
HAL Id: hal-00660178
https://hal.science/hal-00660178

Submitted on 16 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A geometric dissimilarity criterion between Jordan
spatial mosaics. Theoretical aspects and application to

segmentation evaluation
Yann Gavet, Jean-Charles Pinoli

To cite this version:
Yann Gavet, Jean-Charles Pinoli. A geometric dissimilarity criterion between Jordan spatial mosaics.
Theoretical aspects and application to segmentation evaluation. Journal of Mathematical Imaging
and Vision, 2012, 42 (1), pp.25-49. �10.1007/s10851-011-0272-4�. �hal-00660178�

https://hal.science/hal-00660178
https://hal.archives-ouvertes.fr


Noname manus
ript No.(will be inserted by the editor)
A geometri
 dissimilarity 
riterion between Jordan spatial mosai
s.Theoreti
al aspe
ts and appli
ation to segmentation evaluation.Yann Gavet · Jean-Charles Pinoli
the date of re
eipt and a

eptan
e should be inserted laterAbstra
t An image segmentation pro
ess often results in a spe
ial spatial set, 
alled a mosai
, as the sub-division of a domain S within the n-dimensional Eu
lidean spa
e. In this paper, S will be a 
ompa
t domainand the study will be fo
used on �nite Jordan mosai
s, that is to say mosai
s with a �nite number of regionsand where the boundary of ea
h region is a Jordan hypersurfa
e.The �rst part of this paper addresses the problem of 
omparing a Jordan mosai
 to a given referen
eJordan mosai
 and introdu
es the ǫ dissimilarity 
riterion. The se
ond part will show that the ǫ dissimilarity
riterion 
an be used to perform the evaluation of image segmentation pro
esses. It will be 
ompared to 
lassi
al
riterions in regard to several geometri
 transformations. The pros and 
ons of these 
riterions are presentedand dis
ussed, showing that the ǫ dissimilarity 
riterion outperforms the other ones.Keywords Dissimilarity 
riterion · Geometri
 Distan
es · Spatial mosai
s · Human visual per
eption ·Supervised segmentation evaluation.
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2 Part I: Theoreti
al aspe
ts1 Introdu
tion1.1 Spatial mosai
s in R
nLet S be a non-empty 
losed bounded subset of the n-dimensional Eu
lidean spa
e, denoted R

n. In this arti
le,
S is simply 
onne
ted and its interior is non empty. Its boundary will be supposed to be a Jordan hypersurfa
e,or simply 
alled a surfa
e ([8,21℄). Mathemati
ally, this means that S is homeomorphi
 to the unit ball in R

n.The set S designates the working domain in whi
h Jordan mosai
s will be studied. It will be thus 
alled thedomain of interest. Pra
ti
ally, S will be for example a re
tangle in the two-dimensional Eu
lidean spa
e R
2(Fig. 1).

Fig. 1 This �gure is a view that shows a pie
e of a mosai
.A mosai
 
an then be de�ned on S as follows: it is 
onstituted of disjoined adja
ent 
onne
ted open subsets
alled regions, denoted Ri for i ∈ I (I is the index set), so that the 
losure of their union set equals the wholedomain S. The 
olle
tion of su
h regions for a given domain S will be supposed to be �nite and indexed by anatural number range I ⊂ N. A region Ri (for i ∈ I) is in fa
t de�ned by its boundary ∂Ri, whi
h is supposedto be a Jordan (hyper)surfa
e (a Jordan 
urve in the two-dimensional 
ase). A Jordan surfa
e is a simple 
losed
ontinuous surfa
e that separates the spa
e R
n into two separated open 
onne
ted subsets ([21℄). Pra
ti
ally,this surfa
e has mathemati
al ni
e properties that 
orrespond to what is visually seen in R

2 (see Fig. 2).De�nition 1 (Jordan mosai
).A Jordan mosai
 M is the set of 
ontours C =
S

∂Ri, i ∈ I , de�ned as follows:
∀(i, j) ∈ I(index set), i 6= j, Ri ∩ Rj = ∅ (1)and

R =
S

{Ri}, i ∈ I

C =
S

{∂Ri}, i ∈ I

S = R
S

C

∅ = R
T

C

9

>>=

>>;

(2)where ea
h boundary ∂Ri is a Jordan surfa
e.Noti
e that there is a duality between regions (R =
S
{Ri}) and 
ontours (C = ∪∂Ri) (Eq. 2).



3Tesselations are spe
ial mosai
s where the regions are polyhedra. The 
lassi
al referen
es [14,45,46,47,38℄
onsidered regular tesselations of planes and higher-dimensional spa
es. See [32℄ for a histori
al sket
h of theideas development .Mosai
s addressed in the present paper are more general sin
e ea
h region is neither restri
ted to a poly-hedron nor a simply 
onne
ted set (Fig. 2).

S

C

Fig. 2 Spatial Jordan mosai
 example in R
2. The domain of interest S (a re
tangle) is separated into several disjoinedadja
ent and 
onne
ted regions (Ri)i∈I by their 
ontours C.

1.2 Aim and outline of this �rst partThe 
omparison methods for spatial mosai
s fall into two distin
t 
ategories: region-based or 
ontour-basedapproa
hes. The region-based approa
hes 
onsider a 
olle
tion of regions as des
ribed above. In this 
ase, a
omparison of two mosai
s basi
ally 
onsists on making a one-to-one 
orrespondan
e between regions of ea
hmosai
, whi
h is generally not possible.This �rst part aims at 
omparing spatial Jordan mosai
s together from the 
ontours �point of view�, andmore pre
isely to 
ompare su
h a mosai
 to a given referen
e spatial Jordan mosai
. First, some 
lassi
aldistan
e fun
tions used to evaluate dis
repan
ies between Eu
lidean sets will be presented, namely the three
lassi
al metri
s: Hausdor�, Nikod�ym and Steinhaus distan
es, respe
tively (Se
t. 2). Se
ond, it will be shownthat these distan
es are not adapted to mosai
 
omparison (Se
t. 3). Third (Se
t. 4), these distan
es will beextended, but will still remain irrelevant. In Se
t. 5, the study of the human visual per
eption will highlightthat the metri
 notion is too strong, and even not geometri
ally or visually relevant. The notion of dissimilarityis dis
ussed sin
e it appears to better suit how the visual per
eption system performs the 
omparison pro
ess.Se
t. 6 presents a novel geometri
 dissimilarity 
riterion that allows to perform the mosai
 
omparison. InSe
ts. 7 and 8, its properties and asymptoti
 behavior are studied.2 Geometri
 Distan
es in R
nThis se
tion �rst re
alls the de�nition of a pe
uliar distan
e fun
tion 
alled a metri
 and then presents threemetri
s 
lassi
ally used to 
ompare (rigid) geometri
 sets.



42.1 De�nitionDistan
e fun
tions ([13℄) are fun
tionals adapted to perform 
omparisons of (mathemati
al) obje
ts belongingto the same family ξ (for example, ξ is the family of the Jordan mosai
s on a given referen
e domain S).De�nition 2 (Metri
).A metri
 is a parti
ular distan
e fun
tion d that is a fun
tion from ξ2 into R+ and veri�es the four followingaxioms (see [13℄): (identity)
∀x ∈ ξ, d(x, x) = 0 (3)(separation)

∀x, y ∈ ξ, d(x, y) = 0 ⇒ x = y (4)(symmetry)
∀x, y ∈ ξ, d(x, y) = d(y, x) (5)(triangle inequality)

∀x, y, z ∈ ξ, d(x, y) ≤ d(x, z) + d(z, y) (6)These axioms are mathemati
ally important and will be dis
ussed in Se
t. 5.2.2 Three 
lassi
al geometri
 distan
esThis arti
le does not aim to give an exhaustive overview of distan
es. The reader will refer to [13℄ for a deepreview. One 
lassi
al metri
 used between 
ompa
t sets in R
n is the Hausdor� distan
e ([34,18℄). Anotherdistan
e, 
alled the Nikod�ym distan
e ([31℄), is based on the Lebesgue measure of the symmetri
 di�eren
ebetween measurable sets. A derived distan
e 
alled the Steinhaus distan
e has been histori
ally next de�ned([23℄).De�nition 3 (Hausdor� half-distan
e).Let dE be the Eu
lidean metri
 and S a given domain in R

n. If the appli
ation dE(a,B) denotes theEu
lidean distan
e between a point a ∈ S ⊂ R
n and a 
ompa
t set B ⊂ S, then the Hausdor� half-distan
edenoted fdE

between two 
ompa
t sets A and B (A, B ⊂ S) is de�ned by Eq. 7:
fdE

(A, B) = sup
a∈A

dE(a, B) (7)with dE(a, B) = inf
b∈B

dE(a, b) (8)De�nition 4 (Hausdor� distan
e).The Hausdor� distan
e (Fig. 3) between two 
ompa
t sets A and B, denoted dH(A,B), is then de�ned byEq. 9 (noti
e that the symmetry property is now satis�ed in this equation):
dH(A, B) = max

˘
fdE

(A, B), fdE
(B, A)

