p) − IM (p)) × Log
IX(p)

IM (p)

ffDe�nition 33 (Bhattaharyya).
dbhM (X) = −Log

0

@
1

N

X

p

p

IX(p) × IM (p)

1

ADe�nition 34 (Jensen-like distane).
djeM (X) = J1

„
IX + IM

2
, IX

«with
J1(IM , IX) = Hα

“p

IX × IM

”

−
Hα(IX) + Hα(IM )

2and
Hα(I) =

1

1 − α
Log

2

0

@
X

p

I(p)α

1

AThere might be some problems when using dku for zero valued pixels p. Pratially, one an use IX(p) + 1and IM (p) + 1. In the ase of binary images (values are 0 or 1), the Küllbak distane is equivalent to ErrLoc(see Prop. 14), this is why this riterion will not appear in the results.Proposition 14
dkuM (X) =

Log(2)

N
# (∆(M, X))13 Criteria normalization and alibrationThe main problem, when omparing di�erent geometri dissimilarity riteria, is that the numerial valuesannot be diretly ompared from one method to the other. First, it depends on the appliation �eld, the dataaquisition type, the sale of observation and on the resolution. Seond, it depends on the riterion itself.Usually, researhers employ a normalisation method: the dissimilarity riteria are divided by a normalisationfator, that an be the number of pixels in the domain S or the maximum value of the dissimilarity riterion.The key question raises: is it enough to ompare dissimilarity riteria together ? The answer is negative.Dissimilarity riteria do not represent the same things and do not follow the same mathematial rules. This iswhy in this study, the dissimilarity riteria are alibrated.De�nition 35 (Normalized and alibrated riterion ĉ). ĉ is the alibrated riterion c normalised by ωc.

ĉ =
c

ωc



21The value 1 represents the riterion value above whih two ompared mosais are di�erent. 1 is thus athreshold value under whih eah riterion an be onsidered as valid. The alibration value ωc will be de�nedin Def. 36.For the hoosen appliation domain, the human orneal endothelium, and for a given spatial resolution andsale fator, the riteria are alibrated with the following method: every mosai from the database (Figs. 25and 26) is ompared to the 29 others. If (i, j) ∈ [1; 30]2 (Mi is a mosai from the database), then the alibrationvalue for a dissimilarity riterion c is de�ned as the minimum of all omparisons for this riterion.De�nition 36 (Calibration value for a riterion). The alibration value, denoted ωc, for a given dissim-ilarity riterion c, is de�ned by:
ωc = min

(i,j)∈[1;30]2

`
cMi

(Mj)
´If the mosais from the database are supposed to be di�erent (whih is realisti, see Fig. 25), the alibrationvalue ωc stands for the threshold value above whih two mosais should be onsidered di�erent (see Fig. 10).The mean or the maximum value of all omparisons ould have been used instead. But normalizing by theminimum value make the results more restritive. The results for eah riterion are presented in Table 1.

Fig. 10 Comparison of two di�erent mosais. Visually, these mosais appear to be really di�erent. Pratially, let's saythat a riterion c applied on these mosais gives a value of ωc. This means that if two di�erent mosais ompared withthe same riterion c obtain a value above ωc, they an be onsidered as di�erent.
c ωc

ErrLoc 0.07
dbh 2.06

Haus 13.42
fom 0.73
odi 0.71
udi 0.71
dje 0.13
ǫ 0.22

jcd 1
yas 0.0013

mquality 5066Table 1 Table of the minimal values of the dissimilarity riteria c when all ouples of mosais of the database areompared. The alibration value ωc re�ets the threshold value above whih two ompared mosais should be onsideredas di�erent.