¯ (9)The supremum operator in Eq. 7 implies that if only one point is added to A or B, the Hausdor� distan
evalue might 
hange a lot.De�nition 5 (Symmetri
 di�eren
e).The symmetri
 di�eren
e set between two sets A and B (A ⊂ S and B ⊂ S) in R
n, denoted ∆(A, B), isde�ned by the following equation (Eq. 10) and illustrated in Fig. 4:

∆(A,B) = (A ∪ B) \ (A ∩ B)

= (A \ B) ∪ (B \ A) (10)
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PSfrag repla
ements
A

B

d1

d2Fig. 3 Illustration of Hausdor� distan
e between two sets A and B: d1 = f(A, B) and d2 = f(B, A).
Fig. 4 Illustration of the symmetri
 di�eren
e between two sets A and B: ∆(A, B) is represented in white, the ex
ludedpart (the interse
tion of A and B) is in bla
k.De�nition 6 (Nikod�ym distan
e).The Nikod�ym distan
e ([31℄), denoted d∆, is the Lebesgue measure ([22℄) of the symmetri
 di�eren
e setof two (Lebesgue) measurable sets A and B (A, B ⊂ S in R

n):
d∆(A, B) = Ln(∆(A,B)) (11)where Ln denotes the Lebesgue measure in R

n (i.e. the area in R
2).The Steinhaus distan
e ([23,13℄) is derived from the symmetri
 di�eren
e set operation. It is de�ned byEq. 12 for two Lebesgue measurable sets A and B in R

n with stri
tly positive measures.De�nition 7 (Steinhaus distan
e). The Steinhaus distan
e, denoted dS , between two (Lebesgue) measur-able sets A and B (A, B ⊂ S in R
n) is given by:

dS(A,B) =
Ln(∆(A, B))

Ln(A
S

B)
= 1 −

Ln(A
T

B)

Ln(A
S

B)
(12)This distan
e may also be referen
ed as the Ja

ard index ([19℄).3 Geometri
 distan
es and spatial mosai
sThis se
tion will show that the previous distan
es are not adapted to 
ompare Jordan mosai
s. Noti
e that aJordan mosai
 is being de�ned by its 
ontours (see Def. 1).



63.1 Hausdor� distan
eThe Hausdor� distan
e may be applied on Jordan mosai
s be
ause they 
onsist in 
ompa
t sets. Sin
e thisdistan
e uses a supremum operator, it is very sensitive to small spatial variations, as noted in [21℄. A solutionto this problem was proposed in [3℄ in the 
ase of the Hausdor� distan
e, by repla
ing the supremum operatorby a mean or p-th order mean operator. This distan
e is thus less sensitive to small spatial variations. In the
ase of dis
rete sets (i.e. sets in Z
n), the sensitivity of the Hausdor� distan
e 
an be attenuated by taking thek-th point that realises the supremum ([5℄), but the problem of sensitivity still persists.3.2 Nikod�ym and Steinhaus distan
esThe Nikod�ym ans Steinhaus distan
es have an overwhelming drawba
k. They are not de�ned for Jordanmosai
s, sin
e these sets are not Lebesgue-measurable (a Jordan mosai
 is indeed de�ned as a 
olle
tion of
ontours, see Def. 1). They 
onsequently 
annot be used �as is� to 
ompare Jordan mosai
s.4 Extended geometri
 distan
es4.1 Minkowski addition and parallel neighborhoodsThe Minkowski addition ([28℄) de�nes an algebrai
 operation between sets in R

n. It will be used to spatiallyenlarge the sets to be 
ompared in order to be less sensitive to small spatial di�eren
es and/or to be
omeLebesgue measurable. Extensions of the Hausdor� distan
e and of the Nikodym distan
e will thus be introdu
ed.De�nition 8 (Minkowski addition).If A and B are two sets of R
n, the Minkowski sum of A and B, denoted A ⊕ B, is then de�ned by:

A ⊕ B = {a + b|a ∈ A, b ∈ B}

A ⊕ B =
[

b∈B

{a + b, a ∈ A}where ⊕ is the Minkowski addition symbol.The Hausdor� and the Nikod�ym distan
es are extended by introdu
ing a spatial enlargement de�ned bythe mean of the Minkowski addition.De�nition 9 (Unit neighborhood).
N ∈ R

n denotes the unit neighbourhood (e.g., the n-dimensional unit ball in R
n, Def. 9). The point O isthe origin of R

n.
N = {x ∈ R

n, dE(O, x) ≤ 1}With this notation, rN designates the ball of radius r, 
entered on the origin O.De�nition 10 (r-enlargement). The 
losed r-enlargement of a set A in R
n is de�ned as:

Ar = A ⊕ rN

Ar denotes the r-enlarged set of A.
Ar is also 
lassi
ally 
alled the parallel set at distan
e r of A or simply the r-parallel set to A ([38,44℄).It has also been 
alled the tubular neighborhood in [16℄. The e�e
t of the Minkowski addition 
an be seen onFig. 5.
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1. Referen
e Jordan mosai
(M). 2. Enlargement of M for a pa-rameter value r = 3 (dilation
M ⊕ rN).Fig. 5 Enlargement (Sub�g. 2.) of the referen
e mosai
 M (Sub�g. 1.).4.2 Extended Hausdor� distan
eDe�nition 11 (Extended Hausdor� distan
e).Let r ∈ R (r ≥ 0) be a positive real number. The extended Hausdor� distan
e is de�ned for two 
ompa
tsets A and B, using the unit neighborhood N :

dr
H(A, B) =

max{fdE
(A ⊕ rN, B), fdE

(B ⊕ rN, A)}The Hausdor� distan
e 
an also be de�ned by using the Minkowski addition ⊕ (see Se
t. 4.1):
dr

H(A, B) = max
˘
fr
dE

(A, B), fr
dE

(B, A)
¯ (13)with

fr
dE

(A,B) = inf {p ∈ R | (B ⊕ rN) ⊂ (A ⊕ pN)}Proposition 1 The half-distan
e between A and B (Eq. 7) is the minimal value of p so that the dilation of A(whi
h is A ⊕ pN) englobes the set B:
fdE

(A,B) = inf{p ∈ R, B ⊂ (A ⊕ pN)} (14)This formulation implies the next relation (Eq. 15), whi
h means that there is an almost linear relationbetween the Hausdor� distan
e and its extension, namely:
fr
dE

(A, B) = inf{p ∈ R |

B ⊂ (A ⊕ (max{p − r; 0})N)}

dr
H(A, B) = max{dH(A, B) − r; 0} (15)Thus, if the Hausdor� distan
e is sensitive to small variations, this is also the 
ase for its extension. This iswhy it is preferable not to use the extended Hausdor� distan
e for Jordan mosai
 
omparison purpose.



84.3 Extended Nikod�ym distan
eDe�nition 12 (Extended symmetri
 di�eren
e).The extension of the symmetri
 di�eren
e, denoted ∆r, is the symmetri
 di�eren
e involving a r enlarge-ment, de�ned by:
∆r(A,B) = (A \ Br) ∪ (B \ Ar)This notation introdu
es an enlargement in the symmetri
 di�eren
e. Noti
e that this toleran
e r wouldnot exist when 
onsidering the operations (Ar \ Br) and (Br \ Ar).De�nition 13 (Extended Nikod�ym distan
e).The extended Nikod�ym distan
e d∆r is then de�ned for two Lebesgue measurable sets A and B in R

n by:
d∆r (A,B) = Ln{∆r(A,B)}Proposition 2 The extended Nikod�ym distan
e does not verify the axiom of separation and the triangle in-equality (Eqs. 4 and 6, respe
tively) of a metri
 (be
ause of the toleran
e parameter r). It veri�es the symmetryaxiom (Eq. 5).4.4 Distan
es are not adapted for visual 
omparisonA distan
e is the mathemati
al tool 
lassi
aly used for sets 
omparison. In the 
ase of the Hausdor� andNikod�ym distan
es, it appears that small spatial variations or the la
k of Lebesgue measurability make themine�
ient or not available. Thus, a notion of geometri
 enlargement is introdu
ed, but loosing the propertiesof a distan
e (the separation axiom and the triangle inequality are not satis�ed). The question of the relevan
eof the distan
e notion is therefore 
learly stated. It will be now dis
ussed in the 
ontext of the human visualper
eption.5 Distan
es and human visual per
eptionIn this se
tion, it will be highlighted that the axioms de�ning a metri
 are in fa
t not relevant to mathemati
allyquantify the geometri
 di�eren
es that are visually per
epted.The following subse
tions will explain the non relevan
e of ea
h metri
 axiom. Therefore, a 
omparison
riterion 
annot be de�ned as being a distan
e fon
tion with regards to the human visual per
eption.5.1 The separation axiomThe human visual per
eption does not always 
onsider that two distin
t geometri
 obje
ts (
onsidered as 
losedbounded sets) are di�erent. This means that a 
omparison 
riterion (denoted c) does not verify the separationaxiom for two 
losed bounded sets A and B (Eq. 4):

c(A, B) = 0 ; A = BThis is what is 
alled a visual toleran
e: not identi
al sets (∃x ∈ A,x /∈ B) 
an be 
onsidered equal for thegiven 
riterion c.5.2 The triangle inequality axiomIt has been proved that the triangle inequality is not respe
ted by the human visual per
eption system ([41,43,42℄) as illustrated in Fig. 6.Mathemati
ally, this means that for a given 
omparison 
riterion c and two 
losed bounded sets A and B,the triangle inequality (Eq. 6) is not respe
ted, namely:
∃z|c(A, B) > c(A, C) + c(C, B)
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A B C

Fig. 6 The triangle inequality is not veri�ed by the visual per
eption. The horse and the man are really di�erent, butthe distan
e between the man and the 
entaur (or between the 
entaur and the horse) may appear small. This means
c(A, C) > c(A, B) + c(B, C)5.3 The symmetry axiomMore surprisingly, the visual per
eption system does not satisfy to the symmetry prin
iple ([40℄).Mathemati
ally, the symmetry (Eq. 5) is not respe
ted for a given 
omparison 
riterion c, namely:

c(A, B) 6= c(B, A)In the 
ase of an appli
ation issue where a referen
e geometri
 obje
t is 
onsidered, the loss of this axiom
an be
ome relevant.5.4 DissimilaritiesIt thus follows from the three previous subse
tions that the metri
 notion appears as not adapted to mimi
the human visual per
eption system when 
omparing two geometri
 obje
ts. Sin
e the metri
 
on
ept is toostrong, the notion of dissimilarity has been proposed by psy
hologists ([41,37℄).De�nition 14 (Dissimilarity).Formally, a dissimilarity 
an be de�ned as a fun
tion ς of two obje
ts A and B, that veri�es ([13℄)
0 ≤ ς(A,A) ≤ ς(A,B)This means that the higher ς(A, B) is, the more dissimilar A and B are.Tversky ([40℄) proposes the notion of dissimilarity fun
tion ς between two sets A and B (Def. 15). Noti
ethat a dissimilarity is dissymmetri
 by 
onstru
tion.De�nition 15 (Dissimilarity fun
tion).A dissimilarity fun
tion between two sets A and B, denoted ς(A,B), 
an be expressed by:

ς(A, B) = θf(A ∩ B) − βf(A \ B) − γf(B \ A)where θ, β and γ are real numbers and f is a measuring fun
tion ([40℄).6 A geometri
 dissimilarity 
riterion for mosai
sLet M, X, Y, and Z be Jordan mosai
s de�ned through their 
ontours 
olle
tions. M will designate the referen
emosai
 and X, Y, Z will designate the mosai
s 
ompared to M . Remember that a Jordan mosai
 is thus notLebesgue-measurable.



106.1 De�nitionsTo deal with the problem of the non-Lebesgue measurability of a Jordan mosai
 M , a solution is to usethe enlarged mosai
 Mr|S = (M ⊕ rN)|S instead of M in the symmetri
 di�eren
e de�nition (Eq. 10). Tosimplify the notations, Mr will denote Mr|S , the r-enlarged mosai
 M 
onstrained to the domain S. Using theMinkoswki addition for r > 0, the enlarged mosai
 Mr is Lebesgue-measurable.De�nition 16 (Enlarged mosai
).Let r be a stri
tly positive real number. An r-enlarged Jordan mosai
 Mr is de�ned by the tubular r-neighborhood of the Jordan mosai
 M (see Def. 10):
Mr = M ⊕ rNDe�nition 17 (Extension and toleran
e parameters).For a r-enlarged Jordan mosai
, r is 
alled the enlargement parameter.� It will be 
alled the toleran
e parameter and denoted ρ when the goal is to involve a (r-level) of spatialvariations.� It will be 
alled the extension parameter and denoted α in the 
ases where the Lebesgue measurability isrequired.6.2 The ǫ dissimilarity 
riterionDe�nition 18 (Dissimilarity 
riterion)The dissimilarity 
riterion ǫ, depending on ρ (toleran
e parameter), α (extension parameter) and M (ref-eren
e Jordan mosai
), and based on the extended symmetri
 di�eren
e ∆ρ, 
ompares a Jordan mosai
 X tothe referen
e Jordan mosai
 M :

ǫρ,α
M (X) =

d∆ρ (Mα,Xα)
Ln{Mα⊕ρN}

=
Ln{(Xα\Mα⊕ρN)∪(Mα\Xα⊕ρN)}

Ln{Mα⊕ρN}Proposition 3 (ǫ is a dissimilarity fun
tion).The ǫ dissimilarity 
riterion (Def. 18) is a dissimilarity fun
tion.Proof A

ording to Def. 18, the dissimilarity 
riterion is given by:
ǫρ,α
M

(X) =
Ln{(Xα\Mα+r)∪(Mα\Xα+ρ)}

Ln{Mα+ρ}Sin
e (Xα \ Mα+ρ) ∩ (Mα \ Xα+ρ) = ∅, this implies:
ǫρ,α
M

(X) =
Ln{(Xα\Mα+ρ)}+Ln{(Mα\Xα+ρ)}

Ln{Mα+ρ}This relation proves that ǫ is a dissimilarity 
riterion as de�ned by [40℄ (Def. 15), with β = γ = −1, θ = 0 and
f designates the Lebesgue measure Ln.6.3 PropertiesProposition 4 (Symmetry).The ǫ dissimilarity 
riterion does not verify the symmetry axiom of a metri
.

ǫρ,α
M

(X) 6= ǫρ,α
X

(M)This is be
ause the purpose of this 
riterion is to 
ompare a Jordan mosai
 to a given referen
e Jordanmosai
. This dissymmetry expresses that the two mosai
s M and X do not play the same role, M being thereferen
e Jordan mosai
 
onsidered to be the truth (up to a toleran
e value ρ) to whi
h the Jordan mosai
 Xis to be 
ompared.



11Proposition 5 (Positivity).The ǫ dissimilarity 
riterion is positively valued:
∀X ⊂ S, ǫρ,α

M
(X) ≥ 0Proposition 6 (Identity).The identity axiom (Eq. 3) is veri�ed :

ǫρ,α
M (M) = 0Proposition 7 (Separation).The separation axiom (Eq. 4) is not veri�ed by de�nition:

ǫρ,α
M (X) = 0 ⇒


X ⊂ Xα ⊂ M ⊕ ρN

M ⊂ Mα ⊂ X ⊕ ρNIn the general 
ase, X 6= M . This is explained by the fa
t that the toleran
e parameter ρ makes two distin
t(but 
lose) Jordan mosai
s as equal.Proposition 8 (Triangle inequality).The triangle inequality (see Eq. 6) is not veri�ed.Proof For example, X, Y and Z being 
hosen as illustrated in Fig. 7:
d∆ρ(X, Z) = 0

d∆ρ(Z, Y ) = 0It is possible to 
hoose X and Y so that d∆ρ(X, Y ) > 0, and thus the inequality d∆ρ(X, Y ) ≤ d∆ρ(X, Z)+

d∆ρ(Z, Y ) is not veri�ed (see Figure Fig. 7).
Z

Y

X

Fig. 7 The triangle inequality is not veri�ed in this 
ase (see the value of ρ). Ea
h layer line is at a distan
e of ρ of thenext one. d∆ρ (X, Z) = 0 and d∆ρ (Z, Y ) = 0, but d∆ρ (X, Y ) > 0



127 Properties of the ǫ dissimilarity 
riterion: general 
ase ρ > 0, α > 07.1 PropertiesProposition 9 (Unboundedness).The value given by the ǫ dissimilarity 
riterion is not bounded.Proposition 10 (Monotoni
ity).The ǫ dissimilarity 
riterion is de
reasing in regard to the toleran
e parameter ρ.
∀(ρ1, ρ2) ∈ R

2
+, ρ1 > ρ2 ⇒ ǫρ1,α

M ≤ ǫρ2,α
MProof If a greater toleran
e value is taken, the ǫ value will de
rease be
ause the following relations hold:

∆ρ2

M
(X) ⊂ ∆ρ1

M
(X)

Ln(M ⊕ ρ2N) < Ln(M ⊕ ρ1N)7.2 Asymptoti
 behavior and geometri
 invarian
esTheorem 1 (Asymptoti
 behavior).Beyond a 
ertain toleran
e value ρ0, the ǫ dissimilarity 
riterion values equal zero. This value ρ0 is theHausdor� distan
e between X and M .
∀X ⊂ S,∃ρ0 | ∀ρ ≥ ρ0, ǫ

ρ
M

(X) = 0 (16)where ρ0 = dH(X, M)Proof It 
an easily be proved with Eq. 13 and Prop. 7.Proposition 11 (S
ale invarian
e).The ǫ dissimilarity 
riterion remains invariant through an homotheti
 transformation:
∀λ ∈ R+, ǫλρ,α

λM
(λX) = ǫρ,α

M
(X)Proof Let's start by the de�nition of the extended symmetri
 di�eren
e (Def. 12).