2214 Quantitative omparison of the 11 riteriaWith the 30 mosais from the database, the dissimilarity riteria are numerially evaluated versus a degradationof the referene mosai M . The operator T : X = T (M) denotes the transformation (degradation) of M . Thisoperator will at for over-segmentation, under-segmentation and small displaements (translation, distortionand smoothing).14.1 Under-segmentation and over-segmentationThe under-segmentation operation onsists in randomly hoosing a pixel present in the referene mosai M (i.e.in the ontours) and erasing it. Then, the onsidered ontour is suppressed by using a morphologial operationthat performs a pruning. The result is equivalent to a deletion of one edge of a ell (Fig. 11).
1. Referenemosai 2. Under-segmentationof the refer-ene mosaiFig. 11 Illustration of the under-segmentation proess.The over-segmentation operation onsists in randomly piking up a ell in the mosai, randomly hoosingtwo pixels in it and then split the ell like a watershed operation would do (Fig. 12, see also [7℄).
1. Referenemosai 2. Over-segmentationof the refer-ene mosaiFig. 12 Illustration of the over-segmentation proess.Thus the funtion ĉ is de�ned from the riterion c as a funtion of its degradation x:De�nition 37 (Mosai degradation).

x =
#(T (M)) − #(M)

#(M)where M is the referene mosai and τ (M) is the degraded mosai, and # means the number of pixels in amosaiNotie that x is negative when T is an under-segmentation and positive for an over-segmentation.Moreover, two quality measurements qc,o (over-segmentation quality) and qc,u (under-segmentation quality)are de�ned as follows:De�nition 38 (Quality measurements).
qc,o = 100 × arg min

x
{ĉ(x) ≥ 1 and x ≥ 0}

qc,u = 100 × arg max
x

{ĉ(x) ≥ 1 and x ≤ 0}



23Be aware that these quality measurements are de�ned for one partiular mosai and may slightly vary fromone mosai to the other. The mean results for the 30 mosais of the database are presented in Table 2.
c q̂o q̂u

ErrLoc 83
dbh NA 80

Haus −1 0.6
fom 74
odi −1 NA

udi NA 0
dje 80
ǫ 100

jcd 100
yas −34 NA

mquality 53Table 2 q̂u and q̂o are the mean quality measurements de�ned for under or over segmentation (see Set. 14.1) of the30 mosais of the database. This annot prove that a riterion is good, but it an show that a riterion behaves poorly(as Haus, odi, udi and yas).A ell with no value means that it ould not be omputed (there was no omputed value x that ould de�ne qu,but it may exists). In partiular, some ells show NA, whih means that a spei� riterion annot measure under orover-segmentation.The results are presented in Figs. 13, 14 and 15. x is represented in absiss, and ĉ(x) in ordinate. In Fig. 13,all omparison riteria are represented for the degradation (under and over-segmentation) of only one mosai.The louds of points represented in Fig. 15 re�ets the degradation of all mosais from the database (only onetime). The Fig. 14 shows the degradation for mosai 1 of the database.14.2 TranslationThis operation is the translation τ of a mosai in the four diretions right, left, up and down of a retangulargrid (see Fig. 16). A small translation (of a few pixels) should give a small riterion value (i.e. less than ωc).The results are presented in Fig. 17: translations τ (n) of n pixels are used. The mean value for the 4 diretionsis shown, normalized by ωc. Still, all values below 1 mean that the ompared mosais an be onsidered assimilar (in other words annot be onsidered as dissimilar).The onsidered orneal mosais are partiular in the way they present a regular pattern (something like anhexagon, that represents a ell) that is reprodued in the image. This means that if a translation of about thesize of a ell is performed, the translated mosai may overlap with the original one. This explains the fat thatthe omparison values seem to tend to a spei� value (Fig. 17).14.3 DistortionIf a mosai is approximated by polygonal lines ([36℄ and QGAR library1), the borders of the ells are the edgesand their intersetions are the verties. What is alled a distortion is a random displaement of eah vertex ina square neighborhood of a given size (see Fig. 18).De�nition 39 (Distortion formulation). Let M̃ = (VM , EM ) be the polygonal approximation of the ref-erene mosai M . VM is the set of verties, and EM the set of edges. Eah vertex v of VM has two oordinatesin 2D, vx and vy . The distortion D of size s is de�ned as follows:
VD(M,s) =

˘
v′ = (vx + rvx , vy + rvy )