∆ρ(X, Y ) = (X \ Y ⊕ ρN) ∪ (Y \ X ⊕ ρN)Thus, the Lebesgue measure of the symmetri
 di�eren
e is:
d∆ρ(Xα, Yα) = Ln(∆ρ(Xα, Yα))

= Ln(Xα \ Yα ⊕ ρN)

+Ln(Yα \ Xα ⊕ ρN)When multiplying X and Y by a s
alar λ (noti
e that the relation λ(A⊕B) = λA⊕λB is veri�ed), yields:
d∆ρ(λXα, λYα) =

λnLn(Xα \ Yα ⊕
ρ

λ
N) + λnLn(Yα \ Xα ⊕

ρ

λ
N)whi
h �nally gives:

d∆ρ(λXα, λYα) = λnd
∆

ρ
λ

(Xα, Yα)In other words, a 
hange of s
ale for both the 
onsidered Jordan mosai
 and the referen
e Jordan mosai
gives allways the same ǫ dissimilarity value for a s
aled toleran
e λρ.Proposition 12 (Invarian
e by rigid geometri
 transformation).If τ is a rigid geometri
 transformation (like translation, rotation, re�e
tion or symmetry), the followingrelation is true:
ǫρ,α
τ(M)

(τ (X)) = ǫρ
M

(X)This means that applying the same rigid transformation to two Jordan mosai
s yields to the same ǫdissimilarity value.



138 Properties of the ǫ dissimilarity 
riterion: role of the α extension parameterThe α extension parameter guarantees the Lebesgue measurability of the 
onsidered α-enlarged Jordan mosai
s
Xα and Mα. In the general 
ase with a toleran
e ρ > 0, the dissimilarity 
riterion ǫ is de�ned for all values of
α (i.e. even for α = 0, see Def. 18).8.1 De�nitionsDe�nition 19 (for α = 0 and ρ > 0).For α = 0 and ρ > 0, ǫρ,α=0

M
(X) = 0. This is due to the non Lebesgue measurability of X and M .De�nition 20 (for α > 0 and ρ = 0).For α > 0, ǫρ=0,α

M
(X) is perfe
tly de�ned (see Def. 18)).The question arises when α tends toward 0.8.2 Limit for α → 0, ρ = 0The symbol Ln will still denote the Lebesgue measure in R

n (i.e. the area in R
2), while the symbol Hn willdenote the Hausdor� measure in R

n ([29℄).In order to study this asymptoti
 behavior, it is ne
essary to introdu
e the so-
alled Minkowski 
ontent:De�nition 21 (Minkowski 
ontent).The Minkowski 
ontent ([15℄) of a �nite union of (n − 1)-dimensional 
ompa
t Lips
hitz surfa
es A ∈ R
n,denoted Mn−1(A), is de�ned as follows:

Mn−1(A) = lim
α→0

Hn(Aα)

2αThe dis
ussion and study of the existen
e 
onditions of the limit (Def. 21) are outside the s
ope of thepresent arti
le. The reader 
an refer to [2,44℄ for re
ent advan
es. A ni
e 
ondition is full�lled ([2℄) for� a Jordan mosai
 A whi
h 
onsists of �nite union of Lips
hitz (n − 1)-dimensional surfa
es� and a �nite union or interse
tion of su
h Jordan mosai
s ([29℄).De�nition 22 (Lips
hitz mosai
).A (�nite) Lips
hitz mosai
 is a (�nite) Jordan mosai
 that 
onsists of a (�nite) union of Lips
hitz surfa
es.This is a 
ondition that is pra
ti
ally obtained in the 
ase of real physi
al mosai
s ([17,9,27℄).The following proposition straightforwardly based on [15℄ will be of a great interest in the Se
t. 8.3.Proposition 13 (Minkowski 
ontent andHausdor� measures).The Minkowski 
ontent 
oin
ides with the (n − 1)-dimensional Hausdor� measure, namely:
Mn−1(X) = Hn−1(X)for X a �nite Lips
hitz mosai
, and a �nite union or interse
tion of Lips
hitz mosai
s.



148.3 Asymptoti
 behaviorTheorem 2 (Limit of extension).Let X and M be two Lips
hitz mosai
s. The dissimilarity 
riterion ǫρ=0,α
M for ρ = 0 is de�ned when α → 0by:

lim
α→0

ǫρ=0,α
M

(X) =
Hn−1(∆(M, X))

Hn−1(M)Proof Starting with:
ǫρ=0,α
M (X) =

Ln{(Xα ∪ Mα) \ (Xα ∩ Mα)}
Ln{Mα}and by dividing both the numerator and denominator by 2α yields:

ǫρ=0,α
M (X) =

Ln(Xα∪Mα)
2α

Ln(Mα)
2α

| {z }

ǫ1

−
Ln(Xα∩Mα)

2α
Ln(Mα)

2α
| {z }

ǫ2

(17)First, it will be shown that ǫ1 and ǫ2 (see Eq. 17) have �nite limits for α → 0, prooving that lim(ǫ1 − ǫ2) =

lim(ǫ1) − lim(ǫ2).As the union and dilation operators are 
ontinuous and by using Def. 21 and Prop. 13, yields:
lim
α→0

ǫ1 =
Hn−1(X ∪ M)

Hn−1(M)As the interse
tion operator is upper semi-
ontinuous and as the dilation operator is 
ontinuous, yields:
lim sup

α→0
(Xα ∩ Mα) = X ∩ Mand

lim
α→0

(X ∩ M)α = X ∩ MIn addition, the nesting property of the (Xα ∩Mα) family (i.e. Xα ∩Mα ⊂ Xα′ ∩Mα′ , for α < α′) impliesthat:
lim inf
α→0

(Xα ∩ Mα) = X ∩ MTherefore, and by using Def. 21 and 13:
lim
α→0

ǫ2 =
Hn−1(X ∩ M)

Hn−1(M)Theorem 2 is thus established.This theorem leads to the following de�nition:De�nition 23 (for α = 0 and ρ = 0).The ǫ dissimilarity 
riterion with no toleran
e and with no enlargement is de�ned by:
ǫρ=0,α=0
M

(X) =
Hn−1(∆(M, X))

Hn−1(M)For example, in R
2, this value is the length of the symmetri
 di�eren
e divided by the length of the referen
emosai
.



158.4 Dis
ussionTherefore, for Lips
hitz mosai
s X and M (
onsisting of �nite union of (n− 1) dimensional Lips
hitz surfa
es)the geometri
 dissimilarity 
riterion ǫ with no geometri
 toleran
e (ρ = 0) and no geometri
 extension (α = 0)is given by Def. 23 as a limit value. It is equal to the ratio of the surfa
e area not shared by the Lips
hitz mosai
s
X and M divided by the surfa
e area of the referen
e Lips
hitz mosai
 M . This result 
orresponds to what isintuitively infered in the 2-dimensional 
ase when looking at a plane �gure. In pra
ti
al situations Def. 23 isnot dire
tly 
al
ulable and Def. 18 is therefore the relevant de�nition for the geometri
 dissimilarity 
riterion
ǫ. This is of great importan
e from a pra
ti
al viewpoint. This was also theoreti
ally important to establishthat Theorem 2 gives the geometri
 limit 
ase when passing from the n-dimensional to the (n−1)-dimensional
ase for the ǫ dissimilarity 
riterion.9 Con
lusionThis �rst part introdu
ed the notion of Jordan mosai
s as a �nite union set of hypersurfa
es in R

n. The goalwas to 
ompare Jordan mosai
s to a referen
e Jordan mosai
. It showed that 
lassi
al distan
es (Hausdor�,Nikodym...) are not adapted for these spe
ial sets. A novel 
riterion has been proposed, whi
h appeared tobe in a

ordan
e with the notion of dissimilarity proposed by psy
hologists and that better suits what thehuman visual per
eption 
an perform. It possesses strong properties su
h as monotoni
ity and invarian
eunder s
aling or rigid geometri
 transformations. Its asymptoti
 behavior is also established for a spe
ial 
aseof Jordan mosai
s 
alled Lips
hitz mosai
s.Part II: Appli
ation and 
omparison issues10 Introdu
tionThe �rst part of this arti
le introdu
ed a dissimilarity 
riterion adapted to Jordan mosai
s, 
alled the ǫ dis-similarity 
riterion. From an image analysis point of view, the result of an image segmentation pro
ess 
anoften be seen as a Jordan spatial mosai
. There are two di�erent ways of presenting a result of a segmentation,either region-based or 
ontour-based approa
h. A

ording to [24℄, the human visual per
eption �rst rely on
ontours; thisjusti�es the fa
t that the mosai
s are some sets of 
ontours and that the ǫ 
riterion evaluates thedissimilarities between these 
ontours. The possibility of 
omparing region-based segmentation results will notbe dis
ussed.This se
ond part pra
ti
ally illustrates the properties of this 
riterion in the 
ase of real segmented imagesof human 
orneal endothelium. It also proposes a way to 
hoose the value of the toleran
e parameter ρ. Thus,the 
onsidered mosai
 is de�ned by the 
ontours of the endothelial 
ells. Some dissimilarity 
riteria found inthe segmentation evaluation litterature are afterwards presented. Next, this paper proposes to evaluate theperforman
e of these 
riteria in regard to some transformations (over and under segmentations, translations,distortions and small spatial variations.).10.1 Dis
rete 
aseThis se
ond part of the arti
le presents the results in the 
ase of real binary images, i.e. for dis
rete sets. Thus,the following notations are introdu
ed: IM and IX represent binary images that 
orrespond to a referen
emosai
 M and another mosai
 X. An image segmentation result 
an be seen from a 
ontour point of view as aspe
ial mosai
 de�ned with a non null extension parameter α. In this 
ase, a mosai
 is a binary image of the
ontours. There will be no further mention of the extension parameter α be
ause it is already involved in thesegmentation result.Then, the ǫ dissimilarity 
riterion applied to binary images is de�ned by the following equation:
ǫρ
M (X) =

#{(X \ M ⊕ ρN) ∪ (M \ X ⊕ ρN)}

#{M ⊕ ρN}
(18)with N being the stru
turing element of radius 1 (ρN is the dis
rete ball of radius ρ) and # meaning thenumber of non null pixels in the set (
ardinal operator) (see Fig. 5).



16 A database of 30 di�erent mosai
s is used and for ea
h one, an expert ophthalmologist has manuallysegmented the 
ells and thus 
reated a referen
e mosai
 (Fig. 25) for ea
h image (Fig. 26). The Fig. 8 illustratesthe properties of monotoni
ity (Prop. 10) and the asymptoti
 behavior (Theorem 1).10.2 Choi
e of the toleran
e parameter valueThis subse
tion explains how to �x the toleran
e parameter ρ a

ording to the 
onsidered mosai
s. With theimage database (Fig. 26), the experts have 10 times drawn the same mosai
, and the ǫ dissimilarity 
riterionhave been used to 
ompare every manual segmentation to the others. The mean value of the ǫ dissimilarity
riterion is represented in the Fig. 9. The reader 
an 
onsider that an expert will always draw the 
ontours atthe same lo
ation within a 
ertain spatial toleran
e (i.e. within the toleran
e tube), depending on the imagesize and the pre
ision of the drawing tool.In the future, the 
hoi
e of the toleran
e parameter 
ould be made automati
ally by an adaptive approa
h,depending on the mosai
 itself, by de�ning this parameter as (for example) a fun
tion of the 
urvature [30,20℄or by using some greys
ale informations [12℄. Thus, this parameter would be independant of any supervision.For this database, the toleran
e parameter value is ρ = 2.11 Evaluation 
riteriaEvaluating the results of image segmentation methods is not a re
ent subje
t, but it still remains a di�
ulttask.A segmentation pro
ess, in the �eld of image analysis, provides a partition of the spatial de�nition domain
S of the gray tone images into adja
ent regions that present a parti
ular interest. It is often useful to quantifythe performan
e of su
h a segmentation pro
ess: numerous methods exist for this task ([50,10℄).Evaluation methods 
an be divided into di�erent 
ategories ([33,49℄). Supervised methods are based on the
omparison versus an expert, whi
h gives a referen
e partition of a domain S. Unsupervised methods 
onsiston establishing an absolute 
riterion based on some already known 
hara
teristi
s (for example, homogeneityof luminan
e, 
ontrast...). They are also 
alled stand-alone evaluations. The supervised methods are verytime-
onsuming be
ause they require experts to give their own solutions, often manually drawn.When 
hoosing between one of these two types of methods, the key question of subje
tivity is raised. Often,when a human expert gives his own result of segmentation, it may be slightly di�erent from another expert.This is why, when evaluating segmentation methods, unsupervised 
riteria are often preferred. But on theother way, unsupervised methods are based on spe
i�
 
hara
teristi
s, and the 
hoi
e of these 
hara
teristi
s
an introdu
e a bias in the 
omparison: the subje
tivity is therefore also present in these methods.In our point of view, supervised methods are to be preferred instead of unsupervised methods, be
ause we
onsider that it is better to take into a

ount that there is a variability in the expertise instead of believingthat an unsupervised method would be unbiased.12 Presentation of 11 evaluation 
riteriaThe following pages will 
onsider a 
riterion crit 
omparing two mosai
s M and X, where M is the referen
emosai
 (from the expert). It will be denoted critM (X). The Eu
lidean distan
e d will also be mentionned, andthe notation d(p, M) is the distan
e between a pixel p and a mosai
 M . N is now the size of the images IM or
IX , 
onsidered as equal for obvious pra
ti
al reasons.12.1 Dissimilarity 
riteriaRemember psy
hologists proposed the notion of dissimilarity (15):

0 ≤ ς(A,A) ≤ ς(A,B)Noti
e that the 11 presented 
riteria are dissimilarity 
riteria.
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Fig. 9 Method for �xing the toleran
e parameter. In this example, ρ is in pixels, and there is a strong gap between notoleran
e (ρ = 0) and a toleran
e of one pixel (ρ = 1).12.2 11 dissimilarity 
riteriaThe 
riteria are separated into three main 
ategories:� the 
riteria that use the Eu
lidean distan
e between pixels,� the 
riteria based on the symmetri
 di�eren
e of sets,� the 
riteria based on pixel-to-pixel operations, in
luding their neighbors.12.3 Eu
lidean distan
e between pixels and derivativesIn the 
ase of mosai
s 
omparisons, the Hausdor� distan
e hausM (Def. 4) 
an be employed.One of the most used methods for evaluating segmentation is the �gure of merit (fom) ([1,39℄) de�ned inDef. 24. Be aware that the exa
t de�nition does not involve a di�eren
e to 1, but it has been introdu
ed tobe
ome a dissimilarity. The α parameter value is �xed to 1 without in�uen
e on the robustness of the 
riterion.De�nition 24 (Figure of Merit).
fomM (X) = 1 −

1

max{#(M), #(X)}

X

p∈X

1

1 + α · d2(p, M)where d(p, M) is the distan
e between the pixel p ∈ X to the 
losest pixel of M and # the number of pixels ofthe 
onsidered mosai
 M or X (whi
h are not equal to N ).A formulation that also uses the distan
e of a pixel p to the 
losest one belonging to the referen
e M 
anbe found in [48℄:



19De�nition 25 (Yasno� distan
e).
yasM (X) =

100

N

s
X

p∈X

d2(p, M)Denoting No is the number of over-segmented pixels (No = #(O),with O = X \ M) and Nu the numberof under-segmented pixels (Nu = #(U),with U = M \ X), [6℄ proposes two measurement methods as follows:De�nition 26 (Belaroussi 
riteria).
odiM (X) =

1

No

NoX

p∈O

„
d(p,M)

dTH

«n

udiM (X) =
1

Nu

NuX

p∈U

„
d(p,X)

dTH

«nThe parameters dTH and n establish a distan
e toleran
e around the pixels of M . In the following, the values
hoosen are n = 4 and dTH = ρ = 2 to be 
onsistent with the ǫ dissimilarity 
riterion.A more re
ent measure, denoted jcd ([11℄, in referen
e to Ja

ard, see also Def. 29) also uses the Eu
lideandistan
e to establish a 
riterion whose values are between 0 and 1. Like fom (Def. 24), it has been modi�edto get a dissimilarity (Def. 27).De�nition 27 (Cárdenes measure).
jcdM (X) = 1−

#(M ∩ X)

#(M ∩ X) +
P

p∈X(d2(p, M)) +
P

p∈M (d2(p, X))12.4 Symmetri
 di�eren
e and derivativesThe following metri
s are based on the symmetri
 di�eren
e (Def. 5).The Nikodym metri
 is the measure of the symmetri
 di�eren
e ([31℄), denoted nikoM (X):De�nition 28 (Dis
rete Nikodým metri
).
nikoM (X) = #(∆(M, X))The dis
rete Ja

ard index is de�ned by Def. 29:De�nition 29 (Dis
rete Ja

ard index).

jacM (X) =
#(∆(M, X))

#(M
S

X)
= 1 −

#(M
T

X)

#(M
S

X)Some very similar 
riteria have been proposed by [25℄ or referen
ed by [10℄ as overdete
tion or underdete
-tion errors, and also as lo
alization error ErrLoc (Def. 30):De�nition 30 (Lo
alization error).
ErrLocM (X) =

#(∆(M, X)

NIn the 
ase of mosai
s (binary sets), the 
lassi
al Lq distan
e is de�ned by:De�nition 31 (Lq metri
).
LqM (X) =

0

B
B
@

X

p

|IM (p) − IX(p)|q

N

1

C
C
A

1
q

=
“

#(∆(M,X))
N

” 1
qNoti
e that in the 
ase of binary images, and q = 1, the following relations holds: L1M (X) = ErrLocM (X).