¯where rvx ∈ N and rvy ∈ N are random variables in [−s; s], s ∈ N.1 http://www.qgar.org

http://www.qgar.org
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Fig. 13 Representation of ĉ(x) for the 11 dissimilarity riteria. The values qc,o and qc,u an be observed when the urveassoiated to a riterion c is rossing the horizontal line in red de�ned for the value 1 (when appliable). Inreasingriteria that stay most of the time under the value 1 (ĉ ≤ 1 ⇔ c ≤ ωc) are to be preferred. See Fig. 14 for detaileddiagrams.This an be seen as the errors made by an expert when manually drawing the ontours. The results of 3experiments are presented in Figs. 19,20 and 21, respetively on a mosai with small, median and big ells.After this distortion, the mosai M̃ is transformed into a disrete mosai by drawing the edges of ED(M,s) aslines (this de�nes another disrete mosai).The riterions that an be used to evaluate the distortion of the mosais have to be inreasing for theparameter s and stay a long time under the value 1. For example, ErrLo, mquality and dje present for s >= 1some values greater that 1, whih means that they are not adapted to this distortion evaluation. Be aware thatthis is not visible for ErrLo and mquality in Fig. 21, beause the value s is lower relatively to the big ell sizethan in Figs. 19 and 20.14.4 SmoothingThe smoothing proess S onsists in getting a smooth mosai from the original one. There would be a lot ofdi�erent ways of getting a so-alled smooth mosai, for example using deformable models. We hoosed to usesome mathematial morphology operations. The mosai M is �rst dilated (see the Minkowski addition Def. 8)with a ball struturing element B of size s (B = sN). Then, the result is thinned and the spurs are removed.The obtained mosai is a smooth version approximating the original one. The Figs. 22, 23 and 24 illustratethis transformation for ells of small, median and big sizes. What an be observed in these graphs is that forsome value s of the dilation, the ĉ is near or above 1, whih means that the mosais are really damaged. Theseond interesting riterion is the monotoniity: some riterions have not inreasing values and thus are notusefull for this type of transformation.
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1. ErrLoc: good qc,u and qc,o
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2. dbh: good qc,u, poor qc,o
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3. Haus: poor qc,u and qc,o
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4. fom: good qc,u and qc,o
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5. odi: poor qc,u and qc,o
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6. udi: poor qc,u and qc,o

under−segmentation over−segmentation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

ω
c

dje

PSfrag replaements
x

ĉ

7. dje: good qc,u and qc,o
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8. ǫ: good qc,u and qc,o

under−segmentation over−segmentation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ω
c