2012.5 Pixel to pixel 
omparisonA measure of quality has been proposed by [35℄, although its formulation will not be explained here be
auseit would take too long in this arti
le. It will be 
alled mquality (it is 
alled R in the original arti
le). This
riterion in
ludes neighborhood 
onsiderations.Based on the Rènyi entropy Hα, [4,26℄ propose some other measures that 
an handle grey level images(Küllba
k, Bhatta
haryya and Jensen-like distan
es):De�nition 32 (Küllba
k distan
e).
dkuM (X) =

1

N

X

p



(IX(p) − IM (p)) × Log
IX(p)

IM (p)

ffDe�nition 33 (Bhatta
haryya).
dbhM (X) = −Log

0

@
1

N

X

p

p

IX(p) × IM (p)

1

ADe�nition 34 (Jensen-like distan
e).
djeM (X) = J1

„
IX + IM

2
, IX

«with
J1(IM , IX) = Hα

“p

IX × IM

”

−
Hα(IX) + Hα(IM )

2and
Hα(I) =

1

1 − α
Log

2

0

@
X

p

I(p)α

1

AThere might be some problems when using dku for zero valued pixels p. Pra
ti
ally, one 
an use IX(p) + 1and IM (p) + 1. In the 
ase of binary images (values are 0 or 1), the Küllba
k distan
e is equivalent to ErrLoc(see Prop. 14), this is why this 
riterion will not appear in the results.Proposition 14
dkuM (X) =

Log(2)

N
# (∆(M, X))13 Criteria normalization and 
alibrationThe main problem, when 
omparing di�erent geometri
 dissimilarity 
riteria, is that the numeri
al values
annot be dire
tly 
ompared from one method to the other. First, it depends on the appli
ation �eld, the dataa
quisition type, the s
ale of observation and on the resolution. Se
ond, it depends on the 
riterion itself.Usually, resear
hers employ a normalisation method: the dissimilarity 
riteria are divided by a normalisationfa
tor, that 
an be the number of pixels in the domain S or the maximum value of the dissimilarity 
riterion.The key question raises: is it enough to 
ompare dissimilarity 
riteria together ? The answer is negative.Dissimilarity 
riteria do not represent the same things and do not follow the same mathemati
al rules. This iswhy in this study, the dissimilarity 
riteria are 
alibrated.De�nition 35 (Normalized and 
alibrated 
riterion ĉ). ĉ is the 
alibrated 
riterion c normalised by ωc.

ĉ =
c

ωc



21The value 1 represents the 
riterion value above whi
h two 
ompared mosai
s are di�erent. 1 is thus athreshold value under whi
h ea
h 
riterion 
an be 
onsidered as valid. The 
alibration value ωc will be de�nedin Def. 36.For the 
hoosen appli
ation domain, the human 
orneal endothelium, and for a given spatial resolution ands
ale fa
tor, the 
riteria are 
alibrated with the following method: every mosai
 from the database (Figs. 25and 26) is 
ompared to the 29 others. If (i, j) ∈ [1; 30]2 (Mi is a mosai
 from the database), then the 
alibrationvalue for a dissimilarity 
riterion c is de�ned as the minimum of all 
omparisons for this 
riterion.De�nition 36 (Calibration value for a 
riterion). The 
alibration value, denoted ωc, for a given dissim-ilarity 
riterion c, is de�ned by:
ωc = min

(i,j)∈[1;30]2

`
cMi

(Mj)
´If the mosai
s from the database are supposed to be di�erent (whi
h is realisti
, see Fig. 25), the 
alibrationvalue ωc stands for the threshold value above whi
h two mosai
s should be 
onsidered di�erent (see Fig. 10).The mean or the maximum value of all 
omparisons 
ould have been used instead. But normalizing by theminimum value make the results more restri
tive. The results for ea
h 
riterion are presented in Table 1.

Fig. 10 Comparison of two di�erent mosai
s. Visually, these mosai
s appear to be really di�erent. Pra
ti
ally, let's saythat a 
riterion c applied on these mosai
s gives a value of ωc. This means that if two di�erent mosai
s 
ompared withthe same 
riterion c obtain a value above ωc, they 
an be 
onsidered as di�erent.
c ωc

ErrLoc 0.07
dbh 2.06

Haus 13.42
fom 0.73
odi 0.71
udi 0.71
dje 0.13
ǫ 0.22

jcd 1
yas 0.0013

mquality 5066Table 1 Table of the minimal values of the dissimilarity 
riteria c when all 
ouples of mosai
s of the database are
ompared. The 
alibration value ωc re�e
ts the threshold value above whi
h two 
ompared mosai
s should be 
onsideredas di�erent.



2214 Quantitative 
omparison of the 11 
riteriaWith the 30 mosai
s from the database, the dissimilarity 
riteria are numeri
ally evaluated versus a degradationof the referen
e mosai
 M . The operator T : X = T (M) denotes the transformation (degradation) of M . Thisoperator will a
t for over-segmentation, under-segmentation and small displa
ements (translation, distortionand smoothing).14.1 Under-segmentation and over-segmentationThe under-segmentation operation 
onsists in randomly 
hoosing a pixel present in the referen
e mosai
 M (i.e.in the 
ontours) and erasing it. Then, the 
onsidered 
ontour is suppressed by using a morphologi
al operationthat performs a pruning. The result is equivalent to a deletion of one edge of a 
ell (Fig. 11).
1. Referen
emosai
 2. Under-segmentationof the refer-en
e mosai
Fig. 11 Illustration of the under-segmentation pro
ess.The over-segmentation operation 
onsists in randomly pi
king up a 
ell in the mosai
, randomly 
hoosingtwo pixels in it and then split the 
ell like a watershed operation would do (Fig. 12, see also [7℄).
1. Referen
emosai
 2. Over-segmentationof the refer-en
e mosai
Fig. 12 Illustration of the over-segmentation pro
ess.Thus the fun
tion ĉ is de�ned from the 
riterion c as a fun
tion of its degradation x:De�nition 37 (Mosai
 degradation).

x =
#(T (M)) − #(M)

#(M)where M is the referen
e mosai
 and τ (M) is the degraded mosai
, and # means the number of pixels in amosai
Noti
e that x is negative when T is an under-segmentation and positive for an over-segmentation.Moreover, two quality measurements qc,o (over-segmentation quality) and qc,u (under-segmentation quality)are de�ned as follows:De�nition 38 (Quality measurements).
qc,o = 100 × arg min

x
{ĉ(x) ≥ 1 and x ≥ 0}

qc,u = 100 × arg max
x

{ĉ(x) ≥ 1 and x ≤ 0}



23Be aware that these quality measurements are de�ned for one parti
ular mosai
 and may slightly vary fromone mosai
 to the other. The mean results for the 30 mosai
s of the database are presented in Table 2.
c q̂o q̂u

ErrLoc 83
dbh NA 80

Haus −1 0.6
fom 74
odi −1 NA

udi NA 0
dje 80
ǫ 100

jcd 100
yas −34 NA

mquality 53Table 2 q̂u and q̂o are the mean quality measurements de�ned for under or over segmentation (see Se
t. 14.1) of the30 mosai
s of the database. This 
annot prove that a 
riterion is good, but it 
an show that a 
riterion behaves poorly(as Haus, odi, udi and yas).A 
ell with no value means that it 
ould not be 
omputed (there was no 
omputed value x that 
ould de�ne qu,but it may exists). In parti
ular, some 
ells show NA, whi
h means that a spe
i�
 
riterion 
annot measure under orover-segmentation.The results are presented in Figs. 13, 14 and 15. x is represented in abs
iss, and ĉ(x) in ordinate. In Fig. 13,all 
omparison 
riteria are represented for the degradation (under and over-segmentation) of only one mosai
.The 
louds of points represented in Fig. 15 re�e
ts the degradation of all mosai
s from the database (only onetime). The Fig. 14 shows the degradation for mosai
 1 of the database.14.2 TranslationThis operation is the translation τ of a mosai
 in the four dire
tions right, left, up and down of a re
tangulargrid (see Fig. 16). A small translation (of a few pixels) should give a small 
riterion value (i.e. less than ωc).The results are presented in Fig. 17: translations τ (n) of n pixels are used. The mean value for the 4 dire
tionsis shown, normalized by ωc. Still, all values below 1 mean that the 
ompared mosai
s 
an be 
onsidered assimilar (in other words 
annot be 
onsidered as dissimilar).The 
onsidered 
orneal mosai
s are parti
ular in the way they present a regular pattern (something like anhexagon, that represents a 
ell) that is reprodu
ed in the image. This means that if a translation of about thesize of a 
ell is performed, the translated mosai
 may overlap with the original one. This explains the fa
t thatthe 
omparison values seem to tend to a spe
i�
 value (Fig. 17).14.3 DistortionIf a mosai
 is approximated by polygonal lines ([36℄ and QGAR library1), the borders of the 
ells are the edgesand their interse
tions are the verti
es. What is 
alled a distortion is a random displa
ement of ea
h vertex ina square neighborhood of a given size (see Fig. 18).De�nition 39 (Distortion formulation). Let M̃ = (VM , EM ) be the polygonal approximation of the ref-eren
e mosai
 M . VM is the set of verti
es, and EM the set of edges. Ea
h vertex v of VM has two 
oordinatesin 2D, vx and vy . The distortion D of size s is de�ned as follows:
VD(M,s) =

˘
v′ = (vx + rvx , vy + rvy )

¯where rvx ∈ N and rvy ∈ N are random variables in [−s; s], s ∈ N.1 http://www.qgar.org

http://www.qgar.org
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Fig. 13 Representation of ĉ(x) for the 11 dissimilarity 
riteria. The values qc,o and qc,u 
an be observed when the 
urveasso
iated to a 
riterion c is 
rossing the horizontal line in red de�ned for the value 1 (when appli
able). In
reasing
riteria that stay most of the time under the value 1 (ĉ ≤ 1 ⇔ c ≤ ωc) are to be preferred. See Fig. 14 for detaileddiagrams.This 
an be seen as the errors made by an expert when manually drawing the 
ontours. The results of 3experiments are presented in Figs. 19,20 and 21, respe
tively on a mosai
 with small, median and big 
ells.After this distortion, the mosai
 M̃ is transformed into a dis
rete mosai
 by drawing the edges of ED(M,s) aslines (this de�nes another dis
rete mosai
).The 
riterions that 
an be used to evaluate the distortion of the mosai
s have to be in
reasing for theparameter s and stay a long time under the value 1. For example, ErrLo
, mquality and dje present for s >= 1some values greater that 1, whi
h means that they are not adapted to this distortion evaluation. Be aware thatthis is not visible for ErrLo
 and mquality in Fig. 21, be
ause the value s is lower relatively to the big 
ell sizethan in Figs. 19 and 20.14.4 SmoothingThe smoothing pro
ess S 
onsists in getting a smooth mosai
 from the original one. There would be a lot ofdi�erent ways of getting a so-
alled smooth mosai
, for example using deformable models. We 
hoosed to usesome mathemati
al morphology operations. The mosai
 M is �rst dilated (see the Minkowski addition Def. 8)with a ball stru
turing element B of size s (B = sN). Then, the result is thinned and the spurs are removed.The obtained mosai
 is a smooth version approximating the original one. The Figs. 22, 23 and 24 illustratethis transformation for 
ells of small, median and big sizes. What 
an be observed in these graphs is that forsome value s of the dilation, the ĉ is near or above 1, whi
h means that the mosai
s are really damaged. These
ond interesting 
riterion is the monotoni
ity: some 
riterions have not in
reasing values and thus are notusefull for this type of transformation.
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2. dbh: good qc,u, poor qc,o
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3. Haus: poor qc,u and qc,o
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4. fom: good qc,u and qc,o
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5. odi: poor qc,u and qc,o
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6. udi: poor qc,u and qc,o
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7. dje: good qc,u and qc,o
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8. ǫ: good qc,u and qc,o
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9. jcd: good qc,u and qc,o, (althoughvery steep)
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10. yas: poor qc,u, good qc,o
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11. mquality: good qc,u and qc,o (al-though very �at)Fig. 14 Representation of ĉ(x) for di�erent 
riteria c and for mosai
 1 of the database (Fig. 25). Espe
ially for under-segmentation, the 
riterion c 
an be trusted when ĉ(x) ≤ 1. The quality measurements qc,u and qc,o are 
omputed withthese data.
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Fig. 16 Illustration of a translation on a pie
e of a mosai
. This is a rigid transformation of the mosai
.
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1.8
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ErrLoc dbh Haus fom odi udi dje ε yas mquality JCdFig. 17 Robustness of the 11 
riteria versus translation. Ea
h bar represents the mean 
riterion value in the fourdire
tions for the 30 mosai
s of the database. For ea
h 
riterion, translations from 1 to 6 pixels have been representedin 
olorbars.To understand this graph, noti
e that as these mosai
s represent a regular tiling of some sort of 
ells, after a translationof a 
ell size the translated and the original mosai
 may be superposed. This means that after su
h a translation, bothmosai
s begin to be visually really dissimilar and a 
riterion should re�e
t it (and also present values above 1). Thisshows that the Hausdor� 
riterion 
annot 
orre
tly evaluate translations be
ause it is bounded in the 
ase of mosai
s.
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Fig. 18 Illustration of the distortion pro
ess. Ea
h vertex of the mosai
 is randomly moved in a given neighborhood.The 
omparison of the dotted mosai
 and the 
ontinuous mosai
 is then performed.14.5 Small spatial variationsThis se
tion does not present a transformation that will allow the measurement of the toleran
e of the di�erent
riteria to small variations. It emphasizes in the previous transformations where this behaviour 
an be observed.A small spatial variation 
an be explained as the variation observed when an expert manually draws twi
ethe same mosai
 (with visually the same result). Blatantly, it depends of the s
ale of observation. It is relatedto the 
hoi
e of the toleran
e parameter ρ for the ǫ dissimilarity 
riterion. For example in our appli
ation, atranslation of less than ρ pixels is 
onsidered as a small variation.Thus, the toleran
e to small variations for the di�erent dissimilarity 
riteria 
an be observed on the graphof translation evaluation (Fig. 16) and on the graphs of distortion (Figs. 19,20 and 21). Only three 
riteria aretolerant (they are de�ned to be tolerant): udi, odi and ǫ.15 Dis
ussion and 
on
lusionThe aim of this se
ond part of this arti
le was to 
ompare 11 dissimilarity 
riteria and to be able to 
hoose thebests in the 
ase of mosai
s 
omparisons. In the 
ited resear
h works that also perform dissimilarity 
riteria
omparisons, the frustration 
ame be
ause the normalisation (and the 
omparison) was not really 
onvin
ing.A normalisation between 0 and 1 is sometimes not possible, and generally not enough to allow a 
omparison.This is why a 
alibration method was introdu
ed, that 
an highlight the values where we 
an be sure that the
riterion values re�e
t di�erent mosai
s.
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Distortion evaluation for mosai
 with small 
ells

Fig. 19 Evolution of the 
riteria for one random distortion D(M, s) with the size s represented in abs
isse. This graphshows for s = 0 that the lower measures are proposed by the 
riteria designed to be more tolerant (ǫ, udi, odi). Due tothe polygonalization pro
ess, noti
e that the mosai
 issued from the distortion D(M, 0) of size s = 0 is not equivalent tothe mosai
 M . This explains the non null values for all the dissimilarity 
riteria but the ǫ dissimilarity 
riterion (that isdesigned to handle this approximation). The ǫ 
riterion also presents a null value for the translation of s = 1 pixels as aresult of the toleran
e parameter (2 pixels of toleran
e).The 
omparison of the distortion for two di�erent mosai
s has no meaning be
ause these mosai
s present spatial stru
tures(the 
ells) of di�erent sizes. This is why this Fig. is only for mosai
 1 (with small 
ells). Figs. 21 and 20 present resultsfor respe
tively big and median size 
ells.The Table 3 summaries the di�erent experiments presented to test the robustness of the 
riteria versus overand under segmentation, translation, distortion and toleran
e to small variations. The presen
e of a green 
ell(with a *) indi
ates that the 
riterion is e�
ient to evaluate the 
onsidered transformation.16 Perspe
tiveA perspe
tive already mentionned is to developp a method to automati
ally 
hoose the toleran
e parametervalue, either by an observation of the mosai
 or by some other informations (like the original image it might
ome from).The ǫ geometri
 dissimilarity 
riterion was initially designed to tune up algorithms of 
orneal endotheliumimage segmentation ([17℄). It is now planned to 
ondu
t a survey on segmentation methods of 
orneal imagesin order to 
ompare their results together and propose adapted values for the operating parameters they 
oulduse.
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Fig. 20 Distortion evaluation for mosai
 26 (with 
ells of median size).
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 11 (with 
ells of big size).
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Fig. 22 Smoothing evaluation for mosai
 1 (with 
ells of small size). The parameter s is the size of dilation used tosmooth the mosai
.
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Fig. 23 Smoothing evaluation for mosai
 26 (with 
ells of median size).
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Fig. 24 Smoothing evaluation for mosai
 11 (with 
ells of big size).

 under-segmentat

ion
over-segmentatio
n

translation distortion smoothing toleran
eErrLo
 * *dbh * * * *Haus * *fom * * * *odi * * * *udi * * * *dje * *
ǫ * * * * * *j
d * * * *yas * * *mquality * *Table 3 Summary table of the 
ompared 
riteria and their observed robustness versus �ve transformations. A star(green 
ell) means that a dissimilarity 
riterion is able to dis
riminate the 
onsidered transformation.
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1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

11. 12. 13. 14. 15. 16. 17. 18. 19. 20.

21. 22. 23. 24. 25. 26. 27. 28. 29. 30.Fig. 25 Table of the 30 mosai
s of the database. They have been manually drawn by an expert ophthalmologist from a human 
orneal endothelium image database. Thelines represent the 
ontours of the 
ells.
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Fig. 26 Table of the 30 images of 
orneal endotheliums of the database, a
quired in spe
ular mi
ros
opy.