JCd

PSfrag replaements
x

ĉ

9. jcd: good qc,u and qc,o, (althoughvery steep)
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10. yas: poor qc,u, good qc,o
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11. mquality: good qc,u and qc,o (al-though very �at)Fig. 14 Representation of ĉ(x) for di�erent riteria c and for mosai 1 of the database (Fig. 25). Espeially for under-segmentation, the riterion c an be trusted when ĉ(x) ≤ 1. The quality measurements qc,u and qc,o are omputed withthese data.
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11. mqualityFig. 15 Representation of ĉ(x) for di�erent riteria c and for the 30 images of the mosai database (Fig. 25).
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Fig. 16 Illustration of a translation on a piee of a mosai. This is a rigid transformation of the mosai.
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ErrLoc dbh Haus fom odi udi dje ε yas mquality JCdFig. 17 Robustness of the 11 riteria versus translation. Eah bar represents the mean riterion value in the fourdiretions for the 30 mosais of the database. For eah riterion, translations from 1 to 6 pixels have been representedin olorbars.To understand this graph, notie that as these mosais represent a regular tiling of some sort of ells, after a translationof a ell size the translated and the original mosai may be superposed. This means that after suh a translation, bothmosais begin to be visually really dissimilar and a riterion should re�et it (and also present values above 1). Thisshows that the Hausdor� riterion annot orretly evaluate translations beause it is bounded in the ase of mosais.
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Fig. 18 Illustration of the distortion proess. Eah vertex of the mosai is randomly moved in a given neighborhood.The omparison of the dotted mosai and the ontinuous mosai is then performed.14.5 Small spatial variationsThis setion does not present a transformation that will allow the measurement of the tolerane of the di�erentriteria to small variations. It emphasizes in the previous transformations where this behaviour an be observed.A small spatial variation an be explained as the variation observed when an expert manually draws twiethe same mosai (with visually the same result). Blatantly, it depends of the sale of observation. It is relatedto the hoie of the tolerane parameter ρ for the ǫ dissimilarity riterion. For example in our appliation, atranslation of less than ρ pixels is onsidered as a small variation.Thus, the tolerane to small variations for the di�erent dissimilarity riteria an be observed on the graphof translation evaluation (Fig. 16) and on the graphs of distortion (Figs. 19,20 and 21). Only three riteria aretolerant (they are de�ned to be tolerant): udi, odi and ǫ.15 Disussion and onlusionThe aim of this seond part of this artile was to ompare 11 dissimilarity riteria and to be able to hoose thebests in the ase of mosais omparisons. In the ited researh works that also perform dissimilarity riteriaomparisons, the frustration ame beause the normalisation (and the omparison) was not really onvining.A normalisation between 0 and 1 is sometimes not possible, and generally not enough to allow a omparison.This is why a alibration method was introdued, that an highlight the values where we an be sure that theriterion values re�et di�erent mosais.
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Fig. 19 Evolution of the riteria for one random distortion D(M, s) with the size s represented in absisse. This graphshows for s = 0 that the lower measures are proposed by the riteria designed to be more tolerant (ǫ, udi, odi). Due tothe polygonalization proess, notie that the mosai issued from the distortion D(M, 0) of size s = 0 is not equivalent tothe mosai M . This explains the non null values for all the dissimilarity riteria but the ǫ dissimilarity riterion (that isdesigned to handle this approximation). The ǫ riterion also presents a null value for the translation of s = 1 pixels as aresult of the tolerane parameter (2 pixels of tolerane).The omparison of the distortion for two di�erent mosais has no meaning beause these mosais present spatial strutures(the ells) of di�erent sizes. This is why this Fig. is only for mosai 1 (with small ells). Figs. 21 and 20 present resultsfor respetively big and median size ells.The Table 3 summaries the di�erent experiments presented to test the robustness of the riteria versus overand under segmentation, translation, distortion and tolerane to small variations. The presene of a green ell(with a *) indiates that the riterion is e�ient to evaluate the onsidered transformation.16 PerspetiveA perspetive already mentionned is to developp a method to automatially hoose the tolerane parametervalue, either by an observation of the mosai or by some other informations (like the original image it mightome from).The ǫ geometri dissimilarity riterion was initially designed to tune up algorithms of orneal endotheliumimage segmentation ([17℄). It is now planned to ondut a survey on segmentation methods of orneal imagesin order to ompare their results together and propose adapted values for the operating parameters they oulduse.
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Fig. 20 Distortion evaluation for mosai 26 (with ells of median size).
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Fig. 21 Distortion evaluation for mosai 11 (with ells of big size).
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Smoothing evaluation for mosai with ells of median size

Fig. 22 Smoothing evaluation for mosai 1 (with ells of small size). The parameter s is the size of dilation used tosmooth the mosai.
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Fig. 23 Smoothing evaluation for mosai 26 (with ells of median size).
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Fig. 24 Smoothing evaluation for mosai 11 (with ells of big size).
 under-segmentat

ion
over-segmentatio
n

translation distortion smoothing toleraneErrLo * *dbh * * * *Haus * *fom * * * *odi * * * *udi * * * *dje * *
ǫ * * * * * *jd * * * *yas * * *mquality * *Table 3 Summary table of the ompared riteria and their observed robustness versus �ve transformations. A star(green ell) means that a dissimilarity riterion is able to disriminate the onsidered transformation.
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1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

11. 12. 13. 14. 15. 16. 17. 18. 19. 20.

21. 22. 23. 24. 25. 26. 27. 28. 29. 30.Fig. 25 Table of the 30 mosais of the database. They have been manually drawn by an expert ophthalmologist from a human orneal endothelium image database. Thelines represent the ontours of the ells.
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Fig. 26 Table of the 30 images of orneal endotheliums of the database, aquired in speular mirosopy.
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