35Referen
es1. Abdou, I., Pratt, W.: Qualitative design and evaluation of enhan
ement/thresholding edge dete
tor. Pro
. IEEE.67(5), 753�763 (1979)2. Ambrosio, L., Colesanti, A., Villa, E.: Outer minkowski 
ontent for some 
lasses of 
losed sets. Mathematis
heAnnalen 342(4), 727�748 (2008)3. Baddeley, A.J.: An error metri
 for binary images. In: W. Förstner, H. Ruwiedel (eds.) Robust Computer Vision:Quality of Vision Algorithms, pp. 59�78. Wi
hmann, Karlsruhe (1992)4. Basseville, M.: Distan
e measures for signal pro
essing and pattern re
ognition. Signal Pro
ess. 18(4), 349�369(1989). DOI http://dx.doi.org/10.1016/0165-1684(89)90079-05. Baudrier, E., Millon, G., Ni
olier, F., Ruan, S.: Binary-image 
omparison with lo
al-dissimilarity quanti�
ation.Pattern Re
ognition 41(5), 1461�1478 (2008)6. Belaroussi, B., Benoit-Cattin, H., Odet, C.: S
alable dis
repan
y measures for segmentation evaluation. In: ICIP(1), pp. 785�788 (2002)7. Beu
her, S., Lantuejoul, C.: Use of watersheds in 
ontour dete
tion. In: International Workshop on Image Pro
essing:Real-time Edge and Motion Dete
tion/Estimation, Rennes, Fran
e. (1979)8. Brouwer, L.E.J.: Beweis des jordans
hen satzes für n-dimensionen. Math. Annalen 71, 314�319 (1911)9. Capasso, V., Mi
heletti, A.: Sto
hasti
 geometry and related statisti
al problems in biomedi
ine. In: ComplexSystems in Biomedi
ine, pp. 35�69. Springer Milan Ed. (2006). DOI 10.1007/88-470-0396-2_210. Chabrier, S., Laurent, H., Rosenberger, C., Emile, B.: Comparative study of 
ontour dete
tion evaluation 
riteriabased on dissimilarity measures. J. Image Video Pro
ess. 2008(2), 1�13 (2008). DOI http://dx.doi.org/10.1155/2008/69305311. Cárdenes, R., de Luis-Gar
ía, R., Ba
h-Cuadra, M.: A multidimensional segmentation evaluation for medi
al imagedata. Computer Methods and Programs in Biomedi
ine 96(2), 108 � 124 (2009). DOI DOI:10.1016/j.
mpb.2009.04.00912. Debayle, J., Gavet, Y., Pinoli, J.C.: General Adaptive Neighborhood Image Restoration, Enhan
ement and Segmen-tation, LNCS: Image Analysis and Re
ognition, vol. 4141, 
hap. Image Restoration and Enhan
ement, pp. 29�40.Springer Verlag (2006). DOI 10.1007/11867586_313. Deza, M.M., Deza, E.: Di
tionary of distan
es. Elsevier (2006)14. Diri
hlet, G.: Über die reduktion der positiven quadratis
hen formen mit drei unbestimmten ganzen zahlen. J. ReineAngew. Math. 40, 209�227 (1850)15. Federer, H.: Geometri
 measure theory. Springer-Verlag (1969)16. Fu, J.H.G.: Tubular neighborhoods in Eu
lidean spa
es. Duke Math. J. 52, 1025�1046 (1985). DOI 10.1215/S0012-7094-85-05254-817. Gavet, Y., Pinoli, J.C.: Visual per
eption based automati
 re
ognition of 
ell mosai
s in human 
orneal endotheliummi
ros
opy images. Image Anal. Stereol. 27, 53�61 (2008)18. Hausdor�, F.: Grundzuege der Mengenlehre. Viet, Leipzig (1914)19. Ja

ard, P.: Étude 
omparative de la distribution �orale dans une portion des alpes et des jura. Bulletin de la So
iétéVaudoise des S
ien
es Naturelles 37, 547�579 (1901)20. Kerautret, B., La
haud, J.O.: Multi-s
ale analysis of dis
rete 
ontours for unsupervised noise dete
tion. In: IWCIA,pp. 187�200 (2009)21. Klette, R., Rosenfeld, A.: Digital geometry. Morgan Kaufmann (2004)22. Lebesgue, H.L.: Sur la mesure des grandeurs. L'enseignement mathématique (1935)23. Mar
zewski, F., Steinhaus, H.: On a 
ertain distan
e of sets and the 
orresponding distan
e of fun
tions. In:CoIloquim Mathemati
um, vol. 6, pp. 319�327 (1958)24. Marr, D., Hildreth, E.: Theory of edge dete
tion. Pro
eedings of the Royal So
iety of London. Series B, Biologi
alS
ien
es (1934-1990) 207(1167), 187�217 (1980)25. Martin, D.R.: An empiri
al approa
h to grouping and segmentation. Ph.D. thesis, EECS Department, University ofCalifornia, Berkeley (2003)26. Mi
hel, O., Baraniuk, R., Flandrin, P.: Time-frequen
y based distan
e and divergen
e measures. In: Time-Frequen
yand Time-S
ale Analysis, 1994., Pro
eedings of the IEEE-SP International Symposium on, pp. 64�67 (1994). DOI10.1109/TFSA.1994.46736327. Mi
heletti, A., Capasso, V.: The sto
hasti
 geometry of polymer 
rystallization pro
esses. Sto
hasti
 Analysis andAppli
ations 15(3), 355�373 (1997). DOI 10.1080/0736299970880948128. Minkowski, H.: Volumen und Ober�ä
he. Mathematis
he Annalen 57, 447�495 (1903)29. Morgan, F.: Geometri
 measure theory. A
ademi
 Press, San Diego, CA, USA (1995)30. Nguyen, T.P., Debled-Rennesson, I.: Curvature estimation in noisy 
urves. In: CAIP, pp. 474�481 (2007)31. Nikodým, O.M.: Sur une généralisation des intégrales de M. J. Radon. Fund. Math. 15, 131�179 (1930)32. Okabe, A., Boots, B., Sugihara, K.: Spatial tessellations: 
on
epts and appli
ations of Voronoi diagrams. John Wiley& Sons, In
., New York, NY, USA (1992)33. Philipp-Foliguet, S., Guigues, L.: Évaluation de la segmentation d'images: état de l'art, nouveaux indi
es et 
om-paraison. Traitement du signal 23(2), 109�124 (2006)34. Pompeiu, D.: Sur la 
ontinuité des fon
tions de variables 
omplexes (thèse). Annales de la fa
ulté des s
ien
es deToulouse Sér. 2 7, 265�315 (1905)35. Román-Roldán, R., Gómez-Lopera, J.F., Atae-Allah, C., Martínez-Aroza, J., Luque-Es
amilla, P.L.: A measure ofquality for evaluating methods of segmentation and edge dete
tion. Pattern Re
ognition, 34(5), 969�980 (2001)36. Rosin, J., West, G.: Segmentation of edges into lines and ar
s. Image and Vision Computing 7(2), 109�114 (1989)37. Santini, S., Jain, R.: Similarity is a geometer. Multimedia Tools Appl. 5(3), 277�306 (1997)38. Stoyan, D., Kendall, W.S., Me
ke, J.: Sto
hasti
 geometry and its appli
ations. Wiley (1995)



3639. Strasters, K.C., Gerbrands, J.J.: Three-dimensional image segmentation using a split, merge and group approa
h.Pattern Re
ognition Letters 12(5), 307�325 (1991)40. Tversky, A.: Features of similarity. Psy
hologi
al Review 84(4), 327�352 (1977)41. Tversky, A., Gati, I.: Similarity, separability and the triangle inequality. Psy
hologi
al Review 89, 123�154 (1982)42. Veltkamp, R.: Shape mat
hing: similarity measures and algorithms. In: Shape Modeling and Appli
ations, SMI 2001International Conferen
e on., pp. 188�197 (2001)43. Veltkamp, R.C., Hagedoorn, M.: Shape similarity measures, properties and 
onstru
tions. In: VISUAL '00: Pro
eed-ings of the 4th International Conferen
e on Advan
es in Visual Information Systems, LNCS, vol. 1929, pp. 467�476.Springer-Verlag, London, UK (2000)44. Villa, E.: On the outer minkowski 
ontent of sets. Annali di Matemati
a Pura ed Appli
ata 188, 619�630 (2008).DOI 10.1007/s10231-008-0093-245. Voronoi, G.: Nouvelles appli
ations des parametres 
ontinus a la theorie des formes quadratiques. premier mémoire:sur quelques propriétés des formes quadratiques positives parfaites. Journal für die Reine und Angewandte Mathe-matik 133, 97�178 (1907)46. Voronoi, G.: Nouvelles appli
ations des parametres 
ontinus a la theorie des formes quadratiques. deuxième mémoire:Re
her
hes sur les parallélloèdres primitives. Journal für die Reine und Angewandte Mathematik 134, 198�287 (1908)47. Voronoi, G.: Nouvelles appli
ations des parametres 
ontinus a la theorie des formes quadratiques. deuxième mémoire:Re
her
hes sur les parallélloèdres primitifs, se
onde partie: Domaines de formes quadratiques 
orrespondant auxdi�érents types de parallélloèdres primitives. Journal für die Reine und Angewandte Mathematik 136, 67�181(1909)48. Yasno�, W.A., Mui, J.K., Ba
us, J.W.: Error measures for s
ene segmentation. Pattern Re
ognition 9(4), 217 � 231(1977). DOI DOI:10.1016/0031-3203(77)90006-149. Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: A survey of unsupervised methods. ComputerVision and Image Understanding 110(2), 260�280 (2008)50. Zhang, Y.J.: A survey on evaluation methods for image segmentation. Pattern Re
ognition 29(8), 1335�1346 (1996)


	Introduction
	Geometric Distances in Rn
	Geometric distances and spatial mosaics
	Extended geometric distances
	Distances and human visual perception
	A geometric dissimilarity criterion for mosaics
	Properties of the epsilon dissimilarity criterion: general case rho>0,alpha>0
	Properties of the epsilon dissimilarity criterion: role of the alpha extension parameter
	Conclusion
	Introduction
	Evaluation criteria
	Presentation of 11 evaluation criteria
	Criteria normalization and calibration
	Quantitative comparison of the 11 criteria
	Discussion and conclusion
	Perspective

